隧道通风竖井施工方案

隧道通风竖井施工方案
隧道通风竖井施工方案

隧道通风竖井施工方案

一、编制依据

1、兰州至海口国家高速公路。。。。。。。合同段两阶段施工图设计;

2、《公路隧道施工技术规范》JTG F60-2009;

3、《公路工程质量检验评定标准》(第一册.土建工程)JTG F80/1—2004;

3、我单位同类工程的施工经验及现有人、材、机的情况;

4、现场调查情况。

二、工程概况

。。。高速公路是兰州至海口高速公路的重要组成部分,也是甘肃省规划的“四纵四横四个重要路段”公路网主骨架中第二纵的重要组成路段,。。。高速公路起点K0+000位于武都区两水镇西坪,终点K132+430位于陇南市文县清峪沟将军石(甘肃界),接四川省拟建的沙洲(川甘界)至广元公路。

。。合同段起讫桩号为K61+180~K65+790,路线长4.610km。本标段工程主要内容为麻崖子特长隧道出口段,根据通风设计单位依据麻崖子特长隧道隧址区地形和隧道通风计算结果,隧道在本合同段设通风竖井一个,布置在K63+000右侧31m位置处,近期作为右线隧道的送、排风道,远期兼作左、右线隧道的送、排风道:在火灾情况下作为左右线隧道的排烟道,竖井内部设置十字横隔板将竖井划分为左、右线送、排4个通道。

竖井直径9.2m,井深213m。竖井井口采用现浇厚50cm钢筋混凝土衬砌结构,井口明挖段长3.0m。井身段衬砌结构按新奥法原理设计,采用复合式衬砌结构形式。初期支护以锚杆、钢筋网、格栅及喷射混凝土组成联合支护体系,二次衬砌采用模注(钢筋)混凝土结构,初期支护与二次衬砌结构之间设防排水夹层,竖井复合衬砌支护参数见下表。

竖井复合式衬砌支护设计参数表

三、工程地质、气象特征及水文概况

1、地形、地貌:本项目位于甘肃省东南部,属秦岭山地。项目区内群山林立,沟壑纵横,属高中山构造剥蚀山地,秦岭与岷山两大山系的支脉东西和南西至北东两个方向绵亘,白龙江以北秦岭山脉向西延伸,白龙江以南岷山山脉向东北延伸,形成复合型山地地貌形态。

路线走廊带所经河谷、山地等不同地段,依其成因将地貌单元划为河谷区和高中山区两大单元。再按形态将河谷地貌进一步划分为河床漫滩、阶地区。山区大部分基岩裸露,大部分斜坡及坡麓覆盖黄土、亚粘土、碎石等松散堆积物。

2、地质、地震:本合同段内根据勘察的钻探揭露显示,隧道址区除局部缓坡及沟谷处堆积有第四系全新统泥石流堆积层(Q42sef)、全新统坡洪积层(Q4dl+pl)、全新统冲洪积层(Q4al+pl)及洞顶黄土外,绝大部分地段基岩裸露。基岩地层为中泥盆系三河口组(D2S)灰岩和片岩。

根据国家地震局颁布的《中国地震动峰值加速度区划图》、《中国地震动反应谱特征周期区划图》(G18306-2001),工作区内地震动峰值加速度为0.20g,地震反应谱特征周期为0.40S。对应地震烈度为Ⅷ度。

3、气象特征:路线所处区域属北亚热带湿润向暖温半湿润过渡的季风气候,在全国公路自然分区中属陇南南部山地和湿润区Va-1。受境内高山深谷地形的影响,气候差异悬殊。年平均气温14.6℃~14.9℃,极端最低气温-8.1℃,极端最高气温40.0℃,年平均降雨量 474.6mm~900mm。

4、河流水文:路线所在区为长江流域,嘉陵江水系,主要由白龙江、福津河、洛塘河及泥湾沟、甘家沟、佛堂沟、玉堂沟等支沟组成。本合同段内河流为洛塘河支流,流域面积306平方公里,最大流量一般为2m3/s,沿河植被较好。

四、施工总体部署

1、临时工程建设(详见附图1)

(1)、施工场地

麻崖子隧道通风竖井处设置有一处平整场地,平整场地后宽70m,长145m,用于运营期间安放变电所及通风设备,目前场地已平整完成,可利用做为现在竖井施工的场地。

(2)、施工便道

本工程施工便道以S206线和既有便道为依托作为主要进场道路,充分加宽整修后利用。竖井位置由于原有乡村道路与竖井场地顶面存在巨大高差,无法直接通行,故在此处新修筑360米便道用于连接原有乡村道路与竖井顶面,路基采用4.5米宽,每隔400米设会车道一处,路面采用泥结碎石路面,施工时加强维修养护,确保运输畅通。目前进场施工便道已修建完成,可通行大型工程机械设备。

(3)、施工用电

根据竖井施工电气设备总用电量,在井口右侧安装800KVA变压器1台,从地方高压电杆处接入变电房变压,提供到搅拌站、空压机站及卷扬机等洞口用电地点、井身0~213m长度的用电。采用400/230V三相五线系统供电,动力设备采用三相380V;对于施工照明,成洞段和不作业段用220V,一般作业地段采用安全电压36V,目前地方高压电力不足,临时配备一台250KW发电机过渡,同时作为以后施工备用电源。

(4)、施工用水

距离井口约500m位置有一处充足水源,使用高压水泵抽入井口附近的高位水池,用钢管接入井内及生活区各用水点,井下供水用Φ57×3.5mm无缝钢管,随压风管一起悬吊在井筒内。

(5)、高压供风

在井口处建高压风站一座,共安装3台LG-22/8G螺杆压缩机供应高压风。

(6)、通讯

采用有线和无线对讲机相结合的联络方式。

(7)、生产及生活区房屋建设

项目经理部人员生活及办公用房设在琵琶乡农贸市场附近,包括职工宿舍、食堂等生活设施及停车场、中心试验室等,面积为2000平方米;通风竖井生产生活区安置于通风竖井已平整完成的施工场地上。施工营地分为Ⅰ、Ⅱ两类,Ⅰ类为生活用房,采用彩钢板;Ⅱ类为生产用房(材料库、发电机房、木工房等小型生产设施),采用简易活动房屋。

2、资源配置

(1)、管理机构及劳动组织

根据竖井施工的特殊性和提升运输的复杂性,项目部组建一支较专业的相对独立的竖井施工队和各个专业的生产班组,以确保安全、优质、如期完成竖井建设任务。

(管理机构及劳动力组织见附图2、管理人员及劳动力计划见附表1)。

(2)、施工机械设备配备(主要施工机械设备配备见附表2)

(3)、主要材料计划(主要材料计划见附表3)

3、施工进度安排

(1)、进度指标m/月(见下表)

进度指标表

(2)、工期计划

竖井施工只能单工序作业,因此施工工期较长,在前期施工准备工作完成达到开工条件的前提下,尽早开工。竖井井口锁口盘先行安排施工,回填压实后,进行井口设备的布置,完毕后才能转入井身施工,计划总工期18个月。(见下表)

(3)、施工进度计划图:(见附图3)

五、竖井主要分项工程施工方案、施工方法

(一)、总体施工方案

麻崖子隧道通风竖井设计井筒断面比通常的大(最大开挖宽度达10.4m),施工时所需设备多,大部分设备须利用井架或井壁悬挂,出碴、进料竖直运输,开挖、支护、衬砌只能单工序作业,施工干扰大、施工条件差、安全要求严等特点。根据本工程的具体情况,拟采取跨径20m、起吊额定能力20T的龙门吊机为主提升设备,采用普通钻爆法从上而下进行竖井全断面开挖,挖掘机配合4.5m3的吊桶(尺寸为2m×2m×1.5m)装碴提升,井口自卸汽车运输至弃碴场卸碴。初期支护紧跟掌子面,喷射料在井口拌合,通过井口投料孔(Ф150钢管)送至掌子面使用,人员上下、物料运输由井架及提升机完成。二次衬砌从下至上分段进行,采用液压衬砌模板台车分段灌注。砼在井口拌合站拌合,送至井口通过投料孔(Ф150钢管)送至衬砌工作面,人工入模、机械震捣、自然或洒水养护。

