铁氧体磁性材料的制备及研究进展

铁氧体磁性材料的制备及研究进展
铁氧体磁性材料的制备及研究进展

铁氧体磁性材料的制备及研究进展

【摘要】铁氧体磁性材料是一类非常重要的无机功能材料,其应用涉及到电子、信息、航天航空、生物医学等领域。综述了铁氧体磁性材料的研究进展及其应用,分析了铁氧体磁性材料的制备方法,展望了研究和开发铁氧体磁性材料的新性能和新技术的应用前景。

【关键词】铁氧体磁性材料;研究进展;制备

铁氧体是一种非金属磁性材料,又称磁性瓷。人类研究铁氧体是从20世纪30年代开始的,早期有日本、荷兰等国对铁氧体进行了系统的研究;在20世纪40年代开始有软磁铁氧体的商品问世;20世纪50年代是铁氧体蓬勃发展的时期。1952年磁铅石硬磁铁氧体研制成功;1956年又在此晶系中开发出平面型的超高频铁氧体,同时发现了含稀土元素的石石型铁氧体,从而形成了尖晶石型、磁铅石型和石榴石型三大晶系铁氧体材料体系,应该说铁氧体的问世是强磁学和磁性材料发展史上的一个重要里程碑。至今铁氧体磁性材料已在众多高技术领域得到了广泛的应用。因此,有必要对铁氧体磁性瓷材料的研究动态进行总结以及对其发展进行展望。

1.铁氧体磁性材料的研究进展

近年来,国外学者在研究和改进磁性材料的同时,进行了卓有成效的新探索,其重点的研究和应用主要集中在以下几个方面。

1.1 铁氧体吸波材料

由于科学技术的迅猛发展,在武器的隐身技术和电子计算机防信息泄露技术中,以及在生物学中的热效应方面,铁氧体作为吸波材料方面的应用尤为重要。铁氧体吸波材料通常分为尖晶石型铁氧体与六角晶系铁氧体两种类型,其中尖晶石型铁氧体应用历史最长,但尖晶石型铁氧体的电磁参数(介电常数和磁导率)都比较小,而且难以满足相对介单一铁氧体难以满足吸收频带宽、厚度薄和面密度小的要求,所以近年来研究者主要集中研究复合铁氧体材料以及纳米尺寸的铁氧体来控制其电磁参数[1]。铁氧体纳米磁性材料作为微波的吸收体,纳米级的微粒材料的比表面积比常规粗粉大3~4个数量级,吸收率高,一方面,它能吸收空气中的游离的分子或介质中其他分子通过成键方式连接在一起,造成各向异性的改变。另一方面,在微波场中,活性原子及电子运动加剧,促使磁化,最终将电磁能转化为热能,从而增加吸收体的吸波能力。在应用方面,铁氧体吸波材料可分为结构型(整体烧结成一定形状的器件)和涂敷型(用铁

氧体颗粒的涂层作为吸收剂使用),混合一定量的粘结剂后制成的吸收介质材料,有时为了提高吸波总体性能,将铁氧体吸波材料同金属型或有机型的材料混合使用。

1.2 信息存储铁氧体材料

磁记录是利用强磁性介质输入,记录,存储和输出信息的技术和装置。其磁记录用的磁性材料分为两类:磁记录介质,是作为记录和存储信息的材料,属于永磁材料。另一类是磁头材料,是作为输入和输出信息用的传感器材料,属于软磁材料。

1.2.1 磁记录介质

主要是磁带、硬磁盘、软磁盘、磁卡及磁鼓等,从构成上有磁粉涂布型磁材料和

连续薄膜型磁材料两大类。目前,主要的磁记录材料有:γ-Fe

2O

3

,钴改性γ- Fe

2

O

3

,CrO

2

和钡铁氧体磁粉。

1.2.2 磁头材料

磁头在磁记录技术中的作用是将输入信息存到磁记录介质中或将记存在磁记录介质中的信息输出来,起着转换器的作用。目前应用的磁头材料有:热压多晶铁氧体,单晶铁氧体和六角晶系铁氧体[2]。

1.3 磁性流体

磁流体是一种新型的功能材料,它由磁性颗粒,稳定剂(表面活性剂)和载液三部分组成,在磁场作用下显示出优于其他磁性材料的优良性能,因此被广泛应用[3]。这是一种人工合成的胶体系统,包括胶状的磁性微粒(磁铁矿),经界面活性剂的辅助分散于连续的载粒液中,磁性微粒的直径约10nm。磁性流体集固体的可磁化性和液体的流动性于一体,在磁场作用下,磁性流体可被磁化,显示超顺磁性[4]。磁性流体在生物医学领域具有广泛的应用:近年发展起来的磁性药物载体是国外十分关注的高新技术。它具有导航作用,并已用于癌症治疗,是医药学的一个重要发展方向[5,6]。

目前,在合成磁流体中主要用滴定水解法[7,8]和Massart水解法[9],其主要的应用:利用外加磁场可以改变光在磁流体中的透射性质,制作光传感器,磁强剂等;利用在磁场作用下粘度变化可制作阻尼器;利用在梯度磁场中悬浮效应可制成密度计,加速度表等;利用在磁场中运动性质,可制备药物吸收剂,治癌剂,造影剂;利用流体的热交换性可制能量交换机;另外还用于动态磁密封技术和扬声器中的线圈散热问题。

1.4 庞磁电阻材料

人们把20世纪90年代发现的类钙钛矿结构的瓷氧化物有更大巨磁电阻效应称之为庞磁电阻效应(colossal magnetoresistance CMR)。磁电阻值高达1.27 × 10- 5%,钙钛矿结构La1- xCaxMnO

3

(LCMO)氧化物中,存在Mn3+和Mn4+离子,它们有完全自旋极化的3d能带。在较高温度下,由于自旋无序散射作用,材料的导电性质向半导体型转变,因此,随着Mn4+离子含量的变化,材料可以形成反铁磁耦合和铁磁耦合,如果是反铁磁耦合,材料呈高电阻态:如果是铁磁耦合,则材料呈低电阻态;如果在零磁场下,材料是反铁磁,则电阻处于极大,施加磁场后,由反铁磁态转变为铁磁态,则电阻由高电阻变为低电阻。磁电阻的变化率可达到很高,称之为庞磁电阻效应。目前庞磁阻材料分为:

钙钛矿立方结构的[AA3′] B

4O

12

锰氧化物,掺杂稀土钴氧化物REAxCoO

3

,焦绿石结构

TiM

2O

7

和尖晶石结构的FeCrO

4

。因其特殊的磁电阻产生机制,目前在该领域的研究尤为

活跃。

2 铁氧体磁性材料的制备

经典的制备方法是瓷方法,需要很高的温度和很长的反应时间,而且伴随研磨,这就导致了杂质的产生。化学法制备在近几年引起了人们的广泛关注,化学合成法制得的材料颗粒尺寸、形状、组分可控,而且材料的性能可根据条件进行改善,发展较快的制备纳米结构铁氧体的方法有溶胶-凝胶法、化学共沉淀法、前驱体热解法、水热法、自蔓延燃烧法、微乳法和模板法等。

2.1 溶胶-凝胶法

金属醇盐、溶剂、水以及催化剂组成均相溶液,由水解缩聚而形成均相溶胶,进一步化成为湿凝胶,经过蒸发得到干凝胶,烧结,得到致密的纳米颗粒材料。其磁性能与干凝胶的焙烧温度和铁氧体的含量有关。Hutlova等[10]采用改进的溶胶-凝胶法,得到

