地球物理计算方法 第二章_数值积分 2

曲线积分与曲面积分(解题方法归纳)

第十一章解题方法归纳 一、曲线积分与曲面积分的计算方法 1.曲线积分与曲面积分的计算方法归纳如下: (1) 利用性质计算曲线积分和曲面积分. (2) 直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分. (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分. (6) 利用高斯公式计算闭曲面上的曲面积分. 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则 1 (,)2(,)L L f x f x y ds f x y ds f x ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P x P x y dx P x y dy P x ??=?????对为奇函数 对为偶函数 1 0 (,)2(,)L L Q x Q x y dy Q x y dy Q x ??=?????对为偶函数 对为奇函数 其中1L 是L 在右半平面部分. 若积分曲线L 关于x 轴对称,则 1 (,)2(,)L L f y f x y ds f x y ds f y ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P y P x y dx P x y dy P y ??=?????对为偶函数 对为奇函数 1 0 (,)2(,)L L Q y Q x y dy Q x y dy Q y ??=?????对为奇函数 对为偶函数 其中1L 是L 在上半平面部分.

(2)若空间积分曲线L 关于平面=y x 对称,则 ()()=??L L f x ds f y ds . (3)若积分曲面∑关于xOy 面对称,则 1 0 (,,)2(,,)f z f x y z dS R x y z dS f z ∑ ∑?? =????? ??对为奇函数对为偶函数 1 0 (,,)2(,,)R z R x y z dxdy R x y z dxdy R z ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在xOy 面上方部分. 若积分曲面∑关于yOz 面对称,则 1 0 (,,)2(,,)f x f x y z dS R x y z dS f x ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)P x P x y z dydz P x y z dydz P x ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在yOz 面前方部分. 若积分曲面∑关于zOx 面对称,则 1 0 (,,)2(,,)f y f x y z dS R x y z dS f y ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)Q y Q x y z dzdx Q x y z dzdx Q y ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在zOx 面右方部分. (4)若曲线弧() :()()αβ=?≤≤?=? x x t L t y y t ,则 [ (,)(),()()β α αβ=

(精选)实验二 数值方法计算积分

实验二数值方法计算积分 学号:姓名:指导教师:实验目的 1、了解并掌握matlab软件的基本编程、操作方法; 2、初步了解matlab中的部分函数,熟悉循环语句的使用; 3、通过上机进一步领悟用复合梯形、复合辛普森公式,以及用龙贝格求积 方法计算积分的原理。 一、用不同数值方法计算积分 10x ln xdx=-94. (1)取不同的步长h.分别用复合梯形及辛普森求积计算积分,给出误差中关 于h的函数,并与积分精确值比较两个公式的精度,是否存在一个最小 的h,使得精度不能再被改善? (2)用龙贝格求积计算完成问题(1)。 二、实现实验 1、流程图: 下图是龙贝格算法框图:

2、 算法: (1) 复合梯形公式:Tn=++)()([2b f a f h 2∑-=1 1 )](n k xk f ; (2) 复合辛普森公式:Sn=6h [f(a)+f(b)+2∑-=11)](n k xk f +4∑-=+1 )2/1(n k x f ]; 以上两种算法都是将a-b 之间分成多个小区间(n ),则h=(b-a)/n,x k =a+kh, x k+1/2=a+(k+1/2)h,利用梯形求积根据两公式便可。 (3) 龙贝格算法:在指定区间内将步长依次二分的过程中运用如下公式 1、Sn= 34T2n-31 Tn 2、 Cn=1516S2n-151 Sn 3、 Rn=6364C2n-631 Cn 从而实现算法。 3、 程序设计 (1)、复合梯形法: function t=natrapz(fname,a,b,n) h=(b-a)/n; fa=feval(fname,a);fb=feval(fname,b);f=feval(fname,a+h:h:b-h+0. 001*h); t=h*(0.5*(fa+fb)+sum(f)); (2)、复合辛普森法: function t=natrapz(fname,a,b,n) h=(b-a)/n; fa=feval(fname,a);fb=feval(fname,b);f1=feval(fname,a+h:h:b-h+0 .001*h); f2=feval(fname,a+h/2:h:b-h+0.001*h); t=h/6*(fa+fb+2*sum(f1)+4*sum(f2)); (3)龙贝格法: function [I,step]=Roberg(f,a,b,eps) if(nargin==3) eps=1.0e-4; end; M=1; tol=10; k=0; T=zeros(1,1); h=b-a; T(1,1)=(h/2)*(subs(sym(f),findsym(sym(f)),a)+subs(sym(f),findsym(sym(f)),