1、井口明洞0~3.0m段采用挖掘机配合自卸汽车开挖,立钢模浇筑钢筋砼锁口圈。

2、对3.0m~40m段采用全断面自上而下普通钻爆法短尺掘进,并及时支护。挖掘机装渣,移动龙门架提升卷扬机将吊桶提升出井口,通过纵向移动将石渣运至自卸车上

卸落,运至弃渣场。

3、进入井身段40m以后,将龙门架固定,井口设置井盖板(封口盘),搭设卸渣台,安装卷扬机深度提示装置,井口搭设简易井架,井内安装双层活动稳盘作为操作平台及导向绳罐道,采用全断面自上而下普通钻爆法短尺掘进,PC150挖掘机装渣,主提升卷扬机提升吊桶沿导向绳罐道将石渣运至卸渣台,沿卸渣台溜槽至自卸车上,运至弃渣场。下部开挖是在稳盘的保护下,进行开挖作业和支护施工,同时在吊盘上安装衬砌台车自下而上进行Ⅴ级围岩段的井壁衬砌。开挖、衬砌作业面的最大间距控制在约40~60米。

(二)、分项工程施工方案

1、竖井开挖及初期支护

竖井开挖Ⅴ级围岩采用挖掘机挖装,个别较硬处采用风镐挖松或凿岩机钻孔小药量炸松后挖掘机挖装;Ⅳ级围岩采用手持风钻打眼,非电毫秒雷管簇联,火雷管起爆,周边眼采取小药卷间隔装药,以达到光面爆破的效果。

初期支护每一循环步步紧跟开挖掌子面,不滞后跳段作业,既有利于安全又方便施工。初支用格栅、网片、锚杆、纵向联接筋等全部在钢筋加工场按设计尺寸统一加工制作,运至现场安装。喷射砼按施工配合比计量,机械拌合,采用湿喷工艺,前期井深小于20m运至井口卸入投料孔溜放达工作面备用,后期采用人工经二次拌合再使用。

2、竖井二次衬砌及防排水

竖井衬砌采用砼拌合站机械集中拌合砼,自动计量,输送带送砼至井口卸入竖井投料管,经溜槽溜放至衬砌平台人工对称入模。

开挖至一定段高后,即进行上一段高的衬砌。而在上一段高内,在吊盘上自下而上进行衬砌作业,每节衬砌高度控制在3m,衬砌台车采用液压衬砌钢模板台车,提升机定位,激光指向仪对中,人工丝杠配合液压顶杆调位和脱模,井壁先行施工,隔墙最后施工。衬砌钢筋安装时,预留隔墙搭接钢筋。

竖井防排水采用全封闭防水设计,在初支表面铺设300g/㎡无纺布及1.2mm防水板,防水板背后按设计要求设环向排水管,渗水经环向排水管流入与之联接的纵向排水管将水引排至联络通道中心水沟。施作防水板及排水管采取从下到上进行,灌注砼前按设计位置安装纵向排水管,排水管用U形卡固定。防水板采用在井外加工场制成半成品,下至工作面铺装,接头采用热合技术焊接。

(三)、施工方法

1、测量控制及导向方法

竖井在井外地面采用精密导线网控制,设置三个平面控制点,三个点设在互相通视,交通方便,地基稳定且能长期保存的地方。井内用垂线控制,并定期复测。

井筒开凿前,通过施工范围内较高一级三角控制基础上加密测量平面和高程点,敷设井筒施工用十字中线,在井口标定井筒中心线。自井口往下施工时,用井口设置的专用测量小绞车缠绕弹簧钢丝,井下悬挂20kg重锤在工作面投点测量井筒掘砌半径。

为保证井筒施工测量导向精度,满足施工要求,具体采用以下方法:

⑴、竖井中心和竖井十字中线,应根据竖井中心的设计平面坐标和高程,竖井十字中线的坐标方位角,利用设计院提供的近井点成果进行标定。标定竖井实际中心坐标和十字中线的坐标方位角按地面一级导线的精度要求实地测定。两条十字中线垂直误差应≤10"。十字基桩点在竖井每侧均不少于三个,点间距不少于20米,离井口边缘最近的十字中线点距竖井的距离大于15米。

⑵、在固定盘上方1.2米处安置两根工字钢,将激光投点仪按已标设的竖井中心位置安在钢梁上,以确保激光投点仪的稳定性。

⑶、利用钉于封口盘的特制中线牌子板定期对激光投点仪的位置进行检查和校正。

⑷、使用激光仪导向,要适时利用激光管定位螺旋进行调整,使光斑规则,边缘清晰。利用望远镜头的改正螺丝,使光斑划圈到最小程度。

⑸、每次打眼和稳模前,都应安排测量人员对激光投点仪进行检查校正。必须将仪器精确整平,使水准器的气泡在各个位置严格居中。

⑹、每隔一段距离要检查在四个方向上光斑(取光斑中点)是否投在同一个点上,如偏差应即时校正,并每隔50m用垂球对光进行一次检查和校正。

2、主要凿井设备的选择方法

根据总体施工方案,主要机械设备将分期分批进场,并按计划进行安装和调试,经验收合格后方可使用,使用前每台设备均应制定安全操作规程、安全管理制度和保养维修制度并挂牌上墙。

(1)、提升设备安装及悬吊

A、提升设备选择及安装

a、提升重量计算:根据工程实际情况,提升机主要用于人员、设备及物料上下运输,载重量最大时为运输挖掘机下井,重约12500 kg,吊筒净重700 kg。

b、凿井井架的选择、安装调试

麻崖子通风竖井与同类型通风竖井相比较,具有跨度大,深度较深的特点,井筒衬砌后直径达到9.2m,深度达213m,根据这个特点同时兼顾井口与井身两段施工设备相结合,本着高效、便于安装的原则,选择桥式龙门架作为凿井主井架,跨径为20m,起重重量为20T。

主井架拼装完成后按照井筒施工要求,安装提升卷扬机、制动装置、减速器、深度指示器、过卷平台、稳车、滑轮组等施工相关的提升配套设施。

安装完成后作以下测试检查:电器设备绝缘检查、主电机运行试验、操作试验、提升机空载运转制动试验、重物下放制动试验、提升过卷试验、提升通讯信号试验等,其结果均应达到使用要求。

c、提升吊桶的选择

依据现有的提升机进行吊桶的选择,现有提升机核定提升重量为20T,故选用1个

4.5m3的吊桶(尺寸为2m×2m×1.5m)。

d、钢丝绳的选择及验算

a)钢丝绳最大悬垂高度H0,单位m;

H0=HSH+HJ

其中HSH----井筒深度;

HJ----井口水平至井架平台垂高;

可得H0=213+10=223m

b)提升荷重载Q,单位千克

当提升物料时Q=Km×VTB×yg +0.9(1-1/KS)×VTB×ysh

Km-装满系数,取0.9

VTB-标准吊桶容积,m3,取4.5m3

KS-岩石松散系数,取1.8

yg-岩石松散容重,千克/m3,取1500千克/m3

ysh-水容重,千克/m3,取1000千克/m3

根据计算Q=7875千克

当提升设备时,最大设备重量为12500Kg,此时Q=12500 Kg

c)提升钢丝绳终端荷重Q0,单位千克

Q0= Q+QZ

其中QZ-提升容器自重,当提升最大设备时,将吊桶暂时拆除。

Q0=12500千克

d)钢丝绳单位长度重量Pk,单位千克/m

Pk= Q0/n·(б/γma-H0)

其中

n---所用钢丝绳的根数,在此取2根 б--钢丝绳钢丝的极限抗拉强度,取1850Mpa γ—钢丝绳的重度,取90KN/m 3,

ma--钢丝绳安全系数,《煤矿安全规程》对钢丝绳安全系数的规定如下:提人≥9,提人、提物≥9,提物≥6.5,悬吊吊盘、水泵、水管≥6,悬吊风管、压风管、混凝土输送管和拉紧装置≥5,悬吊安全梯≥9,稳绳≥5,在此处取ma=6.5。

根据计算Pk=2.12千克/m

e )选择直径26.0mm 钢丝绳,其每米钢丝绳标准重量PS0为2.468千克/m , PS0>Pk

f )安全系数校核 m=Qd/(Q0+ PS0×H0)≥ma

其中Qd -所选钢丝绳所有钢丝破断力总和,47800×2=95600 Kg m=95600/(12500+2.468×213×2)=7.05≥ma =6.5 钢丝绳满足需要。