高矫顽力的SiO

2包裹CoFe

2

O

4

的纳米颗粒。有文献报道了溶胶-凝胶法可制得SiO

2

包裹

的γ-Fe

2O

3

纳米颗粒,并详细地研究了反应组分、温度等对产物的磁性能影响。通过W

/O微乳法形成纳米胶束限制大小,可制得分散于微米抗磁基体中超顺磁纳米晶;改变

基体材料后,采用类似的方法制得Fe

2O

3

/Al

2

O

3

复合材料。Gao等[11]将含有Fe2+和Fe3+的

水溶液逐滴加入到含有CTAB的甲苯溶液中,搅拌4h后加入NH

3·H

2

O,再加入硅酸乙酯,

得到球形纳米磁性材料均匀分散在SiO

2

基体中的纳米磁性复合材料。用以柠檬酸为络合物的络合物型溶胶-凝胶法在相对低的温度制备了单一的Z型铁氧体,并表现出良好

的磁性能。Xiong等[12]用硬脂酸溶胶-凝胶法制备了CoCrFeO

4和Ba

4

Co

2

Fe

36

O

60

纳米晶,

并研究了他们的磁性能。

2.2 化学共沉淀法

化学共沉淀法是制备铁氧体的一种常见的方法。Ryu等[13]通过化学共沉淀法制得

Co1-xNixFe

2O

4

纳米颗粒,发现热处理温度在400~600℃,矫顽力随温度的升高而增加,

当磁性纳米颗粒大小为20~30nm,其矫顽力可达1450~1800Oe。采用该法制得的纳米颗粒,用油酸包裹,经酸化、洗涤和分离,得到不同直径纳米颗粒。然后重新分散、沉积,用尼龙薄膜过滤扩散到Langmuir薄膜上,得到两维纳米颗粒阵列。辉等[14]以水合硫酸锌和水合三氯化铁为原料,在微量相转化催化剂的存在下,用沸腾回流的方法制备了纳米铁酸锌微晶。共沉淀法制备的铁氧体粉末表面常吸附Cl-、SO

4

2-、Na+等杂质,为了得到高纯度的铁氧体,通常采用加入添加剂的方法,在碱性溶液中成功合成了纯度高、均匀性好,颗粒度为1μm左右的不同Zn含量的锌铁氧体超细粉末。

2.3 前驱体-热解法

前驱体-热解法是利用金属阳离子与阴离子在低温下发生化学反应形成稳定的化合物或络合物,或者在溶液中发生聚合反应形成稳定的金属聚合物,经过高温焙烧得到纳米氧化物。该法制得的颗粒纯度高、均匀性好、所需时间短、操作简单,可连续制备且通过改变操作条件可制得各种形态和性能的纳米微粉。近年来,采用单分子前驱体制备铁氧体纳米磁性材料越来越受到关注。Duan等[15]采用一种新的合成路线,先形成单分子前驱体双氢氧化物金属盐,然后在900℃灼烧,制得铁氧体纳米颗粒。Fu等[16]通过实验论证和条件筛选,发现丙烯酸盐聚合后热分解得到的纳米级铁氧体颗粒分散性好、粒度分布均匀和工艺参数易控,并具有软化学特征,尤其可大量制备纳米级铁氧体。

2.4 水热法

桑商斌等[17]采用水热法制备了单相、无硬团聚的10~ 20nm锰锌铁氧体纳米晶。

Yu等[18]将金属锌片和FeCl

2作为起始反应物,通过水热法制备出ZnFe

2

O

4

超微粒子,粒径

达到300nm,在80K和300K时饱和磁化强度分别达到61.2A·m 2/kg和54.6A·m 2/kg。

通过水热法还能制备出Ni

0.5Zn

0.5

Fe

2

O

4

纳米粒子、钴铁氧体纳米粒子以及六角片状钡铁

氧体纳米颗粒。付绍云等[19]采用水热法合成软磁材料MnFe

2O

4

纳米晶,并研究了形成机

理以及反应条件(如温度)对磁性能的影响。近年来,微波水热法合成铁氧体纳米磁性材料取得了明显进展。用有机溶剂代替水作介质,采用类似水热合成的原理可制备铁氧体磁性材料。通常采用金属配合物或盐,在有机溶剂中经溶剂热处理后得到尖晶石结构的铁氧体纳米颗粒。Li等[20]研究了溶剂热还原法制备单分散的、亲水的单晶铁氧体微球,这些材料具有优异的磁性能。

2.5 自蔓延燃烧合成法

垚等[21]采用自蔓延燃烧合成法合成了不同的铁氧体系列,并通过对燃烧合成产物的M?ssbauer谱分析,研究了产物的结构和组分。岳振星等[22]将粉末的溶胶-凝胶湿化学合成法和自蔓延高温合成法结合起来,合成的铁氧体粉末因具有纳米尺度而表现出铁磁相和顺磁相共存。采用燃烧合成法合成纳米尖晶石铁氧体,主要通过控制燃料和氧化剂的摩尔分数来控制颗粒大小。

2.6 微乳液法

肖旭贤等[23]以TX-10+AEO 9/正戊醇/环己烷/水为微乳体系,制备了大小均匀,粒

径为20~50nm含有油酸、油酸氨的二苯醚溶液中制得Fe

3O

4

纳米晶;当Co(acac)

2

Mn(acac)

2与Fe(acac)

3

以1∶2混合,可制得CoFe

2

O

4

或MnFe

2

O

4

纳米晶。Pileni等[24]

在Fe和Co盐水溶液中加入一定量的SDS,形成Co(DS)

2和Fe(DS)

2

胶束,用NaOH调节

pH值,生成纳米磁性颗粒。将表面活性剂SDS加入CoCl

2和FeCl

2

的水溶液中,搅拌成

微乳液,然后加入CH

3NH

2

溶液,并搅拌3h,离心得到颗粒均匀的纳米钴铁氧体。用甲苯

作为油相,NaDBS或SDS作为表面活性剂,分别制得了磁性能优异的Mn-Fe

2O

4

CoCrFeO

4纳米晶。微乳法还可制备纳米棒、纳米线和核壳结构等。Woo等[25]在FeCl

3

的水溶液中加入含有油酸的苯醚溶液,搅拌,加入环氧丙烷(作为去质子剂),经多步处

理后得到Fe

2O

3

纳米棒。采用CTAB/水/环己烷/正戊醇组成的反胶束体系中,还可以得

到其它铁氧体纳米棒,如钴铁氧体纳米棒。核壳结构的Mn-Fe

2O

4

/SiO

2

复合磁性材料可

以通过反胶束法制得;且用类似方法可得到核壳结构的MnFe

2O

4

/聚苯乙烯纳米磁性复

合材料。

2.7 模板法

Ji等[26]先将钴和铁盐按计量比溶解于柠檬酸和乙二醇中,140℃下酯化并形成溶胶,然后将多孔阳极氧化铝模板浸入其中,取出在80℃下干燥变成凝胶,在500℃焙烧

后,即得到CoFe

2O

4

纳米线,而且发现升温速率为0.6℃ /min,焙烧后产物矫顽力高达

1405Oe。

展望

基于铁氧体磁性材料的研究现状和新动态,其发展将由单一型铁氧体材料向复合型铁氧体材料,大颗粒材料向纳米粒级材料的方向发展,应用的围也将更加广泛。由于纳米粒级的铁氧体材料粒径小,比表面积和表面能大,易发生团聚,因此对其表面进行改性包覆仍是研究的热点和技上的难关。在铁氧体磁性瓷材料的制备研究中,目前尚未找到对团聚体进行定量研究的好方法和消除因聚的有效措施。在磁性流体的流变性

