工程力学-应力状态与应力状态分析资料报告

工程力学-应力状态与应力状态分析资料报告
工程力学-应力状态与应力状态分析资料报告

8 应力状态与应变状态分析

1、应力状态的概念,

2、平面应力状态下的应力分析,

3、主平面是切应力为零的平面,主应力是作用于主平面上的正应力。

(1)过一点总存在三对相互垂直的主平面,对应三个主应力,主应力排列规定按代数值由大到小为:

321σσσ≥≥

最大切应力为

13

2

max σστ-=

(2)任斜截面上的应力

α

τασσσσσα2sin 2cos 2

2

xy y

x y

x --+

+=

α

τασστα2cos 2sin 2

xy y

x +-=

(3) 主应力的大小

2

2min

max )2

(

2

xy

y

x y

x τσσσσσ+-±+=

主平面的方位

y

x xy

tg σστα--=

220

4、主应变

12

2122x y x y xy xy

x y

()()tg εεεεεεγγ?εε?

=

+±-+?

=

-

5、广义胡克定律

)]([1

z y x x E σσμσε+-=

)]([

1

x z y y E σσμσε+-=

)]([1

y x z z E σσμσε+-=

G zx

zx τγ=

G yz

yz τγ=

G xy

xy τγ=

6、应力圆与单元体之间的对应关系可总结为“点面对应、转向相同、夹角两倍。”

8.1 试画出下图8.1(a)所示简支梁A 点处的原始单元体。

图8.1

[解](1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A 点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy 平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。再取A 点偏上和偏下的一对与xz 平行的平面。截取出的单元体如图8.1(d)所示。 (2)分析单元体各面上的应力:

A 点偏右横截面的正应力和切应力如图8.1(b)、(c)所示,将A 点的坐标x 、y 代入正应力和切应力公式得A 点单元体左右侧面的应力为:

z

M y I σ=

b I QS z z *=

τ

由切应力互等定律知,单元体的上下面有切应力t ;前后边面为自由表面,应力为零。在单元体各面上画上应力,得到A 点单元体如图8.1(d)。

8.2 图8.2(a)所示的单元体,试求(1)图示斜截面上的应力;(2)主方向和主应力,画出主单元体;(3)主切应力作用平面的位置及该平面上的正应力,并画出该单元体。

解题范例

[解](1)求斜截面上的正应力

?30-σ和切应力?30-τ

图8.2

由公式

MPa 5.64)60sin()60()60cos(2100

5021005030-=?---?---++-=

?-σ

MPa 95.34)60cos()60()60sin(2100

5030=?--+?---=

?-τ

(2)求主方向及主应力

8

.0100

50120

22tan -=----=--

=y x x σστα ?-=66.382α

?=?

-=67.7033.1921αα

最大主应力在第一象限中,对应的角度为

070.67α=?,主应力的大小为

1

5010050100cos(270.67)(60)sin(270.67)121.0MPa 22σ=

??--??=-+--+

y

x σσσσαα+=+2

1

可解出

2

1

(50)100(121.0)71.0MPa

x y ασσσσ=+=-+-=--

因有一个为零的主应力,因此

)33.19(MPa

0.7133?--=第三主方向=ασ

画出主单元体如图8.2(b)。

(3)主切应力作用面的法线方向

25

.1120100

502tan =---=

'α ?='34.512α

?='?

='67.11567.2521αα

主切应力为

'

2

'1

MPa 04.96)34.51cos()60()34.51sin(2100

50ααττ-=-=?-+?--=

此两截面上的正应力为

MPa 0.25)34.51sin()60()34.51cos(2100

502100501

=?--?--++-=

'ασ

MPa 0.25)34.231sin()60()34.231cos(2100

502100502

=?--?--++-=

'ασ

主切应力单元体如图8.2(c )所示。 由

y

x MPa σσσσαα+==+=+''500.250.252

1

,可以验证上述结果的正确性。

8.3 试用图形解析法,重解例8.2。 [解] (1)画应力圆

建立比例尺,画坐标轴τσ、。

对图8.2(a)所示单元体,在τσ-平面上画出代表x x τσ、的点A(-50,-60)和代表

y

y τσ、的点B(100,60)。连接A 、B ,与水平轴σ交于C 点,以C 点为圆心,CB (或CA )

为半径,作应力圆如图8.3所示.

图8.3

(2) 斜截面上的应力

在应力圆上自A 点顺时针转过?60,到达G 点。G 点在τσ、坐标系的坐标即为该斜截面上的应力,从应力圆上可直接用比例尺测量或计算得到G 点的水平和垂直坐标值:

64.5ασ=-MPa

τα=34.95MPa

(3)主方向、主应力及主单元体

图8.3所示应力圆图上H 点横坐标OH 为第一主应力,即

1121.04MPa OH σ==

K 点的横坐标OK 为第三主应力,即

371.04MPa OK σ==-

由应力圆图上可以看出,由B 点顺时针转过02α为第一主方向,在单元体上则为由y

轴顺时针转

0α,且

00238.66,19.33αα=?=?

应力圆图上由A 顺时针转到K 点(?=∠66.38ACK ),则在单元体上由x 轴顺时针转过?33.19为第三主方向,画出主单元体仍如图8.2(b)所示。

(4)主切应力作用面的位置及其上的应力

图8.3所示应力圆上N 、P 点分别表示主切应力作用面的相对方位及其上的应力。 在应力圆上由B 到N ,逆时针转过?34.51,单元体上max τ作用面的外法线方向为由y

轴逆时针转过?67.25,且

MPa 04.96min max ==-=CB ττ

min max ττ和作用面上的正应力均为25MPa,主切应力作用面的单元体仍如图8.2(c)所示。

8.4 如图8.4所示两端封闭的薄壁筒同时承受压强p 和外力矩m 的作用。在圆筒表面a 点用应变仪测出与x 轴分别成正负45°方向两个微小线段ab 和ac 的的应变e 45°=629.4×10–6

,e –45°=-66.9×10–6

,试求压强P 和外力矩m 。已知薄壁筒的平均直径d =200mm ,厚度t =10mm , E =200GPa ,泊松比m =0.25。

图8.4

[解] (1)a 点为平面应力状态,在a 点取出如图8.4(c)所示的原始单元体,其上应力:

22,,42x y x pd pd m t t d t σστπ

=

==-

(2)求图8.4(c)斜单元体efgh 各面上的正应力:

245245

32283228x y

x x y x pd m

t d t pd m t d t σσστπσσστπ-+=-=

+

+=+=-

(3)利用胡克定律,列出应变e 45°、e –45°表达式

()()()()()()2454545245454511321181132118pd m E E t d t pd m E E t d t εσμσμμπεσμσμμπ---??

=

-=-++??????-=-+????=

-

将给定数据代入上式

6

6

3213200210629.4100.75 1.252001081020010p m π-?????=??+? ?

?????

6

6

321320021066.9100.75 1.252001081020010p m π-????-?=??-? ?

?????

得压强和外力矩

p =10MPa , m =35kNm

8.5矩形截面简支梁如图8.5所示,已知梁的横截面面积为A ,截面惯性矩为I ,材料的弹性模量为E ,泊松比为μ,梁外表面中性层上A 点45°方向的线应变为ε450

。请选择荷载F.