B 、操作稳盘构造及相关验算

移动操作稳盘亦称吊盘,当井身掘进达40m 后就要在井内安装,它既可用来保护井下掘进工人的安全、还是井筒支护的工作平台。稳盘主要由型钢组成,使用I18工字钢

作主梁,14号槽钢作圈梁,根据井内凿井设备布置的需要,使用I14工字钢设副梁,并

留出各通过孔口,其位置与井口盖布置相对应,盘面铺设4mm 厚防滑网纹钢板,盘的直径比井筒初支直径小20cm 。为了便于稳盘移动,在稳盘四周均匀布设8个直径40cm 的橡胶轮胎,稳盘与井壁间的间隙用麻袋或胶皮堵塞。为了避免盘面因荷载不均而倾斜或翻转,稳盘采用双层结构,层距为5m ,使用6根I14工字钢将其联结到一起。

竖井中心点

移动稳盘井口布置示意图

封口盘边缘

出渣吊桶

移动稳盘卷扬机

移动稳盘卷扬机

HW400×400mm型钢两根架设天轮移动稳盘天轮

HW400×400mm型钢两根架设天轮

井内操作稳盘的边缘

在锁口盘上距井筒中心3.5m的两侧各布设2根HW400×400mm型钢用来安装天轮,单根型钢长度为8m,两端头打设φ22锁脚锚杆使之与锁口盘紧密连接在一起,设置2台起重重量为8T的卷扬机用来提升稳盘。

a)HW400×400mm型钢验算:

承重荷载:

移动稳盘自重:7464Kg

稳盘上重物(含人员、电焊机、钻机等)按2000 Kg计

钢丝绳重量:选用6×7(1+6)=42钢丝绳,直径26mm,每延米重量为2.468Kg/m,每根钢丝绳长度215m,重530.6Kg,稳盘需两根钢丝绳提升,总重量为1061.2Kg。

型钢自重:通过查阅《五金手册》,HW400×400mm型钢延米重量为172.3Kg/m。

单根型钢承受荷载:(7464+2000+1061.2)/4+172.3*8=2631.3+1378.4=4009.7Kg。

根据简支梁结构计算力偶M=Ql/4+ql2/8=2631.3×10×8/4+172.3×82/8=54004N·m 通过查阅《五金手册》,HW400×400mm型钢I

=669000000mm4,b=400mm。

Z

б容=140 Mpa

б=M·b/I Z=54004 N·m×400mm/669000000 mm4=32.3Mpa<б容

型钢满足需求。

b)钢丝绳验算:

选用6×7(1+6)=42钢丝绳,直径26mm,钢丝破坏拉力总和为478000N。

钢丝绳安全系数是钢丝绳全部钢丝破断拉力总和与钢丝绳最大静负荷的比值,《煤矿安全规程》对钢丝绳安全系数的规定如下:提人≥9,提人、提物≥9,提物≥6.5,悬吊吊盘、水泵、水管≥6,悬吊风管、压风管、混凝土输送管和拉紧装置≥5,悬吊安全梯≥9,稳绳≥5。

安全系数ma=Qd/Fzd=2×478000/[(7464+2000+1061.2)×10]=9.1>6

钢丝绳安全系数满足规定。

c)卷扬机的验算

移动稳盘自重:7464Kg

稳盘上重物(含人员、电焊机、钻机等)按2000 Kg计

钢丝绳重量:选用6×7(1+6)=42钢丝绳,直径26mm,每延米重量为2.468Kg/m,每根钢丝绳长度215m,重530.6Kg,稳盘需两根钢丝绳提升,总重量为1061.2Kg。

起重荷载:7464+2000+1061.2=10525.2Kg

卷扬机核定起重重量>起重荷载

卷扬机满足需求。

C、封口盘构造(见附图4)

井盖也称为封口盘,是防止从井口向下掉落杂物、保护井上井下工作人员安全的结构物,同时又是升降人员、上下物料、设备和装拆各种管路的工作平台。

封口盘以I18工字钢为骨架、上铺4mm厚防滑网纹钢板作面层,骨架嵌入井口的锁口盘上。根据井内凿井设备布置的需要,使用I14工字钢设副梁,并留出各通过孔口,其位置与操作稳盘布置相对应,封口盘各通过孔口主要有吊桶通过孔、挖掘机通过孔、中心测锤通过孔、吊泵通过孔以及其他管线通过孔。

吊桶通过孔位于竖井右线排风口位置,尺寸为3m×3m,孔口设置成喇叭口型,高度1.2m,并加盖井盖门,在吊渣时将井盖门打开,不起用时关闭,以防人员、杂物意外掉落。

挖掘机通过孔与吊桶通过孔位于同一位置,尺寸为6.5m×3.5m,井盖门与封口盘连接为一起,爆破后在出渣之前,将封口盘及操作稳盘上该部位的井盖门打开,摘下出渣吊桶,使用主提升钢丝绳将挖掘机由井口下放到井底,关闭井盖门进行出渣作业,出渣结束后按同样的顺序将挖掘机提出井口。

D、罐道钢丝绳的选用

罐道是提升容器的导向装置,是竖向连接结构物,它消除了提升容器在上下运行时的横向摆动,保证了提升容器的高速、平稳、安全运行。

钢丝绳罐道是一种柔性罐道,上端固定在龙门架上,下端固定在井筒中吊盘上,与刚性罐道相比,具有结构简单、安装维修及更换钢丝绳方便的优点。

a 、罐道钢丝绳的选择

依据《井巷设计》中关于罐道钢丝绳选用的技术条件

按表中所列,选择26.0mm(6×7+1)普通钢丝绳。 b 、罐道的布置

钢丝绳罐道布置于吊桶的单侧两角处,在龙门架上垂直于罐道的位置安装2个天轮,在龙门架下方与罐道绳呈45°的方向安装卷扬机。

E 、卸渣台的设置

竖井施工时,吊桶提出的渣石,要在地面转卸入自卸车,然后运往弃渣场,为此在井口上方、提升吊桶通过处,设置卸渣设施用的卸渣台。

卸渣台支撑架采用φ180×10mm 无缝钢管,共布置4根,纵向间距为2.8m ,横向间

桁架

通风竖井方案

新建铁路大瑞线大理至保山段站前工程第三标段 大柱山隧道(出口) 2#通风竖井施工方案 编审批 制: 核: 准: 中铁一局集团有限公司大瑞 铁路工程项目经理部三分部 二O一四年三月

大柱山隧道出口 2#通风竖井施工方案 1 工程概况 1.1工程简介 大柱山隧道位于云南省保山市,穿越横断山南段,处于澜沧江车站至保山北站区间,全长14484m,隧道最大埋深为995m。洞内纵 坡设计为小“人”字坡,除出口段2750米为 3 ‰上坡外,其他段最大纵坡23.5‰。 根据2014年剩余工程施组,隧道出口工区承担平导往大理方向独头掘进8km的施工任务。 大柱山隧道出口1#通风竖井位于D2K124+220处,与32#横通道相交,1#通风机设置于D2K124+270处,2#接力风机位于 D2K122+860处,目前平导掌子面里程为PDK120+560,通风机距离掌子面距离3710m。由于沙缥公路将通过1#通风竖井位置导致该竖井废弃,增加了隧道内施工通风困难,导致通风成本增加;为了改善洞内施工通风环境,缓解长大隧道工期压力,需在出口端另外选址修建一座通风竖井。根据我部详细勘察,在郭里村内有一处可作为井位,该井位处于大山脚下,隧道埋深89m,地势较平坦,距离居民住宅约50m,通风口周围200m约有10户人家,洞内排出的烟尘对居民影响不大。通风竖井井口中心设于正线D2K122+668.2左侧 15m处(对应平导PDK122+714.6右侧15m,27横通道中间),实测原地面高程为1789.7m,竖井井底高程1695.1,竖井开挖深度为

94.6m。井口坐标X=2791869.636,Y=475275.934。 竖井距隧道进洞口2320m,据线路纵断面图,该段均为V级围 岩。竖井净空直径3.0m,开挖直径为3.7m,衬砌钢筋混凝土厚度为35cm。井身剖面见下图所示: 1.2 地质情况 大柱山隧道出口27#横通道岩性为灰岩夹辉绿岩,岩体极软弱、 极破碎,节理裂隙发育,完整性差,拱墙开挖易坍塌,均为V级围 岩;地下水以基岩裂隙水、构造裂隙水和岩溶水为主,富水,有可能产生涌水。地震动峰值加速度为0.2g。 1.3 增设竖井目的 1#竖井被沙缥公路废弃后,为缓解特长隧道通风压力,改善隧道内施工环境,加快施工进度,节约成本。 1进度安排及三通一平 2.1 施工进度安排 竖井计划于2014年4月30日动工,2014年5月10日完成施工便道的征地和修建,5月20日完成井口防护及井口场地布置。 竖井计划开挖(包括模筑衬砌)进度为2天3循环,循环进尺 1.5m,计划工期133天。

