压力式喷雾干燥塔设计计算书

压力式喷雾干燥塔设计计算书
压力式喷雾干燥塔设计计算书

目录

一.设计题目----------------------------------------------2 二.设计任务及条件-------------------------------------2 三.工艺设计计算

1.物料衡算----------------------------------------------3 2.热量衡算----------------------------------------------3 3.雾滴干燥所需时间 计算--------------------------3 4.压力式喷嘴主要尺寸的确定----------------------5 5.干燥塔主要尺寸的确定----------------------------6 6.主要附属设备的设计或选型---------------------11 四.设计结果汇总表------------------------------------13 五.参考文献---------------------------------------------13

“压力式喷雾干燥塔设计”任务书

(一)设计题目

压力式喷雾干燥器设计。

(二)设计任务及设计条件

1、干粉生产能力:(湿基)见下表。

2、设备型式:压力式喷雾干燥器,干燥物质为陶瓷原料料浆,干燥介质为空气,热源为发生炉煤气。

3、设计条件:

(1)料浆含水量 w 1=40wt %(湿基) (2)干粉含水量 w 2=6wt %(湿基) (3)料浆密度 ρl =1200kg/m 3

(4)干粉密度 ρp =900kg/m 3 (5)热风入塔温度 t 1=450℃ (6)热风出塔温度 t 2=70℃ (7)料浆入塔温度 t m1=20℃ (8)干粉出塔温度 t m2=50℃ (9)干粉平均粒径 d p =60μm

(10)干粉比热容 c m =1.04kJ/(kg ·℃) (11)料浆雾化压力 2MPa (表压)

(12)取冬季的空气参数 温度t a =2℃,相对湿度φa =70%

(13)进料量 1100kg/h(干基) (三)工艺设计计算 1.物料衡算

(1)料液处理量G 1

212

11001006

11001723.3kg/h 10010040

G G ωω--==?=--

(2)水分蒸发量W

121723.31100623.31kg/h

W G G =-=-=

2.热量衡算

(1)使物料升温所需热量:

22()1100 1.04(5020)

55.1kJ/kgH 623.3

m m m m G c t t q o W 21-??-=

==

(2) 根据经验,取热损失12=210kJ/kgH q o (3)干燥塔出口空气的湿含量 1

m

2+q

=210+55.1=265.1kJ/kgH q q o =∑

21

121

4.1862026

5.1181.4w m I I c t q H H -=-=?-=--∑

据气象条件(年平均气温2℃,年平均相对湿度?=70%),查空气H-I 图,得

10.003kg /kg o H H ==干空气,1464.5/I kJ kg =干空气,任取H 2'=H e =0.04,代入上

式得

I 2'=I e =464.5-181.4(0.04-0.003)=457.8 查I-H 图得H 2=0.141kg 水/kg 干空气 I 2=439.6kj/kg

(4) 于是干空气消耗量

21623.3

4516.7/0.1410.003

W L kg h H H =

==--干空气

3.雾滴干燥所需时间τ计算 (1)汽化潜热γ的确定

由I-H 图查得空气入塔的湿球温度65w as t t ==℃,查手册得该温度下水的汽化潜热γ=2346kJ/kg 。 (2)导热系数λ的确定 平均气膜温度为

()5.6770652

1

=+?℃,在该温度下空气的热导热率52.94410/()KW m λ-=??℃。

(3)初始滴径l d 的计算

1112221

1

3310

1240

0.67/11004060.06/11006

190010.676063.41120010.06p p p X kg kg X kg kg X d d m

X ωωωωρμρ===--===--??++??=?=??= ? ?++????

水干物料水干物料

(4)雾滴的临界直径

60pc p d d m μ==

(5)液滴的临界湿含量c X 的计算

3

1101311116010000.4110.463.412000.45/p w c p d X d kg kg ρωωρ??????????=-- ??? ?-??

????????

?????

???=--???? ?-??????????

=水干物料

(6)空气的临界湿含量c H 的确定

()()

()()

111111723.310.40.670.450.0034516.7

0.050

c c G X X H H L

ω--=+--=+=

(7)空气的临界温度c t 的确定

由c H =0.050和P =2M Pa ,查得c t =216.45℃

(8)传热温差1m t ?、2m t ?的计算

()()()()111

11

22222

266.93ln 64.91ln m c w m m c w

c w m m c w m t t t t t C

t t t t t t t t t C

t t t t ---?==-----?=

=--o o

⑨雾滴干燥所需时间τ的计算

222021

2

221221233

3()()

823461200(63.460)1023469006010(0.450.06)8 2.94410266.9312 2.9441064.911.48100.533l p pc p pc c m m d d d X X t t h s

γργρ-------τ=

+

λ?12λ??-?????-=+??????=?= 4.压力式喷嘴主要尺寸的确定

(1)为了使塔径不至于过大,根据经验取喷嘴角48β=?,根据《喷雾干燥实用技术大全》中,图4-11查得A 0.9'= (2)当A 0.9'=时,查图4-12得D C =0.41 (3)喷嘴孔径的计算

1

1/2

2

4

032.3210r m

--????===? 即0r =2.32mm ,002 4.64d r mm ==,圆整后取d 0=5mm 。 (4)喷嘴其它主要尺寸的确定

选矩形切线入口通道2个,据经验取 2.2b mm =,2R 1/b=8,即R 1=8.8mm,圆整R 1=9mm,即旋转室直径选用10 mm 。 因为 12A ab =,21 2.2

97.922

b R R mm =-

=-= 所以 1

1

0102

22 3.14 2.329 2.32()()8.9722 2.20.97.9

r R r a bA R π??==?='??

取a=9.0mm

(5)校核喷嘴的生产能力

'

1/21/2

01

02 2.329 2.32(

)(

)()()0.897229 2.27.9

r R r A mm ab

R ππ??===?? 圆整后'A 基本不变,不必复算,可以满足设计要求。

411/(3600)1723.3/(12003600) 4.010V G ρ-=?=?=?

旋转室通道长度l 和宽度b 之间的关系,可按3l b =选取。

3 2.2 6.6l mm =?= (6)空气心半径c r 的计算 01

01

3.14 2.329

1.6629

2.2

r R A A π??=

=

=??