研究方面,开发出饱和磁化强度高和矫顽力低甚至为零的磁流变液,特别是无毒、非抗原、物理化学性质稳定并具有与药物配伍不发生任何反应的水溶性磁流变液,是磁性流体在生物医学研究应用的一个重要方向[27]。铁氧体磁性瓷材料已经在电子、航天等方面有所突破。随着新兴学科——生物磁学的出现、发展,相信在不久的将来,可望制备获得人体完全相容的磁性材料并在生物医学上得到更广泛的应用。铁氧体磁性瓷材料也将显示出重要的科学意义和高新技术方面的应用前景。

主要软磁铁氧体材料厂商牌号对照表

厂商 Manufacturers 信艺电子HP30HP40/R2K3D HP44/R2K4D HP5H5K H7K H10K H12K H15K ACME P2P4P41P5/P51A05A07A10/A101A12/A121A151 AVX/TPC B1B2/F1F2F4A4/A5A3A2A1A0 COSMOFERRITES CF129CF138CF195CF197 DMEGC DMR30DMR40DMR44DMR50DMR6K DMR10K DMR12K DMR15K EPCOS (SIEMENS) N41N67/N87N97N49T35T37/T44T38T42T46 FAIR-RITE78797576 FDK6H106H206H407H102H062H072H102H15 FENGHUA PG232PG242PG152HS502HS702HS103HG123HG153 FERRITEINT (TSC) TSF-7099TSF-7060TSF-5099TSF-300TSF-010K TSF-012K TSF-015K FERROXCUBE (PHILIPS) 3C853C90/3C943C96/3F33F4/3F3.5 3.00E+043E25/3E273E5/3E55 3.00E+06 3.00E+07 HITACHI ML24D ML25D ML120MP70D MP10T MP15T HITACHI (NIPPON) SB-5S SB-7C SB-9C SB-1M GP7GP9GP11MT10T HPC HE4HE44HE5HL5HL7HL10HL12HL15 ISKRA25G45G/55G35G75G19G22G12G32G52G ISU PM-1PM-7PM-11FM-5HM2A HM3/HM3A HM5A HM7A JFE(KAWATETSU)MB3MB4MC2MA055MA070A MA100MA120MA150 JINNING JP3JP4/JP4A JP4B JP5JH5/JH5A JH7/JH7A JH10JH15 KASCHKE K2006K2008K2001K5000K8000K10000 KAWATETSU MB3MB4MA055MA070MA100MA120 KINGTECH KP3KP4KP4A KP5KH5/KH5A KH7/KH7A KH10A KH13KH15 KRAVSTINEL K82K86K87 LCCTHOMSON B2B4F1F2A5A3 MAGNE TICS P K J W H MMG-NEOSID F5A/F5C F44F45F47F9C/F10FT7F39 NCD LP2LP3LP3A LP5HP1/HP1F HP2/HP2F HP3/HP3F HP4 NEC/TOKIN BH2BH1B405000H7000H10000H12000H15000H NEOSID F827F830F860F938F942 NICERA NC-1M NC-2H2HM55M NC-5Y NC-7NC-10H NC-12H NC-15H SAMWHA PL-5PL-7PL-9PL-F1SM-50SM-70S SM-100SM-150 STEWARD32353740 TDG TP3TP4TP4A TP5TL5TL7TL10TL13TL15 TDK PC30PC40PC44PC50HS52HS72HS10H5D H5C3 TOKIN3100BH2BH1B405000H7000H12000H TOMITA 2.00E+06 2.00E+07 2.00E+082E3/2F12E7/2G12E2/2E2B2H22H1 TPC F1F2F4A4/A5A3A2 TRIDELTA MF198MF198A MF197MF199 川峰山口工厂(西海) SK-104G SK-108G SK-109GE SK-110G SK-12G 材料牌号 Material Brands 主要软磁铁氧体材料厂商牌号对照表 注:grc534原发

磁性材料及其应用研究

万方数据

乘客乘车的凭证和票价结算的磁性卡等。 图1磁性材料 2.1永磁材料 一经外磁场磁化以后,即使在相当大的反向磁场作用下,仍能保持一部或大部原磁化方向的磁性。对这类材料的要求是剩余磁感应强度Br高,抗退磁能力强,磁能积(BH)大。相对于软磁材料而言,它亦称为硬磁材料。永磁材料有合金、铁氧体和金属间化合物三类。①合金类:包括铸造、烧结和可加工合金。铸造合金的主要品种有:AINi(Co)、FeCr(Co)、FeCrMo、FeAIC、FeCo(V)(W);烧结合金有:Re--Co(Re代表稀土元素)、Re—Fe以及AlNi(Co)、FeCrCo等;可加工合金有:FeCrCo、PtCo、MnALC、CuNiFe和A1MnAg等,后两种中BHC较低者亦称半永磁材料。②铁氧体类:主要成分为MO?6Fe203,M代表Ba、Sr、Pb或SrCa、LaCa等复合组分。③金属间化合物类:主要以MnBi为代表。根据使用的需要,永磁材料可有不同的结构和形态。有些材料还有各向同性和各向异性之别。 2.2软磁材料 它的功能主要是导磁、电磁能量的转换与传输。因此,对这类材料要求有较高的磁导率和磁感应强度,同时磁滞回线的面积或磁损耗要小。与永磁材料相反,其Br和BHC越小越好,但饱和磁感应强度Bs则越大越好。软磁材料大体上可分为四类。①合金薄带或薄片:FeNi(Mo)、FeSi、FeAI等。 ②非晶态合金薄带:Fe基、C0基、FeNi基或FeNiCo基等配以适当的si、B、P和其他掺杂元素,又称磁性玻璃。③磁介质(铁粉芯):FeNi(Mo)、FeSiAI、羰基铁和铁氧体等粉料,经电绝缘介质包覆和粘合后按要求压制成形。④铁氧体:包括尖晶石型一一MO?Fe203(M代表NiZn、MnZn、MgZ.、Lil/2Fel/2Zn、CaZrt等),磁铅石型一一Ba3Me2F也40141(Me代表Co、Ni、Mg、Zn、Cu及其复合组分)。 2.3矩磁材料和磁记录材料 主要用作信息记录、无接点开关、逻辑操作和信息放大。这种材料的特点是磁滞回线呈矩形。旋磁材料具有独特的微波磁性,如导磁率的张量特性、法拉第旋转、共振吸收、场移、相移、双折射和自旋波等效应。据此设计的器件主要用作微波能量的传输和转换,常用的有隔离器、环行器、滤波器、衰减器、相移器、词制器、开关、限幅器及延迟线等,还有尚在发展。 3磁性材料的应用及行业发展 3.1磁性材料的应用 我们知道,硬磁性材料被磁化以后,还留有剩磁,剩磁的强弱和方向随磁化时磁性的强弱和方向而定。录音磁带是由带基,粘合剂和磁粉层组成。带基一般采用聚碳酸脂或氯乙烯等制成。磁粉是用剩磁强的r—Fe203或Cr02细粉。录音时,是把与声音变化相对应的电流,经过放大后,送到录音磁头的线圈内,使磁头铁芯的缝隙中产生集中的磁场。随着线圈电流的变化,磁场的方向和强度也作相应的变化。当磁带匀速地通过磁头缝隙时,磁场就穿过磁带一368~并使它磁化。由于磁带离开磁头后留有相应的剩磁,其极性和强度与原来的声音相对应。磁带不断移动,声音也就不断地被记录在磁带上。 应用于计算机磁性存储设备和作为乘客乘车的凭证和票价结算的磁性卡所用的磁性材科及作用原理,同磁带所用的磁性材料及作用原理基本相同,只是用处不同而已。在磁性卡上有一窄条磁带,当你乘地铁从甲站到乙站时,在甲站向仪器中投入从甲站到乙站的票钱(硬币),之后投出一张磁性卡,在投出这张磁性卡的过程中已录上了到乙站下车的磁记录,拿这张磁性卡乘车到乙站后投入到仪器中,门开,出站。如果没在乙站下车,而是在比乙站远的丙站下车,投入的硬币不够,出站门不开。要拿磁性卡补票后才能出站。在乙站或丙站投入磁性卡的过程,就是磁记录经过磁头变成电信号的过程。再用电信号控制站门开关。电机的铁芯所用的磁性材料一般用硬磁铁氧体,这些材料的特点是磁化后不易退磁。对磁通的阻力小。磁性材料的用途广泛,磁性材料在电子技术领域和其他科学技术领域中都有重要的作用。 3.2磁性材料的行业发展 中国地大物博,金属和稀有元素矿藏非常丰富,有着丰富而天然的原材料资源优势,磁性材料产业所需的各种原材料几乎国内都能满足。磁性材料行业,离不开稀土。因为稀土成本占磁材原料成本的30%,而中国是稀土的故乡,世界上80%的稀土储量在中国,因此中国稀土的资源优势,决定了磁性材料行业的中国优势。 2006年中国出口各类磁体23万吨,出口金额仅8.6亿美元;进口各类磁体6.9万吨,而进口金额达5.7亿美元。2007年1—8月中国电磁铁;永磁铁等;电磁或永磁工件夹具等进口数量为57,031,992.00千克,用汇513,161,987.00美元;出口数量为193,840,035.00千克,创汇809,909,620.00美元。 中国磁性材料工业在产量方面已经初具规模,发展速度很快,但与日本等磁性材料工业发达的国家相比,无论是管理水平、制造工艺、产品质量及产品档次都存在一定差距。中低档产品占据了较大的国际市场,但在高档产品上还缺乏竞争力。随着高清晰度电视等消费类电子产品的日益普及,汽车、通信业的发展,对高档磁性材料的需求越来越多。中国的磁性材料企业应该抓住这个有利的时机,开发高档磁性材料产品,占领国际市场。 “十一五”时期,是中国磁性材料工业大发展时期,世界磁性材料产业中心已经转移到中国。预计中国铝镍钴磁钢产量为3,000吨(全球产量7,840吨),铁氧体永磁产量195,000吨(全球产量676,000吨),稀土钕铁硼磁体9,400吨(全球14,400吨),软磁铁氧体产量98,800吨(全球431,000吨)。到2010年中国各类磁体的产量均稳居世界之首,占全球的份额还将继续增大。到2020年,中国磁性材料的产量将占全球一半以上,成为世界磁性材料产业中心。 参考文献 [1]胡双锋,黄尚宇,周玲,吕书林.磁学的发展及重要磁性材料的应[J].稀有全属材料与工程。2007.(9). [23余声明.智能磁性材料及其应用EJ].磁性材料度嚣件,2004,(5).[3]宋振纶,李卫.钕铁硼永詹材科表面防护技术:特点?应用?同题 [J].磁性材料及器件,2008,(1).万方数据