图 8.5

(A) A E με-?145 (B )A

E 145-?με (C) A E )1(4945με-? (D )A E )1(9445με-?

答案:(A)

8.1 单元体最大正应力面上的切应力恒等于零吗?

[解] 正确。因为在主平面上的正应力σ1是单元体各截面上正应力的极值(可以为最大值),而主平面上切应力为零。

8.2 单元体最大切应力面上的正应力恒等于零,对吗?

[解] 不正确。三向应力状态下单元体有3个主应力,而最大切应力由

31σσ决定,即:

2

3

1max σστ-=

8.3 若一单元体中两个面上切应力数值相等 , 符号相反 , 则该两平面必定相互垂直 , 这种说法对吗?

[解] 正确。由切应力双生互等定理知,若切应力数值上21ττ=,符号相反时,该两平面必定相互垂直。

图 8.6

8.4 直径 d=20mm 、L=2m 的 圆截面杆,受力如图 8.7 。试绘杆件中 A 点和 B 点的单元体受力图,算出单元体上的应力的数值,并确定这些点是否为危险点。

y

σ习题解析

[解] 以下图8.8为图8.7各单元体受力图:

图 8.8 应力计算:

图(a )的A 点 :

a N

63.69MP A σ=

=-

(c ) 图 8.7

(a) (b ) (d )

A 点

A 点

A )

(a )

(c )

(b 点

B )

(d 点

B τ

τ

σ

τ

σ

σ

A σ

图(b )的A 点:

a

3

80

50.96MP d 16

τ=

=π 图(c )的A 点:

a N

127.38MP A σ=

=

B 点:

a

N

127.38MP A σ=

= , a 38050.96MP d 16

τ==π 图(d )中A 点(压应力):

3

a

33z

M 201025.48MP 1W 3.14(2010)32

-?σ===??? B 点:

*z a

z QS 4Q 0.17MP I b 3A τ===

(b )中的A 为危险点,(c )中的A 、B 为危险点,(d )中的A ,B 点均为危险点,相比之下A 点的应力较大。

8.5 已知应力状态如图 8.9 所示(应力单位:MPa)。试用图解法求: (1)(a)、(b)中指定斜截面上的应力;并用解析法校核之;

(2) (c)、(d) 、(e)上主应力的大小与方向,在单元体上画出主平面的位置 ,求最大切应力。

(a)300

斜截面单元本;(b)450

斜截面单元体;(c) 纯切应力单元体;(d) 压拉切单元体 (e) 拉压切单元体。

图 8.9

[解](a) 按比例画出应力圆如下图,可得α=300的斜截面的正应力和切应力为E点的坐标为

30a

45MP

?

σ=

30a

8.5MP

?

τ=

解析法校核:

x y x y

x a

x y

x a

30505030

cos2sin2cos6045MP 2222

50303

sin2cos2538.5MP

222

α

α

σ+σσ-σ+-

σ=+α-τα=+=

σ-σ-

τ=α+τα=?==

(b)用比例画出应力圆,E点的坐标为

45a

5MP

?

σ=

45a

25MP

?

τ=

解析法校核:

x y x y

x a x y

x a 5050cos 2sin 2cos 9020sin 905MP 22

22

50

sin 2cos 2sin 9025MP 2

2

αασ+σσ-σσ=+

α-τα=

+-=σ-στ=

α+τα=

?=

(c )应力圆如下图,与σ轴的交点即为主应力的对应点,从应力圆上可按比例直接量得两个主应力之值分别为:

11a 232a

OA 50MP ,0,OA 50MP σ==σ=σ==-

主平面的方位可由应力圆上量得,因

112D OA 90

?=∠=-

最大主应力作用面与x 平面之夹角为(从D1到A1是顺时针转的):

45

?=-

13

max a

50MP 2σ-στ=

=最大切力;

(d )应力圆与σ轴的交点即为主应力得应点,从应力图上可按比例直接量得两个主应力之值分别为:

y

σ

C

E

X

O τ

Y

11a

22a3

OA70MP

OA30MP,0

σ==

σ==σ=

最大主应力作用面与x平面之夹角为(可由应力圆上得):

1

2FCA9045

?=∠=-?=-

max a

CF20MP

τ==

最大切力

(e)应力圆与σ轴的交点即为主应力的对应点,从应力圆上可按比例直接量得两个主应力之值分别为

11a32a

OA44.7MP OA44.7MP

σ==σ==-

主平面的方位,可由应力圆上量得:

226.513.2

?=-?=-

(对应于主应力σ1所在主平面)

max a

40MP

τ=

最大切力

8.6图 8.10 示单元体 ( 单位为 MPa), 问分别属于什么应力状态。

图 8.10

[解] (1)(a)属于单向拉应力状态;

(2)(b)属于双向拉应力状态(平面应力状态); (3)(c) 属于双向拉剪应力状态; (4)(d) 属于纯剪应力状态;

(5)(e) 属于双向拉应力状态(平面应力状态).

8.7 用直角应变花测得构件表面上一点处三个方向的线应变分别为ε00

=700×10-6

, ε450

=350×10-6

,ε900

=-500×10-6

,试作应变圆,求该点处的主应变数值和方向。

[解] 选比例尺如图8.11(b )所示,绘出纵坐标轴,并根据已知的u

y x εεε,,值分别作

出平行于该轴的直线

Lc

L L b a 和,,过Lb 线上任一点B ,作与Lb 线成顺时针方向45°角的

BA 线,交La 线于A 点,作与Lb 线成逆时针转向45°角的BC 线交Lc 线于C 点。作BA 与BC 两线的垂直的平分线,相交于o 1点,过o 点作横坐标轴即ε轴,并以A O 1为半径作圆,按上述比例尺量取些二者的交点D1,D2横坐标,即得:

6

2361110600.,.........10800--?-==?==OD OD εε

再从应变圆上量得:

所示的方向如图(,主应变故)11,2221a ε?? ==

图 8.11

8.8用直角应变花测得构件表面上某点处ε0=+400×10-6

, ε450

=+260×10-6

, ε900

=-80×10-6

, 试求该点处三个应变的数值和方向。

[解] 因

6

040010x εε-==? 6

908010y εε-==-?

利用公式得

()()(

)

2

2

1120454590

2x y εεεεεεε?

?

??=++-+-???????

?

()()()226666661400108010240010260102601080102------????=??-?+??-?+?+???

?????

? 66

132010520102--??=??+???

642010-=?

()()()2

2

2045

45

90

122x y εεεεεε

ε?

?

??=+-?-+-??

?????

?

66

132010520102--??=??-???

ε

γ/2

C

D2

y

εx

ε

610010-=-?

()()0

6666

450902226010400801020010xy γεεε----=-+=??-?-?=?

8.9 用直角应变花测得受力构件表面上某点处的应变值为ε0=-267×10-6

,ε45

0=-570

×10-6 及ε900 =79×10-6 ,构件材料为 Q235 钢,E=2.1×105

MPa, μ=0.3 。试利用应变圆求主应变,再求出该点处主应力的数值和方向。

图 8.12

[解] 选比例尺和纵坐标轴如图8.12所示,已知

x 0?