由A 与a 的关联图查得00.55a =

2.32 1.56c r r mm === (7)喷嘴出口处液膜速度的计算 平均速度

()()

4

022226

0 4.01043.2/3.14 2.32 1.5610

c V u m s r r π--?===-?-? 水平速度分量

00tan

19.2/2

x u u m s β

==

垂直速度分量

0043.2/y u u m s == 合速度

12

22

000()47.3/res x y u u u m s =+=

5.干燥塔主要尺寸的确定 (1)塔径的计算

塔内空气各参数按常压考虑,其平均温度

()1

450702602

C +=o ,查手册得空气粘度0.0278a μ=厘泊,空气密度30.671/a kg m ρ=。 ① 根据初始水平速度019.2/x u m s =,计算出0e R ,

300063.41019.20.67Re 29.30.0278

p x a

a

d u ρμ-???=

==

属于过渡区。

② 由Re 与ζ,2Re ζ,/Re ζ,B 的列线图查得查得0Re 时,20 3.010B B -==?。

③ 当初始的瞬间,即当00τ=,由[]2043l l a

d B B ρτμ=-得0τ=。

④ 取一系列1Re 100=,2Re 70=,…;得一系列1x u ,2x u ,…;查得相应的1B ,

2B …;算出一系列相应的1τ,2τ,…;列出表1中。

⑤ 以τ为横坐标,x u 为纵坐标,作τ-x u 曲线,如图1所示。用图解积分法求得

0.033

0.31x S u d m τ==?

g

塔径D=2S=0.62m ,圆整取为D=0.7m 。 (2)塔高的计算

①减速运动段的距离1Y 的计算 a. 由初始垂直速度0y u 计算出0Re 。 0Re =00p y a

a

d u ρμ=

363.41043.20.67

660.0278

-???= 属于过渡区。

3

2

4()

3a a p l a

g d ρρρψμ-=

=3332

49.80.67(0.063410)(12000.67)3(0.027810)

--????-??=3.46 b. 由于2Re ,f f ψζ= 查Re 与ζ,2

Re ζ,/Re ζ,B 的列线图得Re f =0.13。 c. 据0Re 查Re 与ζ,2Re ζ,/Re ζ,B 的列线图得2

3Re 6.410o o ζ=?,则

4

23

11 1.5610Re 6.410 3.46

o o ζψ-==?-?- 表1 停留时间τ与雾滴水平速度x u 的关系

15 10.4 3.7 0.00145

10 6.9 5.2 0.00456

7 4.8 6.2 0.00663

5 3.45 7.1 0.0085

3 2.07 8.7 0.0118

2 1.38 10.0 0.0145

1 0.69 12.5 0.0197

0.5 0.35 15.2 0.0253

0.3 0.21 17.3 0.0296

0.2 0.14 19.0 0.0332

图1

x

u

τ-曲线图

d.取一系列

12

Re300,Re200,,Re 1.8

f

==?=,由Re与ζ,2

Re

ζ,/Re

ζ,B的

列线图查得相应的222

1122

Re,Re,Re;

f f

ζζζ

?再计算出相应的

222

1122

111

,,,,

Re Re Re

f f

ζψζψζψ

?

---

列于表2中。

e.以Re为横坐标,

2

1

Re

ζψ

-

为纵坐标作图,如图2所示。

表2 Re 与

2

1

Re ζ

ψ

-、y u 、τ'的关系 Re

2Re ζ

3

2110Re ζψ?????

-??

Re a

y l a u d μρ=

(/m s )

2'

24Re

3Re l l a d d ρτμζψ

=-? (s )

66 6.4×310 0.156 44 0 50 3.9×310 0.263 32.7 2.0×310- 30 1.9×310 0.621 21.3 1.6×310- 20 1.1×310 0.95 13.2 1.3×210- 10 4.2×210 2.4 6.54 0.02755 8 3.2×210 4.1 5.12 0.04678 5 7.1×210 5.8 3.27 0.0646 2 14.8 33 1.95 0.2365 0.5 10 320

0.3863 0.8526

0.35

8.5

0.2406

f .由1Re =66,可计算出144/y u m s =,据图2可求得409

2300

Re

Re d ζψ

-?

从而可以算出

停留时间1τ'=

2

66

250

4Re 3Re l l a

d d ρμζψ

-?

=0.3166250Re Re d ζψ-?=2

2.3210s -?。

图2 Re 与

2

1

Re ζψ

-曲线 g .类似地,由23Re ,Re ,?Re f ,根据图4-45可求得,409

2200

Re

Re d ζψ

-?

,?,

409

20.35Re

Re d ζψ-?;亦可计算出相应的停留时间2τ',3τ'?,τ',如表2所示。由此得

到减速运动段的停留时间0.24s τ'=。

h .由表2的y u ,τ'数据,作τ'-y u 曲线如图3所示。用图解积分法可得减速运动段的距离0.852610

1.52y y u d m τ==?

。 圆整后为y=1.6m 。

(3)热风进出口接管直径的确定

在干燥系统中,一般取风管中的风速为15~25 m/s 。 ① 热风进口接管直径1d

1H v =1

1273(0.773 1.244)

273

t H ++ =(0.773+1.244?0.003)273450

273

+=2.063/g m k 干空气

3114516.7 2.069304.4/H V Lv m s ==?=

取热风管道中的气速为253/m s ,则

10.363d m =

=

圆整后取干燥塔热风入口接管直径1d =370mm 。 ② 热风出口接管直径2d

2

22273(0.773 1.244)273

H t v H +=+ =(0.773+1.244?0.141)27370

273+

=31.19/m kg 干空气 V 2=L 2H ν=4516.7?1.19=5374.9h m /3

20.276d m =

=

圆整后取2280d mm = 6.主要附属设备的设计或选型 (1)旋风分离器

进入旋风分离器的含尘气体近似按空气处理,取温度为95C ?。

3327395

(0.773 1.2440.141)

1.28/273

H m kg υ+=+?=干空气 3334516.7 1.285909/H V L m h υ==?=

采用蜗壳式旋风分离器,其进口宽度0.225b D =,高度0.3a D =,取进口速度为25 m/s,则

35909

0.2250.32536003600

V D D ??=

=

即0.973D m =。圆整后取1000D mm =。其余各部分尺寸为

10.8800L D mm == 222000L D mm ==

0.225225b D mm == 0.3300a D mm == 0.35350d D mm == 0.7700l D mm ==

'0.2200d D mm ==

(2)风机的选择

干燥塔的操作压力一般为0~-100(表压),所以本系数需2台风机,即干燥塔前安装1台鼓风机,干燥塔后安装1台引风机,阻力也可以干燥塔为基准分前段(从空气过滤器至塔)阻力和后段(塔后的设备及管道等)阻力。在操作条件下,热风流经各设备及管道等的阻力如表3所示, ○

1鼓风机的选型 鼓风机入口处的空气风度为2C ?,湿含量 0H =0.003

302732

(0.773 1.2440.003)

0.78/273

H m kg υ+=+?=干空气 3004516.70.783523/H V L m h υ==?=

表3 系统阻力估算表

3C 0.83/kg m ?系统前风温按150计,密度为,则所需风压(规定状态下)为

1.22169pa 0.83???= ???

1500

34-72-11No.4.5A m /2530pa h 故选用离心机,风量为5730,风压为。

2 引风机的选型

C kg ,?3系统后段风温按80计,密度为1.000/m 则引风机所需风压为(规定状态下)为

5160pa ???= ???

