(word完整版)初中数学一次函数练习题及答案.docx

(word完整版)初中数学一次函数练习题及答案.docx
(word完整版)初中数学一次函数练习题及答案.docx

一次函数测试题

(考90 分,分 100 分)

一、(每 3 分,共 30分)

1.直 y 93x 与x交点的坐是________,与y交点的坐是_______.

2.把直y1x1向上平移

1

个位 , 可得到函数 __________________.

3.

22

若点 P (– 1, 3)和 P ( 1, b)关于 y 称, b=.12

4.若一次函数y= mx-(m-2) 点 (0,3) , m=.

5.函数 y x-5 的自量x的取范是.

6.如果直 y ax b 一、二、三象限,那么ab ____0 (“<”、“>”或“=”).

7.若直 y2x1和直y m x 的交点在第三象限, m的取范是 ________.

8.函数 y= -x+2的象与 x , y 成的三角形面_________________.

9.某位鼓励工用水,作出了以下定:每位工每月用水不超10 立方米的,按每立方米m元

水收;用水超 10 立方米的,超部分加倍收. 某工某月水16m元,工个月用水 ___________立方米 .

10. 有 1 的等三角形卡片若干 , 使用些三角形卡片拼出分是2、3、4?的等三角形 ( 如

). 根据形推断每个等三角形卡片数S 与 n 的关系式.

二、(每 3 分,共 18分)

11.

x-2

的自量 x 的取范是()函数 y=

x+2

A. x≥ -2B.x > -2C. x≤ -2D. x<-2

12.一根簧原12cm,它所挂的重量不超10kg,并且挂重 1kg 就伸 1.5cm,写出挂重后簧度 y

( cm)与挂重 x( kg)之的函数关系式是()

A. y= 1.5 ( x+12) (0 ≤ x≤ 10)B. y=1.5x+12(0≤ x≤ 10)

C. y= 1.5x+10(0 ≤ x)D. y=1.5(x -12)(0 ≤ x≤ 10)

13.无 m何数,直y x2m 与 y x 4 的交点不可能在()

A. 第一象限

B. 第二象限

C.第三象限

D.第四象限

14.某趣小做,将一个装水的啤酒瓶倒置(如),

并法使瓶里的水从瓶中匀速流出. 那么倒置啤酒瓶内水面

高度 h 随水流出的 t 化的象大致是()

h h h h

A.

B.

C.

D.

15. 已知函数 y

1

x 2 , 当-1 < x ≤1 时, y 的取值范围是(

2

5 3 3 5

C.

3 5 3 5

A.

y

B.

y

y

D.

2

y

2

2

2

2 2

2

2

16. 某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡 到达 A 地后,宣传 8 分钟;然后下坡到

B 地宣传 8 分钟返回,行程情况

如图.若返回时,上、下坡速度仍保持不变,在 A 地仍要宣传 8 分钟,

那么他们从 B 地返回学校用的时间是(

A.45.2 分钟

B.48 分钟

C.46 分钟

D.33

分钟

三、解答题(第 17— 20 题每题 10 分,第 21 题 12 分,共 52 分)

17. 观察图 , 先填空 , 然后回答问题 :

(1) 由上而下第 n 行 , 白球有 _______个; 黑球有 _______个.

(2) 若第 n 行白球与黑球的总数记作 y, 则请你用含 n 的代数式表示 y, 并指出其中 n 的取值范围 .

18. 已知,直线 y=2x+3 与直线 y=-2x-1. y

( 1)求两直线与 y 轴交点 A ,B 的坐标 ; ( 2)求两直线交点 C 的坐标 ;

A

( 3)求△ ABC 的面积 .

C

x

B

19. 旅客乘车按规定可以免费携带一定重量的行李.

如果所带行李超过了规定的重量, 就要按超重的千克收

取超重行李费.已知旅客所付行李费

y (元)可以看成他们携带的行李质量 x (千克)的一次函数为

y

1

x 5 .画出这个函数的图象,并求旅客最多可以免费携带多少千克的行李?

6

20.某医药研究所开发一种新药, 如果成人按规定的剂量服用, 据监测 : 服药后每毫升血液中含药量y 与时间t 之间近似满足如图所示曲线:

(1)分别求出t 11

和 t时 ,y 与 t 之间的函数关系式;22

(2)据测定 : 每毫升血液中含药量不少于 4 微克时治疗疾病有效, 假如某病人一天中第一次服药为7:00, 那么服药后几点到几点有效?

21.某军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油的过程中,设运输

飞机的油箱余油量为Q1吨,加油飞机的加油油箱的余油量为Q2吨,加油时间为t 分钟, Q1、Q2与 t 之间的函数关系如图. 回答问题:

(1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟?