ε=σ

x y u 9045

,,δε=σε=εε=ε

先做La 、Lb 、Lc ,过上的任一点作与Lb 线成顺时针转向45度角的BA 线,交La 线于A 点;作与Lb 线成逆时针转向45度角的BC 线交Lc 线于C 点,作BA 与BC 线 交线于C 点.作BA 与BC 两线的垂直等分线,相交于O1点作横坐标轴即轴.并以为半径作圆,按上述比例

11.9α=?

()

()

66666

226010400108010220.416

400108010u x y x y

arctg arctg

εεεμεε-----??-?-?-+===-?+?2α

尺即此二者的交点的横坐标,即得

61141010od ε-==?

6

3260010od ε-=-=-?

根据虎克定律得:

()()

()1112x x y E

σμεμεμμ??=

-+??+-

()()

()()566

2.11010.3267100.3791010.3120.3--???=?-?-?+????+?-?

=-66MPa

()()

()1112y y x E

σμεμεμμ??=

-+??+-

()()

()()566

2.11010.379100.32671010.3120.3--???=?-??+?-???+?-?

=-10MPa 根据主应变求主应力:

[]1131

E εσμσ=

-

[]61

351

410100.32.110σσ-?=-? []2311

E εσμσ=-

[]

63151

600100.32.110σσ--?=-?

可解得:

MPa MPa

1105331-==σσ

根据:

13

2

σσ-=

可解得:

MPa x 5.76=τ

2276.5

2 2.73

6610

x x y tg τ?σσ?=-

=-=--+

035?=

从X 轴到主应力1σ所在平面外法线,其角?是沿顺时针转向量取的。

8.10 图 8.13 示矩形截面简支梁在集中载荷P 作用下。

(1)在 A 、B 、C 、D 、E 五点取单元体,定性分析这五点的应力情况,并指出单元体属于哪种应力状态。

(2)若测得图示梁上 D 点在 x 及 y 方向上的正应变为εx =4.0×10-4

及εy =1.2 × 10-4

, 已知 E=200GN/m 2

, μ=0.3, 试求D 点 x 及 y 方向上的正应力。

图 8.13

[解] (1)A 、 B 、 C 、 D 、 E 五点的应力状态如图8.14所示,其中σA、σB均为压应力,σD、σE 均为拉应力。A 、 B 、 D 、 E 为平面应力状态,C 为纯剪切应力状态。

图 8.14

(2) 根据广义虎克定律得

=24.6MPa

=78.5MPa

8.11图 8.15 示一钢质圆杆,直径 D=20mm, 已知 A 点与水平线成 60度 方向上 的正应变ε600

=4.1×10-4

,试求载荷 P 。已知 E=210GN/m 2

, μ=0.28。

图 8.15

[解] 过A 点取单元体,根据题意有

0x τ= 0x σ= y σσ= 6033cos120sin1202

2

44x y

x y

x y σσσσστσσ

+-=

+

-== 1501

cos150sin1502

2

4x y

x y

x σσσσστσ

+-=

+

-=

()()()

[]410.7 4.00.3 1.210112x x y E σμεμεμμ-??=-+=?+???

?+-

()()()[]4

10.7 1.20.30.410112y y x E σμεμεμμ-??=-+=?+???

?+-

31

4

44

6060150

0.28

1

4.110

E E E

σσ

εσμσ-

?

??

=-=-=?

??

P

126.6MPa

A

σ==

P A39.8kN

=σ=

8.12 如图8.16所示,外力矩 Mn=2.5×103N·m, 作用在直径 D=60mm 的钢轴上,若E=210GN/m2, μ =0.28.试求圆轴表面上任一点在与母线成α=300方向上的正应变。

图 8.16

[解] 过表面A点取单元体,根据题意有

x y z

σσσ

===

x max

τ=-τ

3

max a

3

P

x y x y

x

30

120

4

11

3030120

M 2.510

59MP

1

W 3.14(0.06)

16

cos2sin251MPa

22

3

58.951MPa

11

()(510.2851) 3.1110

E 2.110

-

?

τ===

??

σ-σσ-σ

σ=+α-τα=

σ=-=-

ε=σ-μσ=+?=?

?

8.13 己知油压缸 (薄壁) 的平均直径为 d, 壁厚t, 壁受到油压强户的作用,其弹性模量 E 及泊松比μ均为已知。试求其直径的增量为多少?

[解] 薄壁圆筒承受压后,外表面各点将产生周向应力θ

σ

和轴向应力x

σ

,

2

2

x

pd

t

θ

σσ

==

根据广义虎克定律

x 1pd ()(1)E 2Et 2θθμε=

σ-μσ=-

环向线应变为

2d '/22d /2(d 'd)d

2d /2d d θπ-ππ-?ε=

==

ππ

直径的增量为

2pd d (1)

2Et 2μ

?=-

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

工程力学-应力状态与应力状态分析

8 应力状态与应变状态分析 1、应力状态的概念, 2、平面应力状态下的应力分析, 3、主平面是切应力为零的平面,主应力是作用于主平面上的正应力。 (1)过一点总存在三对相互垂直的主平面,对应三个主应力,主应力排列规定按代数值由大到小为: 321σσσ≥≥ 最大切应力为 13 2 max σστ-= (2)任斜截面上的应力 α τασσσσσα2sin 2cos 2 2 xy y x y x --+ += α τασστα2cos 2sin 2 xy y x +-= (3) 主应力的大小 2 2min max )2 ( 2 xy y x y x τσσσσσ+-±+= 主平面的方位 y x xy tg σστα--= 220 4、主应变 12 2122x y x y xy xy x y ()()tg εεεεεεγγ?εε? = +±-+? = - 5、广义胡克定律 )]([1 z y x x E σσμσε+-=

)] ( [ 1 x z y y E σ σ μ σ ε+ - = )] ( [ 1 y x z z E σ σ μ σ ε+ - = G zx zx τ γ= G yz yz τ γ= ,G xy xy τ γ= 6、应力圆与单元体之间的对应关系可总结为“点面对应、转向相同、夹角两倍。” 8.1试画出下图8.1(a)所示简支梁A点处的原始单元体。 图8.1 [解](1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。再取A点偏上和偏下的一对与xz平行的平面。截取出的单元体如图8.1(d)所示。 (2)分析单元体各面上的应力: A点偏右横截面的正应力和切应力如图8.1(b)、(c)所示,将A点的坐标x、y代入正应力和切应力公式得A点单元体左右侧面的应力为: z M y I σ= b I QS z z * = τ 由切应力互等定律知,单元体的上下面有切应力τ;前后边面为自由表面,应力为零。在单元体各面上画上应力,得到A点单元体如图8.1(d)。 8.2图8.2(a)所示的单元体,试求(1)图示斜截面上的应力;(2)主方向和主应力,画出主单元体;(3)主切应力作用平面的位置及该平面上的正应力,并画出该单元体。 解题范例

