我国生物质能利用的现状及发展对策

我国生物质能利用的现状及发展对策
我国生物质能利用的现状及发展对策

我国生物质能利用的现状及发展对策

陈益华1,李志红2,沈彤 1

(1.长沙市蔬菜科学研究所,长沙 410003;2.湖南农业大学工程技术学院,长沙 410128)

摘要:能源可分为不可再生能源和可再生能源。不可再生能源主要有化石能源,包括煤、石油、天然气和核能等,由于它的可耗尽性和不可再生性,其利用是以消耗地球的资源为代价的。然而,地球的资源毕竟是有限的,一定会有耗尽之时。为此,阐述了生物质能的定义及其优缺点,对我国生物质能的利用现状、差距和主要障碍进行了分析,并对生物质能的利用提出了对策。

关键词:能源与动力工程;生物质能;综述;现状;建议

中图分类号:TK6 文献标识码:A 文章编号:1003─188X(2006)01─0025─03

据统计,目前占全球能源消耗总量近50%的石油和天然气在21世纪中叶将消耗殆尽,虽然占目前全球能源消耗量25%的煤还可以继续开采使用,但开采的难度越来越大,成本也会越来越高。寻找一种可再生的替代能源,已成为社会普遍关注的焦点;生物质能的转换和利用具有解决能源短缺问题和环境保护的双重效果,受到了人们的极大重视,是21世纪能源发展的一个方向[1,2]。

1 生物质能的定义及其利弊

生物质能是蕴藏在生物质中的能量,是绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量。它一直是人类赖以生存的重要能源,仅次于煤炭、石油和天然气而居于世界能源消费总量第4位,在整个能源系统中占有重要的地位。据预测,到21世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。生物质能通常包括:木材及森林工业废弃物、农业废弃物、水生植物、油料植物、城市和工业有机废弃物、动物粪便[3]。

生物质能的优点:一是可再生性。二是低污染性。生物质的硫含量、氮含量低,生物质作为燃料时,燃烧过程中的硫化物和氮化物较少,由于它在生长时需要的二氧化碳相当于其燃烧时排放的二氧化碳量,因而对大气的二氧化碳净排放量近似于零;用新技术开发利用生物质能不仅有助于减轻温室效应,促进生态良性循环,而且可替代部分石油、煤炭等化石燃料,成为解决能源危机与环境问题的重要途径之一。三是广泛分布性。缺乏煤炭的地域可充分利用生物质能。四是具有燃烧容易,灰分低的特点[4,5]。

但由于技术和经济的原因以及可再生能源分布较为分散,能量密度、热值及热效率低等特点,目前其利用率尚不高,仅占全球能源消耗总量的22%。

2 生物质资源丰富

生物质能能否满足人类未来能源的需求取决于生物质的潜力。从现有水平上分析,植物界每年所固定的太阳能为世界总能耗的10倍。现今全世界每年由光合作用所形成的有机质约为2000亿t,相当于3×1021J能量。其中,粮食等农业种植的作物提供了8%左右,相当于2.4×1020J能量;约52%为森林和草地的生物所提供,约相当于 1.56×1021J能量。全世界每天产生垃圾2700万t,各种废水的排放量每年多达4500亿t,每年的人畜粪便超过几十亿t。所有这些废弃物都将是生物质能的潜在资源。据测定,城市垃圾的热值与褐煤和油相近,大约2t 垃圾相当于1t煤。焚烧1t垃圾可相当于燃烧0.2t 石油;焚烧1kg垃圾得到的热量,约为城市煤气每立方米热量的1/3左右。

我国幅员辽阔,人口众多,生物质分布十分广泛,约有80%的人口居住在农村;太阳能资源丰富,全国各地太阳能年辐射总量在335~835kJ/cm2之间。因此,通过光合作用产生的生物质能储量大、分布广。但从全国范围来看,各省分布不平衡,1/2以上的生物质资源集中在四川、河南、山东、安徽、河北、江苏、湖南、湖北、浙江等9个省,广大的西北地区和其他省区相对较少。据统计,全国近几年秸秆年产量约6亿t,目前除少量生物质被用于

收稿日期:2005-05-20

作者简介:陈益华(1965-),男,湖南岳阳人,工程师,(E-mail) zh_hnau@https://www.360docs.net/doc/db7312046.html,。

农村家庭燃料或饲料外,绝大多数生物质被露天焚烧、填埋,或直接丢弃在田间地头进行生物降解。薪柴年产量(包括木材砍伐的废弃物)为2亿t左右,还有大量的人畜粪便及工业排放的有机废料、废渣。据环卫部门估计,2000年我国城市生活垃圾总量约1.5亿t。每年生物质资源总量折合成标准煤为2~4亿t[3,5,6]。

3 我国生物质能的利用现状

目前,世界各国正逐步采用如下方法利用生物质能:一是热化学转换技术,获得木炭焦油和可燃气体等品位高的能源产品,该方法又按其热加工的方法不同,分为高温干馏、热解、生物质液化等方法;二是生物化学转换法,主要指生物质在微生物的发酵作用下,生成沼气、酒精等能源产品;三是利用油料植物所产生的生物油;四是直接燃烧技术,包括炉灶燃烧技术、锅炉燃烧技术、致密成型技术和垃圾焚烧技术等。

3.1 热解气化技术方面

自“六五”以来,我国开展了生物质气化技术的研究工作,并取得了一系列卓有成效的研究成果。我国已用或商品化的气化炉和气化系统有:中国科学院广州能源研究所的GSQ-1100大型装置,中国农机院的ND系列和HQ-280型,山东省能源研究所的XFL系列,在农村具有广泛的应用前景。秸秆气化集中供气系统解决了秸秆的有效利用问题,将秸秆转换为高品位能源,降低了成本,提高了农民的生活水平,目前全国已经建设推广了115个示范工程。

生物质发电在我国已经有40年的历史,其主要原料是稻壳和谷壳,且主要用于大米加工厂。由于发电规模小,经济效益差,发展缓慢,发电规模一直维持在60~200kW。近年来,随着大米加工业的集中与大型化,国家“九五”攻关项目“1MW生物质循环流化床气化发电系统”研制成功,该系统每日可处理谷壳40t,最大出力1000kW,与传统小型机组相比生产能力强,气化效率高、成本低。

3.2 直接燃烧技术方面

1998年,我国已有1.85亿农户使用省柴节煤炉灶,热效率为25%。现热效率超过70%,达到国家环保总局指标要求的低排放多用炉已通过产品鉴定,即将投放市场。利用致密成型技术,使压制成型后的燃料容重可达1200kg/m3,热值约16MJ/kg,含水率在12%以下,体积缩小为1/8~1/6。成型燃料热性能优于木材,与中质混煤相当,而且点火容易,便于运输和贮存,可作为生物质气化炉、高效燃烧炉和小型锅炉的燃料。我国的生物质致密成型技术开始于“七五”期间,现已达到工业化生产规模。目前,国内已开发完成的固化成型设备有两大类:棒状成型机和颗粒状成型机,其生产能力为120~300kg/h。南京市平亚取暖器材有限公司,从美国引进了一套生产能力为 1.5t/h的颗粒成型燃料生产线,1999年开始正式生产,产品供应市场运行情况良好[7]。但是生物质压实技术所需压实成型设备,尤其是高压成型设备价格昂贵,增加了生物质能的成本,限制了生物质能的利用。

