汽车空调制冷剂发展史解读

汽车空调制冷剂发展史解读
汽车空调制冷剂发展史解读

1

制冷剂的诞生

[汽车之家技术] 上周我们报道了这样一则新闻,宝马i3的空调系统加注了新型的制冷剂——R1234yf,而奔驰则在为拒绝使用新型制冷剂(经过试验,他们发现R1234yf制冷剂存在起火隐患)跟法国政府争得不可开交。如果你不了解这件事的缘由,可以点击《又一场革命?宝马i3使用新型空调制冷剂》。两个德系品牌为什么在R1234yf制冷剂的使用方面持有不同的态度我们暂先不论,可以肯定的是,汽车空调制冷剂即将迎来新一轮变革,这在历史上已经经历过3次了。

●第一代:制冷剂诞生关键词:能用即可

★发明制冷系统的人曾经是位金匠

人类的需求是推动历史前进的源动力,制冷技术就是这样应运而生。1834年,Jacob Perkins这个来自美国的发明家向外界展示了它所研制的蒸汽压缩制冷循环技术,这算是开启了人类在制冷技术的大门,当时使用的制冷剂为乙醚。

★使用什么样的制冷剂则仍处探索之中

在这之后,围绕制冷剂的发明和变革始终没有停息过。当时那个年代所采用的制冷剂大多为比较容易获得的流体(液体和气体的总称),比如,乙醚、水/硫酸、酒精、氨/水等,而让我们关注的是,在那时就有人提出用二氧化碳作为制冷剂的方案,不过,由于技术的限制,二氧化碳的特性并没能被充分挖掘出来。总体来看,这一阶段所诞生的制冷剂种类均以化合物(两种或两种以上的元素组成的纯净物)为主。到了1885年,有个叫Pictet的人提出的见解与大多数人不同,他的设想是将硫酸与碳氢化合物的混合物作为制冷剂。

同年,有个叫卡尔·本茨的德国工程师制造了世界上第一辆汽车,并于1886年1月29日申请专利,当然,在那时,人们对于汽车的需求仅仅停留在能跑的基础上。

经过大量的论证,Carrier和Waterfill两个人将一直停留在纸上谈兵阶段的理论基础于1924年进行了实践,在制冷剂的选择上,他们排除了一些有着明显缺陷的物质,比如,上面提到二氧化碳以及对金属有腐蚀的四氯化碳等,最终,二氯乙烷成为在第一台离心式压缩机中循环的制冷剂。

2

发展至汽车领域

●第二代:制冷剂正式投入使用

关键词:稳定性,汽车装配空调

以“能用即可”为需求的第一个时代就这样走过了百年,而随着商业化的不断推进,制冷技术在1931年进入第二个时代,在接下来的的几十年里(1930年至1990年),新开发的制冷剂无论是在安全性还是在耐久性方面都超越了第一个时代里诞生的产品,因此,新旧交替势在必行。

★制冷技术的运用

20世纪初,制冷技术开始在大厦中投入使用,它开始成为调节大厦内部温度的主要手段,位于美国德克萨斯州的梅兰大厦是第一个整体装配空调的高层建筑。

第一辆装有空调的汽车则要等到1939年才出世,它出自美国的Packard汽车公司,Packard在当时是一个豪华汽车品牌。

★制冷剂技术逐渐成熟并广泛投入使用

在技术上,新型的制冷剂已经具备实际应用并广泛推广的条件,与此同时,人们在制冷方面的需求也急剧增加,这促使了一个黄金时代的出现,毫无疑问,对于制冷剂制造业而言,它开启了一个非常好的年代。

几乎是在同一时间,新型制冷压缩机也被研制了出来并很快投入商业化生产,随即,制冷设备进入家庭。为了更进一步优化制冷设备性能,一系列新型制冷剂的研发工作也一并展开,杜邦公司是推动其发展的重要角色,它们将这种含有氯元素的制冷剂命名为氟利昂。

事实上,在接下来的30年里,有很多种氟利昂被研制出来,其中一种名为R12的制冷剂(二氯二氟甲烷)是我们所熟悉。如今,在一些年头较长的汽车上,我们还是能见到加注有R12制冷剂的空调系统。当时,它被广泛的应用于家用冰箱等低温储藏设备中,而在汽车空调领域使用的唯一制冷剂也是R12。

★人们发现第二代制冷剂在环保方面存在很大问题

这样的发展持续了50年,1974年,Molina和Rowland发现,氟利昂泄漏到空气中后会释放破坏大气臭氧层的氯,人们也发现了在南极上空出现的臭氧层空洞,这无疑会加剧温室效应的程度。有关氟利昂的一些负面声音开始涌现,进而引发了整个社会对于氟利昂的关注,这也促使制冷剂又一次变革的到来。

3

为R12制冷剂寻找替代品

●第三代:降低制冷剂对温室效应的影响

关键词:放弃含有氯元素的R12

第三代制冷剂将侧重点放在环保方面,在确保制冷剂效果的同时,还要尽可能的避免其对环境的危害。于是,为了适应未来发展需要,制冷剂的生产厂商开始投入到环保型制冷剂的研发之中。

★环保型制冷剂是如何认定的

所谓环保型制冷剂,它基本以两个数值作参考,一个是评估臭氧层损耗物质的ODP值,另一个是GWP值(全球变暖潜能值),它是以二氧化碳对温室效应的影响为标准,比如,GWP>150,那就意味着这个制冷剂给温室效应带来的影响是二氧化碳的150倍。上面说到的R12制冷剂的GWP则在10000以上。

1985年3月通过的《保护臭氧层维也纳公约》以及1987年9月通过的《关于消耗臭氧层物质的蒙特利尔议定书》对新型制冷剂的研发和发展起到了正面的作用,它主要明确了卤代烃类制冷剂(氟利昂)会对环境造成不良影响,一些发达国家在这方面的表现比较积极,最终确定没有氯元素的氢氟烃类制冷剂将作为第三代制冷剂的标准产品。

★应用于汽车空调的新型制冷剂诞生

对于汽车空调系统来说,无毒且状态稳定的R134a作为R12制冷剂的替代品。R134a制冷剂的GWP值为1430左右,这已经比第二代制冷剂对温室效应的影响减轻了许多。自从R12制冷剂在我国被取缔后的10余年里,R134a制冷剂都是汽车空调的唯一制冷剂。

★ R134a制冷剂的环保问题也被暴露出来

虽然第三代制冷剂的出现成功地减少了对大气臭氧层的影响,但在这期间,温室效应仍呈现出日趋严重的态势,全球平均气温上升以及两极冰川融化都在催促着人类要为这一切做出改变。