地球物理反演理论

地球物理反演理论 一、解释下列概念 1.分辨矩阵 数据分辨矩阵描述了使用估计的模型参数得到的数据预测值与数据观测值的拟合程度,可以表示为[][]pre est g obs g obs obs d Gm G G d GG d Nd --====,其中,方阵g N GG -=称为数据分辨矩阵。它不是数据的函数, 而仅仅是数据核G (它体现了模型及实验的几何特征)以及对问题所施加的任何先验信息的函数。 模型分辨矩阵是数据核和对问题所附加的先验信息的函数,与数据的真实值无关,可以表示为()()est g obs g true g ture ture m G d G Gm G G m Rm ---====,其中R 称为模型分辨矩阵。 2.协方差 模型参数的协方差取决于数据的协方差以及由数据误差映射成模型参数误差的方式。其映射只是数据核和其广义逆的函数, 而与数据本身无关。 在地球物理反演问题中,许多问题属于混定形式。在这种情况下,既要保证模型参数的高分辨率, 又要得到很小的模型协方差是不可能的,两者不可兼得,只 有采取折衷的办法。可以通过选择一个使分辨率展布与方差大小加权之和取极小的广义逆来研究这一问题: ()(1)(cov )u aspread R size m α+- 如果令加权参数α接近1,那么广义逆的模型分辨矩阵将具有很小的展布,但是模型参数将具有很大的方差。而如果令α接近0,那么模型参数将具有相对较小的方差, 但是其分辨率将具有很大的展布。 3.适定与不适定问题 适定问题是指满足下列三个要求的问题:①解是存在的;②解是惟一的;③解连续依赖于定解条件。这三个要求中,只要有一个不满足,则称之为不适定问题 4.正则化 用一组与原不适定问题相“邻近”的适定问题的解去逼近原问题的解,这种方法称为正则化方法。对于方程c Gm d =,若其是不稳定的,则可以表述为

数值分析第二章复习与思考题

第二章复习与思考题 1.什么是拉格朗日插值基函数?它们是如何构造的?有何重要性质? 答:若n 次多项式()),,1,0(n j x l j =在1+n 个节点n x x x <<< 10上满足条件 (),,,1,0,, ,0, ,1n k j j k j k x l k j =?? ?≠== 则称这1+n 个n 次多项式()()()x l x l x l n ,,,10 为节点n x x x ,,,10 上的n 次拉格朗日插值基函数. 以()x l k 为例,由()x l k 所满足的条件以及()x l k 为n 次多项式,可设 ()()()()()n k k k x x x x x x x x A x l ----=+- 110, 其中A 为常数,利用()1=k k x l 得 ()()()()n k k k k k k x x x x x x x x A ----=+- 1101, 故 ()()()() n k k k k k k x x x x x x x x A ----= +- 1101 , 即 ()()()()()()()()∏ ≠=+-+---=--------=n k j j j k j n k k k k k k n k k k x x x x x x x x x x x x x x x x x x x x x l 0110110)( . 对于()),,1,0(n i x l i =,有 ()n k x x l x n i k i k i ,,1,00 ==∑=,特别当0=k 时,有 ()∑==n i i x l 0 1. 2.什么是牛顿基函数?它与单项式基{ }n x x ,,,1 有何不同? 答:称()()()(){ }10100,,,,1------n x x x x x x x x x x 为节点n x x x ,,,10 上的牛顿基函数,利用牛顿基函数,节点n x x x ,,,10 上的n 次牛顿插值多项式()x P n 可以表示为 ()()()()10010---++-+=n n n x x x x a x x a a x P 其中[]n k x x x f a k k ,,1,0,,,,10 ==.与拉格朗日插值多项式不同,牛顿插值基函数在增加节点时可以通过递推逐步得到高次的插值多项式,例如 ()()()()k k k k x x x x a x P x P --+=++ 011,