3.3 生物化学转化技术方面

3.3.1沼气的利用

沼气发酵是利用有机废弃物,如农作物秸秆、粪便、有机废水等转化为气体燃料。这一过程通常含有3个阶段:水解阶段、产氢产乙酸阶段和产甲烷阶段。沼气发酵装置在处理高含水有机废物方面是非常有用的。截止到1996年底,我国推广农村户用沼气池602万口,供2500万人使用;沼气工程592处,总池容33.5×104m3,供10.2万户用气;城镇生活污水净化沼气池5.2万座,总池容180.8×l04m3,年产沼气2305×104m3,供2.8万多户用气。沼气发酵系统与农业结合十分密切,能有效地促进农村经济的发展,有利于保护农村生态环境,使农业发展走可持续发展之路[3,6]。

填埋垃圾制取沼气也是处理城市生活垃圾、有效利用生物质能的主要方法。杭州天子岭垃圾填埋场是我国第一座大型按卫生填埋要求设计并采用合理填埋规划和工艺的城市生活垃圾无害化处理工程。1991年6月正式运行,库容600万m3,能消纳全杭州日产1320t垃圾,运行费用5元/t,现已进入产沼气高峰期[8]。

3.3.2生物质制取燃料酒精

纯酒精或汽油和酒精的混合物都可作一次性燃料。制液体酒精的原料可分为3大类:一是含糖类,如甘蔗;二是含纤维素类,如农作物秸秆、颖壳,木材和其加工剩余物等;三是含淀粉类,如甘薯、玉米、小麦等。根据生物质所含成分的不同,其液化方法也不同,但其技术都已很成熟。

4 我国生物质能利用的主要差距和障碍

4.1 我国生物质能利用与国外的主要差距

20世纪70年代开始,生物质能的开发利用研究已成为世界性的热门研究课题。许多国家都制定了相应的开发研究计划,如日本的阳光计划、印度的绿色能源工程、美国的能源农场和巴西的酒精能源计划,各国纷纷投入大量的人力和资金从事生物质能的研究开发。生物质能利用研究开发工作,国

外尤其是发达国家的科研人员做了大量的工作,在热化学转换技术、生物化学转换技术、生产生物油技术以及直接燃烧技术等方面都取得了突破性的进展,其中一些成果和设备已商品化并发挥了巨大的经济效益。

直接燃烧秸秆的先进设备已投放市场,生物质供热、发电或热电联供已成为现实。在厌氧消化方面,中温和高温下的产气可达5m3/(m3ˇ天),百千瓦量级的沼气发电机组沼气发电量可达 1.4~2.6(kWˇh/m3),发电效率高达38%。在热解气化技术方面已有多项技术装备进入商品化阶段,如荷兰BTG开发成功的生物质高温热解装置产气率66%;德国、美国等开发出自动化程度相当高的家用生物质气化炉用于用户热水和供暖;产热量达630~2100万kJ/h的大型生物质气化装置也已开发成功。

与国外相比,我国生物质能技术还有存在着较大差距,主要表现在:一是厌氧消化产气率低,系统运行和管理自动化水平不高;二是与厌氧消化和综合利用配套的技术和设备还不成熟;三是厌氧消化技术产业化发展缓慢,不便于大规模市场推进;四是秸秆气化热值低,在稳定运行、焦油清除、气体净化等技术上需要提高;五是缺乏秸秆直接燃烧供热技术研究和设备开发,不便于多途径能源利用;六是生物质发电技术和装置方面有较大差距[9]。4.2 我国生物质能利用的主要障碍

(1) 大多数生物质体积密度和能量密度低,且过于分散,集中困难,运输、储存费用都相对较高,大大地限制了对生物质能的有效利用;

(2) 生物质由于受季节因素影响,供应不稳定,给大规模工业利用带来困难;

(3) 生物质组成性质差异大,如生物质在水分含量、热值和灰份等化学组成上存在差异巨大,这给生物质的利用带来困难;

(4) 我国在环境政策和经济政策方面缺乏标准法规和激励措施,没有形成鼓励人们使用生物质能的机制;

(5) 宣传力度不够,很多人并不真正了解生物质能在能源、环境等方面的重要作用;

(6) 生物质能的生产设备昂贵,生产工艺不过关,生产水平低下,使用和开发成本高。

5 生物质能利用的发展对策

(1) 目前国内生物质资源开发利用的成本一般比较高,因此仅靠市场机制来进行调控和发展是不现实的,需要国家的政策扶持和财力支撑。因此,要制订相关政策,鼓励和支持企业投资生物质能源开发项目;对有前景但技术经济性或商业化条件尚未完全过关的技术,加大风险资金的投入力度。

(2) 21世纪生物质能利用前景十分广阔,但真正实际应用还取决于生物质的各种转化利用技术能否突破。因此,必须加大开展各种基础性研究工作的力度,如各种生物质能源转换技术;速生、高效、富含碳氢化合物的植物物种选育及推广示范;植物油脂的改性及相关性能试验;垃圾能源的规模化利用与示范推广;利用有机废水的微生物发酵制氢;生物质热解液化的实用化技术;沼气和热解气化的集中供气系统相关技术等等。国家应在科研项目的安排方面,给生物质能应用研究的发展方面留有足够的空间。

(3) 在生物质的应用技术发展方向上,结合我国分散的能源系统,以满足农村乡、镇、村不断增长的能量需求,重点解决居民生活用能,减少对化石能源尤其是煤炭的使用;大力推广成型燃料及专用取暖炉,以取代煤炉取暖的小型锅炉;研究开发专门使用生物质的直接燃料锅炉。

(4) 加强生物质研究领域的国际交流与合作,引进国外先进的生物质利用技术和设备,加快我国生物质开发利用的步伐,建立符合中国国情的生物质能开发利用结构体系。

(5) 建立综合处理城市生活垃圾和污水的示范区,为生活垃圾和污水的无害化处理工程,回收能源、有效利用生物质能起示范推广作用。

(6) 提高国民的能源危机和环境意识,加强国民对生物质能等新的可再生能源的认识;同时,也要加大以生物质资源为基础的开发项目的市场开发力度,充分挖掘其潜力。

6 结束语

可持续发展已成为21世纪人类的共识,怎样利用可再生能源逐步取代日趋枯竭的不可再生能源是各国关注的焦点。生物质能被喻为及时利用的绿色煤炭,将成为未来能源的重要组成部分,对能源战略和环境保护具有重要意义。

参考文献:

[1] 周善元.21世纪的新能源—生物质能[J].江西能

源,2001,(4):34-37.

[2] 邓可蕴.21世纪我国生物质能发展战略[J].中国电

力,2000,(9):82-84.

[3] 肖军.生物质利用现状[J].安全与环境工程,

2003,(1):11-14.

[4] 雒廷亮.生物质能的应用前景分析[J].能源研究与

信息,2003,(4):194-197. (下转第30页)

∑∑∈∈=

y Y

m_Area X x y A

苹果大小为苹果图像边缘所包含的区域面积。

4 结束语

本文提出的基于RGB 三基色中的R 通道进行处理的方法,经过试验可实现对苹果大小和缺陷的检测,检测系统稳定可靠。试验中采集图像试验的苹果是果梗或果萼在垂直方向的,如果苹果的果梗或果萼不在垂直方向,则可根据连续采集的几帧图像,取面积最大的那帧来计算苹果的大小。笔者建议设计研究相应的配套输送机构,实现果梗或果萼定向的运送,以利于分选的准确性。

参考文献:

[1] 章毓晋.图象处理和分析[M].北京:清华大学出版

社,2004.

[2] 李庆中,汪懋华.基于计算机视觉的苹果实时分级

技术发展与展望[J].农业机械学报,1999,30(6): 1-7.

[3] Tao,Y.Fourier-based separation technique for

shape grading of potatoes using machine visi- on[J].Transaction of the ASAE,1995,38(3):949- 957.