纳米磁性材料的制备和研究进展综述教案资料

纳米磁性材料的制备和研究进展综述 一.前言 纳米材料又称纳米结构材料 ,是指在三维空间中至少有一维处于纳米尺度范围内的材料 (1-100 nm) ,或由它们作为基本单元构成的材料 ,是尺寸介于原子、分子与宏观物体之间的介观体系。磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。因此 ,纳米磁性材料的特殊磁性可以说是属于纳米磁性。 司马迁《史记》记载黄帝作战所用的指南针是人类首次对磁性材料的应用。而今纳米磁性材料广泛应用于生物学,磁流体力学,原子核磁学,机体物理学,磁化学,

天文学,磁波电子学等方面。随着雷达、微波通信、电子对抗和环保等军用、民用科学技术的,微波吸收材料的应用日趋广泛 ,磁性纳米吸波材料的研究受到人们的关注。纳米磁性材料也对人们的生产与生活带来诸多的利益。 本次综述,主要针对磁性纳米材料的制备方法和研究进展两个问题进行阐述。首先,介绍磁性纳米材料的发展历史,可以追溯到黄帝时期。其次,介绍磁性纳米材料的分类。------再次,重点介绍磁性纳米材料是怎么制备的。其制备方法一般分为三大类:1.由上到下,即由大到小,将块材破碎成纳米粒子,或将大面积刻蚀成纳米图形等。2.由下到上,即由小到大,将原子,分子按需要生长成纳米颗粒,纳米丝,纳米膜或纳米粒子复合物 3. 气相法、液相法、固相法等。第四、介绍磁性纳米材来噢的现状和发展前景。最后,将全文主题扼要总结,并且找出研究的优缺点和差距,提出自己的见解。 二、主题 1、纳米磁性材料的发展史 磁性材料是应用广泛、品类繁多、与时俱进的一类功能材料,磁性是物质的基本属性之一。人们对物质磁性的认识源远流长,早在公元前四世纪,人们就发现了天然的磁石(磁铁矿Fe3O4),,据传说,那是黄帝大战蚩尤于涿鹿,迷雾漫天,伸手不见五指,黄帝利用磁石指南的特性,制备了能指示方向的原始型的指南器,遂大获全胜.古代取其名为慈石,所谓“慈石吸铁,母子相恋”十分形象地表征磁性物体间的互作用。人们对物质磁性的研究具有悠久的历史,是在十七世纪末期和十八世纪前半叶开始发展起来的。1788年,库仑(Coulomb)把他的二点电荷之间的相互作用力规律推广到二磁极之间的相互作用上。1820年,丹麦物理学家奥斯特(Oersted)发现了电流的磁效应;同年法国物理学家安培(Ampere)提出了分子电流假说,认为物质磁性起源于分子电流。

磁性材料研究进展

磁性材料 引言 磁性材料作为重要的基础功能材料,已广泛用于信息、能源、交通运输、工业、农业及人们日常生活的各个领域,对社会进步和经济发展起着至关重要的推动作用。人们习惯按矫顽力的高低,对磁性材料进行分类:矫顽力大于1000A/m则称为硬磁材料,当硬磁材料受到外磁场磁化后,去掉外磁场仍能保留较高的剩磁,因此又称之为永磁材料或恒磁材料;矫顽力小于lOOA/m则称为软磁材料;矫顽力100A/m

铁氧体磁性材料的制备及研究进展

铁氧体磁性材料的制备及研究进展 【摘要】铁氧体磁性材料是一类非常重要的无机功能材料,其应用涉及到电子、信息、航天航空、生物医学等领域。综述了铁氧体磁性材料的研究进展及其应用,分析了铁氧体磁性材料的制备方法,展望了研究和开发铁氧体磁性材料的新性能和新技术的应用前景。 【关键词】铁氧体磁性材料;研究进展;制备 铁氧体是一种非金属磁性材料,又称磁性瓷。人类研究铁氧体是从20世纪30年代开始的,早期有日本、荷兰等国对铁氧体进行了系统的研究;在20世纪40年代开始有软磁铁氧体的商品问世;20世纪50年代是铁氧体蓬勃发展的时期。1952年磁铅石硬磁铁氧体研制成功;1956年又在此晶系中开发出平面型的超高频铁氧体,同时发现了含稀土元素的石石型铁氧体,从而形成了尖晶石型、磁铅石型和石榴石型三大晶系铁氧体材料体系,应该说铁氧体的问世是强磁学和磁性材料发展史上的一个重要里程碑。至今铁氧体磁性材料已在众多高技术领域得到了广泛的应用。因此,有必要对铁氧体磁性瓷材料的研究动态进行总结以及对其发展进行展望。 1.铁氧体磁性材料的研究进展 近年来,国外学者在研究和改进磁性材料的同时,进行了卓有成效的新探索,其重点的研究和应用主要集中在以下几个方面。 1.1 铁氧体吸波材料 由于科学技术的迅猛发展,在武器的隐身技术和电子计算机防信息泄露技术中,以及在生物学中的热效应方面,铁氧体作为吸波材料方面的应用尤为重要。铁氧体吸波材料通常分为尖晶石型铁氧体与六角晶系铁氧体两种类型,其中尖晶石型铁氧体应用历史最长,但尖晶石型铁氧体的电磁参数(介电常数和磁导率)都比较小,而且难以满足相对介单一铁氧体难以满足吸收频带宽、厚度薄和面密度小的要求,所以近年来研究者主要集中研究复合铁氧体材料以及纳米尺寸的铁氧体来控制其电磁参数[1]。铁氧体纳米磁性材料作为微波的吸收体,纳米级的微粒材料的比表面积比常规粗粉大3~4个数量级,吸收率高,一方面,它能吸收空气中的游离的分子或介质中其他分子通过成键方式连接在一起,造成各向异性的改变。另一方面,在微波场中,活性原子及电子运动加剧,促使磁化,最终将电磁能转化为热能,从而增加吸收体的吸波能力。在应用方面,铁氧体吸波材料可分为结构型(整体烧结成一定形状的器件)和涂敷型(用铁