(2)求加油过程中,运输飞机的余油量Q1(吨)与时间 t (分钟)的函数关系式;

(3) 运输飞机加完油后, 以原速继续飞行, 需 10 小时到达目的地,y

(微克 )油料是否够用?请通过计算说明理

由.

6

O

1

2

8 t(小时 )

参考答案

1. ( 3, 0)( 0, 9)

2.y=0.5x-0.5

3. 3

4.– 1

5.x ≥5

6. >

7. m < -18. 29. 1310.s n2

11. B12. B13. C14. A15. D16. A

17.(1) n,2n-1; (2) y= 3n-1 (n为正整数 )

18. (1) A ( 0, 3) ,B ( 0, -1 );(2) C(-1,1);△ABC 的面积 =1=2

(3+1) 1

2

19. ( 1) y=12x(0≤t 1

( t

1); y=-0.8x+6.4)

若 y≥4时 , 则122

(2)x 3,所以7:00服药后,7:20到 10:00有效

3

20. 函数y 1

x 5 (x≥30)的图象如右图所示. 6

当 y=0 时, x=30.所以旅客最多可以免费携带30 千克的行李 .

21.(1) 30吨油,需10分钟

(2)设 Q1= kt + b,由于过 (0,30) 和 (10,65) 点,可求得: Q1= 2.9t +36(0 ≤ t ≤10)

(3) 根据图象可知运输飞机的耗油量为每分钟0.1 吨,因此10 小时耗油量为

10×60×0.1 = 60(吨)< 65(吨) , 所以油料够用

初中数学一次函数的最值问题

初中数学一次函数的最值问题 一次函数在自变量x允许取值范围(即全体实数)内,它是没有最大或最小值的。但是,如果给定了自变量的某一个取值范围(全体实数的一部分),那么y=kx+b 的最大值或最小值就有可能存在。一般地,有下面的结论:1、如果,那么有最大值或最小值(如图1):当时,,;当时,,。 图1 2、如果,那么有最小值或最大值(如图2):当 时,;当时,。 图2

3、如果,那么有最大值或最小值(如图3)当 时,;当,。 图3 4、如果,那么既没有最大值也没有最小值。凡是用一次函数式来表达实际问题,求其最值时,都需要用到边界特性,像物质的运输与供应、生产任务的分配和订货、邮件的投递及空袋的调运等。 下面是一道利用一次函数的最小值的决策问题,供参考: 某送奶公司计划在三栋楼之间建一个奶站,三栋楼在同一条直线上,顺次为A楼,B楼,C楼,其中A楼与B楼之间的距离为40m,B楼与C楼之间的距离为60m,已知A楼每天有20人取奶,B楼每天有70人取奶,C楼每天有60人取奶,送奶公司提出两种建站方案: 方案一:让每天所有取奶的人到奶站的距离总和最小; 方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站距离之和。 (1)若按照方案一建站,取奶站应建在什么位置?

(2)若按照方案二建站,取奶站应建在什么位置? (3)在方案二的情况下,若A楼每天取奶的人数增加(增加的人数不超过22人),那么取奶站将离B楼越来越远,还是越来越近?请说明理由。 解:(1)设取奶站建在距A楼xm处,所有取奶的人到奶站的距离总和为ym.。 ①当时, ∴当x=40时,y的最小值为4400。 ②当时, , 此时y的值大于4400。 因此按方案一建奶站,取奶站应建在B楼处。 (2)设取奶站建在距A楼xm处。 ①当时, , 解得(舍去)。 ②当时, 解得x=80, 因此按方案二建奶站,取奶站应建在距A楼80m处。

初三数学二次函数知识点总结

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数, 0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,.

人教版初中数学二次函数专项训练及解析答案

人教版初中数学二次函数专项训练及解析答案 一、选择题 1.已知抛物线y=x2+2x﹣m﹣1与x轴没有交点,则函数y=的大致图象是()A.B. C.D. 【答案】B 【解析】 【分析】 由题意可求m<﹣2,即可求解. 【详解】 ∵抛物线y=x2+2x﹣m﹣1与x轴没有交点, ∴△=4﹣4(﹣m﹣1)<0 ∴m<﹣2 ∴函数y=的图象在第二、第四象限, 故选B. 【点睛】 本题考查了反比例函数的图象,二次函数性质,求m的取值范围是本题的关键. 2.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是() A.原数与对应新数的差不可能等于零 B.原数与对应新数的差,随着原数的增大而增大 C.当原数与对应新数的差等于21时,原数等于30 D.当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】