[4] 何 斌,马天予,王运坚,等.Visual C++数字图像处理

[M].北京:人民邮电出版社,2001.

Research of Dispose Technology Based on Computer Vision Information

in Grading Apple Automatically

ZHANG Hai-liang, ZUO Xue-ping

(College of Engineering, East China JiaoTong University, Nanchang 100083, China)

Abstract :In VC++ development environment system dispose computer vision information in grading apple automatically, it put forward a R channel method and carry out region signature of apple vision information. The results of experiments show that this method can get the expecting result.

Key words :agricultural engineering; dispose technology; summary; VC++ development environment; vision formation; R channel

(上接第27页)

[5] 张无敌.生物质能—未来能源的希望[J].能源研究

与利用,1995,(4):3-6.

[6] 李志合.生物质能源利用及发展[J].山东工程学院

学报,2000,(9):34-38.

[7] 蒋剑春.生物质能源应用研究现状与发展前景[J].

林产化学与工业,2002,(6):75-80.

[8] 黎佐梅.开发城市燃气气源—处理城市生活垃圾和

污水[J].江西能源,1993,(3):11-13,36.

[9] 王革华.我国生物质能利用技术展望[J].农业工程

学报,1999,(4):19-22.

Abstract ID:1003—188X(2006)01—0025—EA

The Actuality and Development Measure in Using Biomass

Energy in China

CHEN Yi-hua 1, LI Zhi-hong 2, SHEN Tong 1

(1.Changsha Vegetable Research Institute, Changsha 410003, China; 2.College of Engineering and Technology, Hunan Agricultural University, Changsha 410128, China)

Abstract :The energy includes non-regenerated energy and regenerated energy. The non-regenerated energy mainly has fossil energy, including coal, petroleum, natural gas and nuclear energy. Owning to its exhaustibility and non-regenerate ability, its utilized mode is just exhausting energy. However, the energy e is limited in the long run, and will be exhausted in one day Hence, this paper set forth the definition, advantage and disadvantage of biomass energy. The actuality, difference and obstacle in using biomass energy in China were analyzed and the development measures were put forward.

Key words :energy and power engineering; biomass energy; summary; actuality; measure

2019年咨询工程师继续教育-新能源专业生物质能利用-74

一、单选题【本题型共5道题】 1.国家发改委出台了《关于生物质发电项目建设管理的通知》(发改能源[2010] 1803号),规定生物质发电厂应布置在粮食主产区秸秆资源丰富的地区,且每个县或()半径范围内不得重复布置生物质发电厂。 A.50公里 B.100公里 C.200公里 D.300公里 用户答案:[B] 得分:6.00 2.下面哪一项不是生物质能发电的优点()。 A.电能质量好 B.不具有波动性 C.不具有间歇性 D.发电效率高 用户答案:[D] 得分:6.00 3.到2013年底,全国城市垃圾发电并网装机容量()千瓦,其中,垃圾循环流化床发电约占50%左右。 A.150万 B.260万 C.340万 D.450万 用户答案:[C] 得分:6.00 4.华北和华东地区为我国生物质成型燃料主产区,产量占全国总产量的()以上。

A.60% B.70% C.80% D.90% 用户答案:[A] 得分:6.00 5.秸秆的沼气产率远高于畜禽粪便,一般畜禽粪便的沼气产率约为45-80?,而秸秆沼气的产率可达()。 A.100-200 ? B.200-300 ? C.300-400 ? D.400-500 ? 用户答案:[D] 得分:0.00 二、多选题【本题型共3道题】 1.以下哪些选项属于现代生物质能资源()。 A.农作物秸秆及农产品加工剩余物 B.林业“三剩物”及木材加工剩余物 C.城市及工业废弃物 D.油料作物 E.畜禽粪便 用户答案:[ABE] 得分:0.00 2.2011年10月10日,财政部发布了《关于组织申报生物能源和生物化工原料基地补助资金的通知》,明确了原料基地补助资金的申请条件,其中对原料生产品种及基地建设规模给出了具体规定。以下说法正确的是:()。

生物质能源的开发利用及其意义

生物质能源的开发利用及其意义 N090204131 周小冬 摘要:针对生物质能源的开发利用对于中国发展的重大意义,从生物质能源的概念入手,简明概述了生物质能特点,利用及利用途径,以及开发利用生物质能对中国的意义。 关键词:生物质能源;开发;利用;意义 中国是一个人口大国,又是一个经济迅速发展的国家,21世纪将面临着经济增长和环境保护的双重压力。因此改变能源生产和消费方式,开发利用生物质能等可再生的清洁能源资源对建立可持续的能源系统,促进国民经济发展和环境保护具有重大意义。 1 生物质能源的概念 生物质是指利用大气、水、土地等通过光合作用而产生的各种有机体,即一切有生命的可以生长的有机物质通称为生物质。它包括植物、动物和微生物。广义概念:生物质包括所有的植物、微生物以及以植物、微生物为食物的动物及其生产的废弃物。有代表性的生物质如农作物、农作物废弃物、木材、木材废弃物和动物粪便。狭义概念:生物质主要是指农林业生产过程中除粮食、果实以外的秸秆、树木等木质纤维素(简称木质素)、农产品加工业下脚料、农林废弃物及畜牧业生产过程中的禽畜粪便和废弃物等物质。特点:可再生性。低污染性。广泛分布性。 生物质是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。而所谓生物质能(biomass energy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源。生物质能的原始能量来源于太阳,所以从广义上讲,生物质能是太阳能的一种表现形式。目前,很多国家都在积极研究和开发利用生物质能。生物质能蕴藏在植物、动物和微生物等可以生长的有机物中,它是由太阳能转化而来的。有机物中除矿物燃料以外的所有来源于动植物的能源物质均属于生物质能,通常包括木材、及森林废弃物、农业废弃物、水生植物、油料植物、城市和工业有机废弃物、动物粪便等。地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%。 2 生物质能的分类 依据来源的不同,可以将适合于能源利用的生物质分为林业资源、农业资源、生活污水和工业有机废水、城市固体废物和畜禽粪便等五大类。

我国生物质能的发展现状

生物质能及其在我国的发展空间 内容摘要:世界能源危机和全球环境日益恶化迫使人们开发可再生的能源。生物质能源作为一种可再生的新能源已经受到世界各国的高度重视。针对国内外生物质能的发展现状,本文概述了生物质能源的概念,并分析了我国对生物质能的利用,主要包括:沼气及沼气发电、农林生物质发电、生物固体成型燃料等。 关键词:生物质;生物质能;产业;沼气;生物质发电;生物质燃料;能源作物 一.概述 近年来,在能源危机、保护环境和可持续发展的呼声中,可再生的清洁能源以 及能源的多元化倍受关注,生物质能成为其中的一个新亮点。 为了促进可再生能源的开发利用,增加能源供应,改善能源结构,保障能源安全,保护环境,实现经济社会的可持续发展,中国已经制定并实施了《可再生能源法》。可再生能源是清洁能源,是指在自然界中可以不断再生、永续利用、取之不尽、用之不竭的资源,它对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用。根据《可再生能源法》的定义,目前主要包括太阳能、风能、水能、生物质能、地热能和海洋能等非化石能源。中国可再生能源资源非常丰富,开发利用的潜力很大,其中生物质能的开发潜力更大。 生物质能一直是人类赖以生存的重要能源,它目前是仅次于煤炭、石油和天然气而居于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位。据有关专家估计,生物质能极有可能成为未来可持续能源系统的重要组成部分,到下世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。 生物质能是蕴藏在生物质中的能量,是绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量。煤、石油和天然气等化石能源也是由生物质能转变而来的。生物质能是可再生能源,通常包括以下几个方面:一是木材及森林工业废弃物;二是农业废弃物;三是水生植物;四是油料植物;五是城市和工 业有机废弃物;六是动物粪便。在世界能耗中,生物质能约占14%,在不发达地区占60%以上。全世界约25亿人的生活能源的90%以上是生物质能,直接燃烧生物质的热效率仅为10%~30%。生物质能的优点是燃烧容易,污染少,灰分较低;缺点是 热值及热效率低,体积大而不易运输。