关于磁性材料及其应用的探讨

关于磁性材料及其应用的探讨 发表时间:2019-08-15T14:05:45.490Z 来源:《工程管理前沿》2019年第9期作者:程俊峰[导读] 对磁性材料的相关应用进行探讨,以促进磁性材料的不断发展。 宁波招宝磁业有限公司 315000 【摘要】磁性材料的用途多种多样,目前越来越多的学者对其进行了研究,本文对磁性材料的相关应用进行探讨,以促进磁性材料的不断发展。 【关键词】磁性材料;应用;探讨 1引言 磁性材料的种类多种多样,例如磁性纳米材料、磁性气凝胶材料、磁性吸附材料等,不同的材料其用途各不相同,可以被应用与不同的领域。目前,磁性材料已经成为研究热点,根据其优势越来越多的被应用于各个行业中,本文介绍了几种磁性材料以及其应用。2磁性纳米材料 与大多现有生物医用纳米材料不同,以纳米氧化铁为代表的医用磁性纳米颗粒既可介导外场产生局域磁场、热效应、力学效应,又兼顾了本征的类酶催化活性。同时,纳米氧化铁是当前为数不多的已被美国食品药品监督管理局(FDA)批准可用于临床的无机纳米材料. 因此,将多功能集成于一体的磁性纳米颗粒在磁共振造影成像(MRI)、磁感应热疗、细胞命运调控、生物催化等生物医学相关领域展现出巨大的应用前景. 在生物影像方面,超顺磁性氧化铁纳米颗粒增强的磁共振 T 2 成像已应用于多种疾病的诊断;在肿瘤精准治疗方面,集成影像与热疗为一体的磁性氧化铁诊疗一体化纳米平台材料也展现了巨大潜力;在生物催化方面,磁性氧化铁纳米材料由于具有类生物酶的催化特性,且稳定性高、经济以及可规模化制备等特点,已经成为当前的研究热点之一。然而,磁性纳米材料在取得良好进展的同时,也面临着更重要的挑战. 比如,传统超顺磁氧化铁纳米颗粒作为磁共振T 2 造影剂,在临床应用上存在易与低信号区产生混淆,且图像分辨率仍有待提高的问题,作为磁热疗剂,其低的磁热效率也一直是临床靶向磁热疗应用的障碍. 令人欣慰的是,随着磁性纳米材料合成技术的不断发展,新型的磁性纳米材料不断涌现,不仅有效改善了以往存在的科学问题,而且也进一步扩展了其在生物医学领域的应用面. 如利用准顺磁氧化铁作为T 1 造影剂已被成功开发,高磁-热效率的纳米热疗剂也逐步进入人们视野,在脑神经调控、生物体器官冷冻复苏、细胞命运调控以及肿瘤诊疗一体化等方面也取得了长足进展。目前,磁性纳米材料在生物医学应用的多个领域都展现出其独特的优势,特别是在高效介导外场产生的生物效应及其应用上取得了重要进展。 3磁性气凝胶材料 气凝胶是由胶体粒子或高聚物分子相互聚结构成的纳米多孔网络结构,并在孔隙中充满气态分散介质的一种高分散固态材料。气凝胶最初由 Kistle制得,他采用超临界干燥技术成功制备了二氧化硅气凝胶,因此将气凝胶定义为湿凝胶通过超临界干燥所获得的材料。随着气凝胶材料的不断发展,具有特殊功能的气凝胶也越来越受到人们的关注。磁性气凝胶是一种具有磁响应性能的气凝胶材料,它同时兼具气凝胶的特性和磁响应性能,在吸附、催化和生物医学等领域的应用都有独特的优势。磁性气凝胶主要采用将磁功能化的材料分散在溶液中,经过凝胶化、老化和超临界干燥等步骤制得,通常的方法是将磁性纳米颗粒物理分散或化学接枝到气凝胶基质中,如在常规气凝胶上负载磁性纳米材料,以赋予其磁性能。因磁功能化的纳米材料和气凝胶基质的不同,磁性气凝胶的结构和性能也会变化,这为制备具有特殊功能的气凝胶提供了条件,具有很广的研究前景。磁性气凝胶可分为无机磁性气凝胶和有机磁性气凝胶两类:无机磁性气凝胶的基质主要是 SiO2 和 TiO2 等气凝胶,主要研究磁性颗粒与气凝胶基体的相互作用机理以及对材料结构和性能的影响。而有机磁性气凝胶的基质主要是石墨烯气凝胶和碳气凝胶等柔性气凝胶,它们主要应用于吸附、催化和医药载体等领域,且具有磁分离效果好、催化效率高和可回收利用的特点。在水处理中,磁性气凝胶材料能在保持其自身结构完整的前提下有效吸附污染物,并且能够通过在外部加载磁场的作用下实现快速分离与回收,是一种新型的环保吸附剂。由于具有高比表面积、高孔隙率以及磁性能,磁性气凝胶在催化效率和磁响应性能上有巨大的优势,也可以作为高效催化剂使用。此外,磁性气凝胶材料还在生物医药和电极材料等领域有优异的性能和广泛的应用,是一种研究与应用潜力巨大的新型材料。 4磁性吸附材料 工业发展一方面促进了科技的发展,给人们生活创造了各种便利,但另一方面由于涉及各种化学反应和材质,生产过后带来的环境垃圾以及废水的排放和处理也是一大难题。废水的排放会导致新的环境安全问题,国家对排放进行了限制,专家们也致力于研究出新的方式来处理废水,那么磁性吸附就是新兴的一种方式。 磁性材料在外加磁场的条件下就可以加速重金属离子与液体的分离,因此确保吸附材料具有稳定的磁性,就需要通过一番实验制得。实验发现制得的磁性氧化石墨烯取得了良好的吸附效果,比如实验将 FeCl 3 ·6H 2 O 作为前驱体制备出 Fe 3 O 4 修饰的三元磁性氧化石墨烯AMGO 很好的对 Cr(VI) 进行了吸附。还有 Cu 2+ 、Pb 2+ 、Ni 2+ 、Hg 2+ 、Cd 2+ 、As 3+ 、As 5+ 、Cr 6+ 等重金属离子存在于水和土壤中给环境带来了很大的污染,简单的物理和化学方法不能高效的除去这些重金属离子,那么研究出完备的吸附法就可以解除燃眉之急。 我们都知道水体中各种成分都是可以共存的,如果采用化学反应之类的除去重金属离子,会对原来的水体造成化学污染,而且浪费了资源,过滤和回收都是需要耗费很大的代价的。在这个基础下,水中的任何物质之间都是有可能发生反应从而影响重金属离子的去除的,为了避免这个弊端,需要保证吸附材料具有稳定的磁性,同样还要保证自身的稳定性。合成物就是一种稳定存在的方式,Fe 表面含有很强络合重金属离子能力的丰富的官能团,被相关人员拿来做研究,经实验发现在此基础下具有一定的吸附量,而且吸附量深受 PH 的影响,为了达到高效的吸附量需要对相关影响因素进行控制和调整。 在不同的 pH 下还有在不同金属离子的存在下,所具备的吸附效果也是不同的。在 pH 为 5.3 的情况下 GO/Fe 3 O 4 对 Cu(II)的最大吸附容量是 18.26 mg/g,但是在 FA 存在时最大吸附容量可以达到19.09 mg/g。除此之外对重金属离子的吸附性还和吸附顺序有关,所以对于不同的重金属离子的吸附量也是不同的。如何制备出更加强效的稳定性的材料就需要通过各种离子的尝试。运用化学反应将实验收获的具有吸附能力的离子制备成稳定的合成物,在加上磁性条件的情况下加强吸附效果。比如将 Fe 3+ 和 Fe 2+ 与 GO 上的羧基形成配合物制得的磁性氧化石墨烯就对许多重金属离子有明显的吸附成效。因此专家和研究人员把目光和研究方向投向具有磁性的吸附材料上,经过尝试和摸索,确实得到比较完备的实验报告和收获,相信在未来会制备出更加高效的吸附材料。