汽车空调系统实验报告

汽车空调系统实验报告 车辆2 陈树郁 201131150501

一、实验目的 1. 学习并理解汽车空调系统的组成及基本工作原理; 2. 熟悉空调系统的制冷循环路线; 3. 掌握对空调系统的操作以及控制系统的结构原理; 4. 理解压力表的结构原理以及对压力表的操作; 5. 理解制冷剂的作用并能掌握加注方法; 6. 具有诊断和排除汽车空调系统常见故障的技能。 二、空调工作基本原理 发动机驱动的压缩机将气态的制冷剂从蒸发器中抽出,并将其送入冷凝器。高压气态制冷剂经冷凝器时液化而进行热交换(释放热量),热量被车外的空气带走。然后高压液态的制冷剂经膨胀阀的节流作用而降压,低压液态制冷剂在蒸发器中气化而进行热交换(吸收热量),此时蒸发器附近被冷却了的空气通过鼓风机吹入车厢内。接着气态制冷剂又被压缩机抽走,泵入冷凝器,如此使制冷剂进行封闭的循环流动,不断地将车厢内的热量排到车外,使车厢内的气温降至适宜的温度。 三、实验设备 1. 曲柄连杆式压缩机(由曲柄,连杆,活塞,进排气阀等组成);

2. 斜盘式压缩机(由主轴,斜盘,气缸,活塞,进排阀等组成); 3. 冷凝器、干燥器、膨胀阀、蒸发器、压力表、制冷剂罐、真空泵、空调系统示教台。 四、实验设备简介 1. 空调压缩机 a) 压缩机的功能把蒸发器中吸收热量后产生的低温低压冷冻剂蒸气吸入后进行压缩,升高其压力和温度之后送往冷凝器,使冷冻剂在冷却循环中进行循环,由蒸发器吸收的热量在通过冷凝器时散发掉。 b) 压缩机的种类压缩机的种类分为曲轴连杆式、斜盘式摇盘式、双作用轴向斜盘式、涡旋式、旋转叶片式等; c) 压缩机的工作原理(双作用式) 当主轴带动斜盘转动时,斜盘便驱动活塞作轴向移动,由于活塞在前后布置的气缸中同时作轴向运动,这相当于两个活塞在作双向运动。 d) 工作过程 前缸活塞向左移动时,排气阀片关闭,缸内压力下降,吸气阀片打开,低压蒸气进入气缸开始了吸气过程,一直到活塞向左移动到终点为止;与此同时后缸活塞也向左移动,但不同的是后缸活塞处于压缩过程,在这过程中蒸气不断被压缩,压力和温度不断

汽车空调系统论文

济南工程职业技术学院 毕业论文 论文题目汽车空调系统论文 姓名 学号 专业 班级 指导老师 完成时间 2012.05.02

摘要 汽车空调系统是实现对车厢内空气进行制冷、加热、换气和空气净化的装置。它可以为乘车人员提供舒适的乘车环境,降低驾驶员的疲劳强度,提高行车安全。空调装置已成为衡量汽车功能是否齐全的标志之一。 汽车空调的作用已是众所周知。汽车空调装置已不再是豪华奢侈的象征,不仅轿车、客车上采用空调,货车、工程车上也纷纷安装空调装置。人们对空调的需求越来越迫切,对汽车空调质量的要求也越来越高。 伴随汽车空调的普及与发展,汽车空调的发展大体上历经了五个阶段:单一取暖阶段、单一冷气阶段、冷暖一体化阶段、自动控制阶段、计算机控制阶段。空调的控制方法也历经了由简单到复杂,在由复杂到简单的过程,作为汽车空调系统的电路控制方面也在不断更新改进。 关键词:汽车空调,故障诊断,维修,注意事项

目录 摘要...................................................................................................I 第1章绪论 (1) 1.1汽车空调发展历史 (1) 1.2近年来汽车空调的前期发展 (1) 第2章汽车空调组成及工作原理 (2) 2.1汽车空调的组成 (2) 2.2汽车空调的工作原理 (2) 2.3汽车空调的作用 (3) 第3章汽车空调故障诊断与排除 (4) 3.1汽车空调常见故障现象及排除方法 (4) 3.2汽车空调检漏的5种方法 (5) 第4章汽车空调实例故障检测维修 (7) 4.193款宝马525I暖风频繁失控 (7) 4.2奥迪1002.2E空调制冷效果差 (7) 4.393款雪佛兰子弹头水温高,风扇运转不正常 (8) 第5章汽车空调的使用及注意事项 (10) 5.1汽车空调的正确使用和维护 (10) 5.1.1使用中应注意的问题 (10) 5.1.2空调的日常维护与保养 (10) 5.2汽车空调的使用知识及注意事项 (11) 结论 (13) 致谢 (14) 参考文献 (15)

汽车空调制冷剂DIY加注补充方法

汽车空调制冷剂DIY加注补充方法 汽车空调制冷剂补充,就和轮胎冲气一样的方便,安全。 一般的汽车空调每年都会正常损失10%到15%的制冷剂,这是由于汽车空调压缩机的密封方式决定的。这是正常损失,我们只要每年给汽车空调补充一瓶制冷剂就可以了。不需要担心,我告诉各位车友朋友DIY汽车空调加注方法。朋友可以尝试自己动手加注制冷剂。方法如下: 1.一根汽车空调DIY加注补充管。 2.一瓶R134A制冷剂250克,就可以了。 3.现在开始给汽车检测压力:先将DIY补充管开瓶器端中的顶针反时针旋转至最顶端,将制冷剂瓶子旋进开瓶器中,旋紧。 4.找准低压接口,一般在发动机左侧端有个兰色或黑色小帽子,帽子上面有个L字,将小帽子旋下来。 5.将汽车发动机起动并打开空调AC开关,鼓风机开至最大,等待三分种后将DIY管子接口接入汽车空调低压端。 6.DIY管接入低压接口后,DIY管压力表就会瞬间有刻度指示。这时DIY管与空调系统是联通的,看压力表上的压力刻度,就知道系统中的压力了,在什么压力下加注呢?这时有一个知识说明!汽车空调系统中的压力是根据外界环境温度变化而变化的。如下图中,华氏温度与空调系统压力对照表而确认系统中压力高与低,系统压力高了说明系统中的制冷剂多于正常值,反之就要补充制冷剂。如外界温度在30度,空调系统中的压力应该在45PSI左右,小于45PSI就应该补充制冷剂。(华氏温度是美国常用温度单位,谢谢!) 外界环境温度(华氏温度) 低压表的压力 华氏65对应18.33摄氏度系统压力25-35PSI 华氏70对应21.11摄氏度系统压力35-40PSI

华氏75对应23.89摄氏度系统压力35-40PSI 华氏80对应26.67摄氏度系统压力40-50PSI 华氏85对应29.44摄氏度系统压力45-55PSI 华氏90对应32.22摄氏度系统压力45-55PSI 华氏95对应35 摄氏度系统压力50-55PSI 华氏100对应37.78摄氏度系统压力50-55PSI 华氏105对应40.56摄氏度系统压力50-55PSI 华氏110对应43.33摄氏度系统压力50-55PSI 7.如对应上图空调系统中压力过低时,需要补充制冷剂。(注意:A如果你购买的DIY补充管开瓶器端有空气放气阀,则需要将放气阀上的小帽旋下来,用小帽将放气阀中的气门阀心向里轻压及松开,切记轻压及松!这时补充管内的空气就会喷出。切勿将喷出的气体进入眼睛和口中。切记!在将放气阀小帽旋紧后进行下一步操作。谢谢!)将开瓶器中的顶针顺时针旋转,刺穿制冷剂瓶口,开瓶器中的顶针立刻反时针旋转至顶,将制冷剂瓶上下反至,轻摇制冷剂瓶,制冷剂液会流入系统中,同时看压力表刻度,与上图温度与压力PSI单位一至即可。 8.观察到压力表刻度正常时,请立即将开瓶器中的顶针顺时针旋转至最下端并旋紧,移动空调系统低端口接头。如一瓶加入后不够,请按上叙述方法加入第二瓶制冷剂,直至外界温度与系统压力一至为止。 9.这时汽车空调系统制冷剂补充以完成,请将L字小帽子旋紧。完成!淘宝有此产品!