生物质能及其利用

生物质能及其利用 1 生物质能的概述 生物质能(biomass energy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源。 生物质能的原始能量来源于太阳,所以从广义上讲,生物质能是太阳能的一种表现形式。目前,很多国家都在积极研究和开发利用生物质能。生物质能蕴藏在植物、动物和微生物等可以生长的有机物中,它是由太阳能转化而来的。有机物中除矿物燃料以外的所有来源于动植物的能源物质均属于生物质能,通常包括木材、及森林废弃物、农业废弃物、水生植物、油料植物、城市和工业有机废弃物、动物粪便等。 2 生物质能的分类 2.1 林业资源 林业生物质资源是指森林生长和林业生产过程提供的生物质能源,包括薪炭林、在森林抚育和间伐作业中的零散木材、残留的树枝、树叶和木屑等;木材采运和加工过程中的枝丫、锯末、木屑、梢头、板皮和截头等;林业副产品的废弃物,如果壳和果核等 2.2 农业资源 农业生物质能资源是指农业作物(包括能源作物);农业生产过程中的废弃物,如农作物收获时残留在农田内的农作物秸秆(玉米秸、高粱秸、麦秸、稻草、豆秸和棉秆等);农业加工业的废弃物,如农业生产过程中剩余的稻壳等。能源植物泛指

各种用以提供能源的植物,通常包括草本能源作物、油料作物、制取碳氢化合物植物和水生植物等几类。 2.3生活污水和工业有机废水 生活污水主要由城镇居民生活、商业和服务业的各种排水组成,如冷却水、 1 洗浴排水、盥洗排水、洗衣排水、厨房排水、粪便污水等。工业有机废水主 要是酒精、酿酒、制糖、食品、制药、造纸及屠宰等行业生产过程中排出的废水等,其中都富含有机物。 2.4城市固体废物 城市固体废物主要是由城镇居民生活垃圾,商业、服务业垃圾和少量建筑业垃圾等固体废物构成。其组成成分比较复杂,受当地居民的平均生活水平、能源消费结构、城镇建设、自然条件、传统习惯以及季节变化等因素影响。 2.5 畜禽粪便 畜禽粪便是畜禽排泄物的总称,它是其他形态生物质(主要是粮食、农作物秸 秆和牧草等)的转化形式,包括畜禽排出的粪便、尿及其与垫草的混合物。2.6沼气 沼气就是由生物质能转换的一种可燃气体,通常可以供农家用来烧饭、照明。 3 生物质能的特点 3.1可再生性 生物质能属可再生资源,生物质能由于通过植物的光合作用可以再生,与风 能、太阳能等同属可再生能源,资源丰富,可保证能源的永续利用;

生物质能的开发与利用

摘要:针对生物质能源的开发利用对于中国发展的重大意义,从生物质能源的概念入手,简明概述了生物质能特点,利用及利用途径,以及开发利用生物质能对中国的意义。 关键词:生物质能源;开发;利用;意义 20世纪70年代以来,面对常规矿物能源的日益枯竭和环境的逐渐恶化,世界许多国家将目光逐渐转移到了具备可再生、环保、可转化等优点的生物质能源上。改革开放以后,中国也逐步迈上了发展生物质能源的轨道。进入21世纪,谁能把握住生物质能源开发利用的先机,谁将在未来的国际竞争中立于不败之地。因此,应该提高对发展生物质能源重要性的认识,为顺利开展生物质能源的开发利用创造有利环境。 1 生物质能源的概念 生物质是一种通过大气,水,大地以及阳光有机协作产生的可持续性资源。生物质如果没有通过能源或物质方式被利用,将被微生物分解成水,二氧化碳以及热能散发掉。 生物质产业是指利用可再生或循环的有机物质,包括农作物、树木、能源作物和其他植物及其残体、畜禽粪便、有机废弃物等为原料,进行生物基产品、生物燃料和生物能源生产的产业。 生物质能是以生物质为载体的能量,即通过植物光合作用把太阳能以化学能形式在生物质中存储的一种能量形式。碳水化合物是光能储藏库,生物质是光能循环转化的载体,生物质能是惟一可再生的碳源,它可以被转化成许多固态、液态和气态燃料或其它形式的能源,称为生物质能源。煤炭、石油和天然气等传统能源也均是生物质在地质作用影响下转化而成的。所以说,生物质是能源之源。 2.生物质能的特点 1) 可再生性 生物质能属可再生资源,生物质能由于通过植物的光合作用可以再生,与风能、太阳能等同属可再生能源,资源丰富,可保证能源的永续利用; 2) 低污染性 生物质的硫含量、氮含量低、燃烧过程中生成的SOX、NOX较少;生物质作为燃料时,由于它在生长时需要的二氧化碳相当于它排放的二氧化碳的量,因而对大气的二氧化碳净排放量近似于零,可有效地减轻温室效应; 3) 广泛分布性 缺乏煤炭的地域,可充分利用生物质能; 4) 生物质燃料总量十分丰富 生物质能是世界第四大能源,仅次于煤炭、石油和天然气。根据生物学家估算,地球陆地每年生产1000~1250亿吨生物质;海洋年生产500亿吨生物质。生物质能源的年生产量远远超过全世界总能源需求量,相当于目前世界总能耗的10倍。我国可开发为能源的生物质资源到2010年可达3亿吨。随着农林业的发展,特别是炭薪林的推广,生物质资源还将越来越多 3.生物质能的利用 生物质能一直是人类赖以生存的重要能源,它是仅次于煤炭、石油和天然气而居于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位。有关专家估计,生物质能极有可能成为未来可持续能源系

生物质能工程

生物质能工程

生物质能 生物质能是指能够当做燃料或者工业原料,活着或刚死去的有机物。生物质能最常见于种植植物所制造的生质燃料,或者用来生产纤维、化学制品和热能的动物或植物。也包括以生物可降解的废弃物(Biodegradable waste)制造的燃料。但那些已经变质成为煤炭或石油等的有机物质除外。 许多的植物都被用来生产生物质能,包括了芒草、柳枝稷、麻、玉米、杨属、柳树、甘蔗和棕榈树。一些特定采用的植物通常都不是非常重要的终端产品,但却会影响原料的处理过程。因为对能源的需求持续增长,生物质能的工业也随着水涨船高。 虽然化石燃料原本为古老的生化质能,但是因为所含的碳已经离开碳循环太久了,所以并不被认为是种生物质能。燃烧化石燃料会排放二氧化碳至大气中。 像是一些最近刚发展出来的生物质能制造的塑胶可以在海水中降解,生产方式也和一般化石制造塑胶相同,而且相较之下生产成本还更便