磁性材料分类

磁性材料 主要是指由过度元素铁,钴,镍及其合金等能够直接或间接产生磁性的物质. 磁性材料从材质和结构上讲,分为“金属及合金磁性材料”和“铁氧体磁性材料”两大类,铁氧体磁性材料又分为多晶结构和单晶结构材料。 从应用功能上讲,磁性材料分为:软磁材料、永磁材料、磁记录-矩磁材料、旋磁材料等等种类。软磁材料、永磁材料、磁记录-矩磁材料中既有金属材料又有铁氧体材料;而旋磁材料和高频软磁材料就只能是铁氧体材料了,因为金属在高频和微波频率下将产生巨大的涡流效应,导致金属磁性材料无法使用,而铁氧体的电阻率非常高,将有效的克服这一问题、得到广泛应用。 磁性材料从形态上讲。包括粉体材料、液体材料、块体材料、薄膜材料等。 磁性材料的应用很广泛,可用于电声、电信、电表、电机中,还可作记忆元件、微波元件等。可用于记录语言、音乐、图像信息的磁带、计算机的磁性存储设备、乘客乘车的凭证和票价结算的磁性卡等。 顺磁性 paramagnetism 顺磁性物质的磁化率为正值,比反磁性大1~3个数量级,X约10-5~10-3,遵守Curie定律或Curie-Weiss定律。物质中具有不成对电子的离子、原子或分子时,存在电子的自旋角动量和轨道角动量,也就存在自旋磁矩和轨道磁矩。在外磁场作用下,原来取向杂乱的磁矩将定向,从而表现出顺磁性。 顺磁性是一种弱磁性。顺磁(性)物质的主要特点是原子或分子中含有没有完全抵消的电子磁矩,因而具有原子或分子磁矩。但是原子(或分子)磁矩之间并无强的相互作用(一般为交换作用),因此原子磁矩在热骚动的影响下处于无规(混乱)排列状态,原子磁矩互相抵消而无合磁矩。但是当受到外加磁场作用时,这些原来在热骚动下混乱排列的原子磁矩便同时受到磁场作用使其趋向磁场排列和热骚动作用使其趋向混乱排列,因此总的效果是在外加磁场方向有一定的磁矩分量。这样便使磁化率(磁化强度与磁场强度之比)成为正值,但数值也是很小,一般顺磁物质的磁化率约为十万分之一(10-5),并且随温度的降低而增大。 抗磁性 diamagnetism 抗磁性是一些物质的原子中电子磁矩互相抵消,合磁矩为零。但是当受到外加磁场作用时,电子轨道运动会发生变化,而且在与外加磁场的相反方向产生很小的合磁矩。这样表示物质磁性的磁化率便成为很小的负数(量)。磁化率是物质在外加磁场作用下的合磁矩(称为磁化强度)与磁场强度之比值,符号为κ。一般抗磁(性)物

磁性材料的研究现状与应用

磁性材料的研究现状与应用 磁性材料是功能材料的重要分支,利用磁性材料制成的磁性元器件具有转换、传递、处理信息、存储能量、节约能源等功能,广泛地应用于能源、电信、自动控制、通讯、家用电器、生物、医疗卫生、轻工、选矿、物理探矿、军工等领域,尤其在信息技术领域已成为不可缺少的组成部分。 磁性材料大体上分为两类:其一为铁磁有序的金属磁性材料;其二绝大多数为亚铁磁有序、具有半导体导电性质的非金属磁性材料。磁性材料的发展过程大致可分为三个阶段:50年代以前主要研究金属磁性材料;50到80年代为铁氧体的黄金时代,除电力工业外,各领域中铁氧体占绝对优势;90年代以来,纳米磁性材料崛起。磁性材料由3d过渡族金属与合金的研究扩展到3d-(4f,4d,5d,5f)合金与化合物的研究与应用。同时,磁性功能材料也得到了显著的进展。 一、磁性的描述 磁及磁现象的根源是电流,或者说磁及磁现象的微观机制是电荷的运动形成原子磁矩造成的,而且,所有的物质都是磁性体,只是由于构成物质的原子结构不同,而显示出的磁学性能不同。有铁磁性、亚铁磁性、反铁磁性、顺磁性、抗磁性以及无磁性等。描述材料的磁性的物理量有磁化强度M、磁化率χ、磁感应强度B、磁导率μ。 根据物质磁化率的符号和大小,可以把物质的磁性大致分为五类:抗磁体、顺磁体、铁磁体、亚铁磁体和反铁磁体。影响材料性质的有磁化强度随温度的变化。即在不同温度下,磁化强度不同的性质。铁磁材料的自发磁化在居里温度Tc处发生相变,Tc以下为铁磁性,而Tc以上铁磁性消失。同样亚铁磁性材料也具有类似的特性。另外一个必须注意的因素便是磁各向异性,即磁学特性随材料的晶体学方向不同而不同的性质,典型特征便是在不同方向施加磁场会测得不同的磁滞回线。 磁性材料的基本特征可以分为两大类: (1)完全由物质本身(成分组分比)决定的特性。主要有饱和磁化强度Ms和磁感应强度Bs; (2)由物质决定,但随其晶体组织结构变化的特性。主要有磁导率、矫顽力Hc和矩形比Br/Bs,以及磁各向异性。 由此,利用和开发磁性材料就需要有分析技术和加工工艺两个方面的进展。从历史上而言,按材料加工技术进展区分,大体可有以下几个阶段: (1)熔炼铸造技术,获得铁及其合金等软磁和永磁材料。 (2)粉末冶金,开发绝缘性磁性材料、陶瓷材料和稀土永磁材料。 (3)真空镀膜,开发了镀膜磁性材料及非晶磁性材料,制成磁纪录介质及微磁学器件。 (4)单原子层控制技术,制备了定向晶体学取向型、巨磁电阻多层膜、人工超晶格等有特殊用途的磁性材料。 而磁性材料的开发和利用,也就是采取以上这几种技术工艺方法来加强所需要的性能,抑制不利于所需性能的因素。 二、软磁材料和永磁材料 软磁材料,也是高磁导率材料,是应用中占比例最大的传统磁性材料,多用于磁芯。是指由较低的外部磁场强度就可获得很大的磁化强度及高密度磁通量的材料,对这种材料的基本要求是: (1)初始磁导率μi和最大磁导率μm要高,以提高功能效率; (2)剩余磁通密度Br要低,饱和磁感应强度Ms要高,以节省资源并迅速响应外磁场; (3)矫顽力Hc要小,以提高高频性能; (4)铁损要低以提高功能效率;