空间曲线积分的计算方法

空间曲线积分的计算方法 (1)曲线积分的计算例1 计算,其中为平面被三个坐标平面所截三角形的边界,若从轴正向看去,定向为逆时针方向.方法一根据第二型曲线积分的定义化为定积分计算根据定义求曲线积分的关键是使被积函数满足曲线方程,即可将曲线方程代入被积函数.解法一:设,则,,,则.由曲线积分的定义,有.同理可得: .所以.方法二将空间曲线积分转化为平面曲线积分后用格林公式计算 格林公式给出了平面上有限条逐段光滑封闭曲线上的积分与它们所包含的区域上的二重积分之间的关系.解法二:设,,则,是围成的区域.代入原积分由格林公式得原式.化为平面曲线积分后也可以由定义计算积分值,但比格林公式要复杂得多.用格林公式首先要验证问题是否满足定理条件,其次可用对称性简化计算.方法三根据对称性求曲线积分. 轮换对称性即当被积函数和积分域同步进行同一轮换时,积分的值不变.当被积函数和积分域都具有轮换对称性,这种情形称为双轮换对称性;当被积函数具有轮换对称性而积分域没有或积分域具有轮换对称性而被积函数没有时称为单轮换对称性.双轮换对称性把原题变成了原题,所以对我们解题没有任何帮

助.我们主要在讨论单轮换对称的情形.解法三:由题目特征可知该积分及曲线都具有轮换对称性,因此由对称性知原式.同样由对称性知原式.方法四根据公式求曲线积分 公式建立了空间曲线积分和曲面积分之间的联系,从而将曲线积分和曲面积分有机联系起来. 解法四: 设,方向为上侧,曲面上一点的外法线向量的方向余弦为由公式化为第一型曲面积分得原式.为解法一中所设的点组成的三角形.另解: 根据上面解法中所设,并设为在面上的投影.用公式化为第二型曲面积分得原式 .用公式将曲线积分化为曲面积分时,若曲面为平面化为第一型曲面积分较简单.

第二类曲线积分的计算

第二类曲线积分的计算 Jenny was compiled in January 2021

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为 }{max 1i n i S T ?=≤≤,又设T 的分点的坐标为),(i i i y x M ,并记 11,---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量 形式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿 空间有向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的

数值计算方法第二章

第二章 非线性方程数值解法 在科学计算中常需要求解非线性方程 ()0f x = (2.1) 即求函数()f x 的零点.非线性方程求解没有通用的解析方法,常采用数值求解算法.数值解法的基本思想是从给定的一个或几个初始近似值出发,按某种规律产生一个收敛的迭代序列0{}k k x +∞=,使它逐步逼近于方程(2.1)的某个解.本章介绍非线性方程实根的数值求解算法:二分法、简单迭代法、Newton 迭代法及其变形,并讨论它们的收敛性、收敛速度等. §2.1 二分法 一、实根的隔离 定义 2.1 设非线性方程(2.1)中的()f x 是连续函数.如果有*x 使*()0f x =,则称*x 为方程(2.1)的根,或称为函数()f x 的零点;如果有*()()()m f x x x g x =-,且()g x 在*x 邻域内连续,*()0g x ≠,m 为正整数,则称*x 为方程(2.1)的m 重根.当1m =时,称*x 为方程的单根. 非线性方程根的数值求解过程包含以下两步 (1) 用某种方法确定有根区间.称仅存在一个实根的有根区间为非线性方程的隔根区间,在有根区间或隔根区间上任意值为根的初始近似值; (2) 选用某种数值方法逐步提高根的精度,使之满足给定的精度要求. 对于第(1)步有时可以从问题的物理背景或其它信息判断出根的所在位置,特别是对于连续函数()f x ,也可以从两个端点函数值符号确定出有根区间. 当函数()f x 连续时,区间搜索法是一种有效的确定较小有根区间的实用方法,其具体做法如下 设[,]a b 是方程(2.1)的一个较大有根区间,选择合适的步长()/h b a n =-,k x a kh =+,(0,1,,)k n =L .由左向右逐个计算()k f x ,如果有1()()0k k f x f x +<,则区间1[,]k k x x +就是方程的一个较小的有根区间. 一般情况下,只要步长h 足够小,就能把方程的更小的有根区间分离出来;如果有根区间足够小,例如区间长度小于给定的精度要求,则区间内任意一点可