第二章应力状态 弹塑性力学基本理论及应用_刘土光

第二章 应力状态理论 2.1 应力和应力张量 在外力作用下,物体将产生应力和变形,即物体中诸元素之间的相对位置发生变化,由于这种变化,便产生了企图恢复其初始状态的附加相互作用力。用以描述物体在受力后任何部位的内力和变形的力学量是应力和应变。本章将讨论应力矢量和某一点处的应力状态。 为了说明应力的概念,假想把受—组平衡力系作用的物体用一平面A 分成A 和B 两部分(图2.1)。如将B 部分移去,则B 对A 的作用应代之以B 部分对A 部分的作用力。这种力在B 移去以前是物体内A 与B 之间在截面C 的内力,且为分布力。如从C 面上点P 处取出一包括P 点在内的微小面积元素S ?,而S ?上的内力矢量为F ?,则内力的平均集度为F ?/S ?,如令S ?无限缩小而趋于点P ,则在内力连续分布的条件下F ?/S ?趋于一定的极限σ,即 σ=??→?S F S 0lim 这个极限矢量σ就是物体在过c 面上点P 处 的应力。由于S ?为标量,故,σ的方向与F ?的 极限方向一致。内力矢量F ?可分解为所在平面 的外法线方向和切线方向两个分量n F ?和s F ?。 同样,应力σ可分解为所在平面的外法线方向 和切线方向两个分量。沿应力所在平面 的外法线方向n 的应力分量称为正应力,记为n σ,沿切线方向的应力分量称为切应力,记为 n τ。此处脚注n 标明其所在面的外法线方向,由此, S ?面上的正应力和切应力分别为n σ和n τ。 在上面的讨论中,过点P 的平面C 是任选的。显然,过点P 可以做无穷多个这样的平面C ,也就是说,过点P 有无穷多个连续变化的n 方向。不同面上的应力是不同的。这样,就产生了如何描绘一点处的应力状态的问题。为了研究点P 处的应力状态,在点P 处沿坐标轴x ,y ,z 方向取一个微小的平行六面体(图2.2),其六个面的外法线方向分别与三个坐标轴的正负方向重合,其边长分别为x ?,Δy ,Δz 。假定应力在各面上均匀分布,于是各面上的应力便可用作用在各面中心点的一个应力矢量来表示,每个面上的应力矢量又可分解关一个正应力和两个切应力分量,如图2.2所示。以后,对正应力只用一个字母的下标标记,对切应力则用两个字母标记*其中第一个字母表示应力所在面的外法线方向;第二个字母表示应力分量的指向。正应力的正负号规定为:拉应力为正,压应力为负。切应力的正负号规定分为两种情况:当其所在面的外法线与坐标轴的正方向一致时,则以沿坐标轴正方向的切应力为正,反之为负;当所在面的外法线与坐标袖的负方向一致时,则以沿坐标轴负方向的切应力为正,反之为负。图2.2中的各应力分量均 图2.1 应力矢量

弹塑性力学简答题

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

《材料力学》第章%B应力状态和强度理论%B习

第七章 应力状态和强度理论 习题解 [习题7-1] 试从图示各构件中A 点和B 点处取出单元体,并表明单元体各面上的应力。 [习题7-1(a )] 解:A 点处于单向压应力状态。 2244 12d F d F F A N A ππσ-=-== [习题7-1(b )] 解:A 点处于纯剪切应力状态。 331616 1d T d T W T P A ππτ-=== MPa mm mm N 618.798014.3108163 36=????= [习题7-1(b )] 解:A 点处于纯剪切应力状态。 0=∑A M 04.028.02.1=?--?B R )(333.1kN R B = A σ A τ

)(333.1kN R Q B A -=-= MPa mm N A Q A 417.01204013335.15.12-=??-=? =τ B 点处于平面应力状态 MPa m m m m m m N I y M z B B 083.21204012 130103.0333.1436=??????==σMPa m m m m m m N b I QS z z B 312.0401204012 145)3040(13334 33 *-=??????-== τ [习题7-1(d )] 解:A 点处于平面应力状态 MPa m m m m N W M z A A 064.502014.332 1103.39333=????==σ MPa m m m m N W T P A 064.502014.316 1106.78333 =????== τ [习题7-2] 有一拉伸试样,横截面为mm mm 540?的矩形。在与轴线成0 45=α角的面上切应力MPa 150=τ时,试样上将出现滑移线。试求试样所受的轴向拉力F 。 解:A F x = σ;0=y σ;0=x τ 004590cos 90sin 2 x y x τσστ+-= A F 20 45= τ 出现滑移线,即进入屈服阶段,此时, 15020 45≤= A F τ kN N mm mm N A F 6060000540/30030022==??== [习题7-3] 一拉杆由两段沿n m -面胶合而成。由于实用的原因,图中的α角限于0 60 ~0范围内。作为“假定计算”,对胶合缝作强度计算时,可以把其上的正应力和切应力分别与相应的许用应力比较。现设胶合缝的许用切应力][τ为许用拉应力][σ的4/3 ,且这一拉杆 A τ B τ B σA τA σ

三向应力状态图解法的研究_王军

三向应力状态图解法的研究_王军 第22卷第3期 2019年6月 吉林化工学院学报 JOURNAL OF JILIN INSTITUTE OF CHEM ICAL TECHNOLOGY Vol. 22No. 3Jun. 2019 文章编号:1007-2853(2019) 03-0071-03 三向应力状态图解法的研究 王军, 马庆捷 (吉林化工学院机电工程系, 吉林吉林132022) 摘要:证明了三向应力状态斜截面上应力分量与三向应力圆阴影部分相对应, 研究了 用图解法画出三向应力状态斜截面上应力分量的方法. 关键词:三向应力状态; 应力圆; 斜截面; 应力分量; 图解法中图分类号:T B 301 文献标识码:A 应力状态包括单向应力状态, 二向和三向应力状态, 对于单向和二向应力状态的应力 分析解析法和图解法在工程力学中都有较详细的论述. 但三向应力状态的应力分析只有解 析法定性的论述, 没有图解法的分析. 而解析法又非常繁杂. 本文研究了用图解法画出三 向应力状态斜截面上应力分量的方法, 使工程力学应力分析的方法都可以应用图解法来分析, 使讲授工程力学的教师和工程技术人员解决实际问题有了既简便又准确的方法. 中三个圆周中的任意两个, 其交点的坐标即为所求斜截面上的应力. 但比较繁杂. 如 约定 1> 2> 22 3, 且l 0, 则(1) 式中有l ( 1 - 2) ( 1- 3) 0, 所以第一式所确定的圆周的半径大于和它同心的圆周BC 的半径. 1 任意斜截面上的应力计算 在三向应力状态下, 当三个主应力已知时, 其任意斜截面上的应力 n 如图1(b) 所示, 可以通n 、过理论计算得知[1]. 在以 n 为横坐标, n 为纵坐标的坐标系中, 由下列三个圆周的交点的坐标值来表达. 2+ 3

应力状态分析和强度理论

第八章 应力状态和强度理论 授课学时:8学时 主要内容:斜截面上的应力;二向应力状态的解析分析和应力圆。三向应力简介。 $8.1应力状态概述 单向拉伸时斜截面上的应力 1.应力状态 过构件上一点有无数的截面,这一点的各个截面上应力情况的集合,称为这点的应力状态 2.单向拉伸时斜截面上的应力 横截面上的正应力 A N =σ 斜截面上的应力 ασα cos cos ===A P A P p a a 斜截面上的正应力和切应力为 ασασ2cos cos ==a a p ασ ατ2sin 2 sin = =a a p 可以得出 0=α时 σσ=max 4 π α= 时 2 m a x σ τ= 过A 点取一个单元体,如果单元体的某个面上只有正应力,而无剪应力,则此平面称为主平面。主平面上的正应力称为主应力。 主单元体 若单元体三个相互垂直的面皆为主平面,则这样的单元体称为主单元体。三个主应力中有一个不为零,称为单向应力状态。三个主应力中有两个不为零,称为二向应力状态。三个主应力中都不为零,称为三向应力状态。主单元体三个主平面上的主应力按代数值的大小排列,即为321σσσ≥≥。 P P a a α

