射频与无线技术入门

射频与无线技术入门
射频与无线技术入门

射频与无线技术入门

第二章:射频行为

匹配有两种度量方法:VSWR(电压驻波比)和回波损耗

VSWR是描述匹配情况的数字度量,匹配越好,泄露越小。

回波损耗:VSWR越大,回波损耗越小。

第三章:基本系统器件

天线的形状和大小依赖于三个因素:频率(频率越低,天线越大)、无线电波传播的方向(圆形还是笔直的形状)、发射或接收的功率(功率越大、天线越大)。

天线增益:天线增益是方向增益,如定向天线相对于各向同性的天线是有增益的。极化:正弦波是有方向的,垂直或者水平,这个方向叫做极化。

单级天线是一个直的的天线,长度近似于辐射波长的1/4,双极天线长度近似辐射信号的1/2。放大器的三个基本属性:增益、噪声系数或输出功率、线性。

低噪声放大器(LNA)用于监听非常小的射频信号,LNA的噪声系数越小越好。线性用来度量放大器使信号的失真程度。

测量放大器的线性的方法就是利用他的三阶互调点(Ip3),互调点越高,放大器的线性越大。经验是:放大器的Ip3比P1dB(放大器最高的线性输出功率)点大10个dB。滤波器是无源器件,频率越高,滤波器越小。

SAW滤波器的工作原理:首先将射频信号转化为声音信号,然后他们滤出声音信号,最后再将声音信号转化为射频信号。(目的降低滤波器尺寸)。

无线网络优化入门

无线网络优化 GSM无线网络优化是通过对现已运行的网络进行话务数据分析、现场测试数据采集、参数分析、硬件检查等手段,找出影响网络质量的原因,并且通过参数的修改、网络结构的调整、设备配置的调整和采取某些技术手段(采用MRP的规划办法等),确保系统高质量的运行,使现有网络资源获得最佳效益,以最经济的投入获得最大的收益。 简介 近几年,随着移动用户的迅猛增长,用户对网络通信质量的要求越来越高,移动运营商也都大规模开展了以提高用户感知度为目标的网络优化工作,并提出了对各项主要指标的考核标准。2003年,伴随着CDMA网络的扩容建设,联通关于GSM的建设思想已经由大规模的网络建设转为以网络的优化、挖潜作为主要目标,满足全网用户的快速增长。对于带宽本来就极其有限的GSM网络,这其实是对网络优化提出了更严格的要求。 流程 GSM无线网络优化是一个闭环的处理流程,循环往复,不断提高。随着近两年优化工作的不断深入,各分公司的优化工作实际上已进入一个较深层次的分析优化阶段。即在保证充分利用现有网络资源的基础上,采取种种措施,解决网络存在的局部缺陷,最终达到无线覆盖全面无缝隙、接通率高、通话持续、话音清晰且不失真,保证网络容量满足用户高速发展的要求,让用户感到真正满意。 GSM无线网络优化的常规方法 网络优化的方法很多,在网络优化的初期,常通过对OMC-R数据的分析和路测的结果,制定网络调整的方案。在采用图1的流程经过几个循环后,网络质量有了大幅度的提高。但仅采用上述方法较难发现和解决问题,这时通常会结合用户投诉和

CQT测试办法来发现问题,结合信令跟踪分析法、话务统计分析法及路测分析法,分析查找问题的根源。在实际优化中,尤其以分析OMC-R话务统计报告,并辅以七号信令仪表进行A接口或Abis接口跟踪分析,作为网络优化最常用的手段。网络优化最重要的一步是如何发现问题,下面就是几种常用的方法: 1.话务统计分析法 OMC话务统计是了解网络性能指标的一个重要途径,它反映了无线网络的实际运行状态。它是我们大多数网络优化基础数据的主要根据。通过对采集到的参数分类处理,形成便于分析网络质量的报告。通过话务统计报告中的各项指标(呼叫成功率、掉话率、切换成功率、每时隙话务量、无线信道可用率、话音信道阻塞率和信令信道的可用率、掉话率及阻塞率等),可以了解到无线基站的话务分布及变化情况,从而发现异常,并结合其它手段,可分析出网络逻辑或物理参数设置的不合理、网络结构的不合理、话务量不均、频率干扰及硬件故障等问题。同时还可以针对不同地区,制定统一的参数模板,以便更快地发现问题,并且通过调整特定小区或整个网络的参数等措施,使系统各小区的各项指标得到提高,从而提高全网的系统指标。 2.DT (驱车测试) 在汽车以一定速度行驶的过程中,借助测试仪表、测试手机,对车内信号强度 是否满足正常通话要求,是否存在拥塞、干扰、掉话等现象进行测试。通常在DT中根据需要设定每次呼叫的时长,分为长呼(时长不限,直到掉话为止)和短呼(一般取60秒左右,根据平均用户呼叫时长定)两种(可视情况调节时长),为保证测试的真实性,一般车速不应超过40公里/小时。路测分析法主要是分析空中接口的数据及测量覆盖,通过DT测试,可以了解:基站分布、覆盖情况,是否存在盲区;切换关系、切换次数、切换电平是否正常;下行链路是否有同频、邻频干扰;是否有小岛效应;扇区是否错位;天线下倾角、方位角及天线高度是否合理;分析呼叫接通情况,找出呼叫不通及掉话的原因,为制定网络优化方案和实施网络优化提供依据。 3.CQT