率不到3%。 我国地域辽阔,在地理、气候、作物种类、农村经济、文化、生活习惯等方面,各个地区的差异很大,所以单一技术不可能支撑一个产业。技术的多元化是支持秸秆发电产业的基础,特别是需要国有技术的支持。 据发改委能源研究所有关专家介绍,秸秆气化发电、秸秆直燃发电、煤与秸秆混燃发电都是可以采用的技术路线。秸秆直燃发电是采用锅炉-蒸汽-蒸汽轮机-发电机的工艺路线,可以借鉴的相关技术比较多,而且可以采用热电联供的方式提高系统效率,其特点是规模效益明显,如发电装机容量小于1万千瓦,系统效率将明显下降。 煤-秸秆混燃技术的特点是可以对现有的小型热电厂进行改造,与新建电厂相比,投资很少。但是首先需要解决好电厂掺烧秸秆量的计量和监督的问题。 由于每种技术都有各自的特点,所以,不应该完全肯定或完全否定某一项技术。关键是在选择技术路线时,必须充分考虑项目所在地的实际

生物质能

生物质是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。而所谓生物质能(biomass脂肪燃生物质能料快艇energy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源。 生物质能的原始能量来源于太阳,所以从广义上讲,生物质能是太阳能的一种表现形式。目前,很多国家都在积极研究和开发利用生物质能。生物质能蕴藏在植物、动物和微生物等可以生长的有机物中,它是由太阳能转化而来的。有机物中除矿物燃料以外的所有来源于动植物的能源物质均属于生物质能,通常包括木材、及森林废弃物、农业废弃物、水生植物、油料植物、城市和工业有机废弃物、动物粪便等。地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%。 生物质能是人类用火以来,最早直接应用的能源。随着人类文明的发展,生物质能的应用研究开发几经波折,最终人们深刻认识到,石油、煤、天然气等化石能源的有限性,同时无节制地使用化石能源,大量增加CO2、粉尘、SO2等废弃物的排放,污染了环境,给人类赖以生存的星球,造成十分严重的后果。而使用大自然馈赠的生物质能源,几乎不产生污染,资源可再生而不会枯竭,同时起着保护和改善生态环境的重要作用,是理想的可再生能源之一。 生物质能是蕴藏在生物质中的能量,是绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量。它一直是人类赖以生存的重要能源,仅次于煤炭、石油和天然气而居于世界能源消费总量第4位,在整个能源系统中占有重要的地位。据预测,到21世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。生物质能通常包括:木材及森林工业废弃物、农业废弃物、水生植物、油料植物、城市和工业有机废弃物、动物粪便。 生物质能的优点:一是可再生性。二是低污染性。生物质的硫含量、氮含量低,生物质作为燃料时,燃烧过程中的硫化物和氮化物较少,由于它在生长时需要的二氧化碳相当于其燃烧时排放的二氧化碳量,因而对大气的二氧化碳净排放量近似于零;用新技术开发利用生物质能不仅有助于减轻温室效应,促进生态良性循环,而且可替代部分石油、煤炭等化石燃料,成为解决能源危机与环境问题的重要途径之一。三是广泛分布性。缺乏煤炭的地域可充分利用生物质能。四是具有燃烧容易,灰分低的特点]。 但由于技术和经济的原因以及可再生能源分布较为分散,能量密度、热值及热效率低等特点,目前其利用率尚不高,仅占全球能源消耗总量的22%。 中国生物质能资源现状及潜力 生物质能资源,按原料的化学性质分,主要为糖类、淀粉和木质纤维素类。按原料来源分,则主要包括以下几类:①农业生产废弃物,主要为作物秸秆;②薪柴、枝桠柴和柴草;③农林加工废弃物,木屑、谷壳和果壳;④人畜粪便和生活有机垃圾等;⑤工业有机废弃物,有机废水和废渣等;⑥能源植物,包括所有可作为能源用途的农作物、林木和水生植物资源等]。我国拥有丰富的生物质能资源,据测算,我国理论生物质能资源50亿吨左右,是我国目前总能耗的4倍左右。 目前可供利用开发的资源主要为生物质废弃物,包括农作物秸秆、禽畜粪便、工业有机废弃物和城市固体有机垃圾、林业生物质、能源作物等。 我国幅员辽阔,人口众多,生物质分布十分广泛,约有80%的人口居住在农村;太阳能资源丰富,全国各地太阳能年辐射总量在335~835kJ/cm^2之间。因此,通

生物质能发电技术现状与展望_黄英超

能源作为一种最重要的地球资源,是生产力的核心,是经济增长和发展的前提,是解决环境问题的先决条件。进入21世纪,中国经济高速发展,能源短缺、环境污染等问题日益突出。中国已成为世界上的第二大能源消费国[1],能源缺口将不断加大。过去10年里,中国电力工业高速发展,截至2004年5月,中国的发电装机容量达到4亿千瓦[2],是 1990年发电量的3倍多,但在2002年还是再度出 现大范围缺电现象,而且越来越严重,缺电的省市区由2002年的12个增加到2003年底的21个, 2004年达到24个,三季度高峰时段全国估计缺电3000万千瓦,造成严重缺电局面。同时,全国还 有约2万个村[3],约800多万农户、3000多万人口没有电力供应,远离现代文明。 近年来,世界各国对资源丰富、可再生性强、有利于改善环境和可持续发展的生物质资源的开发利用给予了极大关注。生物质资源利用中的生物质发电技术成为研究和利用的热点。生物质能发电技术就是利用生物质本身的能量[4],将其转化为可驱动发电机的能量形式,如燃气、燃油、酒精等,再按照通用的发电技术发电,然后直接提供给用户或并入电网提供电能。截至2005年底,我国发电装机总容量达到5亿千瓦[5],其中生物质能 发电装机容量200多万千瓦[6],仅占我国发电装机总容量的0.004%。本文针对生物质燃烧发电、生物质气化发电、沼气工程发电等几项生物质能发电技术及其国内外研究现状、存在问题等进行分析和论述。 1生物质燃烧发电 生物质燃烧发电是将生物质与过量的空气在锅 炉中燃烧[7],产生的热烟气和锅炉的热交换部件换热,产生的高温高压蒸汽在燃气轮机中膨胀做功发出电能。在生物质燃烧发电过程中,一般要将原料进行处理再进行燃烧以提高燃烧效率。例如,燃烧秸秆发电时,秸秆入炉有多种方式:可以将秸秆打包后输送入炉;也可以将秸秆粉碎造粒(压块)后入炉或与其他的燃料混合后一起入炉。生物质燃烧发电的技术已基本成熟,已进入推广应用阶段,这种技术大规模下效率较高,单位投资也较合理,但它要求生物质集中,数量巨大。 生物质燃烧发电技术作为一种重要的能源获取手段应用于实际的历史不长,从20世纪90年代起,丹麦、奥地利等欧洲国家开始对生物质能发电技术进行开发和研究[8]。经过多年努力,已研制出用于木屑、秸秆、谷壳等发电的锅炉。丹麦各电力组织为此进行了规划,筛选了一批研究项目,并重点对燃烧秸秆和木屑的锅炉与大型燃煤锅炉并联运行发电供热进行了研究。在BWE公司的技术支撑下,1988年诞生了世界上第一座秸秆生物燃烧发电厂。如今已有130家秸秆发电厂遍及丹麦,秸秆 生物质能发电技术现状与展望 黄英超,李文哲*,张波 (东北农业大学工程学院, 哈尔滨150030) 摘要:文章综述了物质燃烧发电、生物质气化发电、沼气工程发电等生物质能发电技术及其发展现状和存 在的问题。生物质能发电技术的加速发展,实现了大量废弃生物质能的利用。在我国电力短缺的条件下,生物质能发电将有广阔的发展前景。 关键词:生物质能;生物质燃烧发电;生物质气化发电;沼气工程发电中图分类号:TM611;Q77 文献标识码:A 收稿日期:2006-04-14 基金项目:国家自然科学基金项目(50376009);黑龙江省科技攻关 (GC03A304)作者简介:黄英超(1978-),男,黑龙江人,硕士研究生,研究方向为能源与动力工程。 *通讯作者E-mail:linwenzhe9@163.com 第38卷第2期东北农业大学学报38(2):270 ̄274 2007年4月JournalofNortheastAgriculturalUniversity April2007 文章编号 1005-9369 (2007)02-0270-05