$8.2二向应力状态下斜截面上的应力 1. 任意斜截面上的应力 在基本单元体上取任一截面位置,截面的法线n 。 在外法线n 和切线t 上列平衡方程 αασαατσc o s )c o s (s i n )c o s (dA dA dA x xy a -+ 0sin )sin (cos )sin (=-+αασαατdA dA y yx αασααττ sin )cos (cos )cos (dA dA dA x xy a -- 0sin )sin (cos )sin (=++ααταασdA dA yx y 根据剪应力互等定理,yx xy ττ=,并考虑到下列三角关系 22sin 1sin ,22cos 1cos 22 α ααα-=+= , ααα2sin cos sin 2= 简化两个平衡方程,得 ατασσσσσα2sin 2cos 2 2 xy y x y x --+ += ατασστα2cos 2sin 2 xy y x +-= 2.极值应力 将正应力公式对α取导数,得 ?? ????+--=ατασσασα 2cos 2sin 22xy y x d d 若0αα=时,能使导数 0=α σα d d ,则 02cos 2sin 2 00=+-ατασσxy y x y x xy tg σστα-- =220 上式有两个解:即0α和 900±α。在它们所确定的两个互相垂直的平面上,正应力取 xy τyx τn α t

弹塑性力学总结读书报告

弹塑性力学读书报告 弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。它由弹性理论和塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。弹塑性力学也是连续介质力学的基础和一部分。弹塑性力学包括:弹塑性静力学和弹塑性动力学。 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。 1 基本思想及理论 1.1科学的假设思想 人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。 1.1.1连续性假定 假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 1.1.2线弹性假定(弹性力学)

工程力学-应力状态与应力状态分析报告

8 应力状态与应变状态分析 1、应力状态的概念, 2、平面应力状态下的应力分析, 3、主平面是切应力为零的平面,主应力是作用于主平面上的正应力。 (1)过一点总存在三对相互垂直的主平面,对应三个主应力,主应力排列规定按代数值由大到小为: 321σσσ≥≥ 最大切应力为 13 2 max σστ-= (2)任斜截面上的应力 α τασσσσσα2sin 2cos 2 2 xy y x y x --+ += α τασστα2cos 2sin 2 xy y x +-= (3) 主应力的大小 2 2min max )2 ( 2 xy y x y x τσσσσσ+-±+= 主平面的方位 y x xy tg σστα--= 220 4、主应变 12 2122x y x y xy xy x y ()()tg εεεεεεγγ?εε? = +±-+? = - 5、广义胡克定律 )]([1 z y x x E σσμσε+-=

)] ( [ 1 x z y y E σ σ μ σ ε+ - = )] ( [ 1 y x z z E σ σ μ σ ε+ - = G zx zx τ γ= G yz yz τ γ= ,G xy xy τ γ= 6、应力圆与单元体之间的对应关系可总结为“点面对应、转向相同、夹角两倍。” 8.1试画出下图8.1(a)所示简支梁A点处的原始单元体。 图8.1 [解](1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。再取A点偏上和偏下的一对与xz平行的平面。截取出的单元体如图8.1(d)所示。 (2)分析单元体各面上的应力: A点偏右横截面的正应力和切应力如图8.1(b)、(c)所示,将A点的坐标x、y代入正应力和切应力公式得A点单元体左右侧面的应力为: z M y I σ= b I QS z z * = τ 由切应力互等定律知,单元体的上下面有切应力τ;前后边面为自由表面,应力为零。在单元体各面上画上应力,得到A点单元体如图8.1(d)。 8.2图8.2(a)所示的单元体,试求(1)图示斜截面上的应力;(2)主方向和主应力,画出主单元体;(3)主切应力作用平面的位置及该平面上的正应力,并画出该单元体。 解题范例

弹塑性力学 应力和应变之间的关系

我所认识的应力和应变之间的关系 在单向应力状态下,理想弹性材料的应力和应变之间的关系是满足胡克定律的一一对应的关系。在三维应力状态下描述一点处的应力状态需要9个分量,相应的应变状态也要用9个应变分量来表示。对于一个具体的理想弹性体来讲,如果在三维应力状态下,应力与应变之间仍然有线性一一对应关系存在,则称这类弹性体为线性弹性体。 所谓各向弹性体,从力学意义上讲,就是弹性体内的每一点沿各个方向的力学性质都完全相同的。这类线性弹性体独立的唐兴常数只有两个。 各向同性体本构关系特点:1.主应力与主应变方向重合。2.体积应力与体积应变成比例。 3.应力强度与应变强度成比例。 4.应力偏量与应变偏量成比例。工程应用中,常把各向同性弹性体的本构方程写下成11()11()11()x y z xy xy y x z yz yz z y x xz xz E G E G E G εσμσσγτεσμσσγτεσμσσγτ???=-+=???????=-+=???????=-+=???? ,式中分别为弹性模量、泊松比和剪切模量。在E G μ、、这三个参数之间,实际上独立的常量只有两个,它们之间存在关系为() 21E G μ=+。 屈服条件:弹性和塑性的最主要区别在于变形是可以恢复。习惯上,根据破坏时变形的大小把工程材料分为脆性材料和塑性材料两类。对于加载过程如图1 OA: 比例阶段;线性弹性阶段 AB: 非弹性变形阶段 BC : 初始屈服阶段 s σσ≤ CDE :强化阶段;应变强化硬化阶段 EF : 颈缩阶段;应变弱化,软化阶段 s σσ≥ C 点为初始屈服点具有唯一性。在应力超过屈服应力后,如果在曲线上任意一点D 处卸 载,应力和应变之间将不再遵循原有的加载曲线规 律,而是沿一条接近平行于OA 的直线DO ’变化,直到应力下降为零,这时应变并不为零,即有塑性应变产生。如果用OD ’表示总应变ε,O ’D ’表示可以恢复的弹性应变e ε,OO ’表示不能恢复的塑性应变p ε,则有e p εεε=+,即总应变等于弹性应变加上塑性应变。若在卸载后重新加载,则曲线基本上仍沿直线O ’D 变化,直至超过D 点的应力之后,才会产生新的塑性变形。由此看来,在经过前次塑性变形后,屈服应力提高了,这种现象称为应变强化现象。为了与初始屈服相区别,我们把机箱发生新的塑性变形时的材料的再次屈服称为后