1.2 4300。

1.000 352C H 0.035.27375

(0.773 1.244 1.22m /273h v H kg ?=+=+=2取引风机入口处的风温为75,湿含量为)空气

355V L 1.224516.75510/h v m h ==?=

3919NO.5A /Pa m h -故选用离心通风机,风量为5903,全压为5750。

(四)设计结果汇总表

通过上述设计计算得到的本设计示例设计结果汇总表 设计结果汇总表

.

料液处理量,kg/h1723.3

蒸发水量,kg/h623.31

空气用量,kg干空气/h4516.7

雾化器孔径,mm 5.0

干燥塔直径,m0.7

干燥塔有效高度,m 1.6

旋风分离器直径,m1

鼓风机型号4-72-11 No.4.5A

引风机型号9-26NO.5A

(五)参考文献

1、《喷雾干燥实用技术大全》中国轻工业出版社刘广文编著

2、《化学单元过程及设备课程设计》化学工业出版社匡国柱史启才主编

压力式喷雾干燥塔设计计算书

目录 一.设计题目----------------------------------------------2二.设计任务及条件-------------------------------------2三.工艺设计计算 1.物料衡算----------------------------------------------3 2.热量衡算----------------------------------------------3 3.雾滴干燥所需时间 计算--------------------------3 4.压力式喷嘴主要尺寸的确定----------------------5 5.干燥塔主要尺寸的确定----------------------------6 6.主要附属设备的设计或选型---------------------11 四.设计结果汇总表------------------------------------13五.参考文献---------------------------------------------13

“压力式喷雾干燥塔设计”任务书 (一)设计题目 压力式喷雾干燥器设计。 (二)设计任务及设计条件 1、干粉生产能力:(湿基)见下表。 2、设备型式:压力式喷雾干燥器,干燥物质为陶瓷原料料浆,干燥介质为空气,热源为发生炉煤气。 3、设计条件: (1)料浆含水量 w 1=40wt %(湿基) (2)干粉含水量 w 2=6wt %(湿基) (3)料浆密度 ρl =1200kg/m 3 (4)干粉密度 ρp =900kg/m 3 (5)热风入塔温度 t 1=450℃ (6)热风出塔温度 t 2=70℃ (7)料浆入塔温度 t m1=20℃ (8)干粉出塔温度 t m2=50℃ (9)干粉平均粒径 d p =60μm (10)干粉比热容 c m =(kg ·℃) (11)料浆雾化压力 2MPa (表压) (12)取冬季的空气参数 温度t a =2℃,相对湿度φa =70% (13)进料量 1100kg/h(干基) (三)工艺设计计算 1.物料衡算 (1)料液处理量G 1 2121100100611001723.3kg/h 10010040 G G ωω--==?=-- (2)水分蒸发量W 2.热量衡算 (1)使物料升温所需热量:

UASB的设计计算

UASB 的设计计算 6.1 UASB 反应器的有效容积(包括沉淀区和反应区) 设计容积负荷为)//(0.53d m kgCOD N v = 进出水COD 浓度)/(112000L mg C = ,)/(1680L mg C e =(去除率85%) V= 3028560 .585 .02.111500m N E QC v =??= 式中Q —设计处理流量d m /3 C 0—进出水CO D 浓度kgCOD/3 m E —去除率 N V —容积负荷,)//(0.53d m kgCOD N v = 6.2 UASB 反应器的形状和尺寸 工程设计反应器3座,横截面积为矩形。 (1) 反应器有效高为m h 0.6=则 横截面积:)(4760 .62856 2m h V S =有效= = 单池面积:)(7.1583 4762m n S S i === (2) 单池从布氺均匀性和经济性考虑,矩形长宽比在2:1以下较合适。 设池长m l 16=,则宽m l S b i 9.916 7 .158=== ,设计中取m b 10= 单池截面积:)(16010162'm lb S i =?== (3) 设计反应器总高m H 5.7=,其中超高0.5m 单池总容积:)(1120)5.05.7(160'3 ' m H S V i i =-?=?= 单池有效反应容积:)(96061603 'm h S V i i =?=?=有效 单个反应器实际尺寸:m m m H b l 5.71016??=?? 反应器总池面积:)(48031602 ' m n S S i =?=?= 反应器总容积:)(336031120'3 m n V V i =?=?=

立式喷雾干燥塔说明书

立式喷雾干燥塔说明书

目录 一.名称及型号 二.用途和特点 三.工作原理 四.工艺流程 五.操作程序 六.主要性能及技术参数 七.生产结束及停车 八.设备清洗 九.注意事项 十.故障及排除方法

立式压力(上排风) 喷雾干燥塔说明书 一.名称及型号 名称:立式上排风压力喷雾干燥塔 型号:DSYPW-2 (4) X-3D (4段二级)L/500. 750. 1000. 1500. 2000. 3000. 3500 二.用途及特点 1、本设备适用于溶液、乳浊液、及悬浮液等含固形物的物料的喷雾干燥。一定浓度的物料在高压的作用下喷成雾状进行干燥,物料受热时间短、蒸发效率高,特别适合于热敏性物料的干燥。 采用压力喷雾干燥,便于对干燥过程工艺参数的调整,有利于达到产品的颗粒、色泽、冲调性等技术指标。适合于不同浓度的牛奶、豆浆、蛋液、食品添加剂等热敏性物料干燥,广泛用于乳品、食品、医药、化工等轻工业生产。 采用喷雾干燥设备生产的奶粉,不仅符合国家标准,而且在溶解度、润湿下沉等指标,可达到或接近国际先进水平。 2、上排风压力喷雾干燥塔,综合了国内外新技术,具有如下特点: 色泽好、风味好:因喷雾干燥的预热和恒速率期均在上部进行,奶粉自由降落到椎体后,奶粉的表面温度相对比下排风低,有利于保持奶粉的色泽和风味。 奶粉颗粒均匀:较大的颗粒和较小的颗粒少,因奶粉干燥过程中受热时间相对下排风塔在高温时间短,奶粉的冲调性好。