第二类曲线积分的计算

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称 性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时, 求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢? 为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点 ,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割 },,.....,,{110n n A A A A T -=的细度为}{max 1i n i S T ?=≤≤. 设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P

曲线积分的计算法

曲线积分 第一类 ( 对弧长 ) 第二类 ( 对坐标 ) ? ??转化 定积分 (1) 选择积分变量 用参数方程 用直角坐标方程 用极坐标方程 (2) 确定积分上下限 第一类: 下小上大 第二类: 下始上终 对弧长曲线积分的计算 定理 ) ()()()](),([),(,],[)(),()(),(), (, ),(22βαψ?ψ?βαψ?βαψ?β α <'+'=≤≤? ? ?==?? dt t t t t f ds y x f t t t t y t x L L y x f L 且 上具有一阶连续导数在其中的参数方程为上有定义且连续在曲线弧设注意: ;.1βα一定要小于上限定积分的下限. ,,),(.2而是相互有关的不彼此独立中y x y x f 特殊情形 . ) (:)1(b x a x y L ≤≤=ψ. )(1)](,[),(2dx x x x f ds y x f b a L ?? '+=ψψ. )(:)2(d y c y x L ≤≤=?. )(1]),([),(2dy y y y f ds y x f d c L ?? '+=??

).(, sin ,cos :,象限第椭圆求I ? ? ?===?t b y t a x L xyds I L 解 dt t b t a t b t a I 2220 )cos ()sin (sin cos +-?=?π dt t b t a t t ab 222220 cos sin cos sin +=?π ?-= a b du u b a ab 22 2) cos sin (2222t b t a u +=令. ) (3) (22b a b ab a ab +++=例2 . )2,1()2,1(,4:, 2 一段到从其中求-==?x y L yds I L x y 42=解 dy y y I 222)2 (1+=?-. 0=例3 ) 20(., sin ,cos :, πθθθθ≤≤===Γ=?Γ 的一段其中求k z a y a x xyzds I 解 θ θθθd k a k a 222sin cos +?? =π 20 I . 2 1 222k a ka +-=π例4 ?? ?=++=++Γ=?Γ . 0, , 22 2 2 2z y x a z y x ds x I 为圆周其中求解 由对称性, 知 . 22 2 ???Γ ΓΓ==ds z ds y ds x ?Γ ++=ds z y x I )(312 22故例1

计算地球物理作业

计算地球物理 单位:海洋二所 姓名:潘少军 学号:JX10028

盆地多源地球物理信息复合与自仿射分形计算 单位:海洋二所姓名:潘少军学号:JX10028 摘要:用对数径向功率谱方法计算了盆地区域重磁异常的分维值,将不同地球物 理异常场的分维值作为研究盆地深层构造的参数,同时,将分维值作复合处理,得到复合后的盆地多源地球物理异常场的分维异常图。最后,分析复合分维异常图在研究盆地深层构造中的作用和效果,探讨了这种自仿射分维值大于3的问题。 关键词:盆地;地球物理场;信息复合;分型 用1种地球物理信息可以进行盆地构造的研究,但往往不够全面。因为任何一种地球物理信息的获取都是有一定的地球物理前提,都是某种物性的反映。所以,不同的地球物理信息正是不同的物性的反映。人们为了更加全面、客观地反映地质实际,就想到要用多种地球物理方法来作综合研究。这样,一方面可以互相佐证,尽量减小地球物理反演中的多解性;另一方面也是为了获得研究对象的全面印象。除了各种地球物理信息作综合解释之外,人们想通过对各种地球物理信息复合来获得一种复合信息。这种信息自然比单个信息源所提供的信息更丰富,反映地质客观实际更全面。 以往的信息复合,多采用简单的复合,如将重力异常(也许作了一些常规变换处理)和航磁异常作简单的叠加(相加),这样获得的信息比单源信息当然要丰富一点。但是,这样作存在一个致命的弱点,就是重力异常与航磁异常毕竟是2种性质完全不同的物理场,它们是对不同物性的反映。简单地将2种异常场作叠加,得到的信息从物理意义上讲,它没有明确的物理意义。因此,这样作是牵强附会,是不合适的。但是,对同一区域所作的地球物理测量,所得到的不同地球物理信息却又是具有一定事实上的内在联系(相关性)的,因为,它们都是对同一地质实体的不同方面(物性)的反映。特别是用这些地球物理信息作构造研究时,就更是如此,同时,盆地深层构造相对于造山带的深层构造等相对要简单一点。 1 基本思路与方法原理 在地球物理信息复合研究中碰到的各种地球物理场都是一种统计自仿射分形(Statistical Self—affine Fracta1)。所谓统计自仿射分形,在二维空间中的定义是:f(rx,r h y)与f(x,y)是统计自相似的,其中H是Hausdorff测度,r是一个标度因子。由此可见,统计自仿射分形不是各向同性的。这一点对地球物理工作者来说是显明的。 1.1 基本思路 将各种反映盆地区域的、深层构造的二维空间地球物理信息(地球物理异常场,二维物性界面等)通过不同的研究窗口(窗口尺寸视分辨率要求、研究的目的而定)变换到波数域(即相空间)中来,然后求得各种信息在波数域中的特征参数(如对数径向功率谱的斜率、截距,亦即幂指数型功率谱的幂指数与系数等),将那些能反映盆地构造的特征参数(如分维值、不平度等)进行复合(如作加权平均等);然后把复合的结果再放回到实际的二维空间中去(如将求得的复合特征参数放在所用的窗口中心点上),用计算机绘出这些窗口(可以是小距离的滑动窗口)中心点的特征参数的区域变化图形或图像(如分维值异常图)。通过这种特征参数图的分析,可以达到研究盆地区域、深层构造之目的。 1.2 方法原理