应力与应力状态分析

应力与应力状态分析 拉伸模量 拉伸模量是指材料在拉伸时的弹性,其计算公式如下: 拉伸模量(㎏/c ㎡)=△f/△h(㎏/c ㎡) 其中,△f 表示单位面积两点之间的力变化,△h 表示以上两点之间的应变化。更具体地说,△h =(L-L0)/L0,其中L0表示拉伸长前的长度,L 表示拉伸长后的长度。 §4-1 几组基本术语与概念 一、变形固体的基本假设 1、均匀连续性假设:假设在变形固体的整个体积内均匀地、毫无空隙地充满着物质,并且各点处的力学性质完全相同。 根据这一假设,可从变形固体内任意一点取出微小单元体进行研究,且各点处的力学性质完全相同,因而固体内部各质点的位移、各点处的内力都将是连续分布的,可以表示为各点坐标的连续函数。 2、各向同性假设:假设变形固体在所有方向上均具有相同的力学性质。 3、小变形假设:认为构件的变形与构件的原始尺寸相比及其微小。 根据小变形假设,在研究构件上力系的简化、研究构件及其局部的平衡时,均可忽略构件的变形而按构件的原始形状、尺寸进行计算。 二、应力的概念 1、正应力的概念 分布内力的大小(或称分布集度),用单位面积上的内力大小来度量,称为应力。 由于内力是矢量,因而应力也是矢量,其方向就是分布内力的方向。 沿截面法线方向的应力称为正应力,用希腊字母σ表示。 应力的常用单位有牛/米2 (2/m N ,12/m N 称为1帕,代号a P )、千米/米2(2/m KN ,12/m KN 称为1千帕,代号K a P ),此外还有更大的单位兆帕(M a P )、吉帕(G a P )。 几种单位的换算关系为:

1 K a P =310a P 1 M a P =310K a P 1 G a P =310M a P =610K a P =910a P 2、切应力与全应力的概念 与截面相切的应力分量称为切应力,用希腊字母τ表示。 K 点处某截面上的全应力K p 等于该点处同一截面上的正应力K σ与切应力K τ的矢量和。 三、位移、变形及应变的概念 变形:构件的形状和尺寸的改变。 位移:构件轴线上点的位置变化和截面方位的改变。 变形和位移的关系:构件的变形必然会使结构产生位移,但结构的位移不一定是由构件的变形引起的,温度变化、支座移动等也会使结构产生位移。 单元体:围绕构件内某一点截取出来的边长为无限小的正六面体。 应变:描述单元体变形程度的几何量,包括线应变和角应变两类。 线应变(正应变)ε:单元体线性尺寸的相对改变量。ε=Δu / u 角应变(切应变)γ:单元体上直角的改变量。γ= 90°- θ 应力与应变的对应关系:正应力σ与正应变ε相互对应;切应力τ与切应变γ相互对应。 四、受力构件内一点处的应力状态的概念 构件内某点处的应力状态,是指通过该点的各个不同方位截面上的应力情况的总体。 研究应力状态,对全面了解受力杆件的应力全貌,以及分析杆件的强度和破坏机理,都是必需的。 为了研究一点处的应力状态,通常是围绕该点取一边长为无限小的正六面体,即单元体。 主平面:单元体上没有切应力的面称为主平面。 主应力:主平面上的正应力称为主应力。 可以证明,通过一点处的所有方向面中,一定存在三个互相垂直的主平面(即一定存在主单元体),因而每一点都对应着三个主应力。 一点处的三个主应力分别用σ1 , σ2 和σ3来表示,并按应力代数值的大小顺序排列,即σ1≥σ2≥σ3。 原始单元体:从一点处取出的各面上应力都已知的单元体,称为该点的原始单元体。对于杆件,通常用一对横截面和两对互相垂直的纵截面截取原始单元体。 主单元体:各面上没有切应力的单元体称为主单元体。 应力状态的分类: 空间(三向)应力状态:三个主应力均不为零 平面(二向)应力状态:一个主应力为零 单向应力状态:两个主应力为零

应力状态分析

应力状态分析 一、概念题 1.判断题:(以下结论对者画√,错者画×) (1)单元体内的主平面不一定就是三个。也可能有无数个。 ( ) (2)第1主应力是单元体内绝对值最大的正应力。 ( ) (3)受扭圆轴横截面上的点只有切应力,因而均处于单向应力状态。 ( ) (4)如微元体处于纯剪切应力状态,因而微元体内任何方向的斜截面上均没有正应力。 ( ) (5)凡是产生组合变形的杆件上的点,均处于复杂应力状态。 ( ) (6)扭转与弯曲组合变形的杆件,从其表层取出的微元体处于二向应力状态。( ) (7)扭转与弯曲组合变形的杆件,在其横截面上仍能取得处于纯切应力状态的点。 ( ) (8) 杆件弯、拉组合变形时,杆内各点均处于简单应力状态。 ( ) 2、选择题: (1) 矩形截面悬臂梁受力如图所示,从1—1截面A 点处截取一微元体,该微元体上的应力情况为( )。 (2)在研究一点的应力状态时,所谓的主平面是指( )。 A 、正应力为零的平面; B 、切应力最大的平面; C 、切应力为零的平面; D 、正应力不为零的平面。 (3)下面关于主平面定义的叙述中,正确的是( )。 A 、主平面上的正应力最大; B 、主平面上的切应力最大; C 、主平面上的正应力为零; D 、主平面上的切应力为零。 (4) 矩形截面悬臂梁受力如图所示,固定端截面的下角点A 与B 的应力状态为( )。 A 、单向拉伸; B 、单向压缩; C 、双向拉伸; D 、纯剪切。 (5)矩形截面悬臂梁受力如图所示,其固定端截面形心处的应力状态是( )。 A 、单向应力状态; B 、二向应力状态; C 、三向应力状态; D 、无法判定。

第二章 应力状态分析

第二章应力状态分析 内容介绍 知识点 体力 应力矢量 应力分量 平衡微分方程 面力边界条件 主平面与主应力 主应力性质 截面正应力与切应力三向应力圆 八面体单元 偏应力张量不变量面力 正应力与切应力 应力矢量与应力分量 切应力互等定理 应力分量转轴公式 平面问题的转轴公式 应力状态特征方程 应力不变量 最大切应力 球应力张量和偏应力张量 作用于物体的外力可以分为两种类型:体力和面力。 所谓体力就是分布在物体整个体积内部各个质点上的力,又称为质量力。例如物体的重力,惯性力,电磁力等等。 面力是分布在物体表面上的力,例如风力,静水压力,物体之间的接触力等。

为了表明物体在xyz坐标系内任意一点P 所受体力的大小和方向,在P点的邻域取一微小体积元素△V, 如图所示 设△V的体力合力为△F,则P点的体力定义为 令微小体积元素△V趋近于0,则可以定义一点P的体力为 一般来讲,物体内部各点处的体力是不相同的。 物体内任一点的体力用F b表示,称为体力矢量,其方向由该点的体力合力方向确定。 体力沿三个坐标轴的分量用F b i( i = 1,2,3)或者F b x,F b y,F b z表示,称为体力分量。体力分量的方向规定与坐标轴方向一致为正,反之为负。 应该注意的是:在弹性力学中,体力是指单位体积的力。 类似于体力,可以给出面力的定义。