解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误. 故答案选:D . 【点睛】 本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号. 3.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b +=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=2 22ax bx +, 且1x ≠2x ,则12x x +=2.其中正确的有( ) A .①②③ B .②④ C .②⑤ D .②③⑤ 【答案】D 【解析】 【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断 【详解】 解:抛物线的开口向下,则a <0; 抛物线的对称轴为x=1,则- 2b a =1,b=-2a

初中数学函数练习题(大集合)汇编

(1)下列函数,① 1)2(=+y x ②. 11+=x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x = ;其中是y 关于x 的反比例函数的有:_________________。 (2)函数22)2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 (4)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( ) (5)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( ) (6)反比例函数(0k y k x =≠)的图象经过(—2,5)和(2, n ), 求(1)n 的值;(2)判断点B (24,2-)是否在这个函数图象上,并说明理由 (7)已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3 时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值. (8)若反比例函数22 )12(--=m x m y 的图象在第二、四象限,则m 的值是( ) A 、 -1或1; B 、小于12 的任意实数; C 、-1; D、不能确定 (9)已知0k >,函数y kx k =+和函数k y x = 在同一坐标系内的图象大致是( ) (10)、如图,正比例函数(0)y kx k =>与反比例函数2y x =的图象相交于A 、C 两点, 过点A 作AB ⊥x 轴于点B ,连结BC .则ΔABC 的面积等于( ) A .1 B .2 C .4 D .随k 的取值改变而改变. 11、已知函数12y y y =-,其中1x y 与成正比例,22x y -与成反比例,且当1,1;3,5.2, x y x y x y =====时当时求当时的值 12、(8分)已知,正比例函数y ax =图象上的点的横坐标与纵坐标互为相反数,反比例函数k y x = 在每一象限内y x 随的增大而减小,一次函数24y x k a k =-++过点()2,4-. (1)求a 的值. (2)求一次函数和反比例函数的解析式. x y O x y O x y O x y O A B C D y x O A C B

(完整)初中数学一次函数练习题及答案

精心整理 一次函数测试题 (考试时间为90分钟,满分100分) 一、选择题(每题3分,共30分) 1.直线x =与x轴交点的坐标是________,与y轴交点的坐标是_______. 9- y3 11个单位,可得到函数__________________. 2.把直线1 3. 4. 5. 6.). 7. 8. 9.立方 .某10.2、3、4 . 二、选择题(每题3分,共18分) 11.函数y=的自变量x的取值范围是() A.x≥-2B.x>-2C.x≤-2D.x<-2 12.一根弹簧原长12cm,它所挂的重量不超过10kg,并且挂重1kg就伸长1.5cm,写 出挂重后弹簧长度y(cm)与挂重x(kg)之间的函数关系式是()

A.y =1.5(x+12)(0≤x ≤10)B.y =1.5x+12(0≤x ≤10) C.y =1.5x+10(0≤x)D.y =1.5(x -12)(0≤x ≤10) 13.无论m 为何实数,直线m x y 2+=与4+-=x y 的交点不可能在() A.第一象限B.第二象限C.第三象限D.第四象限 14.某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图), 并设法使瓶里的水从瓶中匀速流出.那么该倒置啤酒瓶内水面 高度h 随水流出的时间t 变化的图象大致是() A.B.C.D. 15.已知函数1 22y x =-+,当-1<x ≤1时,y 的取值范围是() A.5 32 2 y -<≤ B.352 2 y << C.352 2 y <≤ D.352 2 y ≤< 16.某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达A 地后,宣传8分钟;然后下坡到B 地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A 地仍要宣传8分钟,那么他们从B 地 返回学校用的时间是() B.48分钟 C.46分钟 D.33分钟 三、解答题(第17—20题每题10分,第21题12分,共52分) 17.观察图,先填空,然后回答问题: (1)由上而下第n 行,白球有_______个;黑球有_______个. (2)若第n 行白球与黑球的总数记作y,则请你用含n 的代数式表示y,并指出其中n 的取值范围. 18.已知,直线y=2x+3与直线y=-2x-1. h t O h t O h t O h t O