数值积分 (论文)

目录 第一章数值积分计算的重述 (1) 1.1引言 (1) 1.2问题重述 (2) 第二章复化梯形公式 (3) 2.1 复化梯形公式的算法描述 (3) 2.2 复化梯形公式在C语言中的实现 (3) 2.3 测试结果 (4) 第三章复化simpson公式 (6) 3.1 复化simpson公式的算法描述 (6) 3.2 复化simpson公式在C语言中的实现 (6) 3.3 测试结果 (7) 第四章复化cotes公式 (8) 4.1 复化cotes公式的算法描述 (8) 4.2 复化cotes公式在C语言中的实现 (9) 4.3 测试结果 (10) 第五章Romberg积分法 (11) 5.1 Romberg积分法的算法描述 (11) 5.2 Romberg积分法在C中的实现 (12) 5.3 测试结果 (13) 第六章结果对比分析和体会 (144) 参考文献 (16) 附录 (16)

数值积分?-10 2 dx e x (一) 第一章 数值积分计算的重述 1.1引言 数值积分是积分计算的重要方法,是数值逼近的重要内容,是函数插值的最直接应用,也是工程技术计算中常常遇到的一个问题。在应用上,人们常要求算出具体数值,因此数值积分就成了数值分析的一个重要内容。在更为复杂的计算问题中,数值积分也常常是一个基本组成部分。 在微积分理论中,我们知道了牛顿-莱布尼茨(Newton-Leibniz)公式 ()() () b a f x d x F b F a =-? 其中()F x 是被积函数()f x 的某个原函数。但是随着学习的深入,我们发现一个问题: 对很多实际问题,上述公式却无能为力。这主要是因为:它们或是被积函数没有解析形式的原函数,或是只知道被积函数在一些点上的值,而不知道函数的形式,对此,牛顿—莱布尼茨(Newton-Leibniz)公式就无能为力了。此外,即使被积函数存在原函数,但因找原函数很复杂,人们也不愿花费太多的时间在求原函数上,这些都促使人们寻找定积分近似计算方法的研究,特别是有了计算机后,人们希望这种定积分近似计算方法能在计算机上实现,并保证计算结果的精度,具有这种特性的定积分近似计算方法称为数值积分。由定积分知识,定积分只与被积函数和积分区间有关,而在对被积函数做插值逼近时,多项式的次数越高,对被积函数的光滑程度要求也越高,且会出现Runge 现象。如7n >时,Newton-Cotes 公式就是不稳定的。因而,人们把目标转向积分区间,类似分段插值,把积分区间分割成若干小区间,在每个小区间上使用次数较低的Newton-Cotes 公式,然后把每个小区间上的结果加起来作为函数在整个区间上积分的近似,这就是复化的基本思想。本文主要