区间4、5施工竖井及横通道回填方案

廖田区间4、5号施工竖井及通道回填施工方案 一、编制说明 1.1编制依据 1、北京地铁六号线二期工程廖公庄站~田村站区间4、5号施工竖井及横通道回填设计图; 2、调整节点计划、年度施工计划及施工进展情况; 3、适用于本工程的标准、规范、规程: 《建筑工程质量检验评定标准》(GB50210-2001); 《地下铁道工程施工及验收规范》(GB50299-1999); 《建筑施工安全检查标准》(JGJ59-99); 《施工现场临时用电安全技术规程》(JGJ46-88); 《铁路隧道施工规范》(TB10204-2002); 以及国家、部委、行业和北京地区相关的设计标准、规范、规程 4、我单位现有的技术水平、施工管理水平和机械设备配备能力。 1.2 编制原则 ⑴严格贯彻执行“安全第一、预防为主”的安全生产方针。确保工程质量、确保施工工期、确保施工安全,全面兑现施工承诺。 ⑵确保施工工艺与施工规范、设计要求相符,并达到完善。 ⑶达到文明施工、环境保护要求。施工全过程对环境破坏最小,并有周密的环境保护措施。保证在施工期间对周边环境的影响减至最小。 ⑷优化施工技术方案,推广应用“四新”成果,加强科技创新和技术攻关,确保工程全面创优。 ⑸加强施工管理,提高生产效率。 1.3编制范围 本施工方案编制范围为廖田区间4、5号施工竖井及横通道回填施工。 二、工程概况 区间4号施工竖井位于田村路南侧、北京银行前的停车场内,4号施工竖井的中线里程右K8+015.874,竖井井身净空尺寸为长6.7m,宽4.6m,横通道断面高8.43m,宽5.2m,覆土深度约为18m。区间5号施工竖井位于田村路北豆腐乳厂院内,5号施工竖井的中线里程右K8+380.000,竖井井身尺寸长6.7m,宽4.6m,横通道断面高8.43m宽5.2m,覆土深度约为19m。详见图2-1、2-2、2-3。 图2-1 区间4、5竖井及通道纵剖面图

公路隧道通风竖井混凝土衬砌施工技术

公路隧道通风竖井混凝土衬砌施工技术 摘要:结合笔者工程竖井混凝土衬砌施工实践,详细介绍了竖井二衬的施工工艺、设备选型、安全防护措施和施工计划安排,为类似公路隧道通风竖井建设提供有益的借鉴。 关键词:通风竖井混凝土衬砌施工技术 1 工程概述 本隧道是XX高速公路控制性工程,左线长6750m,右线长6765m,隧道中部设置两处竖井,2#竖井位于笔者承建的标段,井口标高496.7,井底标高279.3,井深217.4米。 竖井断面为圆型,内轮廓线直径7.0m,中间设置钢筋混凝土隔板。井口段为钢筋砼衬砌结构,井身段衬砌结构按新奥法原理采用复合式支护结构,二次衬砌采用模注砼结构,初支和二衬之间设置防排水层,二次衬砌砼抗渗要求为S8。 2 施工方案 首先选择竖井二衬的施工机具,目前使用的有拉杆式液压滑模、提升式整体模架,吊盘式组合钢模等,通过技术、经济、安全、进度方面综合比较,确定采用提升式整体模架二衬施工方法,该方法具有操作方便、施工进度快、安全可靠等优点,缺点是配套设备(稳车)相对较多。 采用自下而上二衬顺序,先行施作竖井底板部分用C30砼进行浇筑并调平,按设计要求植入预埋钢筋;然后在底板上拼装整体模架,最后按施工放样采用提升稳车准确定位。 图1二衬整体模架平面图 二衬混凝土输送方法竖井底部利用隧道砼输送泵供应,当衬砌高度超过泵送能力时,改用竖井口搅拌站供料,采用溜灰管将砼料送入模仓后浇筑。 模架在中隔板处隔开,由6台JZ-10/600A提升稳车控制,进行定位和脱模后向上提升至下一模处。中隔板模板顶面下10cm处预留3个PVC定位孔,方便下模螺栓穿孔定位模架。 3 施工工艺流程及操作要点 3.1 工艺流程

隧道施工供电配套方案

9 隧道施工临时用电配套方案 9.1 一般原则 (一)隧道施工供电,包括生产用电(含电动机械用电和施工照明用电)及生活用电等; (二)隧道施工临时用电设备在5台及以上或设备总容量在50kW 及以上者,应编制用电组织设计; (三)隧道施工供电必须遵循①施工现场临时用电安全技术规范JGJ46—2005②建设施工安全检查标准DBJ01-56-2001③建筑电气工程施工质量验收规范GB50303—2002④与工程相关的施工组织设计技术文件等; (四)隧道施工临时用电组织设计应包括下列内容: 现场勘测;确定电源进线、变电所或配电室、配电装置、用电设备位置及线路走向;进行负荷计算;选择变压器;设计配电系统:1)设计配电线路,选择导线或电缆;2)设计配电装置,选择电器;3)设计接地装置;4)绘制临时用电工程图纸,主要包括用电工程总平面图、配电装置布置图、配电系统接线图、接地装置设计图。 9.2变电站设置 (一)变电站容量确定 现场附近有30kV(或10kV)高压电源时,一般多采取在工地设小

型临时变电所,装设变压器将二次电源降至380V/220V ,有效供电半径一般在800-1000m 以内。大型工地可在几处设变压器(变电所)。 施工供电首先要确定总用电量,以便选用合适的变压器(发电机)、各类配电开关设备和线路导线。确定施工现场总用电量时,并不是简单地将所有用电设备的容量相加,因为实际生产中,并非所有电动设备都同时工作,并且处于工作状态的用电设备也不是都处在满负荷状态。其用电量可按下式计算: ()??? ? ??++=∑∑∑332211cos 1.1~05.1P K P K P K P ?计(1-1) 计P ——计算总用电量(kW ?h ); 1∑P 、2∑P 、3∑P ——分别为全部施工动力用电设备额定功率、 电焊机额定容量、照明设备额定用电量之和(kVA )。 1K 、2K 、3K ——全部施工动力用电、设备电焊机、照明设备同时 使用系数。 ?cos ——用电设备功率因素,施工最高为0.75~0.78,一般为0.65~0.75。 (二)变电站设置方式及原则 (1)根据隧道长度及设备配置确定变电站设置方式 隧道施工用电布置常见两种方式:一种是针对短隧道施工,采用洞外设置变电站,低压送电进洞;另一种针对长、特长隧道施工,采用30KV (或者10KV )高压送电进洞。 常规施工隧道在独头掘进1200米以下时,可以适当通过增大线路