(完整版)初中数学二次函数综合题及答案

二次函数题 选择题: 1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( ) A -1 B 2 C -1或2 D m 不存在 2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a ≠0)模型的是( ) A 在一定距离内,汽车行驶的速度与行驶的时间的关系 B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系 C 矩形周长一定时,矩形面积和矩形边长之间的关系 D 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—2 5、抛物线y= 2 1 x 2 -6x+24的顶点坐标是( ) A (—6,—6) B (—6,6) C (6,6) D (6,—6) 6、已知函数y=ax 2+bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2c 〈3b A 1 B 2 C 3 D 4 7、函数y=ax 2-bx+c (a ≠0)的图象过点(-1,0),则 c b a + =c a b + =b a c + 的值是( ) A -1 B 1 C 21 D -2 1 8、已知一次函数y= ax+c 与二次函数y=ax 2+bx+c (a ≠0),它们在同一坐标系内的大致图象是图中的( ) A B C D 二填空题: 13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是————————————。 16、若抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x =2,最小值为-2,则关于方程ax 2+bx+c =-2的根为————————————。 17、抛物线y=(k+1)x 2+k 2-9开口向下,且经过原点,则k =————————— 解答题:(二次函数与三角形) 1、已知:二次函数y=x 2 +bx+c ,其图象对称轴为直线x=1,且经过点(2,﹣). (1)求此二次函数的解析式. (2)设该图象与x 轴交于B 、C 两点(B 点在C 点的左侧),请在此二次函数x 轴下方的图象上确定一点E ,使△EBC 的面积最大,并求出最大面积. 1 —1 0 x y y x -1 x y y x y x y

初三数学二次函数应用题专题复习

二次函数应用题专题复习(含答案) 1、(2016?葫芦岛)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本. (1)请直接写出y与x的函数关系式; (2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元 (3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大最大利润是多少 * 2.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件. (1)若公司每天的现售价为x元时则每天销售量为多少 (2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元

( 3.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式; (2)求出销售单价为多少元时,每天的销售利润最大最大利润是多少 (3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内(每天的总成本=每件的成本×每天的销售量) ^

最新初中数学一次函数经典测试题附答案解析

最新初中数学一次函数经典测试题附答案解析 一、选择题 1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =- B .24y x =+ C .22y x =+ D .22y x =- 【答案】A 【解析】 【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可. 【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4, 故选A. 【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键. 2.如图1,点F 从菱形ABCD 的顶点A 出发,沿A→D→B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( ) A .5 B .2 C .52 D .25 【答案】C 【解析】 【分析】 通过分析图象,点F 从点A 到D 用as ,此时,△FBC 的面积为a ,依此可求菱形的高DE ,再由图象可知,BD=5,应用两次勾股定理分别求BE 和a . 【详解】 过点D 作DE ⊥BC 于点E . 由图象可知,点F 由点A 到点D 用时为as ,△FBC 的面积为acm 2.. ∴AD=a.

∴12DE ?AD =a . ∴DE=2. 当点F 从D 到B 时,用5s. ∴BD=5. Rt △DBE 中, BE=()2222=521BD DE --=, ∵四边形ABCD 是菱形, ∴EC=a-1,DC=a , Rt △DEC 中, a 2=22+(a-1)2. 解得a= 52 . 故选C . 【点睛】 本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系. 3.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( ) A .0x > B .0x < C .2x > D .2x < 【答案】C 【解析】 【分析】 根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案. 【详解】 解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0), 当x >2时,y<0. 故答案为:x >2. 故选:C. 【点睛】 本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能