汽车空调制冷剂HFC-134a的使用

20世纪90年代以前的轿车空调制冷系统都采用CFC-12作为制冷剂。70年代,科学家发现含氯的氟利昂破坏大气的臭氧层。1987年部分国家的政府签订了“关于消耗臭氧层物质的蒙特利尔议定书”,CFC-12被列为禁用物质之一。现在,汽车制造业均已开始向不含氯的替代物HFC-134a过渡。 由于缺乏正确的科普宣传和冰箱行业的所谓“无氟”冰箱广告的误导,使大家误以为所有的氟利昂类化学物质或者氟利昂中的氟元素都破坏大气臭氧层,这是十分错误的。真正破坏大气臭氧层的罪魁祸首是氟利昂中的氯元素而非氟元素,科学家们所观察到的正是氯原子对大气臭氧层的破坏和消耗。 氯氟烃类化学性质极其稳定,寿命很长,在低空对流层内难以分解,寿命可长达几十年甚至上百年,所以最终都会升到高空的平流层,在那里,强烈的紫外线将促使其分解,释放出氯原子。这种新生的氯对臭氧具有亲和作用,能夺取其中的一个氧原子而生成氧化氯,并放出氧分子,从而破坏了臭氧。更糟糕的是,氧化氯又能和大气中游离的氧原子起作用,重新还原出氯原子又去消耗臭氧,如此循环不断。事实上,氯原子只参与了破坏臭氧的反应,本身并不消耗,类似于催化剂的作用。虽说臭氧密度相当小,上述反应发生的机会不多,但经不住长年累月的作用。几年前,南极上空就已经出现了一个相当于欧洲面积大小的臭氧空洞,北极地区的臭氧层也变得很稀薄,使更多的太阳光紫外线辐射到地球危害人体健康。因此,国际社会于1987年9月在加拿大缔结了《蒙特利尔协议书》,明确规定禁用CFC-12的期限为2000年。但近年来由于臭氧层的破坏不断加剧,国际社会把CFC-12的完全禁用期提前到1995年,发展中国家则可推迟10年。我国于1992年发文规定:各汽车厂从1996年起在汽车空调中逐步用新制冷剂HFC-134a替代CFC-12,在2000年生产的新车上不准再用CFC-12。 其实,氟利昂类制冷剂就是卤代烃类化合物的商品名称,后来便逐渐变成了这一类化合物的统称。它是由卤族元素,主要是氟(F)原子和氯(Cl)原子取代甲烷(CH4)或乙烷(C2H5)中的氢(H)原子所生成的化合物。该类制冷剂编号的特点是:两位数属卤代甲烷系列如CFC-12。三位数、且首位数为1者,属卤代乙烷系列如HFC-134a。两者的尾数均表示所含氟原子数。甲烷系列两位数之和小于5者,乙烷系列三位数之和小于8者,其差值就是没有在编号中表示(默认)的氯原子数。例如:CFC-12的尾数为2,就说明它含有两个氟原子;两位数之和为5的差数是2,说明它还含有2个氯原子。HFC-134a 的尾数为4,就说明它含有4个氟原子;三位数之和为8,与8的差值为0,说明它里面不含氯原子。在卤代烃中,有H原子被完全取代的,也有未被完全取代的。两位数的甲烷系列,其首位数减去1后的得数就是所剩的H原子数三位数的乙烷系列,其第二位数减去1后的得数就是所剩的H原子数。例如:CFC-12就不剩H原子;CFC-22剩1个H原子;HFC-134a就还剩2个H原子。 根据上述规律,卤代烃可分为三类:第一类是H原子被完全取代了的含氯氟烃,它的编号冠以CFC,第一个C代表氯元素,F为氟元素,后面的C是碳元素。第二类是H原子没有被完全取代的氢氯氟烃,它的编号冠以HCFC。第三类是H原子没有被完全取代,但不含氯的氢氟烃,它在编号前冠以HFC。由于各类氟利昂对臭氧层的消耗程度有很大的不同,所以必须区别对待,国外早已槟弃了氟利昂这一笼统而又含糊的称谓。 既然破坏臭氧层的是含氯卤代烃,那么前两类含氯,便都在禁用范围之列,只有HFC不含氯,允许继续使用。经各国科学家研究较为成熟并已步入实用阶段的就是HFC中的HFC-134a,它是美国杜邦(DuPont)公司率先开发出来的。制冷剂HFC-134a的主要特点是:①不含氯原子,对大气臭氧层不起破坏作用;②具有良好的安全性能(不易燃、不爆炸、无毒、无刺激性和无腐蚀性);③物理性能与CFC-12比较接近,所以制冷系统的改型比较容易;④传热性能比CFC-12好,因此制冷剂的用量可大大减少。 但是HFU134a与现有矿物质的冷冻机油不溶合,因此不得不为之寻找新的压缩机油。通过反复试验与筛选,现已开发出两种与HFC-134a溶合的油,它们的代号为PAG及ESTER,而PAG油应用较为普遍。但仍存在如下问题:①具有高吸湿能力,易使制冷系统的节流元件(毛细管或膨胀阀)发生冰堵,因

汽车空调系统抽真空及制冷剂的加注

1、空调制冷系统抽真空 抽真空是为了排除制冷系统内的空气和水汽,抽真空并不能直接把水分抽出制冷系统,而是产生真空后降低了水的沸点,水气化成蒸汽后被抽出制冷系统。因此,抽真空时时间越长系统内残余的水分就越少。为最大限度地将系统内的空气及湿气抽出,必须采用重复抽真空法,即第一次抽真空完毕后,再连续抽30min 以上。 1)将歧管压力计上的两根高、低压力软管分别与压缩机上的高低接口相连,将 歧管压力计上的中间软管与真空泵相连。。 2)打开歧管压力计上的手动高、低压阀,启动真空泵,并观察两个压力表,将 系统抽真空至~。 3)关闭歧管压力计上的手动高、低压阀,观察压力表指示压力是否回升。若回 升,则表示系统泄漏,此时应进行检漏和修补。若压力表指针保持不动,则打开手动高、低压阀,启动真空泵继续抽真空15~30min,使真空压力表指针稳定。 4)关闭歧管压力计上的手动高、低压阀。 5)关闭真空泵。先关闭手动高、低压阀,然后关闭真空泵,以防止空气进入制 冷系统。 2、空调制冷剂的充注 当制冷系统抽真空达到要求,且经检漏确定制冷系统不存在泄漏部位后,既可向制冷系统充注制冷剂。充注前,先确定充注制冷剂的数量,充注数量过多或过少,都会影响空调制冷效果。压缩机的铭牌上通常都标有所用的制冷剂的种类及其充量。充注制冷剂时可采用高压端充注或低压端充注。 1)高压端充注制冷剂。从压缩机排气阀(高压阀)的旁通孔(多用通道)充注, 充入的是制冷剂液体,特点是安全快速,适用于制冷系统的第一次充注,经检漏、抽真空后的系统充注。但用该方法时必须注意,充注时不可开启压缩机(发动机停转),且制冷剂罐要求倒立。