对于物体表面上的任一点P,在P点的邻域取一包含P点的微小面积元素△S, 如图所示。设△S上作用的面力合力为△F,则P 点的面力定义为 面力矢量是单位面积上的作用力,面力是弹性体表面坐标的函数。一般条件下,面力边界条件是弹性力学问题求解的主要条件。 面力矢量用F s表示,其分量用F s i(i=1,2,3)或者F s x、F s y和F s z表示。 面力的方向规定以与坐标轴方向一致为正,反之为负。 弹性力学中的面力均定义为单位面积的面力。 物体在外界因素作用下,例如外力,温度变化等,物体内部各个部分之间将产生相互作用,这种物体一部分与相邻部分之间的作用力称为内力。 内力的计算可以采用截面法,即利用假想平面将物体截为两部分,将希望计算内力的截面暴露出来,通过平衡关系计算截面内力F。

jlu塑性力学复习题

塑性力学复习题 一、填空题 1.塑性变形不仅与当前的应力状态有关,还和(加载历史)有关。 2.对一般金属,体积应变完全是()的,静水压力不产生()。它对屈服极限的影响()。 3.下图是低碳钢作简单拉伸试验得到的应力—应变曲线。 (1)图中P点的纵坐标称为(),记作()。Q点的纵坐标称为(),记作()。对应于R点的应力称为(),对应于SA的应力称为()。一般把()称为屈服极限,以()表示。 σ阶段,服从()。 (2)在σ≤ s (3)σ—ε曲线的ABF段称为()。 (4)卸载时卸掉的应力σ'与恢复的应变ε'之间也应当服从()。 (5)经过一次塑性变形以后再重新加载的试件,其弹性段增大了,屈服极限提高了。这种现象称为()。 (6)σ—ε曲线至F点后开始下降,这是由于在F点处试件已开始出现()现象。 ε=(), 4.八面体面上的正应变为 8 γ()。 剪应变为= 8 σ=()。 5.用主应力表示的等效应力(或应力强度)为: i 用六个应力分量表示的等效应力(或应力强度)为: σ=()。 i 6.用主应力表示的等效剪应力(或剪应力强度)为:T = ()。 用六个应力分量表示的等效剪应力(或剪应力强度)为: T = ()。 μ=()。 7.应力状态的Lode参数为: σ ε=()。 8.用主应变表示的等效应变(或应变强度)为: i 用六个应变分量表示的等效应变(或应变强度)为: ε= ()。 i 9.用主应变表示的等效剪应变(或剪应变强度)为:Γ=()。 用六个应变分量表示的等效剪应变(或剪应变强度)为:

Γ=( )。 10.表示应变状态特征的Lode 参数为:εμ=( )。 11.第一应力不变量为:1I =( )=( )。 第二应力不变量为:2I =( )=( )。 第三应力不变量为:3I =( )=( )。 12.第一应变不变量为:1I '=( )=( )。 第二应变不变量为:2I '=( )=( )。 第三应变不变量为:='3I ( )=( )。 13.应力偏张量的第一不变量为:=1J ( )。 应力偏张量的第二不变量为:2J =( ) =( )。 应力偏张量的第三不变量为:3J =( )=( )。 14.应变偏张量的第一不变量为:='1J ( )。 应变偏张量的第二不变量为:='2 J ( ) =( )。 应变偏张量的第三不变量为:3J '=( )=( )。 15.在应力空间中,靠近坐标原点且包括原点在内,有一个弹性区(在这个区内的点所表示的应力状态处于弹性阶段),而在其外则为塑性区(其中各点所表示的应力状态已进入塑性阶段)。这两个区的分界叫做( )。 16.主应力按大小顺序排列时的Tresca 屈服条件为( )。 17.主应力不按大小顺序排列时的Tresca 屈服条件为 ( )。 18.用应力偏张量的第二,第三不变量表示的Tresca 屈服条件为: ( )。 19.Mises 屈服条件为( ) 或( )。 二、判断题(如果题中的说法正确,就在后面的括号里填“√”反之填“×”) 1.塑性应变和应力之间具有一一对应的关系。( ) 2.进入塑性状态后,应力与应变之间呈非线性关系。( )。 3.一个已知应力状态(σ1,σ2,σ3)对应π平面上唯一的点S 。反之,π平面上的一点S 也唯一地确定它所代表的原始应力状态。( ) 4.如果以单向拉伸得到的σ为基础,则Mises 屈服条件和Tresca 屈服条件在单向拉压应力状态下完全一致,( )在纯剪切时二者差异最大,约为15%。( ) 三、选择题(只能选一个答案) 1.如果规定σ1≥σ2≥σ3,则最大剪应力为( ): a .22 1max σστ-=; b .231max σστ-=; c .2 32max σστ-=。 2.单向拉伸(0,0321==>σσσ)时应力状态的Lode 参数为( )。 a .σμ=-1; b .σμ=0; c .σμ=1。 3.纯剪切(312,0σσσ-==)时应力状态的Lode 参数为( )。 a .σμ=-1; b .σμ=0; c .σμ=1。 4.单向压缩(0,0321<==σσσ)时应力状态的Lode 参数为( )。

塑性力学知识点13

《塑性力学及成形原理》知识点汇总 第一章绪论 1.塑性的基本概念 2.了解塑性成形的特点 第二章金属塑性变形的物理基础 1.塑性和柔软性的区别和联系 2.塑性指标的表示方法和测量方法 3.磷、硫、氮、氢、氧等杂质元素对金属塑性的影响 4.变形温度对塑性的影响;超低温脆区、蓝脆区、热脆区、高温脆区的温度范围 补充扩展: 1.随着变形程度的增加,金属的强度硬度增加,而塑性韧性降低的现象称为:加工硬化 2.塑性指标是以材料开始破坏时的塑性变形量来表示,通过拉伸试验可以的两个塑性 指标为:伸长率和断面收缩率 3.影响金属塑性的因素主要有:化学成分和组织、变形温度、应变速率、应力状态(变 形力学条件) 4.晶粒度对于塑性的影响为:晶粒越细小,金属的塑性越好 5.应力状态对于塑性的影响可描述为(静水压力越大):主应力状态下压应力个数越 多,数值越大时,金属的塑性越好 6.通过试验方法绘制的塑性——温度曲线,成为塑性图 第三章金属塑性变形的力学基础 第一节应力分析 1.塑性力学的基本假设 2.应力的概念和点的应力状态表示方法 3.张量的基本性质 4.应力张量的分解;应力球张量和应力偏张量的物理意义;应力偏张量与应变的关系5.主应力的概念和计算;主应力简图的画法 公式( ...3.-.14..)应力张量不变量的计算 ...........1 222 2 222 3 () 2() x y z x y y z z x xy yz zx x y z xy yz zx x yz y zx z xy J J J σσσ σσσσσστττ σσστττστστστ=++ =-+++++ =+-++

弹塑性力学试卷

一、问答题:(简要回答,必要时可配合图件答题。每小题5分,共10分。) 1、简述固体材料弹性变形的主要特点。 2、试列出弹塑性力学中的理想弹塑性力学模型(又称弹性完全塑性模型)的应力与应变表达式,并绘出应力应变曲线。 二、填空题:(每空2分,共8分) 1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。(参照oxyz直角坐标系)。 2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。 三、选择题(每小题有四个答案,请选择一个正确的结果。每小题4分,共16分。) 1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。裂纹展布的方向是:_________。 A、沿圆柱纵向(轴向) B、沿圆柱横向(环向) C、与纵向呈45°角 D、与纵向呈30°角 2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。该板危险点的最大拉应力是无孔板最大拉应力__________倍。 A、2 B、3 C、4 D、5 3、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。)则在该点处的应变_________。 A、一定不为零 B、一定为零 C、可能为零 D、不能确定 4、以下________表示一个二阶张量。 A、B、C、D、 四、试根据下标记号法和求和约定展开下列各式:(共8分) 1、;(i ,j = 1,2,3 ); 2、;