地球物理计算常用的插值方法-克里格法

克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。克里格法的适用条件是区域化变量存在空间相关性。 克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。 应用克里格法首先要明确三个重要的概念。一是区域化变量;二是协方差函数,三是变异函数 一、区域化变量 当一个变量呈空间分布时,就称之为区域化变量。这种变量反映了空间某种属性的分布特征。矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。 区域化变量具有两个重要的特征。一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X与偏离空间距离为h的点X+h处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。在某种意义上说这就是区域化变量的结构性特征。 二、协方差函数 协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。在概率理论中,随机向量X与Y 的协方差被定义为: 区域化变量在空间点x和x+h处的两个随机变量Z(x)和Z(x+h)的二阶混合中心矩定义为Z(x)的自协方差函数,即 区域化变量Z(x) 的自协方差函数也简称为协方差函数。一般来说,它是一个依赖于空间点x 和向量h 的函数。< 设Z(x) 为区域化随机变量,并满足二阶平稳假设,即随机函数Z(x)的空间分布规律不因位移而改变,h为两样本点空间分隔距离

数值分析第二章上机题之第二题

姓名:蒋元义、学号:、专业:测绘工程 一、在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数2 1 ()125f x x =+作多项式插值及三次样条插值,对每个n 值,分别画出插值函数即()f x 的图形。 解: 当N=10时,代码及图像如下: x=-1:0.2:1; y=1./(1+25*x.^2); x1=linspace(-1,1,10); p=interp1(x,y,x1,'linear'); p1=interp1(x,y,x1,'spline'); plot(x,y,'b'); hold on plot(x1,p,'r'); hold on plot(x1,p1,'k'); legend('龙格函数','多项式插值函数','三次样条插值函数'); grid on; title('N=10的插值函数及原函数图形'); xlabel('x 轴'); ylabel('y ‘轴');

当N=20时,代码及图像如下: x=-1:0.2:1; y=1./(1+25*x.^2); x1=linspace(-1,1,20); p=interp1(x,y,x1,'linear'); p1=interp1(x,y,x1,'spline'); plot(x,y,'b'); hold on plot(x1,p,'r'); hold on plot(x1,p1,'k'); legend('龙格函数','多项式插值函数','三次样条插值函数'); grid on; title('N=20的插值函数及原函数图形'); xlabel('x轴'); ylabel('y轴');

第二类曲线积分的计算

第二类曲线积分的计算 Revised as of 23 November 2020

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对 AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为}{max 1i n i S T ?=≤≤, 又设T 的分点的坐标为),(i i i y x M ,并记 11, ---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量形 式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿空间有 向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的方向性 . 对

数值分析第二章小结

第2章线性方程组的解法 --------学习小结 一、本章学习体会 通过本章知识的学习我首先了解到求解线性方程组的方法可分为两类:直接法和迭代法。计算机虽然运行速度很快,但面对运算量超级多的问题,计算机还是需要很长的时间进行运算,所以,确定快捷精确的求解线性方程组的方法是非常必要的。 本章分为四个小节,其中前两节Gauss消去法和直接三角分解法因为由之前《线性代数》学习的一定功底,学习起来还较为简单,加之王老师可是的讲解与习题测试,对这一部分有了较好的掌握。第三节矩阵的条件数与病态方程组,我 Ax 的系数矩阵A与左端向量b的元素往往是通首先了解到的是线性方程组b 过观测或计算而得到,因而会带有误差。即使原始数据是精确的,但存放到计算机后由于受字长的限制也会变为近似值。所以当A和b有微小变化时,即使求解过程精确进行,所得的解相对于原方程组也可能会产生很大的相对误差。对于本节的学习掌握的不是很好,虽然在课后习题中对课堂知识有了一定的巩固,但整体感觉没有很好的掌握它。第四节的迭代法,初次接触迭代法,了解到迭代法就是构造一个无线的向量序列,使他的极限是方程组的解向量。迭代法应考虑收敛性与精度控制的问题。三种迭代方法的基本思想我已经掌握了,但是在matlab 的编程中还存在很大的问题。 在本节的学习中我认为我最大的问题还是程序的编写。通过这段时间的练习,虽然掌握了一些编写方法和技巧。相比于第一章是对其的应用熟练了不少,但在程序编写上还存在很多问题。希望在以后的学习中能尽快熟练掌握它,充分发挥它强大的作用。 二、本章知识梳理