射频基本知识

引言 在进入射频测试前,让我们回顾一下单相交流电的基本知识。 一、单相交流电的产生 在一组线圈中,放一能旋转的磁铁。当磁铁匀速旋转时,线圈内的磁通一会儿大一会 儿小,一会儿正向一会儿反向,也就是说线圈内有呈周期性变化的磁通,从而线圈两端即感生出一个等幅的交流电压,这就是一个原理示意性交流发电机。若磁铁每秒旋转50周,则电压的变化必然也是50周。每秒的周期数称为频率f,其单位为赫芝Hz。103Hz=千赫kHz,,106Hz=兆赫MHz,109Hz=吉赫GHz。b5E2RGbCAP 在示波器上可看出电压的波形呈周期性,每一个周期对应磁铁旋转一周。即转了2π弪,每秒旋转了f个2π,称2πf为ω<常称角频率,实质为角速率)。则单相交流电的表达式可写成:p1EanqFDPw V=Vm=Vm 式中Vm(电压最大值>=Ve(有效值或Vr.m.s.>。t为时间<秒),为初相。 二、对相位的理解 1、由电压产生的角度来看 ·设想有两个相同的单相发电机用连轴器连在一起旋转,当两者转轴<磁铁的磁极)

位置完全相同时,两者发出的电压是同相的。而当两者转轴错开角度时,用双线示波器来看,两个波形在时轴上将错开一个角度;这个角度就叫相位角或初相。相位领先为正,滞后为负。DXDiTa9E3d ·假如在单相发电机上再加一组线圈,两组线圈互成90°<也即两电压之间相位差 90°),即可形成两相电机。假如用三组线圈互成120°<即三电压之间,相位各差120°)即可形成三相电机。两相电机常用于控制系统,三相电机常用于工业系统。RTCrpUDGiT 2、同频信号<电压)之间的叠加 当两个电压同相时,两者会相加;而反相时,两者会抵消。也就是说两者之间为复数运算关系。若用方位平面来表示,也就是矢量关系。矢量的模值<幅值)为标量,矢量的角度为相位。5PCzVD7HxA 虽然人们关心的是幅值,但运算却必须采用矢量。 虽然一般希望信号相加,但作匹配时,却要将反射信号抵消。 三、射频 交流电的频率为50Hz时,称为工频。20Hz到20kHz为音频,20kHz以上为超声波 ,当频率高到100 kHz以上时,交流电的辐射效应显著增强;因此100 kHz以上的频率泛称射频。有时会以3 GHz为界,以上称为微波。常用频段划分见附录。jLBHrnAILg

射频基础知识点

一、频谱分析仪部分 什么是频谱分析仪? 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。我们现在所用的频谱仪大部分是扫频调谐超外差频谱分析仪。 频谱仪工作原理 输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振(LO)信号混频将输入信号转换到中频(IF)。LO的频率由扫频发生器控制。随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振比输入信号高的中频,并以对数标度放大或压缩。然后用检波器对通过IF滤波器的信号进行整流,从而得到驱动显示垂直部分的直流电压。随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。该迹线示出了输入信号在所显示频率范围内的频率成分。 输入衰减器 保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。 混频器 完成信号的频谱搬移,将不同频率输入信号变换到相应中频。在低频段(<3G Hz)利用高混频和低通滤波器抑制镜像干扰;在高频段(>3GHz)利用带通跟踪滤波器抑制镜像干扰。 本振(LO) 它是一个压控振荡器,其频率是受扫频发生器控制的。其频率稳定度锁相于参考源。 扫频发生器 除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号,然后重复这个扫描不断更新迹线。扫频宽度(Span)是从左fstart到右fstop10格的频率差,例如:Span=1MHz,则100kHz/div.

最新无线通信技术基础知识(1)

无线通信技术 1.传输介质 传输介质是连接通信设备,为通信设备之间提供信息传输的物理通道;是信息传输的实际载体。有线通信与无线通信中的信号传输,都是电磁波在不同介质中的传播过程,在这一过程中对电磁波频谱的使用从根本上决定了通信过程的信息传输能力。 传输介质可以分为三大类:①有线通信,②无线通信,③光纤通信。 对于不同的传输介质,适宜使用不同的频率。具体情况可见下表。 不同传输媒介可提供不同的通信的带宽。带宽即是可供使用的频谱宽度,高带宽传输介质可以承载较高的比特率。 2无线信道简介 信道又指“通路”,两点之间用于收发的单向或双向通路。可分为有线、无线两大类。

无线信道相对于有线信道通信质量差很多。有限信道典型的信噪比约为46dB,(信号电平比噪声电平高4万倍)。无限信道信噪比波动通常不超过2dB,同时有多重因素会导致信号衰落(骤然降低)。引起衰落的因素有环境有关。 2.1无线信道的传播机制 无线信道基本传播机制如下: ①直射:即无线信号在自由空间中的传播; ②反射:当电磁波遇到比波长大得多的物体时,发生反射,反射一般在地球表面,建筑物、墙壁表面发生; ③绕射:当接收机和发射机之间的无线路径被尖锐的物体边缘阻挡时发生绕射; ④散射:当无线路径中存在小于波长的物体并且单位体积内这种障碍物体的数量较多的时候发生散射。散射发生在粗糙表面、小物体或其它不规则物体上,一般树叶、灯柱等会引起散射。 2.2无线信道的指标 (1)传播损耗:包括以下三类。 ①路径损耗:电波弥散特性造成,反映在公里量级空间距离内,接收信号电平的衰减(也称为大尺度衰落); ②阴影衰落:即慢衰落,是接收信号的场强在长时间内的缓慢变化,一般由于电波在传播路径上遇到由于障碍物的电磁场阴影区所引起的; ③多径衰落:即快衰落,是接收信号场强在整个波长内迅速的随机变化,一般主要由于多径效应引起的。 (2)传播时延:包括传播时延的平均值、传播时延的最大值和传播时延的统计特性等; (3)时延扩展:信号通过不同的路径沿不同的方向到达接收端会引起时延扩展,时延扩展是对信道色散效应的描述; (4)多普勒扩展:是一种由于多普勒频移现象引起的衰落过程的频率扩散,又称时间选择性衰落,是对信道时变效应的描述; (5)干扰:包括干扰的性质以及干扰的强度。 2.3无线信道模型 无线信道模型一般可分为室内传播模型和室外传播模型,后者又可以分为宏蜂窝模型和微蜂窝模型。 (1)室内传播模型:室内传播模型的主要特点是覆盖范围小、环境变动较大、不受气候影响,但受建筑材料影响大。典型模型包括:对数距离路径损耗模型、Ericsson多重断点模型等; (2)室外宏蜂窝模型:当基站天线架设较高、覆盖范围较大时所使用的一类模型。实际使用中一般是几种宏蜂窝模型结合使用来完成网络规划; (3)室外微蜂窝模型:当基站天线的架设高度在3~6m时,多使用室外微蜂窝模型;其描述的损耗可分为视距损耗与非视距损耗。