①当系统抽真空后,关闭歧管压力计上的手动高、低压阀。 ②将中间软管的一端与制冷剂罐注入阀的接头连接打开制冷剂罐开启阀,再拧开歧管压力计软管一端的螺母,让气体溢出几分钟,然后拧紧螺母。 ③拧开高压侧手动阀至全开位置,将制冷剂罐倒立。 ④从高压侧注入规定量的液态制冷剂。关闭制冷剂罐注入阀及歧管压力计上的手动高压阀,然后卸下仪表。从高压侧向系统充注制冷剂时,发动机处于非工作状态(压缩机停转),不要拧开歧管压力计上的手动低压阀,以防产生液压冲击。 2)低压端充注制冷剂。从压缩机吸气阀(低压阀)的旁通孔(多用通道)充注,充入的是制冷剂气体,特点是充注速度慢可在系统补充制冷剂情况下使用。 ①将歧管压力计与压缩机和制冷剂罐连接好。 ②打开制冷剂罐,拧松中间注入软管在歧管压力计上的螺母,直到听见有制冷剂蒸汽流动声,然后拧紧螺母,从而排出注入软管中的空气。 ③打开手动低压阀,让制冷剂进入制冷系统。当系统压力达到时,关闭手动低压阀。 ④启动发动机,接通空调开关,并将鼓风机开关和温控开关都调至最大。 ⑤再打开歧管压力计上的手动阀,让制冷剂继续进入制冷系统,直至充注剂量达到规定值。 ⑥向系统中充注规定量制冷剂后,观察视液窗,确认系统内无气泡、无过量制冷剂。随后将发动机转速调至2000r/min,将鼓风机风量开到最高档,若气温为30℃~35℃,则系统内低压测压力应为~,高压侧压力应为~。 ⑦充注完毕后,关闭歧管压力计上的手动低压阀,关闭装在制冷剂罐上的注入阀,使发动机停止运转,从压缩机上卸下歧管压力计,动作要迅速,以免过多的制冷剂泄出。 注意事项:见红色字部份。

汽车空调发展史

第一部分: 汽车空调技术是随着汽车的普及和高新技术的应用而发展起来的。汽车空调技术的发展经历了由低级到高级,由单一功能到多功能的五个阶段。 第一阶段,单一取暖。1925年首先在美国出现了利用汽车冷却水通过加热取暖的方法。到1927年发展到具有加热器、风机和空气滤清其的比较完整的供热系统。这种供热系统直到1948年才在欧洲出现。而日本到1954年才开始使用加热器取暖。目前,在寒冷的北欧、亚欧北部地区,汽车空调仍然使用单一供热系统。 第二阶段,单一冷气。1939年,由美国通用汽车帕克公司首先在轿车上安装由机械制冷的空调器。这项技术由于二次世界大战而停止了发展。战后的美国经济迅速发展,特别是因1950年美国石油产地的炎热天气,急需大量的冷气车,而使单一降温的空调汽车得以迅速发展起来。欧洲、日本到1957年才加装这种单一冷气轿车。单一降温的方法目前仍然在热带、亚热带地区使用。 第三阶段,冷暖一体化。1954年,通用汽车公司首先在纳什牌轿车上安装了冷暖一体化的空调器,汽车空调才基本上具有调节控制车内温度、湿度的功能。随着汽车空调技术的改进,目前的冷热一体空调基本上具有降温、除湿、通风、过滤、除霜等功能。这种方式目前仍在大量经济汽车上是使用,是目前使用量最大的一种方式。 第四阶段,自动控制。冷热一体汽车空调需要人工操纵,这显然增加了驾驶员的工作量,同时控制质量也不大理想。自从冷暖一体化出现后,通用公司就着手研究自动控制的汽车空调,并于1964年首先安装在卡迪拉克牌轿车上,紧接着通用、福特、克莱斯勒三大汽车公司竞相在各自的高级轿车上安装自动空调。日本、欧洲直到1972年才在高级轿车上安装自动空调。

汽车空调系统制冷剂的加注

汽车空调系统制冷剂的加注生产实习授课教案

组织教学(时间5分钟)1、点名检查学生出席情况,填写考勤薄。 2、检查学生穿着工作衣服、帽、鞋等情况。 3、生产安全教育,职业道德教育。 2、4、先在电教室上课后到实习车间实习。 教学过程 入门指导(在电教室进行,时间25分钟)1、教师提问(5分钟): 1)汽车空调的类型 2)汽车空调系统的组成。 3)制冷剂的作用和空调系统工作原理 4)汽车空调高压侧和低压侧的压力范围分别是多少? 5)空调系统的常见故障有哪些? 汽车空调结构原理图 2、播放教学录像(10分钟)。 播放加注制冷剂的操作教学录像,播放过程中指出应注意的事项和容易出现不规范操作的地方。 3、教师强调并板书(10分钟): 1)操作时应带护目镜,应该在通风,无火处排放制冷剂 2)严禁加错制冷剂(R12&R134a) 3)不许明火和电阻加热器加热制冷剂罐

4)连接岐管压力表时要注意排除软管里的空气; 5)高压侧充注制冷剂时,严禁开启空调系统,也不可打开低压手动 阀。 1 、放空制冷剂(10分钟); 示范操作 (在实习车 间进行,时间 70分钟) 示范过程中 在适当时候 提出问题 (1) 准备工作 ①压力表组接入系统,调整控制器到最冷位置; ②友动机转速调至1000 ~1200r/min, 并运行10~15min; (2) 放出制冷剂 ①恢复发动机正常转速, 然后关闭发动机; ②缓慢地开启高、低压侧手动阀,让制冷剂经过中间软管排出; ③中间软管开口端应裹上白色抹布,如有冷冻油排出,必须显示在 抹布上。这时应关小手阀,至刚好无冷冻机油排出。 ④表座上高、低压力表读数均为零, 说明系统已放空。 2 、系统抽真空和检漏(45分钟); 教学 重点