塔壁不粘粉:因上排风塔喷雾干燥的流程是恒速率干燥期为顺流,降速率为混流排风,乳粉随风在塔内形成180°大回转,使颗粒在回转中被分离落进塔锥下部,微粉随风进入旋风分离器进行二次分离。使塔壁和顶部很少粘粉。 延长了刷塔时间:喷塔可连续运行5---7天,塔顶、塔壁无粘粉现象。在柱体部分的塔壁基本无粉。 土建投资低:在满足蒸发量需要的前提下,上排风塔的高度要比下排风塔明显降低。同样能力的喷塔可降低4---6米,有效的降低土建投资。 三、工作原理 1.顺流压力上排风喷雾干燥塔是将浓缩后的物料送入浓奶罐,浓奶罐的物料利用物料泵把浓奶通过浓奶预热器预热至60---70℃。(若合同约定有浓奶预热器时)送入高压泵,在高压泵的作用下经高压管由塔顶进入喷枪体,依据塔的蒸发能力设计有单喷枪、三喷枪、四喷枪、六喷枪、八喷枪。经喷头呈60--80°雾化角以物状喷入塔内。经过滤的空气由风机通过空气加热器送入粉塔热风箱(热风分配器),分配均匀的热空气与塔内物化物料进行充分的热交换,热交换后水分蒸发经180度大回转,在顶部排出。物料成粉状落入椎体下部。通过椎体口进入流化床,经过沸腾加热、冷却的颗粒乳粉通过震荡筛进入粉车去包装。 2、干燥后的微粉随湿空气,经过塔上部边缘二个或四个排风口进入两个或四个旋风分离器进行细粉分离,分离后的细粉经过震动卸粉

喷雾干燥机原理及组成和设备的日常操作及注意事项

喷雾干燥机是PTC热敏陶瓷生产工艺中的重要设备,该设备价格较高,组成复杂,使用和维护难度较大。设备的良好运转,不仅能够保证PTC热敏陶瓷生产的正常进行,还可以适当延长设备使用寿命,降低生产成本,因此对喷雾干燥机的正确操作以及加强维护保养十分必要。 1 喷雾干燥机原理及组成 造粒是PTC 热敏陶瓷片生产过程中十分重要的工序,粒料的质量直接影响PTC陶瓷片的外观、机械性能以及阻温特性。造粒是指在磨细的粉料中加入一定量的粘合剂,均匀调和后使之形成颗粒状粉体,这种粉料具有较好的流动性与压延性,以便在压片工序中可以得到具有较好强度、不易分层开裂的片子。在工业化生产中采用喷雾干燥法造粒,其基本原理是把带有粘合剂的粉料,用喷雾器喷入造粒塔中进行雾化,塔中的雾滴被塔中热气流干燥成颗粒状粉体,然后从干燥塔底部卸出。 压力式喷雾干燥机主要由供料系统、干燥系统、除尘系统、加热系统和电器系统组成,而每一系统又包括一些相关设备。 供料系统由搅拌桶、过滤器、隔膜泵和喷枪等组成。球磨好的二次料浆从球磨机转移到搅拌桶中,经过滤器被隔膜泵抽取并传送,然后经过喷枪进入干燥塔内。 料浆由喷枪喷嘴进入干燥塔开始了喷雾造粒干燥过程,具体过程分为三个阶段: (1)料浆雾化。料浆由供料系统中的隔膜泵以一定压力从喷嘴压入干燥塔,压力的能量转换为动能,料浆由下向上从喷嘴喷出,形成一层高速的液膜,液膜随即分裂为液滴。雾化产生的液滴尺寸与压力成反比,喷嘴的生产能力与压力的平方成正比。 (2)雾粒干燥成球。雾粒与热空气以混合流的方式工作,热空气是通过顶盖上的热空气分配器进入塔内,热风分配器产生一股向下的流线空气气流,雾滴由下向上喷入热空气流。雾滴由于表面张力作用而形成球形,同时由于雾滴具有很大的表面积,其中水分迅速蒸发干燥,而最终收缩形成干燥的球形颗粒粉料。 (3)颗粒粉料卸出。形成的球形颗粒粉料在干燥塔内逐渐沉降,与热空气分离,塔下部的漏斗型腔使颗粒料汇集并从出料口卸出。较细的颗粒料与干燥空气一起由与漏斗形上部相连的抽风机抽取而进入除尘系统。为干燥塔输送热空气的送风机、干燥塔以及抽风机组成了干燥系统。 除尘系统由高效旋风分离器、布袋除尘器、离心风机等组成。抽风机将较细的颗粒料与干燥空气一起送入高效旋风分离器。经过有效分离,较细颗粒料进入分离器底部的收集筒回收,所剩的含有极少量微细颗粒料的废气由离心风机吸入布袋除尘器经过再次除尘收集,实现了废气的无害化处理,最后的废气从烟囱排出。 此外,电加热器和燃气机热风炉等组成的加热系统为干燥塔提供热空气。电器控制柜以及安装于进风口和出料口监测温度的现场传感器等组成的电器系统对整个喷雾干燥机的各个主要环节进行监测和控制,保证整个设备的正常运行。 2 日常操作及注意事项 在日常生产过程中,开动喷雾干燥机设备前应进行必要的准备工作。首先检查各个装置的轴承和密封部分连接处有无松动,各个机械部件的润滑油状况以及各个水、风、浆管阀口等是否处于所需位置。然后接通电源检查电压和仪表是否正常,最后检查料浆搅拌桶内料浆的量以及浓度等情况,若出现问题应及时排除。 随后依次开启送风机、抽风机,接着打开加热开关开始升温。当出料口温度达到设定温度时(一般为130℃左右),启动料泵和除尘系统。当泵压达到2MPa后,打开喷枪开始造粒。设备运行后,应及时观察雾化情况及料泵工作状况,若出现堵枪现象需立即清洗或更换喷嘴。设备正常运行后,还应定时收料、定时检查各系统运行情况,记录各工艺参数,并注意清理振动过滤筛。

厌氧塔计算手册

1. 厌氧塔的设计计算 1.1 反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为 5.0 /( 3 / ) N v kgCOD m d 进出水 COD 浓度 C 0 2000( mg / L) , E=0.70 QC 0 E 3000 20 0.70 8400m 3 3 V= 5.0 ,取为 8400 m N v 式中 Q ——设计处理流量 m 3 / d C 0——进出水 CO D 浓度 kgCOD/ 3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器 3 座,横截面积为圆形。 1) 反应器有效高为 h 17.0m 则 横截面积: S V 有效 8400 =495(m 2 ) h 17.0 单池面积: S i S 495 165(m 2 ) n 3 2) 单池从布水均匀性和经济性考虑,高、直径比在 1.2 : 1 以下较合适。 设直径 D 15 m ,则高 h D*1.2 15 * 1.2m 18 ,设计中取 h 18m 单池截面积: S i ' 3.14 * ( D )2 h 3.14 7.52 176.6( m 2 ) 2 设计反应器总高 H 18m ,其中超高 1.0 m 单池总容积: V i S i ' H ' 176.6 (18.0 1.0) 3000( m 3 ) 单个反应器实际尺寸: D H φ15m 18m 反应器总池面积: S S i ' n 176.6 3 529.8(m 2 ) 反应器总容积: V V 'i n 3000 3 9000(m 3 )