智能锁采取哪种无线技术好

智能锁采取哪种无线技术好 随着越来越多家庭正在考虑升级生活安全,那么智能门锁无疑是用户的入门产品之一。首先明确指出,目前智能锁的技术水平使用户更轻松,并且具有一定的安全性,例如可以人脸识别开锁,远程来宾访问开锁,门会在用户进门后,自动上锁,其次,在2020年防疫时期,还能在个人防护和安全方面提供一些保障。 为了能让包括手机在内的其他智能家居设备进行通信,智能锁需要利用3种标准通信协议。今天千家小编就和大家简单分析一下各种协议的区别。 蓝牙 带有无钥匙锁的蓝牙的主要优点之一是,与WiFi相比,它的电池寿命更经济。如果用户在正常情况下使用智能锁,且进入和退出的次数合理,则电池使用蓝牙应可使用一年。 另一个关键优势是蓝牙锁与智能手机无缝集成的方式,而无需任何第三方集线器。如果用户的智能家居需求仅限于无钥匙进入,并且不需要任何其他设备的集线器,那么蓝牙将是明智的选择。如云里物里的MS48SF2C蓝牙模块就广泛应用在蓝牙智能锁中。 WiFi 现在,许多智能锁都具有WiFi连接作为可选的附加功能。只需插入设备,就可以从在线的任何地方远程控制锁,缺点就是网络连接有可能容易断开。 Z-Wave 使用兼容Z-Wave的智能锁,可能需要再购买一个集线器,然后可以转换从锁中接收到的信号,以便路由器可以解释该信号并与其进行交互。 Z-Wave限制了连接范围,因此该连接仅适用于100英尺(约30米)以上。如果锁不至少位于集线器附近,则可以使用多达4个扩展器设备将信号增强到500英尺甚至更高。用户需要根据房屋的布局,以便进行Z-Wave配件的预算考虑。 使用某些Z-Wave锁,也可以通过集线器在应用内访问锁界面,而无需专用的APP应用。 除非计划在入口和出口系统之外的智能家居中运行多个设备,否则花钱购买具有Z-Wave功能的智能锁可能不值得。本文来源网络。

射频基础知识培训

射频基础知识培训 1、无线通信基本概念 利用电磁波的辐射和传播,经过空间传送信息的通信方式称之为无线电通信(Wireless Communication),也称之为无线通信。利用无线通信可以传送电报、电话、传真、数据、图像以及广播和电视节目等通信业务。 目前无线通信使用的频率从超长波波段到亚毫米波段(包括亚毫米波以下),以至光波。无线通信使用的频率范围和波段见下表1-1 表1-1 无线通信使用的电磁波的频率范围和波段

由于种种原因,在一些欧、美、日等西方国家常常把部分微波波段分为L、S、C、X、Ku、K、Ka等波段(或称子波段),具体如表1 - 2所示 表1-2 无线通信使用的电磁波的频率范围和波段

无线通信中的电磁波按照其波长的不同具有不同的传播特点,下面按波长分述如下: 极长波(极低频ELF)传播 极长波是指波长为1~10万公里(频率为3~30Hz)的电磁波。理论研究表明,这一波段的电磁波沿陆地表面和海水中传播的衰耗极小。 1.2超长波(超低频SLF)传播 超长波是指波长1千公里至1万公里(频率为30~300Hz)的电磁波。这一波段的电磁波传播十分稳定,在海水中衰耗很小(频率为75Hz时衰耗系数为m)对海水穿透能力很强,可深达100m以上。 甚长波(甚低频VLF)传播 甚长波是指波长10公里~100公里(频率为3~30kHz)的电磁波。无线通信中使用的甚长波的频率为10~30kHz,该波段的电磁波可在大地与低层的电离层间形成的波导中进行传播,距离可达数千公里乃至覆盖全球。 长波(低频LF)传播 长波是指波长1公里~10公里(频率为30~300kHz)的电磁波。其可沿地表面传播(地波)和靠电离层反射传播(天波)。 中波(中频MF)传播 中波是指波长100米~1000米(频率为300~3000kHz)的电磁波。中波可沿地表面传播(地波)和靠电离层反射传播(天波)。中波沿地表面传播时,受地表面的吸收较长波严重。中波的天波传播与昼夜变化有关。 短波(高频HF)传播 短波是指波长为10米~100米(频率为3~30MHz)的电磁波。短波可沿地表面传播(地波),沿空间以直接或绕射方式传播(空间波)和靠电离层反射传播(天波)。 超短波(甚高频VHF)传播