竖井开挖施工方案

竖井开挖施工方案 一、工程简况 发电引水系统布置在大坝右岸,由进水口、引水隧洞上平洞、调压井、竖井和引水隧洞下平洞组成。进水口距坝轴线上游约50m,为竖井式。引水隧洞上平洞为圆形有压洞,长3345.2m,开挖洞径4.0m,在桩号3+335.2m设2#支洞,在上平洞末端(桩号3+345.2m)下接竖井,上接调压井。竖井开挖洞径3.2m ,总高度为53.2m,起始高程为▽303.5~▽356.7m。竖井下接下平洞。调压井上室内径9.2m,下室内径5.7m。竖井轴线与调压井轴线位于同一垂直面上,目前,调压井及上平洞3+345.2m~2+960m段已施工完毕。 二、总体施工方案 1、先将竖井▽303.5~▽345m段采用反导井(洞径为2m)进行开挖。 2、在反导井施工过程中,利用其出碴时间进行▽350~▽356.7m段正导井的开挖。当正导井开挖至▽350m时暂停正导井的开挖,待下导井开挖至▽345m时,自▽350m位置采用自上而下用5米钻杆进行钻孔施工,将正、反导井予以贯通。 3、导洞全部贯通后,再自上而下扩挖全洞成形。 三、施工方法 1、施工放样 反导井施工时,为控制导井轴线,在竖井底部测设四个控制点(用锚筋锚入基岩形成),将成对角的两点均用弦线拉起,两弦线的交点即为竖井中心点,每排钻孔施工时,用弦线挂重锤对准该中心点,即可放出掌子面处的竖井中心点。对该四个控制点,测量人员每隔三~五排进行一次校核,当洞挖施工人员发现有异常时,可随时要求测量人员进行检查校核,正导井施工时,竖井轴线控制同此法。 竖井高程控制采用在洞壁上设高程点,用钢卷尺丈量的方法进行高程的传递。 2、钻孔施工 导井施工时,采用一台YT24型汽腿式风钻,配φ22的对边钢钎、一字型合金钻头进行钻孔作业,钻孔采用湿式凿岩法。下导井利用圆木自竖井底部至掌子面以下3m左右搭设框架,框架中间每隔1m设横木,作施工人员梯道。框架顶部明铺放木板形成作业平台。上导井利用沿井壁布设的锚筋(采用Φ25@250,锚入深度50cm,外露30cm),焊接钢爬梯形成上下通道。下导井每隔15米左右挖一避炮洞,用以摆放钻机、钻杆等机械、配件。全断面自上而下扩挖时,采用二台YT24型汽腿式风钻进行钻孔施工。为防止人员掉入导井及便于施工,导井用铁栅栏满铺(铁栅栏用直径12mm的钢筋焊制而成,每块长2.5m,宽0.4m,栅栏孔径15×15cm)。铁栅栏两端搁置在光爆予留层上,并用Φ14锚筋插入岩石内,防止铁栅栏滑动。 3、装药引爆 炸药在无水部位选用2#岩石硝铵炸药;有水部位选用乳化炸药。导井及扩挖时的辅助眼采用连续装药结构,用非电塑料导爆管起爆。光爆层采用不偶合间隔装药结构,选用导爆索同时起爆(爆破参数及洞挖循环时间详见《发电输水隧洞施工组织措施》(2003—措施—03)。 4、通风排烟 反导井施工时,在下平洞末端近竖井部位设一台吸出式5.5km通风机,向外排出烟尘,在竖井内用6m3空压机对掌子面进行通风,将烟尘压到竖井底部,经该部位的吸出式风机抽出洞外;正导井用空压机向工作面通风后,将烟尘压出竖井内,因调压井的先行贯通,压出的烟尘可经自然通风而排除。当竖井导洞贯通后,下平洞经竖井与调压井形成一条自下而上的自然风道,通风条件很好,故竖井扩挖时不再考虑人为通风的措施。

隧道通风方案设计,通风计算

蒙河铁路屏边隧道斜井 通风方案 1、工程概况 屏边隧道全长10381m,进口里程DⅡK60+875,出口里程DIK71+256,为单线隧道,设计为单面下坡,坡度分别为-20.2‰(坡长9025m)、-10‰(坡长650m)及-1‰(坡长706m),最大埋深660m。 屏边斜井位于隧道线路右侧,斜井与正洞隧道中心线交汇点里程为D ⅡK66+300,斜井与线路中线蒙自方向夹角80°,井口里程为XDK1+218,水平长度1218m,综合坡度为85‰。本斜井采用无轨单车道运输,断面净空尺寸5.6m(宽)×6.0m(高)。斜井施工任务为斜井1218m(XDK0+000~XDK1+218),平导1735.29m(PDK66+294.71~PDK68+030),辅助正洞4165m (DⅡK63+835~DⅡK68+000),其中出口方向为1700m(DⅡK66+300~DⅡK68+000),进口方向2465m(DⅡK63+835~DⅡK66+300)。 2、通风控制条件 隧道在整个施工过程中,作业环境应符合下列卫生及安全标准: 隧道内氧气含量:按体积计不得小于20%。 粉尘允许浓度:每立方米空气中含有10%以上游离二氧化硅的粉尘为2mg;含有10%以下游离二氧化硅的水泥粉尘为6mg;二氧化硅含量在10%以下,不含有毒物质的矿物性和动植物性的粉尘为10mg。 有害气体浓度:一氧化碳不大于30mg/m3,当施工人员进入开挖面检查时,浓度为100mg/m3,但必须在30min内降至30mg/m3;二氧化碳按体积计不超过0.5%;氮氧化物(换算为NO2)5mg/m3以下。洞内温度:隧道内气温不超过28℃,洞内噪声不大于90dB。

地铁区间施工竖井及横通道的设计与施工方法的研究

地铁区间施工竖井及横通道的设计与施工方法的研究 发表时间:2017-03-27T16:34:17.053Z 来源:《北方建筑》2016年12月第35期作者:孙一鸣[导读] 随着经济发展的日益加快,城市地铁线网也在逐年扩大,地铁线路愈发密集。 铁道第三勘察设计院集团有限公司天津市 300251 摘要:为缓解较长地铁区间的施工压力,保证施工工期,可利用施工竖井开辟多个工作面,使得各工序统筹合理、稳步推进。尤其是大断面区间,可为较大结构断面提供宽敞的工作面,更能体现出施工竖井及横通道的重要意义,本文以某地铁区间施工竖井及横通道为背景,介绍其设计与施工情况。 关键词:地铁区间;竖井开挖;工作面; O 引言 随着经济发展的日益加快,城市地铁线网也在逐年扩大,地铁线路愈发密集,线路周边的工程条件渐趋复杂,大多数地铁均修建于城市繁华地段。由于地面场地条件有限,区间隧道无法大规模采用明挖法施工,只能采用暗挖法。为了尽量减少对城区交通、商业运营以及居民出行的影响,需通过设置施工竖井和横通道的方式来满足暗挖区间的开挖要求。目前在有关地铁施工竖井开辟工作面的文献中:文献[2]介绍了竖井施工和马头门进洞施工中的一些关键技术,重点阐述了采用明挖法施工的竖井内开辟2个工作面的加固与施工;文献[3]针对城市地铁竖井横通道转正洞施工难度大、工序繁杂的特点,通过方案比选提出竖井横通道转正洞采用“大包”施工工法,重点阐述了在横通道内转正洞采用“大包法”开辟2个工作面的施工工序;文献[4]重点阐述了竖井内部开设马头门的施工方法和过程。本文以工程实例为背景介绍地铁区间施工竖井及横通道设计与施工方法 1 设计概况 工程为某地铁的暗挖区间隧道,隧道内设置站前折返线和故障车停车线。因受到场地和周边用地条件的限制,并为隧道大断面的开挖提供良好的工作面,故需在本段设置竖井及横通道开辟多个作业空间,本施工竖井不兼做隧道排风井,横通道不兼做联络通道,作为临时结构只设计初期支护。井深为22.38 m,内净空为4.6 m×6m,初期支护厚0.4m,采用格栅钢架和4道工字钢临时角撑。格栅间距0.5m,四周打设φ42长 L=4500mm的锁角锚管。横通道高8.11m,宽4.8m,初期支护厚度为0.3m,采用格栅钢架和格栅横撑作为支护形式,格栅间距0.5m,拱部采用φ42X3.25mm小导管预注水泥水玻璃双液浆。 图一竖井及横通道结构图 2 工程及水文地质 该场区自上而下的地层为2.1m黏土,15.3m含卵石黏土,黏土层以下为石灰岩。本区地下水迳流条件良好。主要受人工开采、地下水渗透性等因素控制。经过短距离的潜伏径流,最终向海排泄。本区地下水排泄方式主要为汇入地表径流排泄以及人工开采,地下潜水埋藏较浅地段,有蒸发排泄,其余地段地下水埋深超过极限蒸发深度,不存在蒸发排泄。施工期间需进行降水。 3 施工步骤及注意事项 (1)、施工前应将施工场地整平至设计地面高程,竖井开挖时应设置竖井锁口圈,锁口圈以下需要设置临时支撑,与格栅同间距。竖井施工时应随挖随喷,挂双层钢筋网,及时支护,并做好监控量测。(2)、竖井马头门开洞前,设置好临时支撑,在开洞侧井壁马头门上方预切槽设置加强格栅;开洞处截断竖井格栅钢架处立一榀马头门通道加强格栅钢架,且截断竖井格栅钢架与马头门通道加强格栅钢架焊接,其后密排三榀加强格栅。井壁设双排φ42×3.25小导管,L=4.5m,环向间距0.3m,注浆浆液采用水泥-水玻璃浆液加固地层,然后将竖井开挖支护到竖井底设计标高,喷C25混凝土封闭竖井井底,架设施工平台。然后再破除井壁,施工横通道。横通道进入交叉口之前过渡段的格栅钢架及临时支撑由施工单位监测量测,并根据现场实际情况进行调整。横通道开挖过程中,在交叉口通道壁上预设加强梁。横通道开挖完成后,在拱部上设置槽钢及φ180,t=10mm钢管临时支撑。(3)、从横通道开洞进入区间隧道正线时:拱部范围采用双排小导管φ42X3.25水煤气花管,环向间距300mm超前支护并预注浆加固地层,外侧小导管仅在进区间前打设一环,长4.5m;内层小导管长2.5m,纵向间距1.0m。在截断的通道格栅钢架处立一榀区间隧道格栅钢架,与截断的通道格栅加筋焊接。进入区间隧道后,最初架设的四榀区间隧道格栅密排且采用加强格栅。进而继续进行区间正洞的后续施工。 4 结论 本工程现已竣工,现场施工情况和监测情况均良好。通过施作竖井及横通道增加了施工工作面,有效的缓解了工程施工的时间压力,尽可能的减少了对城区交通、商业运营以及居民出行的影响。因此在周边条件极为复杂的情况下,此施工方法是必要的。 参考文献(References): [1]贺长俊,蒋中庸,刘昌用,等.浅埋暗挖法施工技术的发展[J].市政技术,2009(3):73—78.(HE Chan~un,JIANGZhongyong,LIU Changyong,et a1.Development of shallowtunnel constructionmethod[J].Municipal Engineering Tech—nology,2009(3):73—78.(in Chinese)) [2]尚秀云.地铁区间暗挖段竖井和马头门进洞施工关键技术[J].国防交通工程与技术,2007(3):57—60.(SHANG Xiuyun.Key techniques for the construction ofshafts in the tunneled sections of the tube and tlle horse’Shead gate inlet[J].Traffic Engineering and Technology forNational Defence,2007(3):57—60.(in Chinese)) [3]李静.竖井横通道转正洞施工方案比选[J].隧道建设,2008,28(4):83—85.(U Jing。Comparison of constructionschemes for conwersion from horizontal adit driving to maintunnel driving[J].Tunnel Construction,2008,28(4):83—85.(in Chinese)) [4]王福恩,张付林.地铁竖井横通道破马头门施工技术研究[J].安徽建筑,2009(3):55—56,78.(WANG Fuen,ZHANG Fulin.Study on the opening technology of horseheadbetween subway shaft and cross aisle f J 1.Anhui Architec—lure,2009(3):55—56,78.(in Chinese))