2020年初三数学二次函数经典练习全集

1.一跳水运动员从米高台上跳下,他的高度h(单位:米)与所用的时间t(单位:秒)的关系为h=-5(t-2)(t+1),你能帮助该运动员计算一下他跳起来后多长时间达到最大高度?最大高度是多 少米? 2.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2 )与长x 之间的函数关系式,并指出自变量的取值范围. 3.已知二次函数y=ax 2 +bx +c ,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a 、b 、c ,并写出函数解析式. 4.求经过A(0,-1)、B(-1,2),C(1,-2)三点且对称轴平行于y 轴的抛物线的解析式. 5.已知二次函数为x =4时有最小值-3且它的图象与x 轴交点的横坐标为1,求此二次函数解析式. 6. 已知抛物线经过点(-1,1)和点(2,1)且与x 轴相切. (1)求二次函数的解析式; (2)当x 在什么范围时,y 随x 的增大而增大; (3)当x 在什么范围时,y 随x 的增大而减小. 7.已知122 12 ++-=x x y (1)把它配方成y =a(x-h)2 +k 形式; (2)写出它的开口方向、顶点M 的坐标、对称轴方程和最值; (3)求出图象与y 轴、x 轴的交点坐标; (4)作出函数图象; (5)x 取什么值时y >0,y <0; (6)设图象交x 轴于A ,B 两点,求△AMB 面积. 8.在长20cm ,宽15cm 的矩形木板的四角上各锯掉一个边长为xcm 的正方形,写出余下木 板的面积y(cm 2 )与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围. 9.已知二次函数y=4x 2 +5x +1,求当y=0时的x 的值. 10.已知二次函数y=x 2 -kx-15,当x=5时,y=0,求k . 12.已知二次函数y=ax 2+bx +c 中,当x=0时,y=2;当x=1时,y=1;当x=2时,y=-4,试求a 、b 、c 的值. 13.有一个半径为R 的圆的内接等腰梯形,其下底是圆的直径. (1)写出周长y 与腰长x 的函数关系及自变量x 的范围; (2)腰长为何值时周长最大,最大值是多少? 14.二次函数的图象经过()()()4,2,4,0,0,4--C B A 三点: ① 求这个函数的解析式 ② 求函数图顶点的坐标 ③ 求抛物线与坐标轴的交点围成的三角形的面积。 15.如图,抛物线y=x 2 +bx+c 与x 轴的负半轴相交于A 、B 两点,与y 轴的正半轴相交于C 点,与双曲线y= x 6 的一个交点是(1,m),且OA=OC.求抛物线的解析式. 16.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P 从点O 开始沿OA 边向点A 以l 厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以l 厘米,秒的速度移动.如果P 、Q 同时出发,用t(秒)表示移动的时间(0≤t≤6),那么 (1)设△POQ 的面积为y ,求y 关于t 的函数解析式; (2)当△POQ 的面积最大时,将△POQ 沿直线PQ 翻折后得到△PCQ,试判断点C 是否落在直线AB 上,并说明理由; (3)当t 为何值时,△POQ 与△AOB 相似. 17、水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克. 经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.

初中数学二次函数应用专题-销售问题

二次函数的应用-销售问题 【类型1】二次函数最值问题 1.(2014?荆州)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务. (1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围; (2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少? 2.(2014?丹东)在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套. (1)求出y与x的函数关系式. (2)当销售单价为多少元时,月销售额为14000元; (3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少? 3.(2010?武汉)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍). (1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围; (2)设宾馆一天的利润为w元,求w与x的函数关系式; (3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?

人教版初中数学函数基础知识技巧及练习题附答案解析

人教版初中数学函数基础知识技巧及练习题附答案解析 一、选择题 D次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车1.如图,2020 长),火车在隧道内的长度与火车进入隧道的时间x之间的关系用图象描述大致是() A.B.C.D. 【答案】A 【解析】 【分析】 火车通过隧道分为3个过程:逐渐进入隧道,完全进入隧道并在其中行驶,逐渐出隧道【详解】 火车在逐渐进入隧道的过程中,火车在隧道内的长度逐渐增加; 火车完全进入隧道后,还在隧道内行驶一段时间,因此在隧道内的长度是火车长,且保持一段时间不变; 火车在逐渐出隧道的过程中,火车在隧道内的长度逐渐减少; 符合上述分析过程的为:A 故选:A 【点睛】 本题考查函数图像在生活中的应用,解题关键是分析事件变化的过程,并能够匹配对应函数图像变化 2.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是() A.监测点A B.监测点B C.监测点C D.监测点D 【答案】C 【解析】 试题解析:A、由监测点A监测P时,函数值y随t的增大先减少再增大.故选项A错

误; B 、由监测点B 监测P 时,函数值y 随t 的增大而增大,故选项B 错误; C 、由监测点C 监测P 时,函数值y 随t 的增大先减小再增大,然后再减小,选项C 正确; D 、由监测点D 监测P 时,函数值y 随t 的增大而减小,选项D 错误. 故选C . 3.如图,在直角三角形ABC ?中,90B ∠=?,4AB =,3BC =,动点E 从点B 开始沿B C →以2cm/s 的速度运动至C 点停止;动点F 从点B 同时出发沿B A →以1cm/s 的速度运动至A 点停止,连接EF .设运动时间为x (单位:s ),ABC ?去掉BEF ?后剩余部分的面积为y (单位:2cm ),则能大致反映y 与x 的函数关系的图象是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据已知题意写出函数关系,y 为ABC ?去掉BEF ?后剩余部分的面积,注意1.5秒时点E 运动到C 点,而点F 则继续运动,因此y 的变化应分为两个阶段. 【详解】 解:14362ABC S ?= ??=, 当302x ≤≤时,2122BEF S x x x ?=??=.26ABC BEF y S S x ??=-=-; 当342x <≤时,13322 BEF S x x ?=??=,362ABC BEF y S S x ??=-=-, 由此可知当302x ≤≤时,函数为二次函数,当342x <≤时,函数为一次函数. 故选B .