射频基础知识

第一部分射频基本概念 第一章常用概念 一、特性阻抗 特征阻抗是微波传输线的固有特性,它等于模式电压与模式电流之比。对于TEM波传输线,特征阻抗又等于单位长度分布电抗与导纳之比。无耗传输线的特征阻抗为实数,有耗传输线的特征阻抗为复数。 在做射频PCB板设计时,一定要考虑匹配问题,考虑信号线的特征阻抗是否等于所连接前后级部件的阻抗。当不相等时则会产生反射,造成失真和功率损失。反射系数(此处指电压反射系数)可以由下式计算得出: z1 二、驻波系数 驻波系数式衡量负载匹配程度的一个指标,它在数值上等于: 由反射系数的定义我们知道,反射系数的取值范围是0~1,而驻波系数的取值范围是1~正无穷大。射频很多接口的驻波系数指标规定小于1.5。 三、信号的峰值功率 解释:很多信号从时域观测并不是恒定包络,而是如下面图形所示。峰值功率即是指以某种概率出现的尖峰的瞬态功率。通常概率取为0.1%。

四、功率的dB表示 射频信号的功率常用dBm、dBW表示,它与mW、W的换算关系如下: dBm=10logmW dBW=10logW 例如信号功率为x W,利用dBm表示时其大小为 五、噪声 噪声是指在信号处理过程中遇到的无法确切预测的干扰信号(各类点频干扰不是算噪声)。常见的噪声有来自外部的天电噪声,汽车的点火噪声,来自系统内部的热噪声,晶体管等在工作时产生的散粒噪声,信号与噪声的互调产物。 六、相位噪声

相位噪声是用来衡量本振等单音信号频谱纯度的一个指标,在时域表现为信号过零点的抖动。理想的单音信号,在频域应为一脉冲,而实际的单音总有一定的频谱宽度,如下页所示。一般的本振信号可以认为是随机过程对单音调相的过程,因此信号所具有的边带信号被称为相位噪声。相位噪声在频域的可以这样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比。 例如晶体的相位噪声可以这样描述: 七、噪声系数 噪声系数是用来衡量射频部件对小信号的处理能力,通常这样定义:单元输入信噪比除输出信噪比,如下图:

无线电基础知识

无线电基础知识 更多详细内容友情链接: 无线电是怎样发现和发展的 今天的人们通过小小的无线手机就可以和世界各地的朋友、家人交流,町有谁知道,如今科技发展所获得的这切,贴片钽电容最初是怎样开始的呢? 其宴无线电通信的起源应该追溯到100多年前无线电渡的发现。1864年,英国科学家麦克斯韦在总结前人研究电磁现象的基础上,建立完整的电磁波理沧。他断定电磁波的存在,并推导出电与光具有同样的传播速度。1886 --1889年,德圆物理学家赫兹通过实验验证麦克斯韦论证过的比光波的渡K更妊的电磁渡,验证了电磁波的确存在,1895年乌可尼发明,无线电撤机,开创无线电波的实际应埘价值。几乎同时,1895年5月,A.S.渡渡夫在被得堡展出第一台能录来自闪电的电磁渡接收机。在马可尼向英国邮政局的茸员演币他发明的无线电报后不久,KEMET钽电容1896年无线电首次使用,即在船和梅岸之间实现丁第一次无线电通信,开创无线电通信的新纪元。最初的正常通信应用是在189SI年英格兰海岸用无线电撤报告派救生艇营救海韪难者。l901年12月12月马可尼的无线电信号历史性地跨越大西洋。 电子管的发明,对于无线电报和无线电话的继缍发展具有决定性意义。1915年,人们用电子管发射机和电子管接收机在法国和美国之间进行无线电话试验。无线电发射台分别十1920年和1921年出现在美国、英国和法国。前苏联于1919年就在进行无线电广播实验。德国于1920年做了无线电广播试验,并于1921年转播了一场歌剧。1927年,伦敦——纽约尢线电话通信线路对外开放。数午后,整个欧洲大陆都能通过无线电话进行通信联系。无线电在两次世界大战巾扮演了重要角色+同时战争的刺激也推动了无线通信技术的发展。例如:雷达的出现,使无线电在导航等方面得到重要应用。贴片钽电容航空航海需要瞬时和可靠的全球通信进步推动了无线电通信技术的发展,取向无线电通信广泛使用,广播和微波中继通信得以发展应片。 大约自1930年起,超短波波段的使用,不但使电视和超短波无线电广播得遂所憾,而且使近距离无线电通信成为现实。随着时间的推移、20世纪60年代通信星的出现,五线电报无线电晤技术达剑r花所幕有螭趣可随着科学研究和科学技术的发展,界口益增的需求和空问时代的到来.加速对无线电通信的需求。无线电通信技术的诞生虽然仪有100余年的历史,但对人类生活、社会生产、科学研究和国防建世产生r巨大的影响在现代牛活的各个领域,存现代信息社会巾,KEMET钽电容无线电技术已经渗透到政治、军事、T.业、农业交通、文化、科技、教育和人们口常生活的各个领域,成为一个国家综台国力和发展水平的标志。 什么是无线电波 无线电波是电磁谱的部分。尤线电波是电场和磁扬瞬间棚碴化产生的,芒类似水池中的波纹一样可以向各个方向以光建进行传播。人们可以利用无线电波进行各种无线通信、播、导航、航空、航海、宇宙空间探索、科学研究等。在物理学中我们解到电磁谱的组成,电磁谱包括电渡、无线电波、红外线、可见光、紫外线、x射线、1射线等。 无线电波是指频率范围从3ffl0赫兹( Hz)到3000吉赫兹(GHz)的电磁披。赫兹(Hz)是频率的单位(为纪念德周物理学家赫拄),1千赫兹( kHz)是10' Hz.1兆赫兹( MHz)足10-H2,l吉赫兹是l0'Hz。可见无线电波的频谱范围是很宽的,仉电是有限的。人们正在努力地开发和应用无线电波的各段频潜,使之能为人类社会的发展服务。可以说无线屯波的应用已成为现代高科技信息社会人类生活中的重要部分。 什么是无线电波段