汽车空调发展史1

汽车空调发展史 第一部分: 汽车空调技术是随着汽车的普及和高新技术的应用而发展起来的。汽车空调技术的发展经历了由低级到高级,由单一功能到多功能的五个阶段。 第一阶段,单一取暖。1925年首先在美国出现了利用汽车冷却水通过加热取暖的方法。到1927年发展到具有加热器、风机和空气滤清其的比较完整的供热系统。这种供热系统直到1948年才在欧洲出现。而日本到1954年才开始使用加热器取暖。目前,在寒冷的北欧、亚欧北部地区,汽车空调仍然使用单一供热系统。 第二阶段,单一冷气。1939年,由美国通用汽车帕克公司首先在轿车上安装由机械制冷的空调器。这项技术由于二次世界大战而停止了发展。战后的美国经济迅速发展,特别是因1950年美国石油产地的炎热天气,急需大量的冷气车,而使单一降温的空调汽车得以迅速发展起来。欧洲、日本到1957年才加装这种单一冷气轿车。单一降温的方法目前仍然在热带、亚热带地区使用。 第三阶段,冷暖一体化。1954年,通用汽车公司首先在纳什牌轿车上安装了冷暖一体化的空调器,汽车空调才基本上具有调节控制车温度、湿度的功能。随着汽车空调技术的改进,目前的冷热一体空调基本上具有降温、除湿、通风、过滤、除霜等功能。这种方式目前仍在大量经济汽车上是使用,是目前使用量最大的一种方式。 第四阶段,自动控制。冷热一体汽车空调需要人工操纵,这显然增加了驾驶员的工作量,同时控制质量也不想。自从冷暖一体化出现后,通用公司就着手研究自动控制的汽车空调,并于1964年首先安装在卡迪拉克牌轿车上,

紧接着通用、福特、克莱斯勒三大汽车公司竞相在各自的高级轿车上安装自动空调。日本、欧洲直到1972年才在高级轿车上安装自动空调。 自动空调装置只要预先调好温度,就能自动地在调定好的温度围工作。机器根据传感器检测车、车外环境的温度信息,自动地指挥空调器各部件工作,达到控制车温度和其他功能地目的。 第五阶段,微机控制。1973年美国通用公司和日本五十铃汽车公司一起联合研究由微型计算机控制汽车空调系统,1977年同时安装在各自地汽车上,将汽车空调技术推到一个新高度。微机控制的汽车空调系统由微机按车外地环境,实现微调化。该系统具备数字化显示、冷暖通风三位一体化、自我诊断系统、执行器自检、数据流传输等功能。通过微机控制,实现了空调运行与汽车运行的相关统一,极提高了制冷效果、节约了燃料,从而提高了汽车的整体性和舒适性。 1927年,在美国纽约市场上出现了第一台汽车空调装置,当时轰动了世界各国汽车制造商。实际上这种装置只能称之为“加热器”,只是在汽车车厢增加了热量,在欧洲寒冷的季节里,能起到一定的保暖作用。 到了1938年,美国人帕尔德发明了汽车空调,他根据电冰箱“冷气”的原理,在一辆老爷车上进行了试验。又于1939年,将改进后的冷气机,安装在美国福特汽车公司制造的林肯V12型轿车中,效果很好。 1940年,美国Packard公司第一次将机械制冷用于车用空调,为世界汽车空调市场开辟了发展之路。 第二次世界大战的爆发阻碍了汽车空调的发展。二战结束后,汽车空调的实用化、普及化开始逐渐恢复发展起来。

汽车空调制冷剂的加注典型教学案例

《汽车空调制冷剂的加注》 典型教学案例 一、案例背景 1、教材分析: 《汽车空调检测与维修》是根据汽车维修企业机电维修岗位“汽车空调检测与维修”典型工作任务,按照工作过程系统化的要求,确立转换的一门学习领域课程,在学生职业能力培养和职业素养养成方面起着重要的作用。 全面讲授了汽车空调基础知识、汽车空调制冷系统、汽车空调的暖气、通风与净化系统的原理、结构与部件检修;自动控制系统的维修保养技术及常见故障与排除;汽车空调系统的使用、保养与检修知识以及现代汽车微机控制的自动空调系统的工作原理及故障诊断方法和维修技术。为从事汽车维修工作打下坚实基础。 该课题在本教材中占有相当重要的位置,其前一课题是:汽车空调检修专用工具及仪器设备,其后的内容是汽车空调维修操作。本课题是使用检修专用工具及仪器设备进行加注,为后面的维修操作提供支持。 2、学生分析: 学生实习的时间较少,操作技能一般,理论的学习缺乏技能的支撑,理解上存在多个问题,需要特别加强实践操作技能的训练。 该专业的学生一般都是对汽车技术较感兴趣、性格特征活泼、好动,所以在教学过程中应多创造动手机会,让学生在动中学、学中动。争取做到每位学生都有事做,大家都能动起来。 3、教学目标:

1、知识目标: (1)使学生了解加注制冷剂的重要性;(该目标是告诉学生制冷剂的作用。) (2)熟悉汽车空调加注制冷剂的几种方法;(该目标是让学生熟悉制冷剂加注时制冷剂的状态,并通过制冷剂的状态分析出制冷剂的加注方法,进而了解各种方法使用的客观情形。) (3)掌握汽车空调系统加注制冷剂的技术标准与要求。(该目标是为维修空调提供技术参考,强调加注制冷剂的注意事项。) 2、技能目标: 使学生熟练掌握汽车空调系统加注制冷剂的方法。(该目标是本课题的主要内容,是学生重点掌握的内容,让学生在学习的过程中,提高动手操作能力和团队协作能力。) 3、情感目标: (1)培养学生的动手操作能力和安全操作意识; (2)培养学生的团队协作能力。 4、课前准备: 教学组织: ①教学组织形式 安排4辆整车,每辆车安排8名学生参与实训,两名学生为一组。一组操作,其他组观察学习并负责安全监督。 ②学生站位分工和要求 两名学生一组,按照1号、2号进行编号,1号为主,2号为辅。 ③实训教师职责 讲解操作步骤和注意事项;下达“操作开始”口令;工位间巡视、检查、安全、指导和纠正错误组织学生轮换操作。