隧道通风竖井施工方案

隧道通风竖井施工方案 1 工程概况 1.1工程位置及范围 XX 通风竖井位于XXX 村,竖井为φ500cm 单心圆形,全长218米,井口标高385.000。 1.2工程地质、水文地质及气象概况 1. 2.1 工程地质 竖井地处剥蚀低山,植被发育,线路正穿山峰,山体自然坡度15~25o ,局部为陡坎。井口残坡积粉质黏土和晶屑凝灰熔岩的全风化层,厚10~15米;下部分别为晶屑凝灰熔岩强-弱-微风化层。 1.2.2水文地质 竖井位于地山丘上顶面,顶部未存在大的沟坎,水量受降雨量影响较大,局部大雨亦造成泥石流或滑坡。 地下水主要储存于残积层孔隙,基岩风化壳,构造断裂带及岩脉穿插带中,对井身影响不大。 1.2.3施工区气象条件 隧道地处亚热带季风气候区,冬季较短,温暖湿润,年平均气温19.5o C ,多年平均降水量1400~2000毫米,雨量丰富,每年4~9月为雨季,降雨量占全年的70%以上,并常伴有台风暴雨出现,全年无霜期296天。 1.4设计概况

竖井井口设C25钢筋混凝土锁口盘,厚度155cm,高度100cm 。井身按新奥法设计,采用复合式衬砌。井口设计为Ⅴ级衬砌结构,分别为超前支护、初期支护、二次衬砌。超前支护采用φ42mm 超前小导管注浆加固,L=4.5m 、环向间距40cm, 纵向间距3m/环,灌注M20水泥砂浆。初期支护采用钢架、锚、网、喷结构形式联合支护,钢架采用I16钢架,纵向间距1.0m ,纵向连接钢筋采用Φ22螺纹钢,锚杆拱部采用Φ22砂浆锚杆,L=3.0m ,间距@80×100cm ,钢筋网为φ8mm (20×20cm )钢筋,喷砼为C25砼,厚度为20cm ,喷射混凝土添加改性聚脂纤维1.2kg/m 3,二次衬砌钢筋砼,砼采用C25模筑砼,厚度为35cm 。具体支护参数如下表: 竖井施工支护参数表 2 施工方法 2.1总体施工方案及展开程序 本竖井井口段围岩较差,为保证孔壁安全,故采用超前注浆固结洞口围岩,然后施作锁口井圈,再进行井身掘进。 施工顺序为:井口场地平整→测量放样→超前小导管施工→注浆→锁口支护→井身掘进。 2.2 井口场地平整施工 首先机械配合人工开挖平整洞口场地,同时对井口场地进行硬化,并尽早完

通风竖井施工措施

左岸地下电站增设通风竖井施工措施 1.概述 为改善左岸地下电站尾水洞及尾水调压室通风效果,根据招投标文件要求,分别在三条尾水主洞及左厂8#施工支洞顶拱各设1条通风竖井,竖井呈圆形断面直径3.0m(投标文件直径为2m,根据导流洞施工经验,本标将直径扩大至3m),通过耳洞与上部平洞连通。其中:1#~3#通风竖井分别由1#~3#尾水主洞顶拱与左岸进厂交通洞底板连通;4#通风竖井由左厂8#施工支洞顶拱与PD87探洞底板连通。通风竖井布置见附图1、2。 1~4#通风竖井具体特性见表1-1。 表1-1 增设通风竖井特性及工程量一览表 1#、2#、3#通风竖井利用耳洞与上部进厂交通洞连接,耳洞结构尺寸为4m ×4m,城门洞形,1#、2#、3#通风井耳洞全断面段长度约7m。 4#通风竖井通过耳洞与上部PD87勘探洞连接,耳洞与PD87勘探洞呈59°夹角,耳洞结构尺寸为2m×4m~4.44m×4m,城门洞型,耳洞中心线长度为11m。耳洞具体布置见附图2。 表1-2 耳洞特性及石方洞挖工程量 注:具体工程量以现场实际发生为准。 为保证左岸增设通风竖井的施工质量及施工安全,特制订本措施。

2.编制依据 (1)《左岸地下电站土建及金属结构安装工程通风排烟施工方案》; (2)相关施工规范、规程等。 3.施工布置 (1)施工通道 1#、2#、3#通风竖井开挖通道:耳洞→左岸进厂交通洞→5-4#隧道→左岸低线过坝路→阴地沟弃渣场; 4#通风竖井开挖通道:上部5m左右由PD87勘探洞弃渣,下部4m左右经8#施工支洞出渣。 (2)风、水、电布置 1#、2#、3#通风竖井工作面施工时配置1台12m3空压机,作为开挖、支护及通风排尘供风用,同时配置一台3.5m3空压机用作出渣期间工作面通风,空压机布置在进厂交通洞内通风竖井耳洞附近;4#通风竖井施工配置一台12m3空压机进行供风,空压机布置在5-3隧道出口右侧合适位置,接风管沿地勘便道,经PD87勘探洞引至工作面。每个工作面配备Ф40风管随开挖延伸至开挖工作面。 1#、2#及3#通风竖井施工用水、用电就近在左岸进厂交通洞内水、电管线上接引, 4#通风竖井用水、用电从5-3隧道出口临时拌合站接引,通过PD87 勘探平洞引至工作面。在每个耳洞处和井底均布置低压照明,井口平台设开关柜,放炮前,撤离安全处。井内和井口平台分别布置2盏500w移动照明灯。 (3)施工排水 根据开挖面渗水及使用用水情况,配置一台扬程50m的潜水泵,抽排至竖井上部平洞再排出洞外。1~3#竖井排水至交通洞内临时集水坑或铜水箱内,再转排出洞外。 (4)提升系统 在每个通风竖井顶部设置一台10t卷扬机,配置吊笼进行竖井开挖出渣、人员及机具上下工作面。为保证吊装安全、卷扬机吊装稳定,在通风竖井轴线与耳洞顶部相交点设置一吊点,吊点有三根B25、L=3.5m钢筋束组成,为保障上部出渣通道不被卷扬机侵占,另设置一吊点(与主吊点水平距离2m左右,钢筋束