无线基础知识与基本概念-知识点汇总

一.基础知识与基本概念 1. 第一代移动通信系统的主要特点是利用模拟传输方式实现话音业务;系统无线信道的随机变参特征使无线电波受多径快衰落和阴影慢衰落的影响 2. 第二代蜂窝移动通信系统以数字传输方式实现话音和低速数据业务。 3. 第三代蜂窝移动通信系统以更高速的数据业务和更好的频谱利用率为目标,采用宽带CDMA为主流技术,目前已形成两类三种空中接口标准,即WCDMA - FDD(简称WCDMA)、WCDMA - TDD(简称TD-SCDMA)和CDMA2000。 它的主要特点是:(可能多选题) 1) 新型的调制技术,包括多载波调制和可变速率调制技术; 2) 高效的信道编译码技术,除了沿用第二代的卷积码外,还对高速数据采用了Turbo 纠错编码技术; 3) Rake接收多径分集技术以提高接收灵敏度和实现软切换; 4) 软件无线电技术易于多模工作; 5) 智能天线技术有利于提高载干比; 6) 多用户检测技术以消除和降低多址干扰; 7) 可与固定网中的电路交换和分组交换网很好地相适应,满足各类用户对话音及高、中、低速率数据业务的需求。 4. “双工”两种方式:当收信和发信采用一对频率资源时,称为“频分双工”(FDD);而当收信和发信采用相同频率仅以时间分隔时称为“时分双工”(TDD)。 5. “多址”(Multi Access)技术:是指在多信道共用系统中,终端用户选择通信对象的传输方式,在蜂窝移动通信系统中,用户可以通过选择“频道”、“时隙”或“PN码”等多种方式进行选址,它们分别对应地被称为“频分(Frequency Division)多址”、“时分(Time Division)多址”和“码分(Code Division)多址”,简称FDMA、 TDMA和CDMA. 6. 发信功率及其单位换算: 1 dBW = 30dBm 7. 无线接收机的灵敏度是接收弱信号能力的量度,通常用μv、dBμv、dBmW表示; 电压电平(μv和dBμv)或功率电平(dBm) 8. 三阶互调干扰的特点(可能多选题): 1) 将发信频谱扩大了三倍; 2) 三阶互调产物以三倍(dB)数增加; 3) 互调产物对接收系统的影响应按被干扰系统的多址方式决定; 9. 香农定律:香农(shannon)信道容量公式可以用来论证信噪比,信道带宽和信道容量之间的关系,即: a) P?C=Blog2? 1+r???

无线射频识别技术(RFID)基础知识

无线射频识别技术(RFID)基础知识 无线射频识别技术的基本原理是利用空间电磁感应(Inductive Coupling)或者电磁传播(Propagation Coupling)来进行通信,以达到自动识别被标识物体的目的。基本工作方法是将无线射频识别标签(Tags)安装在被识别物体上(粘贴、插放、挂佩、植入等),当被标识物体进入无线射频识别系统阅读器(Readers)的阅读范围时,标签和阅读器之间进行非接触式信息通讯,标签向阅读器发送自身信息如ID号等,阅读器接收这些信息并进行解码,传输给后台处理计算机,完成整个信息处理过程。 无线射频识别技术是一本多门学科多种技术综合利用的应用技术。所涉及的关键技术大致包括:芯片技术、天线技术、无线通信技术、数据变换与编码技术、电磁场与微波技术等。 一、基本概念 无线射频识别技术(Radio Frequency Identification,RFID)是一种非接触的自动识别技术,其基本原理是利用射频信号的空间耦合(电磁感应或者电磁传播)传输特性,实现对被识别物体的自动识别。图1所示为RFID系统配置示意图。 图1 RFID系统配置示意图 电磁感应,即所谓的变压器模型,通过空间高频交变磁场实现耦合,依据的是电

磁感应定律,如图2所示。电磁感应方式一般适合于中、低频工作的近距离射频识别系统。典型的工作频率有:125KHz、225KHz和13.56MHz。识别作用距离小于1m,典型作用距离为10~20cm。 图2 电感耦合 电磁传播或者电磁反向散射(Back Scatter)耦合,即所谓的雷达原理模型,发射出去的电磁波,碰到目标后反射,同时携带回目标信息,依据的是电磁波的空间传播规律,如图3所示。电磁反向散射耦合方式一般适合于超高频、微波工作的远距离射频识别系统。典型的工作频率有:433MHz、915MHz、2.45GHz、5.8GHz。识别作用距离大于1m,典型作用距离为3~l0m。 图3 电磁耦合 射频识别系统一般由两个部分组成,即电子标签和阅读器。在RFID的实际应用中,电子标签附着在被识别的物体上(表面或者内部),当带有电子标签的被识别物品通过阅读器的可识读区域时,阅读器自动以无接触的方式将电子标签中的约定识别信息取出,从而实现自动识别物品或自动收集物品标识信息的功能。阅读器系统又包括阅读器和天线,有的阅读器是将天线和阅读器模块集成在一个设备单元中的,成为集成式阅读器(Integrated Reader)。 由上可见,为了完成RFID系统的主要功能,RFID系统具有两个基本的构成部