(完整)初中数学一次函数教案

一次函数知识总结 教学 目标 知识点:1、函数和一次函数的定义 2、一次函数的图像与性质 3、确定一次函数的表达式 4、一次函数图像的应用 重点 难点 重点:画一次函数的图像,并掌握其性质 难点:1、根据已知条件,利用待定系数法确定一次函数的解析式。 2、能用一次函数解决实际问题。 3、一次函数与二元一次方程组,一元一次不等式的关系。 一、函数及其相关概念 1.常量与变量:在某一变化过程中,可以取不同数值的量叫做变量;在某一变化过程中保持数值不变的量叫做常量. 2.函数:在某一变化过程中的两个变量x和y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值和它对应,那么y就叫做x的函数,其中x做自变量,y是因变量. (1)自变量取值范围的确定 ①整式函数自变量的取值范围是全体实数. ②分式函数自变量的取值范围是使分母不为0的实数. ③二次根式函数自变量的取值范嗣是使被开方数是非负数的实数,若涉及实际问题的函数,除满足 上述要求外还要使实际问题有意义. (2)函数值:对于自变量在取值范围内的一个值所求得的函数的对应值. 3.函数常用的表示方法:(1)图象法:形象、直观;(2)列表法:具体、准确;(3)解析法:抽象、全面。由函数的解析式作函数的图象,一般步骤是:列表、描点、连线. 范例讲解 例1、一汽车油箱中有油30升,若每小时耗油10升。 (1)写出油箱中剩油量Q(升)与时间t(小时)之间的函数关系式; (2)指出其常数、自变量、因变量; (3)Q是t的函数吗?为什么? 巩固练习 1、设路程为s,时间为t,速度为v,当v=60时, 路程和时间的关系式为,这个关系式 中,是常量,是变量,是的函数。

人教版初中数学二次函数解析

人教版初中数学二次函数解析 一、选择题 1.若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P (1,0)、Q (2,﹣2)都是“整点”.抛物线y =mx 2﹣4mx +4m ﹣2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( ) A .12≤m <1 B .12<m ≤1 C .1<m ≤2 D .1<m <2 【答案】B 【解析】 【分析】 画出图象,利用图象可得m 的取值范围 【详解】 ∵y =mx 2﹣4mx +4m ﹣2=m (x ﹣2)2﹣2且m >0, ∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x =2. 由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意. ①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意. 将(1,﹣1)代入y =mx 2﹣4mx +4m ﹣2得到﹣1=m ﹣4m +4m ﹣2.解得m =1. 此时抛物线解析式为y =x 2﹣4x +2. 由y =0得x 2﹣4x +2=0.解得12120.622 3.42 x x ==- ≈+≈,. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意. 则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意. ∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大】 答案图1(m =1时) 答案图2( m =时) ②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意. 此时x 轴上的点 (1,0)、(2,0)、(3,0)也符合题意. 将(0,0)代入y =mx 2﹣4mx +4m ﹣2得到0=0﹣4m +0﹣2.解得m =12 .

初中二次函数计算题专项训练及答案

初中二次函数计算题专项训练及答案 姓名:___________班级:________考号:_______ 1、如下图,已知二次函数图象的顶点坐标为C(1,0),直线与该二次函数的图象交于A、B两点,其中A点 的坐标为(3,4),B点在轴上. (1)求的值及这个二次函数的关系式; (2)P为线段AB上的一个动点(点P与A、B不重合),过P作轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求与之间的函数关系式,并写出自变量的取值范围; (3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由. 2、如图,在平面直角坐标系中,坐标原点为O,A点坐标为(4,0),B点坐标为(-1,0),以AB的中点P为圆 心,AB为直径作⊙P与轴的正半轴交于点C。 (1)求经过A、B、C三点的抛物线对应的函数表达式。 (2)设M为(1)中抛物线的顶点,求直线MC对应的函数表达式。 (3)试说明直线MC与⊙P的位置关系,并证明你的结论。 3、已知;函数是关于的二次函数,求: (1)满足条件m的值。 (2)m为何值时,抛物线有最底点?求出这个最底点的坐标,这时为何值时y随的增大而增大? (3)m为何值时,抛物线有最大值?最大值是多少?这时为何值时,y随的增大而减小. 4、如图所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为轴,过D且垂直于AB 的直线为轴建立平面直角坐标系. (1)求∠DAB的度数及A、D、C三点的坐标; (2)求过A、D、C三点的抛物线的解析式及其对称轴L.