生物质能论文

生物质能的现状及发展 商学院

生物质能的现状及发展 一、生物质能概述 化石资源的过度消耗引发了能源和环境危机, 寻找不可再生资源的替代品成为人类社会生存发展面临的重大问题。生物质能源环境友好, 可再生, 并且有丰富的存量, 且从生物质出发, 获得多种形态的能源成为了研究热点和投资热点。生物质是指由光合作用产生的各种有机体。生物质能则是以生物质为载体的、蕴藏在生物质中的能量, 即绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量形式。它除了可以提供燃烧热, 还可以制成种类繁多的重要化工品及气、液、固的能源形态, 尤其是可以作为交通燃料的制备原料。生物质的研究在推动化学工业和能源燃料可持续发展中已经并将继续发挥重要作用。生物质资源按其来源分类可分为: 一是木材及森林; 二是农业废弃物; 三是水生植物; 四是油料植物; 五是城市和工业有机废弃物; 六是动物粪便。生物质的应用和开发在政策层面上引起了各国的重视, 我国在生物能源产业发展十一五规划中, 突出了五个方面: 1.提高能源植物的数量和质量;2. 从原料到技术发展燃料乙醇工业。3.加快生物柴油产业化的步伐。4.推进生物质发电和供热。5.促进生物质转化为致密成型燃料。利用生物质能方式主要有: 一是热化学转换技术, 获得木炭焦油和可燃气体等高品位的能源产品,分为高温干馏、热解、生物质液化等方法; 二是生物化学转换法, 主要指生物质在微生物的发酵作用下, 生成沼气、酒精等能源产品; 三是利用油料植物所产生的生物油;四是直接燃烧技术, 包括炉灶燃烧技术、锅炉燃烧技术、致密成型技术和垃圾焚烧技术等。 二、生物质资源量 1.全球的生物质资源 生物质能仅次于三大化石能源位列第四, 存量丰富且可再生,具备很大的发展前景。全球每年经光合作用产生的生物质约1700 亿吨, 其能量相当于全球能量年消耗总量的 10 倍, 而作为能源的利用量还不到总量的1% ,开发潜力巨大。目前来自生物质的能量约占全球消耗能量的14%。其中发达国家每年 3%左右的能源来自生物质能, 发展中国家生物质利用约占这些国家能源消耗的 35%。按照一些国际能源组织测算, 随着化石能源的枯竭和价格的增长, 到 2015 年, 全球总能耗有 40%来自生物质能源。 2.我国的生物质资源 据估计, 我国每年产生的生物质总量有 50 多亿吨(干重), 相当于 20 多亿吨油当量, 约为我国目前一次能源总消耗量的 3 倍,目前我国商品化的生物质能源仅占一次能源消费的 0.5%左右。即使考虑到中国有坚持“不与人争粮、不与粮争地”的原则, 秸秆、畜禽粪便等农业农村废弃物和林木枝桠等林业废弃物发展生物质能源的存量仍然很大。据 2003 年不完全统计, 我国每年仅可收集的农业废弃物及禽畜粪便资源就可达 10 亿吨, 其中农作物秸秆总量则有 6.5 亿吨,除部分作为造纸原料、炊事燃料、饲料肥料和秸杆还田之外, 可作为能源用途的秸秆约 3.5 亿吨,折合 1.8 亿吨标准煤, 可以转化为 1 亿吨燃料酒精

生物质能利用技术发展现状

生物质能利用技术发展现状 生物质能是一种重要的可再生能源,直接或间接来自植物的光合作用,一般取材于农林废弃物、生活垃圾及畜禽粪便等,可通过物理转换(固体成型燃料)、化学转换(直接燃烧、气化、液化)、生物转换(如发酵转换成甲烷)等形式转化为固态、液态和气态燃料。由于生物质能具有环境友好、成本低廉和碳中性等特点,迫于能源短缺与环境恶化的双重压力,各国政府高度重视生物质资源的开发和利用。近年来,全球生物质能的开发利用技术取得了飞速发展,应用成本快速下降,以生物质产业为支撑的“生物质经济”被国际学界认为是正在到来的“接棒”石化基“烃经济”的下一个经济形态。因此,系统梳理生物质能技术的发展现状及趋势,明确我国发展生物质能面临的挑战并制定未来策略,对推动我国生态文明建设、能源革命和低碳经济发展,保障美丽乡村建设、应对全球气候变化等国家重大战略实施具有重要意义。 生物质能发展现状 随着国际社会对保障能源安全、保护生态环境、应对气候变化等问题日益重视,加快开发利用生物质能等可再生能源已成为世界各国的普遍共识和一致行动,也是全球能源转型及实现应对气候变化目标的重大战略举措。生物基材料、生物质燃料、生物基化学品是涉及民生质量和国家能源与粮食安全的重大战略产品。2017年,全球生物基材料与生物质能源产业规模超过1万亿美元,美国达到4000亿美元。美国规划2020年生物基材料取代石化基材料的25%;全球经济合作与发展组织(OECD)发布的“面向2030生物经济施政纲领”战略报告预

计,2030年全球将有大约35%的化学品和其他工业产品来自生物制造;生物质能源已成为位居全球第一的可再生能源,美国规划到2030年生物质能源占运输燃料的30%,瑞典、芬兰等国规划到2040年前后生物质燃料完全替代石油基车用燃料。 目前,世界各国都提出了明确的生物质能源发展目标,制定了相关发展规划、法规和政策,促进可再生的生物质能源发展。例如,美国的玉米乙醇、巴西的甘蔗乙醇、北欧的生物质发电、德国的生物燃气等产业快速发展。 经过多年的努力,我国科学家也在生物质能源的几个研究领域中占据国际领先或者齐平的地位。在国家相关经费尤其是中国科学院战略性先导科技专项的支持下,中国科学院以具有颠覆性特色的木质纤维素原料制备生物航油联产化学品技术、支撑国家燃料乙醇和生物质燃料产业发展的农业废弃物醇烷联产技术为核心,突破关键技术并进行工业示范。针对低值生物质资源的高值利用难题,已建立了国际首套百吨级秸秆原料水相催化制备生物航油示范系统,产品质量达到?ASTM-D-7566(A2)标准,并拟于近年建成国际首套千吨级示范系统、千吨级呋喃类产品/异山梨醇的中试与工业示范、30?万吨秸秆乙醇及配套热电联产工业示范、年千万立方米生物燃气综合利用与分布式供能工业化示范工程等一批体现技术特色、区域特色和产品特色的示范工程,进一步强化保持我国以上生物质能领域技术创新的国际领先地位。 生物质能技术主要包括生物质发电、生物液体燃料、生物燃气、固体成型燃料、生物基材料及化学品等,以下将针对各个具体技术的发展现状分别进行分析。生物质发电技术