1.2 无线射频基础知识介绍

●极低频 ELF (3Hz–30Hz) 极长波 100,000千米– 10,000千米潜艇通讯或直接转换成声音。 ●超低频 SLF (30Hz–300Hz) 超长波 10,000千米– 1,000千米直接转换成声音或交流输电系 统(50-60赫兹)。 ●特低频 ULF (300Hz–3KHz) 特长波 1,000千米– 100千米矿场通讯或直接转换成声音。 ●甚低频 VLF (3KHz–30KHz) 甚长波 100千米– 10千米直接转换成声音、超声、地球物理 学研究。 ●低频 LF (30KHz–300KHz) 长波 10千米– 1千米国际广播。 ●中频 MF (300KHz–3MHz) 中波 1千米– 100米调幅(AM)广播、海事及航空通讯。 ●高频 HF (3MHz–30MHz) 短波 100米– 10米短波、民用电台。 ●甚高频 VHF (30MHz–300MHz) 米波 10米– 1米调频(FM)广播、电视广播、航空通讯。 ●特高频 UHF (300MHz–3GHz) 分米波 1米– 100毫米电视广播、无线电话通讯、无线网络、 微波炉。 ●超高频 SHF (3GHz–30GHz) 厘米波 100毫米– 10毫米无线网络、雷达、人造卫星接收。 ●极高频 EHF (30GHz–300GHz) 毫米波 10毫米– 1毫米射电天文学、遥感、人体扫描安检 仪。 ●300GHz以上 - 红外线、可见光、紫外线、射线等。

●构成数据的最小单位是比特,发射机采用某种方式发送0和1,以便在两地之间传输数 据。交流或直流信号本身不具备传输数据的能力,不过如果信号发生哪怕是微小的波动或变化,发送端和接收端就可以将信号解析出来,从而成功地收发数据。转换后的信号可以区分0和1,一般将其称为载波信号。调整信号以产生载波信号的过程称为调制。 ●载波是指被调制以传输信号的波形,一般为正弦波。一般要求正弦载波的频率远远高于 调制信号的带宽,否则会发生混叠,使传输信号失真。 ●可以这样理解,我们一般需要发送的数据的频率是低频的,如果按照本身的数据的频率 来传输,不利于接收和同步。使用载波传输,我们可以将数据的信号加载到载波的信号上,接收方按照载波的频率来接收数据信号,有意义的信号波的波幅与无意义的信号的波幅是不同的,将这些信号提取出来就是我们需要的数据信号(调制与解调,后面内容有涉及)。 ●可以对电波的3种分量进行调制以产生载波信号,这3种分量是振幅、频率和相位。

射频(RF)基础知识

●什么是RF? 答:RF 即Radio frequency 射频,主要包括无线收发信机。 2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等)? 答:EGSM RX: 925-960MHz, TX:880-915MHz; CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。 3. 从事手机Rf工作没多久的新手,应怎样提高? 答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。 ● 4. RF仿真软件在手机设计调试中的作用是什么? 答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。 5. 在设计手机的PCB时的基本原则是什么? 答:基本原则是使EMC最小化。 6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代 表何意? 答:ABB是Analog BaseBand, DBB是Ditital Baseband,MCU往往包括在DBB芯片中。 PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。 7. DSP和MCU各自主要完成什么样的功能?二者有何区别? 答:其实MCU和DSP都是处理器,理论上没有太大的不同。但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。 8. 刚开始从事RF前段设计的新手要注意些什么? 答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。 9. 推荐RF仿真软件及其特点? 答:Agilent ADS仿真软件作RF仿真。这种软件支持分立RF设计和完整系统设计。 详情可查看Agilent网站。 10. 哪里可以下载关于手机设计方案的相应知识,包括几大模快、各个模块的功能以 及由此对硬件的性能要求等内容? 答:可以看看https://www.360docs.net/doc/db18274993.html,和https://www.360docs.net/doc/db18274993.html,,或许有所帮助。关于TI的wireless solution,可以看看https://www.360docs.net/doc/db18274993.html,中的wireless communications.

射频开关基础知识详细讲解

射频开关基础知识详细讲解 射频和微波开关可在传输路径内高效发送信号。此类开关的功能可由四个基本电气参数加以表征。 虽然多个参数与射频和微波开关的性能相关,然而以下四个由于其相互间较强的相关性而被视为至关重要的参数:隔离度,插入损耗,开关时间,功率处理能力。 隔离度即电路输入端和输出端之间的衰减度,是衡量开关截止有效性的指标。插入损耗(也称传输损耗)为开关处于导通状态下时损耗的总功率。由于插入损耗可直接导致系统噪声系数的增大,因此对于设计者而言,插入损耗是最为关键的参数。 开关时间是指开关从“导通”状态转变为“截止”状态以及从“截止”状态转变为“导通”状态所需要的时间。该时间上可达高功率开关的数微秒级,下可至低功率高速开关的数纳秒级。开关时间的最常见定义为自输入控制电压达到其50%至最终射频输出功率达到其90%所需的时间。此外,功率处理能力定义为开关在不发生任何永久性电气性能劣化的前提下所能承受的最大射频输入功率。

图示为使用12个不同SMA母同轴连接器的单刀十二掷机电式开关一 例 射频和微波开关可分为机电式继电器开关以及固态开关两大类。这些开关可设计为多种不同构型——从单刀单掷到可将单个输入转换成16种不同输出状态的单刀十六掷,或更多掷的构型。切换开关为一种双刀双掷构型的开关。此类开关具有四个端口以及两种可能的开关状态,从而可将负载在两个源之间切换。 机电式继电器开关的插入损耗较低(《0.1dB),隔离度较高(》 85dB),且可以毫秒级的速度切换信号。此类开关的主要优点在于,其可在直流~毫米波(》50 GHz)频率范围内工作,而且对静电放电不敏感。此外,机电式继电器开关可处理较高的功率水平(达数千瓦的峰值功率)且不发生视频泄漏。

无线网络优化技术基础—-毕业论文设计

无 线 网 络 优 化 技 术 基 础 珠海创我科技发展有限公司 (培训资料、内部使用)

目录 第一章概论 (3) 第二章 GSM系统 (4) 第三章数字无线接口 (7) 第四章移动通信网参数 (18) 第五章无线网络优化概述 (30) 第六章基本概念 (35) 第七章实测数据采集分析 (53) 第八章 OMC、BSC的数据采集分析 (59) 第九章干扰分析与掉话分析 (64) 附录A跳频序列产生 (72) 附录B:常用参数缩写解释 (73)