锰锌软磁铁氧体材料的制备及研究新进展综述

锰锌软磁铁氧体材料的制备及研究新进展 摘要: 目前国外制备锰锌铁氧体材料的主要方法及研究进展, 包括传统的干法工艺(瓷工艺)和湿法工艺等, 同时指出了各种制备方法的优缺点。认为煅烧条件的控制及产品粒径的分布是影响材料磁性能的关键,湿法工艺中的溶胶-凝胶法和水热法是今后研究的主要方向。 关键词: 锰锌铁氧体制备研究发展 1.引言: 锰锌铁氧体又称磁性瓷,是具有尖晶石结构的软磁铁氧体材料,与同类型的金属磁性材料相比,它具有电阻率高,涡流损耗小等特点,因其具有高磁导率、低矫顽力和低功率损耗等物理化学性能,被广泛应用于电子工业,主要用来制造高频变压器、感应器、记录磁头和噪声滤波器等。随着电子工业的飞速发展,对磁性材料性能的要求也越来越高。适用于不同场合的高品质磁性材料的制备研究越来越受到人们的广泛关注。为了推动该领域研究工作的进展,结合笔者近年来的研究工作实际,我们从不同角度出发,对国外制备锰锌铁氧体磁性材料的研究进展情况作以述评。 2. 锰锌铁氧体的性能特点及其改良途径 2. 1 锰锌铁氧体的性能特点 作为一种软磁铁氧体材料,对锰锌铁氧体性能的基本要起始磁导率要高, 磁导率的温度系数要小, 以适应温度变化。同时矫顽力要小, 以便能在弱磁场下磁化, 也容易退磁。此外比损耗因素要小, 电阻率高,这样材料的损耗小, 适用于高频应用。与磁性金属材料相比,尽管锰锌铁氧体具有电阻率高、涡流损耗小等优点,但同时它也存在着饱和磁感应强度低、磁导率不高、居里点低、磁导率的温度系数高等不足之处,改善锰锌铁氧体的磁性能的研究正日益受到人们的广泛关注。 2. 2 改善锰锌铁氧体磁性能的主要途径

欲提高锰锌铁氧体的磁性能应从两方面着手: 一是对材料化学成份的比例调整, 包括各种稀土元素的加入等;二是设法调整材料晶粒粒度及外观形貌。有关研究表明: 配方中 F e3O 4的适量存在,使Fe2O 3在配方中含量为53~ 63. 5m o% 时, 有利于降低磁致伸缩系数, 提高磁导率; 另外,晶粒越大,晶界越整齐,材料的起始磁导率也越高;通过控制制备条件,在提高晶粒粒度的同时降低空隙率是人们追求的目标;平均粒径在10 ~ 20Lm材料的结构特点是晶粒粗大、晶界明显、密度高、孔隙率低、磁性能良好;晶粒大小还影响矫顽力的大小, 晶粒愈大, 矫顽力愈小,有利于材料的应用。此外,铁氧体中的气孔,一方面阻碍畴壁的移动,另一方面也减少涡流损耗。一般来说,孔隙率高的铁氧体损耗较小,但磁导率下降。3. 锰锌铁氧体的制备方法 锰锌铁氧体磁性材料的制备方法主要有传统的干法工艺和湿法工艺两大类。 3. 1 干法工艺 干法工艺又称瓷工艺,它是以氧化铁( F e2O3 )、氧化锌( ZnO )和氧化锰(M nO )或铁、锌、锰的金属盐为原料通过研磨、干燥、煅烧、实现初步铁氧体化,经二次研磨、干燥、造粒得到锰锌铁氧体颗粒,颗粒经成型、烧结,干法工艺的关键环节是煅烧、研磨和烧结,它们直接影响锰锌铁氧体材料的颗粒形状和粒径分布等微观结构, 从而影响所得锰锌铁氧体的磁性能。Yung-T sen Ch ien等研究了煅烧程度对锰锌铁氧体(M n0. 764 Zn0. 187 Fe2. 049O4 )磁性质的影响。认为将材料煅烧所得样品具有较高的磁导率和较低的损耗系数。还有人研究了烧结温度对锰锌铁氧体磁性质的影响,他们认为:锰锌铁氧体的磁化强度和磁导率随烧结体密度的增加而增加,而烧结体的密度取决于烧结温度和合成锰锌铁氧体所用的原料。在烧结过程中,温度过高会使锌氧化物蒸发,从而导致锰锌铁氧体磁导率的下降;烧结温度过低,则固相反应不完全,性能达不到要求。干法工艺简单、配料容易调整,该法的缺点是:原料物性相差很大, 难以混合均匀,所得产品性能不稳定;高温煅烧,能耗高,粉末飞扬严重,生产环境差;必须研磨处理,会引入杂质污染,对原料要求高,生产成本高等。 3. 2 湿法工艺 由于干法工艺所制的锰锌铁氧体材料均匀性差,所以近20年来,人们越来

软磁铁氧体材料基本类别及主要应用Featuresand

软磁铁氧体材料基本类别及主要应用(Features and applicat ion of Soft magnet) 软磁铁氧体按成份一般分为MnZn、NiZn系尖晶石和平面型两大类。前者主要用于低、中频(MnZn)和高频(NiZn),后者可用于特高频范围;从应用角度又可分高磁导率μi、高饱和磁通密度Bs、高电阻率及高频大功率(又称功率铁氧体)等几大类。由于软磁铁氧体在高频作用下具有高导磁率、高电阻率、低损耗等特点,同时还具有陶瓷的耐磨性,因而被广泛用于工业和民用等领域。工业产品主要用于计算机、通信、电磁兼容等用开关电源、滤波器和宽带变压器等方面;民用产品主要用于电视机、收录机等电子束偏转线圈、回扫变压器、中周变压器、电感器及轭流圈部分等。 一:国内外研发现状: 在软磁铁氧体磁性材料中一般以μi>5000的材料称为高磁导率,该材料近年来产量不断递增,尤其是随着当今数字技术和光纤通信的高速发展,以及市场对电感器、滤波器、轭流圈、宽带和脉冲变压器的需求大量增加,它们所使用的磁性材料都要求μi>10000以上,从而可使磁芯体积缩小很多,以适应元器件向小型化、轻量化发展要求。另外为满足使用需求,这类高磁导率小磁芯表面必须很好,平滑圆整,没有毛刺,且表面上须涂覆一层均匀、致密、绝缘、美观的有机涂层,针对这一技术难点,高磁导率软磁铁氧体产业需求中迫切希望再提高该功能材料的磁导率(μi>10000)。 上世纪90年代后,一些国外知名公司如日本TDK、TOKIN、HITACHI、IROX-NKK、FDK、KAWATETSU等、德国SIEMENS、荷兰Philips、美国SPANG磁性分公司等相继研发出新一代超高磁导率H5D(?i=15000)、H5E(?i=18000)铁氧体材料。日本TDK公司是全球磁性材料最富盛名的领头羊企业,他们在早期生产的H5C2(?i=10000)基础上,又先后开发了H5C3(?i=12000)、H5D(?i=15000)和H5E(?i=18000)等系列高?软磁铁氧体材料;90年代末已试验成功?i=20000的超高磁导率Mn-Zn铁氧体材料。TOKIN公司已向市场推出了12000H(?i=12000)、15000H(?i=15000)和18000H(?i=18000)的铁氧体材料。德国西门子、荷兰飞利浦、美国SPANG公司分别开发的高磁导率软磁铁氧体T42、T46、T56、3E6、3E7和MAT-W、MAT-H材料,其中T46:?i=15000、3E7:?i=15000、MA T-H:?i=15000,2000年西门子和飞利浦公司研制的T56、3E9材料最高磁导率已超过?i=18000。 虽然,我国软磁铁氧体工业发展较快,现有的生产厂家通过技术改造和工艺改进已取得不少成果,产品质量和产量得到明显提高,但目前国内只能大量生产?i=5000-7000的低档铁氧体材料,在高磁导率锰锌铁氧体材料研发生产上,国内与国外的水平与距离相差甚远,且大多数企业生产规模还太小,年产量普遍在1000吨以下,μi>10000的材料生产厂家更是屈指可数,而初具规模的国外公司一般年产软磁铁氧体在3000吨以上,TDK、FDK等公司年产量更是高达20000吨以上。依据我国磁性行业协会的统计,1999年我国生产μi=8000-10000材料的产量很少,但2000年后生产这类中低档软磁铁氧体材料却有较大改观。上海、浙江、