竖井及横通道施工方案

乌鲁木齐市轨道交通1号线14标工程 2号竖井及横通道安全专项施工方案 B/U/C/G 编制: 审核: 审批: 北京城建集团有限责任公司 乌鲁木齐市1号线工程14标段项目经理部 专家论证意见修改: 1、增加通风、安全用电等安全防护措施 修改方案:设计单位认为施工图已经过审查,符合规范要求,能够满足安全施工,要求按照原图进行施工,不同意修改。 2、细化周边管线防渗漏的技术措施 修改方案:设计单位认为施工图已经过审查,符合规范要求,能够满足安全施工,要求按照原图进行施工,不同意修改。 3、加强环境用水监测。 修改方案:设计单位认为施工图已经过审查,符合规范要求,能够满足安全施工,要求按照原图进行施工,不同意修改。

目录

一.编制依据及原则 编制依据 1998) GB50164-2011) 《建筑变形测量规范》(JGJ8-2007) 《地下工程防水技术规范》(GB50108-2001) 《建筑基坑支护技术规程》(JGJ120-2012) 《城市地下管线探测技术规程》(CJJ61-2003) 《钢结构工程施工质量验收规范》(GB50205-2001) 《城市轨道交通工程监测技术规范》(GB50911-2013) 国家及乌鲁木齐市、行业有关地下工程施工的法律、法规 《乌鲁木齐地铁1号线14标段竖井及横通道设计施工图》 《乌鲁木齐地铁1号线(02合同段)岩土工程勘察报告(地铁详勘)》 项目进场后现场踏勘、调查取得的资料 编制原则 确保实现招标文件所要求的工期、质量、安全、环保目标。 充分考虑本工程的特点、重点及施工难点。 充分发挥单位技术实力、施工机械设备配套能力及项目管理优势。 以总体施工部署、施工进度安排、主要施工项目及关键工序的施工方案和各项保证措施为本施工组织设计的重点内容。 二.工程概况及周边环境 工程概况 总体工程概况 一号线三屯碑至国际机场正线长,共设车站21座,平均站间距,均为地下站。 乌鲁木齐地铁1号线14标段工程土建施工起始里程YCK19+,终点里程为RRCK0+。包含

城市电力隧道工程施工方案

槐荫路道路建设工程项目 - 220KV电力通道工程暗挖段专项施工方案 施工单位:湖南星大建设集团有限公司 2017年3月 word1

word 2槐荫路道路建设工程项目 - 220KV 电力通道工程 暗挖段专项施工方案 施工单 位:湖南星大 建设集团有限 公司 2017年 3月 目 录 1 工程概况 (5) 1.1 区域现状及规划 (5) 1.2 自然条件 (6) 1.3 工程地质条件 ................................................................................................................................................................................ 6 总公司(总工程师) 项目经理 聂 丹 项目技术负责人 匡 源 审核人 编写人

1.4水文地质条件 (7) 1.5不良地质作用及埋藏物情况 (7) 1.6岩土工程评价 (8) 2 编制依据及编制说明 (9) 2.1编制依据 (9) 2.2编制说明 (10) 2.3编制原则 (10) 3 施工部署 (11) 3.1总体施工方案 (11) 3.2施工项目组织机构、人员职责 (13) 3.3施工前期准备 (16) 3.4施工现场布置 (17) 4 主要施工方案 (21) 4.1指导思想 (21) 4.2施工原则 (21) 4.3施工降水 (22) 4.4施工测量控制方案 (26) 4.5工作井施工方案 (29) 4.6暗挖段电力隧道施工方案 (32) word3

某工程地铁通风竖井施工方案

第一章主要工程项目和施工程序和施工方法 第一节施工程序 通风竖井采用自上而下开挖,再由下向上二次衬砌的施工顺序,主要施工程序如下: 1、±0.000~-11m段开挖 该段采用大开挖方式,开挖****基础时一并进行井筒位置开挖. 开挖深度至约11m水平位置。该项工作由场地平整队伍完成。 2、±0.000~-11m段边坡锚杆、钢筋网及喷射混凝土支护。 3、-11m~29.616m段开挖 由于******基础已施工,业主、监理及设计单位要求不能采用爆破作业方法开挖,故只能采用机械及人工方法切割。 井筒内暗柱、暗梁均采用机械及人工方法切割。 4、水平通风(马头门)开挖1.5m 采用机械及人工方法开挖。 5、井筒及水平通风道二次衬砌 水平通风(马头门)开挖 1.5m从下至上、先墙后拱衬砌,井筒从下至上二次衬砌。 第三节主要工程施工方法 一、施工测量 本工程是一个竖井及水平通风道施工,施工测量的重点是井筒中心定位控制、高程控制和水平通风道方们控制。 1、本工程测量的依据

(1)根据设计图纸要求 (2)根据《工程测量规范》GB50026-93标准 (3)定位测量主要依据设计坐标和设计高程。以及施工图设计的断面,以及业主指定和坐标。 2、测量仪器的选用和工用具的准备 (1)全站仪1台、经纬仪1台,陀螺定向仪1 台,水准仪1台。(2)50m钢尺及30m钢尺各一把。 (3)线锤、墨斗、角尺、小钢尺等应准备齐全。 (4)木桩(含短钢尺)、广线、红铅笔、红油漆、二锤等材料工具必须准备齐全。 (5)测量仪器、工具等应保持要求的准确和精密度,并应处于校准状态,以确保测量的准确的精度。 3、工程定位测量方案 (1)方法采用导线法。导线测量的技术要求按三级控制,其测角中误差为12", 测距中误差15㎜,测距相对误差≤1/7000,测回数为1,方位角闭合差为24N,相对闭合差为≤1/5000。 (2)实施定位测量时把已知桩位(甲方所校桩点)作为进行测量的起始点,事先按设计坐标进行角度和距离计算,经反复标无误后再进行实测。 (3)做好定位标记,并设置好护桩。 (4)进行复核测量无误后,提交项目部验线小组验线。

隧道施工通风方案设计计算等

目录 一、编制依据 (2) 二、编制依据 (2) 1、采用的标准规范 (2) 2、通风编制标准 (3) 三、工程概况 (3) 四、通风原则 (5) 1、通风系统 (5) 2、通风设备 (5) 五、通风方案 (6) 1、姚家坪隧道出口通风方案 (6) 2、庙埂隧道进(出)口通风方案 (6) 3、庙埂隧道横洞通风方案 (7) 4、田坝隧道通风方案 (8) 5、高坡隧道1#横洞压入式通风方案 (13) 6、高坡隧道2#横洞巷道式通风方案 (14) 六、通风验算 (15) 七、施工通风监测 (17) 八、主要通风设备 (18) 九、施工通风保证措施 (18) 十、施工通风技术措施 (19) 十一、施工通风安全管理措施 (22) 1、施工通风安全措施 (22) 2、通风管理制度 (23)

隧道施工通风方案 一、编制依据 1、隧道施工安全需要。 2、XX公司对隧道施工的相关要求。 3、原铁道部《关于加强铁路隧道工程安全工作的若干意见》(铁建设函[2007]102号。 4、新建铁路成都至贵阳线乐山至贵阳段站前工程CGZQSG-11标段的设计文件。 5、《成贵铁路CGZQSG-11标实施性施工组织设计》。 6、《铁路隧道工程施工技术指南》(TZ204-2008)。 7、《铁路瓦斯隧道技术规范》、《煤矿安全规程》、《防治煤与瓦斯突出细则》。 8、国家现行有关施工规范、验收标准和我单位类似工程地质的施工经验。 9、其他有关法律法规和规范等。 二、编制原则 施工通风是隧道施工的重要工序之一,是高瓦斯隧道安全施工的关键。合理的通风系统、理想的通风效果是实现隧道快速施工、保障施工安全和施工人员身心健康的重要保证。根据以往隧道通风经验及对当前通风设备技术性能的调研结果,按照自成体系的原则,综合考虑施工过程中可能出现的情况,制定隧道通风方案。 1、采用的标准规范 ⑴ XX铁路11标隧道施工图; ⑵《铁路瓦斯隧道技术规范》(TB10120-2002); ⑶《铁路隧道工程施工技术指南》(TZ204-2008); ⑷《铁路隧道工程施工安全技术规程》(TB10304-2009); ⑸《煤矿安全规程》(国家煤矿安全监察局18号令)、《防治煤与瓦斯突出规定》(国家安全生产监督管理总局令第19号)等煤矿现行有关规范、规程等。 设计文件及XX铁路有限责任公司安全管理相关要求等。