第一章概论 蜂窝通信是发展最快、需求最广的电信应用产品之一。目前,在世界上全部新的电话订单中,蜂窝通信用户所占比例大,且在继续增长。展望未来,利用数字技术的蜂窝系统将成为通信的通用方式。 欧洲有几大的模拟蜂窝系统在运营,例如:北欧多国的NMT(北欧移动电话)和英国的TACS (全接入通信系统)。西欧其他各国也提供移动业务。尽管质量、容量和覆盖区域差异很大,但是需求普遍地超过了估计。另外,大多数系统是国内系统,不可能在国外使用移动电话。这种形式清楚地表明,为将来在全欧洲普遍使用移动电话,需要一种公共的系统。 GSM(特别移动通信组、或移动通信全球系统)——新的泛欧数字蜂窝通信标准,将能解决目前的容量有限问题。事实上,由于频道利用率的改善和小区技术的应用,容量将增加2-3倍,因此也大大地增加所能服务的用户数量。GSM是由ETSI(欧洲电信标准化协会)制定的泛欧数字移动电话标准,它提供了公共标准。在现阶段,GSM包括两个并行的系统:GSM 900和DCS 1800。这两个系统具有同样的基本功能特性。 在欧洲的漫游是全自动的。在您的旅途中,您可随身携带的移动电话,并在其他国家开机使用。GSM系统自动更新您归属系统中有关你的位置的信息。因此,您能够发起呼叫,也能接收对您的呼叫,而主叫方无须了解您的位置。 除了国际漫游之外,GSM提供许多其他功能性,如高速数据通信、传真和短消息业务等。数字移动电话将比要被它们取代模拟产品的体积更小、也更省电。 GSM的历史,可以上溯到1982年。当时,北欧国家向CEPT(欧洲邮电行政大会)提交了一份建议书,要求制定900MHz频段的公共欧洲电信业务规范。在1982-1985年间,讨论了制定模拟系统规范还是数字系统规范。在并在1985年决定为一种数字系统制定规范。接下来的问题是选择窄带还是宽带方案。1986年,在巴黎对不同公司、不同方案的系统进行了现场试验比较。1987年5月选定窄带TDMA(时分多址)方案。与此同时,13个国家(英国有两个运营公司)签署了MOU(谅解备忘录),相互达成履行规范的协议,因而开放了一很大的潜在市场。签署MOU的各个运营公司均以允诺,在1991年7月1日以前都要拥有一个运营的GSM系统。 某些国家通报了一开始覆盖就很大的规划,而其他国家只把在首都及其周围地区提供服务作为起步规划。在此后的几年内,全部国家将在大部分人口聚居区和沿主要高速公路逐步提供服务。 以下对数字蜂窝移动通信系统做些介绍(以GSM为主)。

射频基础知识点

一、频谱分析仪部分 什么是频谱分析仪? 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交 调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的 电子测量仪器。我们现在所用的频谱仪大部分是扫频调谐超外差频谱分析仪。 中 频谱仪工作原理 输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振 (L0)信号混频将输入信号转换到中频(IF)。LO的频率由扫频发生器控制。随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振 比输入信号高的中频,并以对数标度放大或压缩。然后用检波器对通过IF滤波器的信号进行整 流,从而得到驱动显示垂直部分的直流电压。随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。该迹线示出了输入信号在所显示频率范围内的频率成分。 输入衰减器 保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。 混频器 完成信号的频谱搬移,将不同频率输入信号变换到相应中频。在低频段(<3GHz)利用高混频和低通滤波器抑制镜像干扰;在高频段(>3GHz)利用带通跟踪滤波器抑制镜像干扰。 本振(L0) 它是一个压控振荡器,其频率是受扫频发生器控制的。其频率稳定度锁相于参考源。 扫频发生器 除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号, 然后重复这个扫描不断更新迹线。扫频宽度(Span)是从左fstart到右fstopIO格的频率差,例如:

射频基础知识知识讲解

第一部分 射频基础知识 目录 第一章与移动通信相关的射频知识简介 (1) 1.1 何谓射频 (1) 1.1.1长线和分布参数的概念 (1) 1.1.2射频传输线终端短路 (3) 1.1.3射频传输线终端开路 (4) 1.1.4射频传输线终端完全匹配 (4) 1.1.5射频传输线终端不完全匹配 (5) 1.1.6电压驻波分布 (5) 1.1.7射频各种馈线 (6) 1.1.8从低频的集中参数的谐振回路向射频圆柱形谐振腔过渡 (9) 1.2 无线电频段和波段命名 (9) 1.3 移动通信系统使用频段 (9) 1.4 第一代移动通信系统及其主要特点 (12) 1.5 第二代移动通信系统及其主要特点 (12) 1.6 第三代移动通信系统及其主要特点 (12) 1.7 何谓“双工”方式?何谓“多址”方式 (12) 1.8 发信功率及其单位换算 (13) 1.9 接收机的热噪声功率电平 (13) 1.10 接收机底噪及接收灵敏度 (13) 1.11 电场强度、电压及功率电平的换算 (14) 1.12 G网的全速率和半速率信道 (14) 1.13 G网设计中选用哪个信道的发射功率作为参考功率 (15) 1.14 G网的传输时延,时间提前量和最大小区半径的限制 (15)