铁氧体磁环

一。下面的是行业标准 1.1 GB/T9637-88《磁学基本术语和定义》,等同采用IEC50-901,代替等同采用IEC205的SJ/T1258-77《磁性材料与器件术语及定义》。 1.2 JJG1013-89《磁学计量常用名词术语和定义》(试行)为中华人民共和国国家计量检定规程,非等效采用IEC50-901制定的,和GB/T9677-88出自于一个文本,基本上都是一个翻译问题,内容基本一样,只是翻译成的中文表述不同。 1.3 SJ/T103213-91《铁氧体材料牌号与元件型号命名方法》,代替SJ/T1582-80。 本标准规定软磁铁氧体材料用R表示,如R20表示磁导率为20的软磁铁氧体材料。软磁铁氧体材料牌号已被等同采用IEC1332(1995)《软磁铁氧体材料分类》的电子行业标准SJ/T1766-97代替。 1.4 SJ/Z1766-81《软磁铁氧体材料系列及测试方法》 1.5 SJ/T1766-97《软磁铁氧体材料分类》电子行业标准等同采用IEC1332(1995) 1.6 GB/T9634-88《磁性氧化物外形缺陷极限规范的指南》等同采用IEC424(1973)制定 1.7 GB/T9632-88《通信用电感器和变压器磁芯测量方法》本标准等同采用IEC367-1(1982)制定。 1.8 GB/T9635-88《天线棒测量方法》本标准等同采用IEC492(1975)制定。 1.9 SJ/T3175-88《磁性氧化物圆柱形磁芯、管形磁芯及螺纹磁芯的测量方法》本标准等同采用IEC732(1982)制定。 1.10 SJ/T10281-91《磁性零件有效参数的计算》等同采用IEC205(1966)、205AMD (1976)、205AMD2(1981)制定。 1.11 GB/T11439-89《通信用电感器和变压器磁芯第二部分:性能规范起草导则》,等同采用IEC367-2(1974)、367-2AMD1(1983)、367-2A(1976)制定。GB/T11439-89在1995年国家标准消化整理以后,被转化为电子行业标准SJ/T11076-96。 1.12 SJ/T9072.3-97《变压器和电感器磁芯制造厂产品目录中有关铁氧体材料资料的导则》等同采用IEC401(1993,第二版),代替SJ/Z9072-3-87二。以下为搜集整理 2.1前景广阔的软磁铁氧体材料

关于磁性材料的发展研究综述

关于磁性材料的发展研究综述 关键词:磁性材料、钕铁硼永磁材料、纳米磁性材料、磁电共存、应用及前景 摘要:磁性材料,是古老而用途十分广泛的功能材料,与信息化、自动化、机电一体化、国防、国民经济的方方面面紧密相关。人们对钕铁硼永磁材料的研究和优化,是磁性材料进一步发展,并逐渐深入到纳米磁性材料的研发和研究…… 关于磁性材料的研究发展综述 一、磁性材料简介 实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同。根据物质在外磁场中表现出的特性,物质可分为五类:顺磁性物质,抗磁性物质,铁磁性物质,亚磁性物质,反磁性物质。根据分子电流假说,物质在磁场中应该表现出大体相似的特性,但在此告诉我们物质在外磁场中的特性差别很大.这反映了分子电流假说的局限性。实际上,各种物质的微观结构是有差异的,这种物质结构的差异性是物质磁性差异的原因。我们把顺磁性物质和抗磁性物质称为弱磁性物质,把铁磁性物质称为强磁性物质。通常所说的磁性材料是指强磁性物质。磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性材料。磁化后容易去掉磁性的物质叫软磁性材料,不容易去磁的物质叫硬磁性材料。一般来讲软磁性材料剩磁较小,硬磁性材料剩磁较大。 二、磁性材料分类 磁性是物质的一种基本属性。实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同。物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。铁磁性和亚铁磁性物质为强磁性物质,抗磁性和顺磁性物质为弱磁性物质。磁性材料按性质分为金

属和非金属两类,前者主要有电工钢、镍基合金和稀土合金等,后者主要是铁氧体材料。按使用又分为软磁材料、硬磁材料和功能磁性材料。功能磁性材料主要有磁致伸缩材料、磁记录材料、磁电阻材料、磁泡材料、磁光材料,旋磁材料以及磁性薄膜材料等,反映磁性材料基本磁性能的有磁化曲线、磁滞回线和磁损耗等。 1、软磁材料软磁材料亦称高磁导率材料、磁芯材料,对磁场反应敏感,易于 磁化。大体上可分为四类:①合金薄带或薄片:FeNi(Mo)、FeSi、FeAl等。 ②非晶态合金薄带:Fe基、Co基、FeNi基或FeNiCo基等配以适当的Si、 B、P和其他掺杂元素,又称磁性玻璃。。磁介质(铁粉芯):FeNi(Mo)、FeSiAl、 羰基铁和铁氧体等粉料,经电绝缘介质包覆和粘合后按要求压制成形。④铁氧体:包括尖晶石型──M O·Fe2O3 (M代表NiZn、MnZn、MgZn、Li1/2Fe1/2Zn、CaZn等),磁铅石型──Ba3Me2Fe24O41(Me代表Co、Ni、Mg、Zn、Cu及其复合组分)。 2、硬磁材料硬磁材料,又称永磁材料,不易被磁化,一旦磁化,则磁性不易消 失。目前使用的永磁材料答题分为四类:①阿尔尼科磁铁:其构成元素Al、Ni、Co(其余为Fe),是强磁性相α1在非磁性相α2中以微晶析出而呈现高矫顽力的材料,对其进行适当处理,可增大磁积能。②铁氧体永磁材料:以Fe2O3为主要成分的复合氧化物,并加入钡的碳酸盐。③稀土类钴系磁铁:含有稀土金属的钴系合金,具有非常强的单轴磁性各向异性。④钕铁硼系稀土永磁合金:该合金采用粉末冶金方法制造,是由④Nd2Fe14B、 Nd2Fe7B6和富Nd相(Nd-Fe,Nd-Fe-O)三相构成,其磁积能是目前永磁材料中的最高纪录。 三、磁性材料的应用 由于磁体具有磁性,所以在功能材料中备受重视。磁体能够进行电能转换(变压器)、机械能转换(磁铁、磁致伸缩振子)和信息储存(磁带)等。 磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。由于铁磁

相关文档
最新文档