汽车空调制冷剂应用与发展现状

汽车空调制冷剂应用与发展现状 摘要:汽车空调是现代汽车产业必不可缺的重要组成,是衡量汽车舒适性能和安全性的一个重要指标。而汽车空调的重要组成部分制冷剂的性能决定着汽车空调的品质好坏。全球环境的恶化,大气的污染对汽车空调制冷剂有着越来越高的环保要求,本文介绍了汽车空调现在使用的制冷剂CFC-12和 HFC134a的优缺点和应用现状,以及汽车空调制冷剂研究的现状和发展前景。 关键词:汽车空调制冷剂;应用;发展;现状 1前言 汽车空调制冷系统中循环流动的工作介质叫制冷剂,在收到制冷压缩机压缩功的作用下,它在系统的各个部件间循环流动,从而进行能量的转换和传递,实现制冷机向高温热源放热和从低温热源吸热的功能,达到制冷的目的[1]。 近年,我国的汽车工业得到了长足发展,汽车制冷剂也已处于CFC-12向HFC134a的过渡阶段。全球变暖带来的环境问题,要求汽车空调制冷剂想更加环保的方向发展。 2制冷剂对环境的影响 空调制冷中主要是采用卤代烃制冷剂,其中不含氢原子的称为氯氟烃(CFC),含氢原子称为氢氯氟烃(HCFC),不含氯原子的称为氢氟烃(HFC)。空调制冷剂对大气环境的影响主要有两个方面,一是对大气臭氧层的破坏,另一方面是使全球气候变暖的温室效应。在卤代烃中,随着氯原子数的增加,其对大气臭氧层的破坏就愈严重,因此,CFC对大气臭氧层的破坏最严重,HCFC对大气臭氧层的破坏程度相对较小,HFC不破坏臭氧层。制冷剂对臭氧层的破坏程度用破坏臭氧层潜值(Ozone deple-tionpotential,简称ODP)表示。制冷剂的排放会产生全球气候变暖的温室效应,其影响程度用全球变暖潜值(Global warming potential,简称GWP)表示[2]。 3制冷剂CFC-12的淘汰和HFC134a的替代 在蒙特利尔协议书签订以前,汽车空调系统多数使用CFCl2作为制冷剂。CFCl2是非常理想的制冷剂,它的沸点和摩尔质量分别是:-29.79℃和 120.93kg/kmol,但它的ODP值较高,根据蒙特利尔协议书,CFC12是一级被禁制冷剂。为了寻找新的冷媒来代替CFC类物质,空调行业已经作了广泛的研究,

国内外铁道车辆空调的发展现状综述

国内外铁道车辆空调的发展现状 20097823 陈小林铁道车辆2班 20世纪90年代以来,随着生活水品的不断提高,人们对乘坐铁路列车的舒适性要求也越来越高,这也促进了我国铁路空调列车的快速发展。列车空调经历了分体式到整体式的发展,其技术日趋成熟。目前我国铁路列车车用空调机组主要是车顶单元式。经过不断的改善,现已形成标准化、系列化。虽然我国列车空调技术发展速度也很快,技术也越来越成熟,但和先进国家相比仍有较大差距。国内铁道车辆空调的发展。 1.普通旅客列车空调 我国铁路客车空调装置的结构形式主要分为:分装式和车顶单元集中式两种类型。分装式空调机组通常是将压缩机、冷凝器、冷凝风机和储液罐安装在车下,而将通风机、蒸发器、膨胀阀和空气预热器等置于车顶的一端。这些机组的形式主要有KK一30和KK一50型。目前除了由西德进口的客车仍采用这些类型外,国产客车的空调机组己逐步被车顶单元集中式所取代。分装式机组的主要缺点是体积大,拆装困难和检修不方便,同时由于制冷设备管路较长,接头较多,容易产生泄漏。车顶单元集中式空调机组是将压缩机、冷凝风机、气液分离器、干燥过滤器、毛细管(或膨胀阀)、通风机、蒸发器和空气预热器等集中在一个箱体里组成一个完整的单元,安装在车体的一端或两端,有的置于车体的中部。目前这类空调机组有KLD一29、KLD一40、KLP4.7A型等。集中式空调机组的优点是体积小、重量轻、结构紧凑,机组互换性好和检修方便,同时,因空调机组安装与车上,还可与避免车体排放的废水和脏物对冷凝器的腐蚀,延长机组的使用寿命。集中式空调机组一体化以后,制冷设备管路大为缩短,不但可以节省大量的有色金属,还可以减少泄漏。实际上,我国空调车所装配的单元集中式空调机组均采用全封闭式制冷压缩机,能量调节采用停、开压缩机的办法来实现。以空调硬座车为例,每台机组有两台制冷压缩机,每车共四台制冷压缩机,可实现输气量的100%、75%、50%、25%、0五档调节。但实际的运行过程中,只能实现100%、50%、O三档调节。输气量的调节也就是压缩机的启动,由温度控制器启动其停机温度点,根据车内热负荷的变化可以不开压缩机至全开压缩机来实现输气量调节。 2.高速列车空调 高速列车空调的布置,由于速度高,必须降低安装重心。动车普遍采用车下

常用汽车空调制冷剂有哪些

常用汽车空调制冷剂有哪些? (1)氟里昂-12(代号:R12) R12为烷烃的卤代物,学名二氟二氯甲烷。它是我国中小型制冷装置中使用较为广泛的中压中温制冷剂。是一种无色、透明、没有气味,几乎无毒性、不燃烧、不爆炸,很安全的制冷剂。 R12的标准蒸发温度为-29.8℃,冷凝压力一般为0.78~0.98MPa,凝固温度为-155℃,单位容积标准制冷量约为288kcal/m3。R12只有在空气中容积浓度超过80%时才会使人窒息。但与明火接触或温度达400℃以上时,则分解出剧毒的光气。 R12能与任意比例的润滑油互溶且能溶解各种有机物,但其吸水性极弱。因此,在小型氟里昂制冷装置中不设分油器,而装设干燥器。同时规定R12中含水量不得大于0.0025%。R12对一般金属不腐蚀,但能腐蚀镁及含镁超过2%的铝镁合金。它对天然橡胶和塑料有膨润作用,系统中不能用一般天然橡胶作密封垫片,而应采用丁腈橡胶或氯乙醇等人造橡胶。R12的渗透性很强,甚至铸件的极细缝隙,螺纹接合处等都可能泄露,因此要求机器的密封性要良好。否则,会造成密封垫片的膨胀引起制冷剂的泄露。 由于R12在大气中分解后释放出的氯原子对臭氧层具有破坏作用,导致大气中臭氧浓度下降及形成臭氧空洞危害地球环境。根据蒙特利尔协议,发达国家1996年开始停止使用包括R12在内的CFC系列制冷剂,发展中国家在2000年基本停止使用CFC系列制冷剂,到2030年将全面停止使用HCFC系列制冷剂。因此,必须开发适合汽车空调系统的制冷剂R12的替代品。目前,有两种物质可作为R12的替代物应用于汽车空调。一是R134A(四氟乙烷),二是碳氢化合物。 (2)R134A(四氟乙烷) R-134A制冷剂,别名R134A、HFC134A、HFC-134A、由于R-134A属于HFC类物质(非ODS 物质Ozone-depleting Substances)——因此完全不破坏臭氧层,是当前世界绝大多数国家认可并推荐使用的环保制冷剂,也是目前主流的环保制冷剂,广泛用于新制冷空调设备上的初装和维修过程中的再添加,是目前使用最广泛的中低温环保制冷剂。其主要特点是:不含氯原子;具有良好的安全性能;物理性能与CFC12比较接近,所以制冷系统的改型比较容易;传热性能比CFC12好,制冷剂的用量可大大减少。HFC134A和CFC12有相近的蒸发压力并且ODP值为零,GWP值仅0.29,且无明显毒性(长期慢性毒性试验仍在进行中)。 由于R134A良好的综合性能,使其成为一种非常有效和安全的CFC-12的替代品。目前R134A 已商品化,广泛地应用于制冷空调中,尤其是成功地用于汽车空调。这是因为一是由于 R-134A特性使然,二是通过选择单一的冷媒,可以避免制冷剂经过胶皮软管时组成发生变化,目前全球生产的R-134a制冷剂中50%用于汽车空调,由于汽车空调的特殊工况,一般情况下每两年就要加注一次制冷剂。2006年中国新车消费R-134A约6550吨,维修用量约2950吨,合计9500吨,同比增长25%,约占R-134A消费总量的56%。由此可见中国汽车空调市场是巨大的,对制冷剂的需求也是巨大的。 根据欧盟已通过的含氟温室气体控制法规的要求,自2017年1月1日起,欧盟将禁止新生产的汽车空调使用GWP值大于150的制冷剂,由于现在使用的R-134A的GWP值为1300,故将被禁用;在2011年1月1日至2017年1月1日的6年间,在用汽车空调将按比例逐步淘汰GWP值大于150的制冷剂;自2017年1月1日起,将禁止所有汽车空调使用GWP值大于150的制冷剂。因而,汽车空调使用低GWP值的制冷剂成为趋势和必然。 (3)天然制冷剂