厌氧塔试水方案

厌氧塔试水方案 厌氧塔在施工结束后要进行充水检验是否有渗漏点及基础沉降观测,以保证投入运行时能够达到设计施工标准。厌氧系统设备按照下列标准执行,工艺和材料符合下列标准和规定的最新版本的要求: 1)《苏州科特环保设备有限公司企业标准》SP-037 2)《钢制焊接常压容器》JB4735-97 1、前期准备 1.1塔体制作安装完毕,塔体焊接的所有构件及附件应全部完工, 达到验收标准。塔内废铁、焊条以及废物清理干净,封门前请甲方、监理验收,形成验收文件。 1.2试水应有各个工种配合,具体要求铆焊、管道、电气、机装人 员协调处理。 2、试水步骤 2.1试水前测量塔体垂直度(取4监测点)及圆度(取4监测点) 并通过业主确认记录监测数据。 2.2 先向塔体内充水到1/4水位处,观察24小时后塔体垂直度及圆 度,无异常变化后充水到1/2处,同样观察。24小时,无异常变化后充水到3/4处,再观察24小时,无异常变化后将塔体充满水,再观察24小时。 2.3 充水过程中观察塔体是否存在渗漏、异常变形现象,如有异常 现象出现,应立即停止注水,检查并排除异常现象后恢复试水工

作。 3、基础沉降观测 在筒体下部取4个观测点,塔体充水到1/2高度时,进行一次观测,并与充水前的数据进行比对,计算出实际的不均匀沉降量,当未超过允许的不均匀沉降量时,在充水至3/4高度时,进行一次测量,若仍未超过允许的不均匀沉降量时,可继续充水至最高液位,48小时后,进行观测,当沉降无明显变化时,即为合格。当沉降有明显变化时,则保持最高液位,每天观测,直至沉降稳定为止。 4、技术要求 4.1 塔注水到最高液位并保持24小时后渗漏、无异常变形为合格。 4.2 如有渗漏时应将塔内水放至适当高度,将渗漏处返修补焊,再 重新进行盛水试验,直到不渗漏为止。 4.3 如在充水过程中发现基础发生不允许的沉降,应停止充水,待 处理后方可继续进行试验。 4.4 充水时应有人在现场值班,发异常情况应停止充水,并报告技 术负责人。 5、安全保证措施 5.1 充水时的操作人员在高空进行开阀门时,应系好安全带、防滑 保证措施。

离心喷雾干燥塔

喷雾干燥是液体工艺成形和干燥工业中广泛应用的工艺。钱江干燥带大家一起了解立新喷雾干燥塔的相关工作原理及产品特点。以钱江干燥LPG系列高速离心式喷雾干燥机为例。 LPG系列高速离心式喷雾干燥机工作原理: GPL系列离心式喷雾干燥机系气液两相并流式干燥设备,采用高速离心式雾化器,将料液雾化成微细的雾滴,与经分布器分布后的热空气在干燥塔内混合,迅速进行热质交换,在极短的时间内干燥成为粉状产品。生产控制和产品质量控制方便可靠,广泛应用于不同种类液体物料的干燥生产。 LPG系列高速离心式喷雾干燥机产品特点: 1、不同种类的溶液、悬浊液、乳浊液和膏糊状物料可实现一次性连续干燥生产。 2、喷雾干燥的雾矩和雾滴颗粒直径可略作调整。 3、热风分配合理,消除了吸顶和粘壁现象。 4、同时适合于热敏性和非热敏性物料的干燥,产品颗粒较压力式喷雾干燥的产品为细。

5、简化生产过程,操作方便,产品流动性和速溶性好 LPG系列高速离心式喷雾干燥机的优势: 1完全干燥之后不留任何残余物质; 2.对于不容易干燥的样品,使用真空干燥法可以有效缩短干燥的时间; 3.粉末状样品不容易被流动空气吹动或移动; 4.在真空或惰性条件下,可消除氧化物可能遇热爆炸的情况; LPG系列高速离心式喷雾干燥机应用实例: 1、无机物:氮化铝、二氧化锆、氟化钾、膨润土、高岭土、硫酸钡、硫酸钻、铝酸钠、氧化铬、钛白粉。 2、高分子聚合物:脲醛树脂、PVC。 3、染料:分散红FB、活性染料等。 4、化学助剂:白炭黑、硅藻土、铝硅酸钠、木钙、木质素磺酸钠、萘系减水剂。 5、农药:多菌灵盐酸盐可湿性粉剂。 6、食品和饲料添加剂:酪蛋白磷酸肽、山梨酸钾、鱼浆液。 7、化肥:腐植酸钾、腐植酸钠。

厌氧塔设计计算书

1.厌氧塔的设计计算 1.1反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53 d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E=0.70 V= 3 084000 .570 .0203000m N E QC v =??= ,取为84003 m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .1784002 m h V S =有效 == 单池面积:)(1653 4952 m n S S i == = 2) 单池从布水均匀性和经济性考虑,高、直径比在1.2:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765 .714.3)2 ( *14.32 2 2' m h D S i =?== 设计反应器总高m H 18=,其中超高1.0m 单池总容积:)(3000)0.10.18(6.176'3 ' m H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762 ' m n S S i =?=?= 反应器总容积:)(900033000'3 m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.1762430002 3h m m S Q V r =??= = 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.02 3 h m m V r -=故符合要求。 1.7.2 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.02 3 ' h m m q <沉淀室底部进水口表面负荷一般小于2.0)./(2 3 h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16' m b l == 每个单元宽度:)(57.27 187 ' m l b == = 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58.1142 323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan . 31m h b === α )(04.198.020.32 12m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ; 3h —下三角形集气罩的垂直高度,m ;

喷雾干燥工艺

喷雾干燥工艺 (Spray Drying Technology) 一、喷雾干燥是采用雾化器将原料分散为雾滴,并利用热空气干燥雾滴而获得产品的一种干燥方法。原料液可以是溶液,乳浊液或是乳液,也可以是熔融液或膏糊液。干燥产品可根据生产要求制成粉状、颗粒状、空心球或团粒状。国内外通常采用的喷雾干燥方式有离心式、压力式和气流式。 二、工业化生产使用的三种雾化器 ●旋转盘式雾化器由离心能发生雾化 ●压力式雾化器由压力能发生雾化 ●气流式(二流体或三流体)雾化器由动能发生雾化 三、雾化器的选择: 取决于原料的物理、化学性质和干燥成品的形状规格。值得注意的是,当三种类型的雾化器均可选用时,我们通常优先采用旋转式雾化器,因为它具有更大的灵活性并且易于操作与控制。其优越性有:无堵塞问题;适用于磨损性原料;可使用低压进料系统;快速进料时,不需使用加倍的雾化器;易于调整旋转速度以控制液滴大小。 四、型号规格的选择:(以每小时水分蒸发量为规格单位) 目前本厂生产的喷雾干燥装置从每小时汽化水:5、25、50、100、150、200-3000kg 规格。具体的技术资料及参数,用户可直接向厂部索取。