生物质能源综合利用项目

生物质能源综合利用项目 项目建议书 东平京鲁时代生物科技发展有限公司 二零一七年五月

目录 第一章拟建项目概述 (1) 1.1项目名称 (1) 1.2 建设单位情况 (1) 1.3拟成立公司 (1) 1.4建设规模与内容 (1) 1.5投资估算及资金筹措 (2) 1.6建设周期 (2) 1.6.1初步计划 (2) 1.6.2一期工程设计 (3) 第二章项目建设的重大意义 (4) 2.1当前秸秆粪便污染情况 (4) 2.2解决污染物的有效途径 (4) 2.3本项目对当地农业发展的意义 (5) 第三章项目建设的政策性依据 (6) 第四章项目地址选择 (9) 4.1选址原则 (9) 4.2地址选择 (9) 4.3项目用地规模 (10) 4.4项目建设地基本情况 (11) 4.4.1地理位置 (11)

4.4.2气候条件 (11) 4.4.3交通条件 (12) 4.4.4农林牧情况 (12) 4.4.5旅游资源 (12) 4.4.6产业优势 (12) 第五章技术路线 (13) 第六章项目资金平衡估算 (14) 6.1投资组成估算 (14) 6.2产品年度销售收入估算 (14) 6.3年度运营成本估算 (14) 6.4投资经济性分析 (15) 6.5影响项目经济效益的主要因素 (15) 第七章项目实施计划 (15) 7.1总体计划 (15) 7.2一期工程实施思路 (15) 第八章项目实施关键点 (16) 8.1产业链规划是否完整 (16) 8.2政府支持是否到位 (18) 8.3企业的投资行为是否坚定 (19)

第一章拟建项目概述 1.1项目名称 生物质能源综合利用项目 1.2建设单位情况 建设单位:东平京鲁时代生物科技发展有限公司 法定代表人:魏光 1.3拟建设地点 山东省东平县接山镇姜庄村 1.4建设规模与内容 本项目为生物新能源项目,规划总用地200亩,利用秸秆、畜禽粪便农业废弃物,产沼气30万m3,年生产沼气9000万立方,年发电1.2亿度,年提纯燃气4500万m3,年产15万吨生物有机肥和有机无机复混肥;同时,发展无公害、绿色、有机农产品,通过有机农业示范,带动周边50公里半径内的农户共同进行有机农业种植,延伸农副产品加工和冷链物流,创建“绿色”、“生态”品牌,打造生态循环农业产业链。 主要建设内容: 1、原料仓储和预处理系统:秸秆原料仓储和预处理设施、配备运输车。 2、沼气生产系统:进出料、厌氧发酵、增温保温和搅拌等设施设备。 3、沼气净化系统:脱硫脱水设备。 4、储存系统:大型沼气存储罐。 5、沼气发电及上网单元:余热回收、上网设备与监控等。 6、天然气提纯系统:燃气提纯装备、气柜和管网等储存输配系统。

生物质能

生物质、生物质能及发展现状 韩进 5100209387 摘要:可持续发展已成为21世纪人类的共识,怎样利用可再生能源逐步取代日趋枯竭的不可再生能源是各国关注的焦点。生物质能被喻为及时利用的绿色煤炭,将成为未来能源的重要组成部分,对能源战略和环境保护具有重要意义。 关键词:生物质、生物质能、利用、现状 一、生物质 生物质是指利用大气、水、土地等通过光合作用而产生的各种有机体,即一切有生命的可以生长的有机物质通称为生物质。它包括植物、动物和微生物。广义概念:生物质包括所有的植物、微生物以及以植物、微生物为食物的动物及其生产的废弃物。有代表性的生物质如农作物、农作物废弃物、木材、木材废弃物和动物粪便。狭义概念:生物质主要是指农林业生产过程中除粮食、果实以外的秸秆、树木等木质纤维素(简称木质素)、农产品加工业下脚料、农林废弃物及畜牧业生产过程中的禽畜粪便和废弃物等物质。 二、生物质能 生物质能(biomass energy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源。生物质能的原始能量来源于太阳,所以从广义上讲,生物质能是太阳能的一种表现形式。目前,很多国家都在积极研究和开发利用生物质能。地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%。 依据来源的不同,可以将适合于能源利用的生物质分为林业资源、农业资源、生活污水和工业有机废水、城市固体废物和畜禽粪便等五大类。在这里就不做累述。 生物质能具有以下特点: 1) 可再生性2) 低污染性3) 广泛分布性

中国生物质能发展现状与展望

中国生物质能发展现状与展望 在我国,生物质发电主要包括城镇生活垃圾焚烧发电、农林生物质发电、沼气发电。“十三五”以来,我国生物质发电规模逐年上涨。根据国家能源局数据,截至2019年底,全国已投运生物质发电项目1094个,累计并网装机容量2254万千瓦,其中,垃圾焚烧发电1202万千瓦,农林生物质发电973万千瓦,沼气发电79万千瓦。2019年生物质发电量为1111亿千瓦时,同比增长22.6%,占全部电源总发电量1.5%。发电年平均利用小时数达5181小时,生物质发电量显著提升,年利用小时数保持较高水平(见图1、图2)。

2019 年中国生物质发电总投资规模约508 亿元,其中农林生物质发电投资约97 亿元,生活垃圾焚烧发电投资约398 亿元,沼气发电投资约13 亿元。 农林生物质发电。开发规模:截至2019年12月,我国农林生物质发电项目374个,并网装机容量973万千瓦,年发电量468.1亿千瓦时,年上网电量406亿千瓦时,全行业平均发电小时数为4811小时。农林生物质发电行业累计投资总额达970亿元,年产值约360亿元。当前,农林生物质发电站生物质发电总装机容量的近45%,依然是我国生物质发电的主要技术方向,是农林生物质能源化利用的主要形式(见图3)。 区域分布:我国农林生物质发电主要分布在秸秆资源丰富的农业大省。累计装机容量排名前五名的省份依次是山东省、安徽省、黑龙江省、湖北省、江苏省,合计占全国装机容量的54.4%(见表1)。

主要技术:农林生物质直燃发电系统主要由直燃锅炉、汽轮机、发电机组、给料系统、除尘除渣系统等组成。生物质发电与燃煤发电系统较为类似,但生物质燃料具有高氯、高碱、高挥发份、低灰熔点等特性,燃烧时易腐蚀锅炉,容易结渣和结焦,因此生物质锅炉是生物质发电的核心设备。目前国内生物质直燃发电锅炉采用的燃烧方式主要为层燃技术和循环流化床技术,层燃技术主要为振动炉排和往复炉排。 城镇生活垃圾焚烧发电。开发规模:截至2019年12月,我国城镇生活垃圾焚烧发电项目504个,并网装机容量1202万千瓦,年发电量609.6亿千瓦时,年上网电量498.6亿千瓦时,年处理垃圾量约1.3亿吨。城镇生活垃圾焚烧发电行业累计投资总额达2600亿元,年产值约506亿元(见图4)。 区域分布:我国城镇生活垃圾焚烧发电项目主要分布在中东部地区。累计装机容量排名前五名的省份依次是广东省、浙江省、山东省、江苏省、安徽省,合计占全国装机容量的58.9%(见表2)。

生物质能利用技术(总8页)

生物质能利用技术(总 8页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

生物质能利用技术 摘要 生物质是可再生能源之一,分布广泛且资源丰富,对其的利用将会是未来能源发展的重要方向。为了了解生物质能利用技术,本文从沼气发酵工艺、燃料乙醇技术、直接燃烧技术、生物质热裂解、生物质气化、生物柴油这几个方向去介绍。总结得出近阶段中国适合发展小型规模的生物质能转化工艺,等到废弃农作物较为集中时才适合发展大型化的生物质能转化工艺。 关键词:生物质,木质纤维素,燃料乙醇,生物柴油 Abstract Biomass is one kind of the renewable energy, which is widely distributed and resourceful. Therefore, its utilization will be an important direction of future energy. In order to understand the biomass utilization technology, this paper will introduce from the biogas fermentation, fuel ethanol, direct combustion, biomass pyrolysis, biomass gasification, biodiesel. It is concluded that the development of small-scale biomass conversion technology is suitable now and the development of large-scale biomass conversion technology will not be suitable for China until the waste crops are concentrated. Key words: Biomass, Lignocellulose, Fuel ethanol, Biodiesel