汽车空调制冷剂知识小方法检测泄露

汽车补充致冷剂要注意以下两个问题:一个是制冷剂不可互换的问题,另一个是抽真空的问题。 汽车空调制冷剂目前主要有两种,一种是,另一种是一,历史较长且使用普遍,但气内含有氯分子会破坏大气层中的臭氧层而导致温室效应,所以数年前世界各国代表聚会蒙特利尔签定了议定书,规定要在近年停止生产和使用氟里昂类产品,其中首当其冲。 是九十年代开始使用的品种,由于不含氯分子对臭氧层没有破坏作用,对汽车空调系统的改动较少,被联合国有关组织推荐使用,在粤港等地被称为“环保雪种”,现在国内外新车的空调系统很多都使用了制冷剂。 与空调系统相比,两者热力性质和系统结构相似,最大的不同之处是冷冻油。 冷冻油是一种与制冷剂相容,能够对压缩机起润滑作用且化学性质稳定的液体润滑剂,的冷冻油是一种可溶于之中的矿物油,而是一种分子极性较强的致冷剂,它与矿物油是非共溶性的,就好象油水分离,无法对空调系统起涧滑作用,因此的冷冻油一般是用一种叫做或酯类的润滑剂,由于这种润滑剂的特殊性,空调系统对橡胶材质的要求及本身的性质均与有所不同,因此只能在专门与其配套的系统中工作,凡是车用的空调系统,厂方都会在压缩机、冷凝器、蒸发器。 橡胶管和灌充设备上注明的标志以防误用。 目前进口的汽车空调装置多是用制冷剂,而市面上制冷剂的价格又是的三倍左右,因此有些人在车上安装空调器补充致冷剂时为了省那几个钱或贪图方便,将空调系统改为灌充制冷剂,虽然一样可以发出冷风,但将会损害压缩机。 因为一般压缩机都已注入一些同质冷冻油,尽管全部倒出来仍会残留一些冷冻油在机子里面,两种制冷剂的冷冻油混在一起就会慢慢失去润滑作用而损害机器,实谓得不偿失,因此行业专家都建议哪一种制冷剂就灌充到哪一种空调系统中,不可互用。

汽车空调制冷剂加注

汽车空调制冷剂加注 一、汽车空调制冷剂加注前的准备 1、制冷剂 首先查阅《车辆使用手册》,确定其使用的制冷剂类型、加注总量。HFC-134a、CFC-12不能混用或错用,否则将造成压缩机损坏、润滑油沉淀、制冷系统性能降低等后果。 2、润滑油 不同的制冷剂配用不同的润滑油: A.HFC-134a: 聚烃基乙二醇(PAG)和聚脂类润滑油(POE) B.CFC-12: 矿物基润滑油 3、加注装置 使用专用回收、再循环、加注装置,该装置应符合有关规定。 4、加注前的操作程序 (1)卸下制冷系统压缩机上的维修口密封盖,连接软管: 低压表软管(蓝色-黑纹)――接压缩机吸入口 高压表软管(红色-黑纹)――接压缩机排放口 中间软管(黄、白色-黑纹)――接装置进口,它是回收、再循环、加注用软管。 (2)将热电偶温度计装接制冷系统的液体管路内,并尽可能靠近空调压力传感器,以便精确测定液体管路温度。 (3)发动机运转(1000~1500rpm的高怠速工况)5分钟,使制冷系统达到正常工作的压力、温度。 (4)空调状态控制的设定:前车窗开、变速器-N/P档(空、驻车制动档)、车外空气循环、全冷、鼓风机高速档、压缩机结合等。 (5)若车辆设有后空调系统时,应设定为全冷、鼓风机高速。 (6)用硬纸板置于冷凝器之前,使制冷系统液体管路的排放压力快速达到1793KPa(该值各种车辆有相同的数量级)。为保持该压力值不变,调整遮挡面积。 二、制冷剂的加注 汽车空调系统的维修作业,约有80%属于正常的补充加注制冷剂。 1、加注方法 (1)高压侧加注。当车辆制冷系统确认无泄漏等故障,环境温度不高时,发动机可不运转,使用加注机或歧管测试表组进行加注。但加注系统必需具有高压反弹安全阀,防止制冷剂返回贮存罐引起爆炸。 (2)低压侧加注。将贮存罐倒置,令制冷剂从低压侧注入制冷系统。其优点加注省时、方便,罐内压力变化不大。但易产生“液击”现象,冲击压缩机造成损坏。 (3)低压侧用加注机加注。这种方法常用、安全、可靠,加注时间较长。由加注装置予以加热,并由经过培训的专业人员操作。 (4)低压、高压两侧同时加注。使用专用的回收、再循环、加注装置。 2、低压、高压两侧同时加注程序