LPG-200 喷雾干燥(冷却)联合机组 喷雾干燥应用实例: 食品:氨基酸类:氨基酸、氨基酸类似品、调味料、蛋白质食品、豆酱、精制小麦蛋白、大豆蛋白等 糖类:葡萄糖、糖稀、糖稀异性体、淀粉糖化液、焦糖、淀粉类、着色淀粉等 其他:酵母菌、香料、酶、鱼/肉精、糖精、小球藻、咖啡、全脂奶粉、食品添加物、山梨酸钾等 陶瓷:氧化铝、铁酸盐、块滑石、氧化镁、氧化钛、氧酸钡、钛酸镤、各种肥料体(铁素体)、各种金属氧化物、瓷砖陶土、陶瓷器、耐火粘土、瓷土、白云石、特殊金属等。 医药品:医药品、中药、农药、无机药品、酶、抗生素、维生素剂等。化学工业有机质、有机催化质、三聚氰胺树脂、尿素树脂、界面活性剂、氯乙烯、聚氯乙烯、有机物、木质素、酵母、五氯苯酚、苯酚钠、腐殖酸、酞酸盐钠、高级洗衣粉、中性洗衣粉、油脂类、脂肪酸、甘油酸脂、硬脂酸盐等。 无机质:甲基硅酸、铝酸、镁、磷酸曹达、磷酸钾、硅酸曹达、碳酸钾、硅藻磷曹达、白碳素、硫铵、无机染料、磷铵等。 废液:酿造废液、淀粉废液、发酵废液、黑液等。

洗涤塔设计说明

洗涤塔设计说明文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

洗涤塔设计明细 一、 设计说明 1、 技术依据:《通风经验设计》、《三废处理工程技术手册》、《风机手 册》等。 2、 风量依据:拫据业主提供风量。 3、 设备选择依据:以废气性质为前提,根据设计计算所得结果选择各种合理 有效的处理设备。 二、 基本公式 1)、洗涤塔选择: 风量、风速、及管经计算公式 Q = 60A ν 式中:Q 风量(CMM); A 气体通过某一平面面积(m 2); ν 流速(m/s); 根据业主设计规范要求,塔内流速:≦2m/s ,结合我司多年洗涤塔设计经验, 塔内速度取,ν ≦s 填充层设计高度: 则填充层停留时间>6 .15.1= 洗涤塔直径>2*6 .1*1416.3*601333= 其中Q=80000CMH=1333CMM ν =s 2)、泵浦选择 ○1流量设定 润湿因子>hr 则:泵浦流量(填充物比表面积*填充段截面积)>hr ξ>60 1000*)22.4*1416.3*100*1.02??????(>2307 L/min ○2扬程设定:

直管长度: ++4= 等效长度: 900弯头 3个 * 3 = 球阀 2个 * 2 = 逆止阀 1个 * 1 = 总长:+ + + =,取24m 扬程损失: 24 * = 喷头采用所需压力为, 为6m水柱压力。 所需扬程为: + + 6= 查性能曲线: 益威科泵浦KD-100VK-155VF,当扬程为12m时,流量为1200L/min,两台15HP则满足要求。 选用泵浦:2台15HP浦, 总流量为2400L/min 最高扬程: 12m

UASB的设计计算书

两相厌氧工艺的研究进展 摘要:传统的厌氧消化工艺中,产酸菌和产甲烷菌在单相反应器内完成厌氧消化的全过程,由于二菌种的特性有较大的差异,对环境条件的要求不同,无法使二者都处于最佳的生理状态,影响了反应器的效率。1971年Ghosh和Poland提出了两相厌氧生物处理工艺[1],它的本质特征是实现了生物相的分离,即通过调控产酸相和产甲烷相反应器的运行控制参数,使产酸相和产甲烷相成为两个独立的处理单元,各自形成产酸发酵微生物和产甲烷发酵微生物的最佳生态条件,实现完整的厌氧发酵过程,从而大幅度提高废水处理能力和反应器的运行稳定性。 (1) 两相厌氧消化工艺将产酸菌和产甲烷菌分别置于两个反应器内,并为它们提供了最佳的生长和代谢条件,使它们能够发挥各自最大的活性,较单相厌氧消化工艺的处理能力和效率大大提高。Yeoh对两相厌氧消化工艺和单相厌氧消化工艺进行了对比实验研究。结果表明:两相厌氧消化系统的产甲烷率为0.168m3CH4/(KgCOD Cr?d)明显高于单相厌氧消化系统的产甲烷率0.055m3CH4/(KgCOD cr?d)。 (2) 反应器的分工明确,产酸反应器对污水进行预处理,不仅为产甲烷反应器提供 了更适宜的基质,还能够解除或降低水中的有毒物质如硫酸根、重金属离子的毒性,改变难降解有机物的结构,减少对产甲烷菌的毒害作用和影响,增强了系统运行的稳定性。 (3) 产酸相的有机负荷率高,缓冲能力较强,因而冲击负荷造成的酸积累不会对产 酸相有明显的影响,也不会对后续的产甲烷相造成危害,提高了系统的抗冲击能 力。 (4) 产酸菌的世代时间远远短于产甲烷菌,产酸菌的产酸速度高于产甲烷菌降解酸的速率[4,5],产酸反应器的体积总是小于产甲烷反应器的体积。 (5) 两相厌氧工艺适于处理高浓度有机污水、悬浮物浓度很高的污水、含有毒物质及难降解物质的工业废水和污泥。 2两相厌氧工艺的研究现状 2. 1反应器类型 从国内外的两相厌氧系统研究所采用的工艺形式看,主要有两种:第一种是两相均采用同一类型的反应器,如UASB反应器,UBF反应器,ASBR反应器,其中UASB 反应器较常用。第二种是称作Anodek的工艺,其特点是产酸相为接触式反应器 (即完全式反应器后设沉淀池,同时进行污泥回流),产甲烷相则采用其它类型的反应器⑹。 王子波、封克、张键采用两相UASB反应器处理含高浓度硫酸盐黑液,酸化相为8.87L的普通升流式反应器,甲烷相为28.75L的UASB反应器,系统温度 (35 ±)C。当酸化相进水COD 为(6.771 ?11.057)g/ L ,SO42-为(5.648?8.669) g/

喷雾干燥塔操作规程标准范本

操作规程编号:LX-FS-A88565 喷雾干燥塔操作规程标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

喷雾干燥塔操作规程标准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 原理 将料液泵入干燥塔内,经压力喷嘴作用变成雾状液滴,与高温热风接触后水分迅速蒸发,在极短的时间内便成为干燥制品,从塔底部排出。热风与液滴接触后温度显著降低,湿度增大,作为废气(湿气)由排风机抽出,废气中夹带的微粉经分离装置回收。 操作 (1)开机前准备 ①按各单台设备的操作规程对喷雾干燥系统进行检查,包括进风机、排风机、燃气热风炉、高压泵、排粉阀、振锤和气流冷却系统等设备。各设备应完