初中数学一次函数经典测试题及答案

初中数学一次函数经典测试题及答案 一、选择题 1.某生物小组观察一植物生长,得到的植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴).下列说法正确的是(). ①从开始观察时起,50天后该植物停止长高; ②直线AC的函数表达式为 1 6 5 y x =+; ③第40天,该植物的高度为14厘米; ④该植物最高为15厘米. A.①②③B.②④C.②③D.①②③④【答案】A 【解析】 【分析】 ①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高; ②设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式, ③把x=40代入②的结论进行计算即可得解; ④把x=50代入②的结论进行计算即可得解. 【详解】 解:∵CD∥x轴, ∴从第50天开始植物的高度不变, 故①的说法正确; 设直线AC的解析式为y=kx+b(k≠0), ∵经过点A(0,6),B(30,12), ∴ 3012 6 k b b += ? ? = ? , 解得: 1 5 6 k b ? = ? ? ?= ? ,

∴直线AC的解析式为 1 6 5 y x =+(0≤x≤50), 故②的结论正确; 当x=40时, 1 40614 5 y=?+=, 即第40天,该植物的高度为14厘米;故③的说法正确; 当x=50时, 1 50616 5 y=?+=, 即第50天,该植物的高度为16厘米; 故④的说法错误. 综上所述,正确的是①②③. 故选:A. 【点睛】 本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键. 2.一次函数y=ax+b与反比例函数 a b y x - =,其中ab<0,a、b为常数,它们在同一坐标 系中的图象可以是() A.B. C. D. 【答案】C 【解析】 【分析】 根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲

初中数学二次函数课件及练习题

第二课时 一、教学目标 1. 使学生会用描点法画出二次函数k h x a y +-=2 )(的图像; 2. 使学生知道抛物线k h x a y +-=2 )(的对称轴与顶点坐标; 3.通过本节的学习,继续培养学生的观察、分析、归纳、总结的能力; 4.通过本节的教学,继续向学生进行数形结合的数学思想方法的教育,同时向学生渗透事物间互相联系、以及运动、变化的辩证唯物主义思想; 5.通过本节课的研究,充分理解并认识到二次函数图像可运动变化的和谐美,通过数学思维的审美活动,提高对数学美的追求。 二、教学重点 会画形如k h x a y +-=2 )(的二次函数的图像,并能指出图像的开口方向、对称轴及顶点坐标。 三、教学难点:确定形如 k h x a y +-=2 )(的二次函数的顶点坐标和对称轴。 4.解决办法: 四、教具准备 三角板或投影片 1.教师出示投影片,复习2 2 2 )(,,h x a y k ax y ax y -=+==。 2.请学生动手画1)1(2 1 2-+- =x y 的图像,正好复习图像的画法,完成表格。 3.小结k h x a y +-=2 )(的性质??? ?? ??平移顶点坐标对称轴开口方向 4.练习 五、教学过程 提问:1.前几节课,我们都学习了形如什么样的二次函数的图像? 答:形如2 2 2 )(,h x a y k ax y ax y -=+==和。(板书) 2.这节课我们将来学习一种更复杂的二次函数的图像及其相关问题,你能先猜测一下

我们将学习形如什么样的二次函数的问题吗? 由学生参考上面给出的三个类型,较容易得到:讨论形如k h x a y +-=2 )(的二次函数的有关问题.(板书) 一、复习引入 首先,我们先来复习一下前面学习的一些有关知识.(出示幻灯) 请你在同一直角坐标系内,画出函数222)1(2 1 ,121,21+-=--=-=x y x y x y 的图像,并指出它们的开口方向,对称轴及顶点坐标. 这里之所以加上画函数2)1(2 1 +- =x y 的图像, 是为了使最后通过图像的观察能更全面一些,也更直观一些,可以同时给出图像先沿y 轴,再沿x 轴移动的方式,也可以给出图像 先沿x 轴再沿y 轴移动的方式,使这部分知识能更全面,知识与知识之间的联系能更清晰、 更具体. 画这三个函数图像,可由学生在同一表中列值,但是要根据各自的不同特点取自变量x 的值,以便于学生进行观察.教师可事先准备好表格和画有直角坐标系的小黑板,由一名同 学上黑板完成,其他同学在练习本上完成,待同学们基本做完之后加以总结,然后再找三名 同学,分别指出这三个图像的开口方向、对称轴及顶点坐标,填入事先准备好的表格中. 然后提问:你能否在这个直角坐标系中,再画出函数1)1(2 1 2-+- =x y 的图像? 由于前面几节课我们已经画了不少二次函数的图像,学生对画图已经有了一定的经验, 同时可在画这个图时,把这些经验形成规律,便于学生以后应用. (l )关于列表:主要是合理选值与简化运算的把握,是教学要点.在选值时,首先要考虑的是函数图像的对称性,因此首先要确定中心值,然后再左,右取相同间隔的值;其次,选值时尽量选取整数,便于计算和描点. 在选取x 的值之后,计算y 的值时,考虑到对称性,只需计算中心值一侧的值,另一侧由对称性可直接填入,但一定要保证运算正确. (2)关于描点:一般可先定顶点(即中心值对应的点,然后利用对称性描出各点,以逐步提高速度.) (3)关于连线:特别要注意顶点附近的大致走向。最后画的抛物线应平滑,对称,并符合抛物线的特点. 由学生在上面的练习中所列的表中填上这个函数及其对应值,然后画出它的图像,同样 找一名同学板演. 学生画完,教师总结完之后,让学生观察黑板上画出的四条抛物线,提问: (1)你能否指出抛物线1)1(2 1 2-+- =x y 的开口方向,对称轴,顶点坐标?