2.1、Gauss 消去法(次重点) Gauss 消去法基本思想:由消元和回代两个过程组成。 2.1.1顺序Gauss 消去法(对方程组的增广矩阵做第二种初等行变换) 定理 顺序Gauss 消去法的前n-1个主元素) (k kk a (k=1,2,```,n-1)均不为零的充分必要条件是方程组的系数矩阵A 的前 n-1个顺序主子式 )1,,2,1(0)1()1(1 ) 1(1)1(11-=≠=n k a a a a D kk k k K ΛΛM M Λ 消元过程:对于 k=1,2,···,n-1 执行 (1)如果 ,0)(=a k kk 则算法失效,停止计算,否则转入(2) 。 (2)对于i=k+1,k+2,···n,计算 a a k kk k ik k i m )() (,= n k j i m a a a k kj ik k ij k ij ,,1,,) ()() 1(Λ+=-=+ n k i m b b b k k ik k i k i ,,1,) ()() 1(Λ+=-=+ 回代过程: a b x n nn n n n ) () (/= ) (1,,2,1/)() (1 )() (?--=- =∑+=n n k a x a b x k kk j n k j k kj k k k 2.1.2 列主元素Gauss 消去法(把) (n k k i a k kj ,,1,) (?+=中绝对值最大的元素交换到第k 行的主对角线位置)(重点) 定理 设方程组的系数矩阵A 非奇异,则用列主元素Gauss 消去法求解方程组时,各个列主元素a (k=1,2,```,n-1)均不为零。 消元过程:对于 k=1,2,···,n-1 执行 (1)选行号k i ,使 )()(max k i n i k k k i k k a a ≤≤=。 (2)交换A 与b 两行所含的数值。 (3)对于i=k+1,k+2,···n,计算

空间曲线积分的计算方法

空间曲线积分的计算方法. (1)曲线积分的计算 例1 计算222222()()()C I y z dx z x dy x y dz =-+-+-?,其中C 为平面 1=++z y x 被三个坐标平面所截三角形的边界,若从x 轴正向看去,定向为逆时针方向. 方法一 根据第二型曲线积分的定义化为定积分计算 根据定义求曲线积分的关键是使被积函数满足曲线方程,即可将曲线方程代入被积函数. 解法一:设(1,0,0),(0,1,0),(0,0,1)A B D ,则0,1:==+z y x ,:1,0BD y z x +==,:1,0DA x z y +==,则:C AB BD DA ++.由曲线积分的定义,有 dz y x dy x z dx z y AB )()()(222222-+-+-? 32])1[(0122-=+-= ?dx x x . 同理可得: 222222()()()BD y z dx z x dy x y dz -+-+-? 2222222()()()3 DA y z dx z x dy x y dz =-+-+-=-?. 所以 2AB BD DA I =++=-???. 方法二 将空间曲线积分转化为平面曲线积分后用格林公式计算 格林公式给出了平面上有限条逐段光滑封闭曲线上的积分与它们所包含的区域上的二重积分之间的关系. 解法二:设)0,0,0(O ,OA BO AB L ++:1,则dy dx dz y x z --=--=,1,D 是1L 围成的区域.代入原积分由格林公式得 原式))((])1[(])1([2222221dy dx y x dy x y x dx y x y L ---+---+---=? ??-=-=D dxdy 24. 化为平面曲线积分后也可以由定义计算积分值,但比格林公式要复杂得多.用格林公式首先要验证问题是否满足定理条件,其次可用对称性简化计算. 方法三 根据对称性求曲线积分. 轮换对称性即当被积函数和积分域同步进行同一轮换时,积分的值不变.当被积函数和积分域都具有轮换对称性,这种情形称为双轮换对称性;当被积函数具有轮换对称性而积分域没有或积分域具有轮换对称性而被积函数没有时称为单轮换对称性.双轮换对称性把原题变成了原题,所以对我们解题没有任何帮助.我们主要在讨论单轮换对称的情形. 解法三:由题目特征可知该积分及曲线C 都具有轮换对称性,因此由对称性知 原式dz y x dy x z dx z y )()()(3222222-+-+-=?