好、干净。 ②关闭干燥塔上的六扇清洗门,装好风管、旋风分离器上的所有清洗口,将锥底清洗口打开,打开旋风分离器料仓清洗口。装好袋式除尘器中的布袋并关好上盖,装好气流冷却系统的清洗口,关闭气流冷却系统进风阀,打开大塔旋风分离器至气流冷却系统的进风阀,关闭除湿机碟阀。 ③将工艺规定的喷咀、盖板装入喷头内,并安装好三只喷枪,连接好料管。 ④控制柜总电源送电,控制柜各设备送电。检查动力电源、电压是否符合要求(380V)检查工艺压缩空气是否在0.3Mpa,仪表压缩空气在0.5MPa。 ⑤按工艺要求设定进风温度、排风温度和料液储罐料液温度。 ⑥※检查塔内压力显示表显示值为0±1(×

压力喷雾干燥机的生产标准

1 主题内容与适用范围 本标准规定了压力喷雾干燥机的产品分类、技术要求、试验方法、检验规则、标志、包装、运输和贮存。 本标准适用于乳制品及其它粉状食品,制药、化工等行业对浓缩乳及其它特性与之类似的液体物料的压力喷雾干燥机。本标准不包括雾化用的高压泵。 2 引用标准 GB 3768 噪声源声功率级的测定简易法 GB 3095 大气环境质量标准 GB 150 钢制压力容器 GB 191 包装储运图示标志 GB 12073 乳品设备安全卫生 ZBY 99020 乳品机械型号编制方法 JB 2759 机电产品包装通用技术条件 JB 2880 钢制焊接常压容器技术条件 QB 842 轻式机械衡器通用技术条件 3 产品分类 3.1 按料雾与热空气流动方向分 a. 顺流; b. 逆流; c. 混合流。 3.2 按结构型式分 a. 立式立体为塔式; b. 卧式立体为箱式。 3.3 按微粉回收方式分 a. 袋滤器扑集; b. 旋风分离器扑集; c. 湿式气体洗涤器扑集; d. 旋风分离器与袋滤器串联扑集; e. 旋风分离器与湿式气体洗涤器串联扑集。 3.4 按喷咀数量分 a. 单喷咀; b. 多喷咀。 3.5 按干燥介质加热的方式分 a. 蒸汽间接加热; b. 电加热; c. 燃气加热; d. 燃油加热; e. 载热介质加热; f. 双级或多级复合加热。 3.6 基本参数系列 3.6.1 以蒸发量为主参数。水分蒸发量低于50n kg/h的压力喷雾干燥机主要用于实验室或生产实验,允许单独采用电加热方法加热干燥介质。其公称参数系列见表3.8 压力喷雾干燥机的组成 3.8.1 压力喷雾干燥机应包括下列基本部件

洗涤塔设计

目录 (一) 设计任务 (1) (二) 设计简要 (2) 2.1 填料塔设计的一般原则 (2) 2.2 设计题目与要求 (2) 2.3 设计条件 (2) 2.4 工作原理 (2) (三) 设计方案 (2) 3.1 填料塔简介 (2) 3.2填料吸收塔的设计方案 (3) .设计方案的思考 (3) .设计方案的确定 (3) .设计方案的特点 (3) .工艺流程 (3) (四)填料的类型 (4) 4.1概述 (4) 4.2填料的性能参数 (4) 4.3填料的使用范围 (4) 4.4填料的应用 (5) 4.5填料的选择 (5) (五)填料吸收塔工艺尺寸的计算 (6) 5.1塔径的计算 (6) 5.2核算操作空塔气速u与泛点率 (7) 5.3液体喷淋密度的验算 (8) 5.4填料层高度的计算 (8) 5.5填料层的分段 (8) 5.6填料塔的附属高度 (9) 5.7液相进出塔管径的计算 (9) 5.8气相进出塔管径的计算 (9) (六)填料层压降的计算 (10) (七)填料吸收塔内件的类型与设计 (10) 7.1 填料吸收塔内件的类型 (10) 7.2 液体分布简要设计 (12) (八)设计一览表 (13) (九)对设计过程的评述 (13) (十)主要符号说明 (14) 参考文献 (17)

(二)设计简要 (1)填料塔设计的一般原则 填料塔设计一般遵循以下原则: ①:塔径与填料直径之比一般应大于15:1,至少大于8:1; ②:填料层的分段高度为:金属:6.0-7.5m,塑料:3.0-4.5; ③:5-10倍塔径的填料高度需要设置液体在分布装置,但不能高于6m; ④:液体分布装置的布点密度,Walas推荐95-130点/m2,Glitsh公司建议65-150点/m2 ⑤:填料塔操作气速在70%的液泛速度附近; ⑥:由于风载荷和设备基础的原因,填料塔的极限高度约为50米 (2)设计题目与要求 常温常压下,用20℃的清水吸收空气中混有的氨,已知混合气中含氨10%(摩尔分数,下同),混合气流量为3000m3/h,吸收剂用量为最小用量的1.3倍,气体总体积吸收系数为200kmol/m3.h,氨的回收率为95%。请设计填料吸收塔。 要求:综合运用《化工原理》和相关先修课程的知识,联系化工生产实际,完成吸收操作过程及设备设计。要求有详细的工艺计算过程(包括计算机辅助计算程序)、工艺尺寸设计、辅助设备选型、设计结果概要及工艺设备条件图。同时应考虑: ①:技术的先进性和可靠性 ②:过程的经济性 ③:过程的安全性 ④:清洁生产 ⑤:过程的可操作性和可控制性 (3)设计条件 ①:设计温度:常温(25℃) ②:设计压力:常压 (101.325 kPa) ③:吸收剂温度:20℃ (4)工作原理 气体混合物的分离,总是根据混合物中各组分间某种物理性质和化学性质的差异而进行的。吸收作为其中一种,它根据混合物各组分在某种溶剂中溶解度的不同而达到分离的目的。在物理吸附中,溶质和溶剂的结合力较弱,解析比较方便。 填料塔是一种应用很广泛的气液传质设备,它具有结构简单、压降低、填料易用耐腐蚀材料制造等优点,操作时液体与气体经过填料时被填料打散,增大气液接触面积,从而有利于气体与液体之间的传热与传质,使得吸收效率增加。 (三)设计方案 (1)填料塔简介 填料塔是提供气-液、液-液系统相接触的设备。填料塔外壳一般是圆筒形,也可采用方形。材质有木材、轻金属或强化塑料等。填料塔的基本组成单元有: ①:壳体(外壳可以是由金属(钢、合金或有色金属)、塑料、木材,或是以橡胶、塑料、砖为内层或衬里的复合材料制成。虽然通入内层的管口、支承和砖的机械安装尺寸并不是决定设备尺寸的主要因素,但仍需要足够重视; ②:填料(一节或多节,分布器和填料是填料塔性能的核心部分。为了正确选择合适的填料,要了解填料的操作性能,同时还要研究各种形式填料的形状差异对操作性能的影响); ③:填料支承(填料支承可以由留有一定空隙的栅条组成,其作用是防止填料坠落;也