1.15 GPRS的基本概念 (15) 1.16 EDGE的基本概念 (16) 第二章天线 (16) 2.1天线概述 (16) 2.1.1天线 (16) 2.1.2天线的起源和发展 (17) 2.1.3天线在移动通信中的应用 (17) 2.1.4无线电波 (17) 2.1.5 无线电波的频率与波长 (17) 2.1.6偶极子 (18) 2.1.7频率范围 (19) 2.1.8天线如何控制无线辐射能量走向 (19) 2.2天线的基本特性 (21) 2.2.1增益 (21) 2.2.2波瓣宽度 (22) 2.2.3下倾角 (23) 2.2.4前后比 (24) 2.2.5阻抗 (24) 2.2.6回波损耗 (25) 2.2.7隔离度 (27) 2.2.8极化 (29) 2.2.9交调 (31) 2.2.10天线参数在无线组网中的作用 (31) 2.2.11通信方程式 (32) 2.3.网络优化中天线 (33) 2.3.1网络优化中天线的作用 (33) 2.3.2天线分集技术 (34) 2.3.3遥控电调电下倾天线 (1) 第三章电波传播 (3) 3.1 陆地移动通信中无线电波传播的主要特点 (3) 3.2 快衰落遵循什么分布规律,基本特征和克服方法 (4)

RF测试的基础知识

1. 什么是RF? 答:RF 即Radio frequency 射频,主要包括无线收发信机。 2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等)? 答:EGSM RX: 925-960MHz, TX:880-915MHz; CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。 3. 从事手机Rf工作没多久的新手,应怎样提高? 答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。 4. RF仿真软件在手机设计调试中的作用是什么? 答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。 5. 在设计手机的PCB时的基本原则是什么? 答:基本原则是使EMC(电磁兼容性)最小化。 6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代表何意? 答:ABB是Analog BaseBand, DBB是Ditital Baseband,MCU往往包括在DBB芯片中。 PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。

7. DSP和MCU各自主要完成什么样的功能?二者有何区别? 答:其实MCU和DSP都是处理器,理论上没有太大的不同。但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。 8. 刚开始从事RF前段设计的新手要注意些什么? 答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。 9. 推荐RF仿真软件及其特点? 答:Agilent ADS仿真软件作RF仿真。这种软件支持分立RF设计和完整系统设计。详情可查看Agilent网站。 10. 哪里可以下载关于手机设计方案的相应知识,包括几大模快、各个模块的功能以及由此对硬件的性能要求等内容? 答:可以看看https://www.360docs.net/doc/db18274993.html,和https://www.360docs.net/doc/db18274993.html,,或许有所帮助。关于TI的wireless solution,可以看看https://www.360docs.net/doc/db18274993.html,中的wireless communications. 11. 为什么GSM使用GMSK调制,而W-CDMA采用HPSK调制? 答:主要是由于GSM和WCDMA标准所定。有兴趣的话,可以看一些有关数字调制的书,了解使用不同数字调制技术的利与弊。 12. 如何解决LCD model对RF的干扰? 答:PCB设计过程中,可以在单个层中进行LCD布线。 13. 手机设计过程中,在新增加的功能里,基带芯片发射数据时对FM产生噪声干扰,如

新手入门-无线速率以及常识详解

新手入门-无线速率以及常识详解 一、无线速度有多少 为了方便大家了解,下面我们就常见的无线标准速度做一介绍。 ● 802.11 802.11是IEEE最初制定的一个无线局域网标准,主要用于解决办公室局域网和校园网中用户与用户终端的无线接入,业务主要限于数据存取,速率最高只能达到2Mbps。由于它在速率和传输距离上都不能满足人们的需要,因此,IEEE小组又相继推出了802.11b和802.11a两个新标准。 ● 802.11b 802.11b的产品仍被用在远距传输上 工作在2.4~2.4835GHz,采用CCK技术提供高达11Mbps的数据通信带宽,最多可提供三个互不重叠的子频道。Wi-Fi认证保证不同厂家产品之间的兼容。由于802.11b工作的2.4GHz频带在全球来看基本上都是免费可用的,并且其能完全兼容原来的802.11标准,因此一经推出便得到了用户的认可。目前95%的无线局域网都是基于IEEE 802.11b技术,是现今最为流行的无线局域网络标准。 ● 802.11b+

曾经流行的802.11b+产品 802.11b+是802.11b的增强标准。其主要来自TI公司的PBCC (Packet Binary Convolutional Coding,分组二进制卷积码)-22(也称CCK-PBCC)调制方式,也可选CCK-OFDM调制方式。其中采用PBCC-22方式的TI提案保持了对IEEE802.11b的完全兼容,并使最高传输速率达到了22Mbps,增加了3dB编码增益,其覆盖范围理论上可扩大70%。 802.11b+技术与传统802.11b在同样的频谱下运行,因此可以完全兼容IEEE工艺802.11b标准的设备,与现有的802.11b标准的设备实现互连互通。友讯网络(D-Link)、普瑞尔(TP-LINK)等公司都曾推出过相关产品,802.11b+技术标准的无线产品曾占据了欧美和国内市场的50%以上份额,但随着802.11g标准的主流化,802.11b+产品在新货市场上已基本销声匿迹。 ● 802.11a 单纯802.11a的产品越来越少见 工作在5GHz,采用OFDM技术提供54Mbps的数据通信带宽,最多可提供12个互不重叠的子频道。使用802.11a规范的网络运行于无线频率在5.725GHz到5.850GHz之间的环境下。这个规范使用正交频分复用技术,这种技术尤其适合应用于企业/办公室局域网。在802.11a规范中,数据速率可以达到54Mb/s,在干扰方面,它要优于802.11b规范,这是因为802.11a提供更多的可用信道,并且802.11b的使用频率和各种各样的家用器具及医疗设备的使用频率是共享的。 ● 802.11g 工作在2.4~2.4835GHz,采用CCK和OEDM技术提供高达54Mbps的数据通信带宽,最多可提供三个互不重叠的子频道。802.11g是802.11b的扩展,目前WLAN的绝对主流。802.11g将802.11b的速率抬高到了54 Mbps,

相关文档
最新文档