第一类曲线积分

§1 第一类曲线积分的计算 设函数(),,f x y z 在光滑曲线l 上有定义且连续,l 的方程为 ()()() ()0x x t y y t t t T z z t =?? =≤≤?? =? 则 ()()()() ,,,,T l t f x y z ds f x t y t z t =??? ?。 特别地,如果曲线l 为一条光滑的平面曲线,它的方程为()y x ?=,()a x b ≤≤,那么有 ((,) , ()b l a f x y ds f x x ?=? ?。 例:设l 是半圆周t a y t a x sin , cos ==, π≤≤t 0。求22 ()l x y ds +? 。 例:设l 是曲线x y 42 =上从点) 0 , 0 (O 到点) 2 , 1 (A 的一段,计算第一类曲线积分l yds ?。 例:计算积分2l x ds ? ,其中l 是球面2222a z y x =++被平面0=++z y x 截得的圆周。 例:求()l I x y ds =+?,此处l 为连接三点()0,0O ,()1,0A ,()1,1B 的直线段。 §2 第一类曲面积分的计算 一 曲面的面积 (1)设有一曲面块S ,它的方程为 (),z f x y =。 (),f x y 具有对x 和y 的连续偏导数,即此曲面是光滑的,且其在XY 平面上的投影xy σ为可求面积的。则该 曲面块的面积为 xy S σ=。 (2)若曲面的方程为 () ()() ,,,x x u v y y u v z z u v =?? =?? =?

令 222u u u E x y z =++,u v u v u v F x x y y z z =++,222 v v v G x y z =++, 则该曲面块的面积为 S ∑ =。 例:求球面2 2 2 2 x y z a ++=含在柱面()220x y ax a +=>内部的面积。 例:求球面2 2 2 2 x y z a ++=含在柱面()220x y ax a +=>内部的面积。 二 化第一类曲面积分为二重积分 (1)设函数(),,x y z φ为定义在曲面S 上的连续函数。曲面S 的方程为(),z f x y =。(),f x y 具有对x 和y 的连续偏导数,即此曲面是光滑的,且其在XY 平面上的投影xy σ为可求面积的。则 ()( ),,,,,xy S x y z dS x y f x y σφφ=??????。 (2)设函数(),,x y z φ为定义在曲面S 上的连续函数。若曲面的方程为 () ()() ,,,x x u v y y u v z z u v =?? =?? =? 令 222u u u E x y z =++,u v u v u v F x x y y z z =++,222 v v v G x y z =++, 则 ()()()( ),,,,,,,S x y z dS x u v y u v z u v φφ∑ =??????。 例:计算 ()S x y z dS ++?? ,S 是球面2222 x y z a ++=,0z ≥。 例:计算 S zdS ??,其中S 为螺旋面的一部分:

第二类曲线积分的计算教案资料

第二类曲线积分的计 算

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称 性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时,求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是 弯弯曲曲.怎么办呢?

为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割 },,.....,,{110n n A A A A T -=的细度为}{max 1i n i S T ?=≤≤. 设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P 与),(y x Q ,那么()y x F , =()),(),,(y x Q y x P j y x Q i y x P ),(),(+=由于 ),,(),,(111i i i i i i y x M y x M ---则有向小曲线段i i M M 1-),,2,1(n i =在x 轴和y 轴方 向上的投影分别为11---=?-=?i i i i i i y y y x x x 与.记i i M M L 1- =),(i i y x ??从而力()y x F , 在小曲线段i i M M 1-上所作的功i W ?≈),(i F ηξ i i M M L 1- = ()i i P ηξ,i x ?+()i i Q ηξ,i y ? 其中(j i ηξ,)为小曲线段i i M M 1-上任一点,于是力()y x F , 沿L 所作的功可近似等 于 i W =∑=n i i W 1 i n i i i i n i i i y s Q x S P ?+?≈∑∑==1 1 ),(),(ηη当0→T 时,右端积分和式的 极限就是所求的功.这种类型的和式极限就是下面所要讨论的第二型曲线积分. 2.2 第二型曲线积分的定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对 AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为}{max 1i n i S T ?=≤≤,又设T 的分点的坐标为),(i i i y x M ,并记 11,---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限

相关文档
最新文档