生物质能的开发与利用

生物质能的开发与利用 摘要:随着化石燃料的短缺和其使用时产生的污染问题的加剧,生物质能以其可再生、低污染、分布广泛等特点,日益受到世界各国的重视。本篇论文从生物质能的概念入手,综合国内外对生物质能利用现状分析其优势、利用技术及开发研究前景。 21世纪被誉为是“生物能源时代”,是生物的世纪,是科学技术飞速发展新世纪。可持续发展是当前经济发展的趋势所在,面对化石能源的枯竭和环境的污染,生物能源的开发利用为经济的可持续发展带来了曙光。 (一)新能源之生物质能研究背景 当代社会使用最广泛的能源是煤炭、石油、天然气和水力,特别是石油和天然气的消耗量增长迅速,已占全世界能源消费总量的60%左右。但是,石油和天然气的储量是有限的,许多专家预言,石油和天然气资源将在40年、最多50—60年内被耗尽,而煤炭资源虽然远比石油和天然气资源丰富,但是直接应用煤炭严重污染环境。因此,为避免能源危机的出现,以化石能源为基础的常规能源系统正逐步持久的、多样化的、可以再生的新能源系统过渡。 我国自然资源总量排世界第七位,能源资源总量约4万亿吨标准煤,居世界第三位。在能源领域面临的主要挑战是:(1)人均能源资源占有量不足,且分布不均;(2)人均能源消费量低,单位产值的能耗高;(3)能源构成以煤为主;(4)工业部门消耗能源占有很大的比重;(5)农村能源短缺,以生物质能为主;(6)从能源安全

角度考虑,我国能源面临挑战;(7)能源品种结构不合理,优质能源供应不足;(8)能源工业技术水平有待进一步提高;(9)节能提效工作亟待加强等。 为此已出台的发展可再生能源的相关方钭政策、规章制度:1992年国务院批准的《中国环境发展十大对策》中明确提出,要“因地制宜地开发利用和推广大阳能、风能、地热能、生物质能等新能源”;连续在四个国家五年计划中将生物质能利用技术的研究与应用列为 重点科技攻关项目。国家先后制定了《可再生能源法》、《可再生能源中长期发展规划》、《可再生能源发展“十一五”规划》和《可再生能源产业发展指导目录》、《生物产业发展“十一五”规划》,提出了生物质能发展的目标任务,明确了相关扶持政策。科技部将生物柴油技术列入“十一五”国家863计划和国际科技合作计划。 在众多新能源中,生物质能拥有其独特的“至美”之处——既环保、安全。可再生,在于它是可再生能源领域唯一可以转化为液体燃料的能源。如甜高粱,不仅可以通过能量转换替代化石液体燃料,保障能源安全,同时还能保障粮食安全,而且还能吸收二氧化碳,加工过程中无污染,原料得以物尽其用。 虽然现阶段生物能源的开发利用处于起步阶段,生物能源在整个能源结构中所占的比例还很小,但是其发展潜力不可估量。(二)生物质能概论 生物质是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。而所谓生物质能(biomass energy ),就是太阳能

生物质能工程复习提纲1什么是生物质能源2什么是新能源3

《生物质能工程》复习提纲 1、什么是生物质能源? 2、什么是新能源? 3、什么是可再生能源? 4、什么是常规能源? 5、生物质能是可再生的。虽然生物质能是人类应用很久的一种古老的能源,但在能源分类中将其划为新能源。 6、生物质:广义上讲,生物质是各种生命体产生或构成生命体的有机质的总称; 7、生物质所蕴含的能量称为生物质能。 8、百度百科:生物质是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。而所谓生物质能(Biomass Energy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源。生物质能的原始能量来源于太阳,所以从广义上讲,生物质能是太阳能的一种表现形式。 9、 10、生物质原料类型 (1)按分布分:水生和陆生生物,及其代谢产物; (2)按原料化学性质分:糖类、淀粉、纤维素、脂类、烃类; (3)按原料来源分:农业生产废弃物、薪柴、农林加工废弃物、人畜粪污、工业有机废弃物、能源植物。 11、生物质资源的特点 (1)环境污染小;(灰分、N、S含量低,C闭合循环。) (2)生物质能蕴藏量巨大、分布广; (3)可再生; (4)能量密度低;

(5)重量轻、体积大,运输不便; (6)易受风雨雪火等外界因素影响,贮存不便; 12、生物质的化学组成 糖类和淀粉主要由葡萄糖单糖或多糖组成。 农作物秸秆的主要化学元素组成: C:40~46%;H:5~6%;O:43~50%;N:0.6~1.1% S:0.1~0.2%;灰分:3~5%;P:1.5~2.5%; K:11~20%; 薪柴的化学元素组成: C:49.5%;H:6.5%;O:43%;N:1%;灰分:﹤1% 此外,生物质中还含有一定量的水分以及Si、Ca、Fe、Al等矿物元素。 13、生物质燃料的热值 高位热值:1kg生物质完全燃烧所放出的热量; 气化潜热:水分在燃烧过程中变为蒸汽(燃料中H燃烧时也生成水蒸汽),吸收的热量; 低位热值:高位热值-气化潜热 计算生物质发热量,一般取低位热值。 14、农作物资源估算是在农作物产量的基础上,以草谷比计算。 15、薪柴资源量估算 (1)森林才伐木和木材加工剩余物,可用作燃料量按原木产量1/3估算; (2)薪炭林、用材林、防护林、灌木林等按林地面积统计放柴量; (3)四旁树(田、路、村、河)的剪枝,按树木株数统计; 16、人畜粪便资源 以人口数、畜禽存栏数、年平均排泄量为基础进行估算;并考虑成幼系数 17、纤维素类生物质资源 纤维素类生物质资源主要由:纤维素、半纤维素、木质素构成; 植物细胞壁中的纤维素和木质素通过共价键连接成网络结构,纤维素束镶嵌在其中。 18、农作物秸秆 秸秆焚烧:效率低、环境污染、浪费资源、影响交通; 19、禽畜粪污 我国主要禽畜粪污源为猪、牛、鸡等规模化养殖。 2000年全国畜禽粪便可获得资源实物量为3.2亿吨。 河北、山东、河南、四川等地资源量最多。 近年来,畜禽养殖业逐步向规模化、集约化发展。 全国60%以上的养殖场粪污未经处理直接排放,造成水体、土壤、空气等严重污染,畜禽养殖粪污污染已成为我国第一大污染源! 养殖粪污一般用作肥料,仅西藏、青海、宁夏、内蒙古等地将其风干,作为燃料使用。 采用“厌氧+好氧”技术进行处理,是目前粪污处理的发展方向。 20、城市有机垃圾 2001年我国生活垃圾清运量1.18亿吨,按年增长10%左右计算,至2010年,将达到2.3亿吨。 城市生活垃圾的处理途径:堆肥、填埋、焚烧、厌氧发酵、发电、养蚯蚓。 21、工业有机废弃物 分为工业有机固废和有机废水两类。 主要来自木材加工、造纸、制糖、粮食加工等,包括木屑、树皮、蔗渣、谷壳等。 22、糖类原料资源 主要用来生产燃料乙醇 研究及应用最多的为甘蔗。(巴西,美国)

相关文档
最新文档