初中数学二次函数真题汇编及解析

初中数学二次函数真题汇编及解析 一、选择题 1.如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?( ) A.1 B.1 2 C. 4 3 D. 4 5 【答案】D 【解析】 【分析】 求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.【详解】 解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k, ∴顶点D(2,4﹣k),C(0,﹣k), ∴OC=k, ∵△ABC的面积=1 2 AB?OC= 1 2 AB?k,△ABD的面积= 1 2 AB(4﹣k),△ABC与△ABD的面积 比为1:4, ∴k=1 4 (4﹣k), 解得:k=4 5 . 故选:D. 【点睛】 本题考查了抛物线与x轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键. 2.抛物线y=-x2+bx+3的对称轴为直线x=-1.若关于x的一元二次方程-x2+bx+3﹣t=0(t为实数)在﹣2<x<3的范围内有实数根,则t的取值范围是() A.-12<t≤3B.-12<t<4 C.-12<t≤4D.-12<t<3 【答案】C 【解析】 【分析】 根据给出的对称轴求出函数解析式为y=-x2?2x+3,将一元二次方程-x2+bx+3?t=0的

实数根看做是y =-x 2?2x +3与函数y =t 的交点,再由﹣2<x <3确定y 的取值范围即可求解. 【详解】 解:∵y =-x 2+bx +3的对称轴为直线x =-1, ∴b =?2, ∴y =-x 2?2x +3, ∴一元二次方程-x 2+bx +3?t =0的实数根可以看做是y =-x 2?2x +3与函数y =t 的交点, ∵当x =?1时,y =4;当x =3时,y =-12, ∴函数y =-x 2?2x +3在﹣2<x <3的范围内-12<y≤4, ∴-12<t≤4, 故选:C . 【点睛】 本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键. 3.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论①24b ac >,②0abc <,③20a b c +->,④0a b c ++<.其中正确的是( ) A .①④ B .②④ C .②③ D .①②③④ 【答案】A 【解析】 【分析】 ①抛物线与x 轴由两个交点,则240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,所以0abc >,故②错误; ③对称轴:直线12b x a =- =-,2b a =,所以24a b c a c +-=-,240a b c a c +-=-<,故③错误; ④对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,则抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确. 【详解】 解:①∵抛物线与x 轴由两个交点,

人教版初中数学函数基础知识经典测试题及答案解析

人教版初中数学函数基础知识经典测试题及答案解析 一、选择题 1.弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系: 物体质量x/千克0 1 2 3 4 5 … 弹簧长度y/厘米10 10.5 11 11.5 12 12.5 … 下列说法不正确的是() A.x与y都是变量,其中x是自变量,y是因变量 B.弹簧不挂重物时的长度为0厘米 C.在弹性范围内,所挂物体质量为7千克时,弹簧长度为13.5厘米 D.在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米 【答案】B 【解析】 试题分析:根据图表数据可得,弹簧的长度随所挂重物的质量的变化而变化,并且质量每增加1千克,弹簧的长度增加0.5cm,然后对各选项分析判断后利用排除法. 解:A、x与y都是变量,且x是自变量,y是因变量,正确,不符合题意; B、弹簧不挂重物时的长度为10cm,错误,符合题意; C、在弹性范围内,所挂物体质量为7千克时,弹簧长度为10+0.5×7=13.5,正确,不符合题意; D、在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米,正确,不符合题意. 故选B. 点评:本题考查了函数关系的确认,常量与变量的确定,读懂图表数据,并从表格数据得出正确结论是解题的关键,是基础题,难度不大. 2.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是() A.他们都骑了20 km B.两人在各自出发后半小时内的速度相同 C.甲和乙两人同时到达目的地 D.相遇后,甲的速度大于乙的速度 【答案】C 【解析】

相关文档
最新文档