汽车空调制冷剂的使用

汽车空调制冷剂的使用、危害及未来发展摘要:制冷剂被人们称为汽车空调的血液,汽车空调制冷剂的泄漏造成的环境污染越来越严重。正确分清不同类型的制冷剂及其发展趋势,对制冷剂合理使用与及时回收,将有助于我们的环境保护。 关键词:汽车空调,制冷剂,使用,危害 汽车空调系统是实现对车厢内空气进行制冷、加热、换气和空气净化的装置。它可以为乘车人员提供舒适的乘车环境,降低驾驶员的疲劳强度,提高行车安全。空调装置已成为衡量汽车功能是否齐全的标志之一。而要实现空调的正常运行,制冷剂是不可缺少的。制冷剂是指在制冷系统中传导热能的一种流体,为实现制冷循环的工作介质,也称为制冷工质,或简称工质。广泛应用于工商制冷、家用制冷、汽车空调等主要的制冷行业。空调制冷中主要是采用卤代烃制冷剂,其中不含氢原子的称为氯氟烃(CFC),含氢原子的称为氢氯氟烃(HCFC),不含氯原子的称为氢氟烃(HFC)。 制冷剂的发展分为三个阶段:第一阶段,从1830年到1930年,主要采取NH3、HCS、CO2、空气等作为制冷剂,有的有毒,有的可燃,有的效率很低,主要出于安全性的考虑,尽管使用了一百年之久,当出现了CFCS和HCFCS制冷剂后,还是当机立断,实现了重大的第一次转轨。 第二阶段:从1930年到1990年,主要采用CFCS和HCFCS制冷剂。使用了60年后,发现这些制冷剂破坏臭氧层。出于环保的需要,不得不被迫实现第二次转轨。 第三阶段:从1990年至今,进入以HFCs制冷剂为主的时期。 2010年前世界上汽车用空调制冷剂主要有三种:氟里昂型制冷剂CFC-12、卤烃型制冷剂 HFC-134a、碳氢型制冷剂。在卤代烃中,随着氯原子数的增加,其对大气臭氧层的破坏就愈严重,因此,CFC对大气臭氧层的破坏最严重,HCFC对大气臭氧层的破坏程度相对较小,HFC不破坏臭氧层。制冷剂CFC-12(二氟二氯甲烷)历史较长且使用普遍,是一种不易分解稳定性很强的物质,其寿命长达120多年,当它从大气的对流层流向平流层时,在紫外线的作用下释放出氯原子,氯原子与大气平流层中的高浓度臭氧发生连锁反应,对臭氧的衰减产生链式催化作用,从而使平流层臭氧破坏,导致温室效应和过量的紫外线对地球物种和人类的伤害。10多年来,经科学家研究;大气中的臭氧每减少1%。照射到地面的紫外线就增加2%,人的皮肤癌就增加3%,还受到白内障、免疫系统缺陷和发育停滞等疾病的袭击。现在居住在距南极洲较近的智利南端海伦娜岬角的居民,已尝到苦头,只要走出家门,就要在衣服遮不住的肤面,涂上防晒油,戴上太阳眼镜,否则半小时后,皮肤就晒成鲜艳的粉红色,并伴有痒痛;羊群则多患白内障,几乎全盲。据说那里的兔子眼睛全瞎,猎人可以轻易地拎起兔子耳朵带回家去,河里捕到的鲜鱼也都是盲鱼。所以使用制冷剂的同时环境

三个检测汽车空调制冷剂侧漏的方法和保养

三个检测汽车空调制冷剂侧漏的方法和空调的保养 汽车空调的制冷剂泄露是经常的事情,但是如果通过汽车维修来判断汽车空调制冷剂的泄露情况呢? 目测检漏 发现系统某处有油迹时,此处可能为渗漏点。目测检漏简便易行,没有成本,但是有很大缺陷,除非系统突然断裂的大漏点,并且系统泄漏的是液态有色介质,汽车维修时,否则目测检漏无法定位,因为通常渗漏的地方非常细微,而且汽车空调本身有很多部位几乎看不到。 肥皂水检漏 向系统充入10-20kgcm2压力氮气,再在系统各部位涂上肥皂水,冒泡处即为渗漏点。这种办法是目前路边修理厂最常见的检漏方法,但是人的手臂是有限的,汽车维修时,人的视力范围是有限的,很多时候根本看不到漏点。 氮气水检漏 向系统充入10-20kgcm2压力氮气,把系统浸入水中,冒泡处即为渗漏点。这种方法和前面的肥皂水检漏方法实质一样,虽然汽车维修的成本低,但有明显的缺点:检漏用的水分容易进入系统,导致系统内的材料受到腐蚀,同时高压气体也有可能对系统造成更大的损害,进行检漏时劳动强度也很大,这样就使维护检修的成本上升。 汽车空调如何保养 秋季将到,众多卖衣服的店铺都已经不遗余力地做换季的促销,所以我们可以开始对爱车进行换季保养了。 翻开日历,立秋已过,中秋也将至了。虽然身处广州的我们还没能明显感受到浓浓秋意,但早晚阵阵的凉风似乎已经预示着炎夏的逐渐远去。所以尤其在早晚,不少车主已经逐渐减少了使用空调的频率了。汽车维修学校的专家表示,但经过连续几个月的频繁使用,也是时候对空调系统进行一些清洁和保养了。 可能很多车主都知道有发动机空气滤清器和机油滤清器,但对空调滤清器就有点陌生了。 其实车载空调和我们家庭用的空调基本原理都是一样的,只是车载空调可以有内循环和

二氧化碳制冷剂汽车空调讲解

二氧化碳制冷剂汽车空调 293430112001 曹广升 一、课题背景和目的 自蒙特利尔议定书签定以来, 以CFCs 和HCFCs 等氟利昂作制冷剂的制冷空调界面临着严重的挑战, 为了寻找合适的替代物, 全球范围内开展了广泛的研究。目前推出的包括R 134a在内的HFCs 及其混合物, 不能够满足长期替代的要求, 大多有较高的温室效应指数(GWP) 等缺点。同时, 人们担心这些化合物可能隐含着不可预知的潜在危险,因此, 天然工质就引起了人们的极大关注, 其中的二氧化碳因其具有良好的热力性能和环保特性, 尤其受到了重视。过去CFC12 作为汽车空调的制冷剂,其用量约占全世界CFC12 用量的28 。汽车空调由于处于动态工作环境,负荷大,使用开式或半开式压缩机极易引起泄漏。据测,全世界泄漏到大气中的CFC 物质中有3/4 是由于汽车空调泄漏引起的,在汽车空调装置中用新的制冷剂来替代的任务已十分紧迫。二氧化碳是少数几种无毒、不易燃的工质之一,如果泄露到大气中, 它不会导致臭氧层空洞等问题L 与其它工质相比, 二氧化碳具有明显的点: (1)ODP= 0, 且GWP=1 很小, 约为R134a 和R22 的千分之一。 (2) 运动粘度低, 流动性大,压缩比较低(约为2.5- 3.0) , 单位容积制冷量大。 (3) 来源广泛, 价格低廉,维护简单, 无须循环利用。 (4) 无毒、不可燃, 对常用材料没有腐蚀性。 另外,二氧化碳空调的安全保护装置与现有系统相同;短期和长期暴露极限相当于甚至好于CFC/HCFC;破裂时释放的能量与现有系统相当;二氧化碳的所有特性都为人熟悉,研究应用方便;系统质量和体积与R134a 系统相当;蒸发潜热较大,单位容积制冷量相当大;充分适用各种润滑油和常用机器零部件材料等等优点。当前, 人们最关心的是环境污染的问题,二氧化碳作为天然物质, 对大气臭氧层无任何破坏作用, 其ODP= 0,至于GWP 值, 制冷系统本身不会产生二氧化碳, 只是利用它作为工质, 并且是从工业废气回收得到的, 用它作为制冷剂时, 其GWP 值为零,正是因为二氧化碳的这些优点, 致使它得到人们的重视和关注,不少专家预言, 二氧化碳将是二十一世纪制冷空调技术的理想制冷剂,并且已被很多国家作为汽车空调制冷

相关文档
最新文档