五、计算题(共计64分。) 1、试说明下列应变状态是否可能存在: ;() 上式中c为已知常数,且。 2、已知一受力物体中某点的应力状态为: 式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量 之和。为平均应力。并说明这样分解的物理意义。 3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。若选取=ay2做应力函数。试求该物体的应力解、应变解和位移解。 (提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。) 题五、3图

材料力学习题册答案-第7章应力状态

第 七 章 应力状态 强度理论 一、 判断题 1、平面应力状态即二向应力状态,空间应力状态即三向应力状态。 (√) 2、单元体中正应力为最大值的截面上,剪应力必定为零。 (√) 3、单元体中剪应力为最大值的截面上,正应力必定为零。 (×) 原因:正应力一般不为零。 4、单向应力状态的应力圆和三向均匀拉伸或压缩应力状态的应力圆相同,且均为应力轴 上的一个点。 (×) 原因:单向应力状态的应力圆不为一个点,而是一个圆。三向等拉或等压倒是为一个点。 5、纯剪应力状态的单元体,最大正应力和最大剪应力值相等,且作用在同一平面上。(×) 原因:最大正应力和最大剪应力值相等,但不在同一平面上 6、材料在静载作用下的失效形式主要有断裂和屈服两种。 (√) 7、砖,石等脆性材料式样压缩时沿横截面断裂。 (×) 8、塑性材料制成的杆件,其危险点必须用第三或第四强度理论所建立的强度条件来校核强度。 (×) 原因:塑性材料也会表现出脆性,比如三向受拉时,此时,就应用第一强度理论 9、纯剪应力状态的单元体既在体积改变,又有形状改变。(×) 原因:只形状改变,体积不变 10、铸铁水管冬天结冰时会因冰膨胀被胀裂,而管内的冰不会被破坏,只是因为冰的强度比铸铁的强度高。(×) 原因:铸铁的强度显然高于冰,其破坏原因是受到复杂应力状态 二、 选择题 1、危险截面是( C )所在的截面。 A 最大面积 B 最小面积 C 最大应力 D 最大内力 2、关于用单元体表示一点处的应力状态,如下论述中正确的一种是( D )。 A 单元体的形状可以是任意的 B 单元体的形状不是任意的,只能是六面体微元 C 不一定是六面体,五面体也可以,其他形状则不行 D 单元体的形状可以是任意的,但其上已知的应力分量足以确定任意方向面上的硬力 3、受力构件内任意一点,随着所截取截面方位不同,一般来说( D ) A 正应力相同,剪应力不同 B 正应力不同,剪应力相同 C 正应力和剪应力均相同 D 正应力和剪应力均不同 4、圆轴受扭时,轴表面各点处于( B ) A 单向应力状态 B 二向应力状态 C 三向应力状态 D 各向等应力状态 5、分析处于平面应力状态的一点,说法正确的是( B )。 A a σ=0时,必有a τ=max τ或a τ=min τ B a τ=0时,必有a σ=max σ或a σ=min σ C a σ+90a σ+及|a τ|+|90a τ+|为常量 D 1230σσσ≥≥≥

塑性力学复习试题

塑性力学复习试题 一、填空题 1.塑性变形不仅与当前的应力状态有关,还和()有关。 2.对一般金属,体积应变完全是()的,静水压力不产生()。它对屈服极限的影响()。 3.下图是低碳钢作简单拉伸试验得到的应力—应变曲线。 (1)图中P点的纵坐标称为(),记作()。Q点的纵坐标称为(),记作()。对应于R点的应力称为(),对应于SA的应力称为()。一般把()称为屈服极限,以()表示。 σ阶段,服从()。 (2)在σ≤ s (3)σ—ε曲线的ABF段称为()。 (4)卸载时卸掉的应力σ'与恢复的应变ε'之间也应当服从()。 (5)经过一次塑性变形以后再重新加载的试件,其弹性段增大了,屈服极限提高了。这种现象称为()。 (6)σ—ε曲线至F点后开始下降,这是由于在F点处试件已开始出现()现象。 ε=(), 4.八面体面上的正应变为 8 γ()。 剪应变为= 8 σ=()。 5.用主应力表示的等效应力(或应力强度)为: i 用六个应力分量表示的等效应力(或应力强度)为: σ=()。 i 6.用主应力表示的等效剪应力(或剪应力强度)为:T = ()。 用六个应力分量表示的等效剪应力(或剪应力强度)为: T = ()。 μ=()。 7.应力状态的Lode参数为: σ ε=()。 8.用主应变表示的等效应变(或应变强度)为: i 用六个应变分量表示的等效应变(或应变强度)为: ε= ()。 i 9.用主应变表示的等效剪应变(或剪应变强度)为:Γ=()。 用六个应变分量表示的等效剪应变(或剪应变强度)为:

Γ=( )。 10.表示应变状态特征的Lode 参数为:εμ=( )。 11.第一应力不变量为:1I =( )=( )。 第二应力不变量为:2I =( )=( )。 第三应力不变量为:3I =( )=( )。 12.第一应变不变量为:1I '=( )=( )。 第二应变不变量为:2I '=( )=( )。 第三应变不变量为:='3I ( )=( )。 13.应力偏张量的第一不变量为:=1J ( )。 应力偏张量的第二不变量为:2J =( ) =( )。 应力偏张量的第三不变量为:3J =( )=( )。 14.应变偏张量的第一不变量为:='1J ( )。 应变偏张量的第二不变量为:='2 J ( ) =( )。 应变偏张量的第三不变量为:3J '=( )=( )。 15.在应力空间中,靠近坐标原点且包括原点在内,有一个弹性区(在这个区内的点所表示的应力状态处于弹性阶段),而在其外则为塑性区(其中各点所表示的应力状态已进入塑性阶段)。这两个区的分界叫做( )。 16.主应力按大小顺序排列时的Tresca 屈服条件为( )。 17.主应力不按大小顺序排列时的Tresca 屈服条件为 ( )。 18.用应力偏张量的第二,第三不变量表示的Tresca 屈服条件为: ( )。 19.Mises 屈服条件为( ) 或( )。 二、判断题(如果题中的说法正确,就在后面的括号里填“√”反之填“×”) 1.塑性应变和应力之间具有一一对应的关系。( ) 2.进入塑性状态后,应力与应变之间呈非线性关系。( )。 3.一个已知应力状态(σ1,σ2,σ3)对应π平面上唯一的点S 。反之,π平面上的一点S 也唯一地确定它所代表的原始应力状态。( ) 4.如果以单向拉伸得到的σ为基础,则Mises 屈服条件和Tresca 屈服条件在单向拉压应力状态下完全一致,( )在纯剪切时二者差异最大,约为15%。( ) 三、选择题(只能选一个答案) 1.如果规定σ1≥σ2≥σ3,则最大剪应力为( ): a .2 2 1m ax σστ-= ; b .2 3 1max σστ-= ; c .2 3 2m ax σστ-= 。 2.单向拉伸(0,0321==>σσσ)时应力状态的Lode 参数为( )。 a .σμ=-1; b .σμ=0; c .σμ=1。 3.纯剪切(312,0σσσ-==)时应力状态的Lode 参数为( )。 a .σμ=-1; b .σμ=0; c .σμ=1。 4.单向压缩(0,0321<==σσσ)时应力状态的Lode 参数为( )。

相关文档
最新文档