厌氧塔设计计算书

1.厌氧塔的设计计算 反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53 d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E= V= 3084000 .570 .0203000m N E QC v =??= ,取为84003m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .178400 2m h V S =有效= = 单池面积:)(1653 4952m n S S i === 2) 单池从布水均匀性和经济性考虑,高、直径比在:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765.714.3)2 ( *14.3222 ' m h D S i =?== 设计反应器总高m H 18=,其中超高m 单池总容积:)(3000)0.10.18(6.176'3 'm H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762'm n S S i =?=?= 反应器总容积:)(900033000'3 m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.176********h m m S Q V r =??== 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.02 3 h m m V r -=故符合要求。 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.02 3 ' h m m q <沉淀室底部进水口表面负荷一般小于)./(2 3 h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16'm b l == 每个单元宽度:)(57.27 187'm l b === 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58.1142323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan . 31m h b === α )(04.198.020.32 12m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ; 3h —下三角形集气罩的垂直高度,m ;

厌氧塔计算手册

1.厌氧塔的设计计算 反应器结构尺寸设计计算 (1)反应器的有效容积 设计容积负荷为)//(0.53d m kgCOD N v = 进出水COD 浓度)/(20000L mg C =,E= V= 3084000 .570 .0203000m N E QC v =??=,取为84003m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3m E ——去除率 N V ——容积负荷 (2)反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1)反应器有效高为m h 0.17=则 横截面积:)(4950 .178400 2m h V S =有效= = 单池面积:)(1653 4952m n S S i === 2)单池从布水均匀性和经济性考虑,高、直径比在:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765.714.3)2 (*14.3222'm h D S i =?== 设计反应器总高m H 18=,其中超高m 单池总容积:)(3000)0.10.18(6.176'3'm H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ

反应器总池面积:)(8.52936.1762'm n S S i =?=?= 反应器总容积:)(900033000'3m n V V i =?=?= (3)水力停留时间(HRT )及水力负荷(r V )v N 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.023h m m V r -=故符合要求。 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.023'h m m q <沉淀室底部进水口表面负荷一般小于)./(23h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16'm b l == 每个单元宽度:)(57.27 18 7'm l b === 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58 .1142323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流 缝之一),m ; 3h —下三角形集气罩的垂直高度,m ; 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13=

离心喷雾干燥塔设计

淮海工学院 课程设计报告书 题目:离心喷雾干燥塔设计(500Kg/h) 学院:_海洋学院__ 专业:_食品科学与工程 班级:_食品071班________ 姓名:_孙镇_ 学号:_0___ 指导老师:_李升福杜云建 2010年 1月 1 日 目录 绪论...................................................第一节概述...........................................

离心喷雾干燥的原理............................. 喷雾干燥的特点................................. 喷雾干燥设备的组成............................. 离心雾化器的形式和结构......................... 第二节设计方案的确定.................................确定设计方案的原则............................. 确定操作参数................................... 离心喷雾干燥工艺条件范围....................... 注意事项....................................... 第三节离心喷雾干燥塔的工艺计算.......................基础参数的选取................................. 物料衡算....................................... 热量衡算....................................... 第四节离心喷雾干燥塔主要尺寸计算...................选用多管式雾化器............................... 雾滴直径....................................... 雾滴运动参数................................... 雾距的半径..................................... 干燥塔......................................... 干燥室的计算................................... 时间计算....................................... 校正...........................................

IC厌氧塔

产品描述: 一简介 IC反应器中文名内循环厌氧反应器,由两个UASB反应器上下叠加串联构成,高度可达16-25m,高径比一般为4-8,由5个基本部分组成:混合区、颗粒污泥膨胀床区、精处理区、内循环系统和出水区。其内循环系统是IC工艺的核心结构,由一级三相分离器、沼气提升管、气液分离器和泥水下降管等结构组 成。 二工作原理 经过调节pH和温度的生产废水首先进入反应器底部的混合区,并与来自泥水下降管的内循环泥水混合液充分混合后进入颗粒污泥膨胀床区进行COD生化降解,此处的COD容积负荷很高,大部分进水COD 在此处被降解,产生大量沼气。沼气由一级三相分离器收集。由于沼气气泡形成过程中对液体做的膨胀功产生了气提的作用,使得沼气、污泥和水的混合物沿沼气提升管上升至反应器顶部的气液分离器,沼气在该处与泥水分离并被导出处理系统。泥水混合物则沿泥水下降管进入反应器底部的混合区,并于进水充分混合后进入污泥膨胀床区,形成所谓内循环。根据不同的进水COD负荷和反应器的不同构造,内循环流量可达进水流量的倍。经膨胀床处理后的废水除一部分参与内循环外,其余污水通过一级三相分离器后,进入精处理区的颗粒污泥床区进行剩余COD降解与产沼气过程,提高和保证了出水水质。由于大部分COD已经被降解,所以精处理区的COD负荷较低,产气量也较小。该处产生的沼气由二级三相分离器收集,通过集气管进入气液分离器并被导出处理系统。经过精处理区处理后的废水经二级三相分离器作用后,上清液 经出水区排走,颗粒污泥则返回精处理区污泥床。 三选型、选材及尺寸(IC实验室选型) 1、有机玻璃IC厌氧反应器有效容积为25L,底边周长15cm,高120cm。其优点为外观结构干净漂亮;内部三相分离器、布水器、上下流管道等结构清晰可见;外附保温层保障了系统在合适的温度下自动运行; 该产品适用于学校、实验室小试模拟教学使用。 2、钢结构IC厌氧反应器为Q235碳钢焊制主体,内衬双层玻璃钢防腐层,内部管道喷双层环氧漆防腐,保障设备正常运行过程中不被腐蚀。该设备有效容积200L,底面直径40cm,高200cm,净重150kg。其优点为更接近于工程实际,抗压强度高,温度适应范围广,适用于科研单位、工地现场中试模拟运行。 四订货须知 1、用户应注明设备的材质及防腐要求。 2、用户应提供详细的水质化验单以便于我公司计算反 应器各部件的尺寸。 3、若用户有详细的加工图纸,可按用户要求进行生产。 4、可根据用户提出的具体要求进行设计制造。 天津国韵生物科技的限公司绍兴女儿儿酒有限公司山西 长冶金泽生化有限公司等 厌氧塔是本公司承接,效果很好~! 联系电话:

相关文档
最新文档