地铁工程竖井及横通道二次衬砌施工方法及施工工艺

地铁工程竖井及横通道二次衬砌施工方法及施工工艺竖井和横通道二次衬砌采用模板支架法施工。初期支护与二次衬砌之间设全包柔性防水层。 1.1施工工序流程 1、施工段划分 二衬结构施工段划分时,优先选择变形缝,再按施工顺序设置施工缝,施工缝位置设置按设计及相关规范、结构专业要求确定。竖井和横通道施工段划分如图1.1-1所示。 图1.1-1 竖井和横通道施工段划分平面图横通道二衬作业根据变形缝分段施工时,可分两种施工方法。 (1)与正线相交段(第1段、第3段):分仰拱、拱墙两部分进行衬砌施工,如图1.1-2所示。

图1.1-2 与正线相交段施工步序图(2)不与正线相交段(第2段、第4段):分仰拱、中隔板、拱墙三部分进行衬砌施工,如图1.1-3所示。 图1.1-3 不与正线相交段施工步序图 2、施工工序流程 竖井和横通道二衬结构施工工序流程如图1.1-4所示。

图1.1-4 竖井和横通道二衬结构施工工序流程图1.2防水施工 暗挖全断面防水层采用1.5mmECB防水板+400g/m2无

纺布缓冲层,竖井顶板防水层采用2.0mm聚氨脂涂膜防水层+低脂油毡隔离层,70mm厚C20细石混凝土保护层,施工缝防水采用中埋式钢边橡胶止水带+20×10mm遇水膨胀止水胶,变形缝防水采用背贴式橡胶止水带+中埋式钢边橡胶止水带+注浆管+背水面嵌缝。 1、暗挖全断面防水层施工 (1)柔性防水层施工工艺 柔性防水层施工工艺流程如图1.2-1所示。

图1.2-1 柔性防水层施工工艺图 (2)基面处理 ①铺设防水板的基面应无明水流,否则应进行初支背后的注浆或表面刚性封堵处理,待基面上无明水流后才能进行下道工序。 ②铺设防水板的基面应基本平整,铺设防水板前应对基面进行找平处理,清除基面外露钢管、钢筋头,采用水泥砂

电力隧道施工方案

成都市龙泉西河110KV变电站施工方案1编制说明 1.1编制依据及参考资料 (1)本工程是根据《成都市龙泉西河110KV变电站线路路径规划作图2008.8.13(7-15-1)》、《十陵和平片区控制性祥细规划局部调整(第0.1版)2009.9.9(7-15-1)》 (2)经成都市规划管理局批准的本工程电力隧道红线位置及规模(2011-0214-D0015-7)2011.3.23 (3)《混凝土结构设计规范》GB50010—2002 (4)《混凝土外加剂应用技术规范》GB50119-2003 (5)《地下工程防水技术规范》GB50105—2001 (6)《建筑结构荷载规范》GB50009—2001 (7)《给水排水工程顶管技术规范》CECS246:2008 (8)《电力工程电缆设计规范》GB50217-94 (9)《建筑物防雷设计规范》GB50057-94 (10)《室外排水设计规范》GB150014-2006 (11)《城市工程管线综合规划规范》GB50289-98 (12)《泵站设计规范》GB/T 50265-97 (13)《给水排水工程构筑物结构设计规范》GB50069-2002 (14)《给水排水构筑物施工及验收规范》GB50141-2008

(15)《室外给水设计规范》GB50013-2006 (16) 《地下工程防水技术规范》GB50108-2001 1.2 编制原则 本着安全、优质、高效、经济、合理的原则,以施工设计图纸作为依据,严格按照有关施工规范,结合现场实际情况编制切实可行的施工方案。 1.3 编制范围 西河110KV变电站结构施工方法、施工工艺和技术措施。 2西河110KV变电站工程概况 2.1工程简介 西河110KV变电站成青T接绕城路以内电力隧道起点接规划110KV电力架空,终点T接现状110KV成青线。线路主线长2615.556m 拟建电力隧道规模为2.5m*3.1m(宽*高:净空)。根据规划要求,电力隧道规划中线为:距离规划成南高速南侧线线35米,电力隧道放置在成南高速南侧绿化带内。 2.2地质简况 场地地貎属成都平原岷江水系一级阶地,地势较平,一般自然坡度约为0.3%左右,最大自然坡度约为2.0%。 工程区域地貎单一,地形平坦,地层稳定,但有10多个池塘影响工程地质条件。 成都市抗震设防烈度为7度,设计基本地震加速度值为0.10g和

某地铁车站风井及风道施工方案_secret

某地铁车站 风井及风道施工方案 编制: 审核:

一、工程概况 1、车站风井及风道工程概况 1)车站风井工程概况 某地铁车站南北端各设置一处风井,位于车站西南和东北角,两处风井兼做暗挖车站施工时的施工竖井。西南风井的中心里程为K6+007,东北风井的中心里程为K6+182。风井断面形式为矩形,净空尺寸为12m ×4.6m,开挖尺寸为13.7m×6.3m.西南风井深度26.5m,东北风井深度 24.8m。 2)车站风道工程概况 西南风道与车站正洞相交里程为K5+984.14,风道中线与正洞中线交角为52°5′33″,总长为47.808m;东北风道与车站正洞相交里程为K6+154.24,风道中线与正洞中线交角为52°37′16″,总长为54.300m;风道结构为马蹄形双层拱型结构,净宽10m,净高10.8米,以3‰的坡度向车站正洞下坡。 2.主要建筑材料和工程数量 1)主要建筑材料 (1)混凝土:初期支护采用C20早强喷射混凝土;二次衬砌采用C30防水混凝土,抗渗等级为S10级。 (2)钢筋:HPB—235 , HRB—335 (3)钢材:采用A3钢

(4)防水材料:采用膨润土防水毯、止水条、钢边橡胶止水带等。 (5)混凝土优先采用双掺技术(掺高效减水剂、加优质粉煤灰)。 (6)混凝土中最大氯离子含量为0.06%。 (7)混凝土选用低碱性骨料;混凝土中的最大碱含量<3.0kg/m 3。 2)主要工程数量 (1) 某地铁车站风井主要工程数量见“风井主要工程数量表”。 (2)车站西南风道靠近风井一端13.500m 长的一段和东北风道靠近风井一端16.980m 长的一段的主要工程数量见“风道主要工程数量表 风井主要工程数量表

地铁工程竖井及横通道区间降水施工方法及施工工艺

地铁工程竖井及横通道区间降水施工方法及施工工艺 1.1地下水风险分析 由于本区间范围内的地下水赋存于圆砾、砾砂等土层中,按埋藏条件划分,属第四系孔隙潜水。稳定水位埋深约为14.00m~16.60m,相当于水位标高31.40m~34.00m,含水层厚度约21.0m,主要补给来源为浑河侧向补给及大气降水垂直入渗补给,场地地下水径流条件良好,除③-1-0粉质粘土外,含水层渗透性强,渗透系数K一般在30~100m/d之间,水力坡度1.0‰~2.0‰,随着竖井开挖深度的不断加大,上覆土层对含水层的压力逐渐减小,在动水压力作用下容易引发流水、流砂作用,竖井及横通道开挖面存在突涌的可能性,影响竖井及横通道的稳定。因此,竖井及横通道土方开挖前必须采取连续降水措施,将地下水水位降至开挖面以下1.0m,最终降至竖井及横通道底板以下1.0m,保证开挖面无水作业。 1.2降水井设计 1、涌水量计算 由于本区间地下水类型主要为潜水,为简化计算,采用潜水完整井公式来估算区间的涌水量。涌水量计算模型如下:

式中:Q —基坑降水的总涌水量(m 3/d ); k —渗透系数(m/d ); H —潜水含水层厚度(m ): s 0—基坑水位降深(m ); R —降水影响半径(m ); r 0—沿基坑周边均匀布置的降水井群所围面积等 效圆的半径(m );对不规则形状的基坑,其等效半径按下式计算: πA r =0 (2) 式中:r 0—基坑等效半径(m ); A —降水井群连线所围的面积。 依据勘察报告和基坑降水经验,本工程采取基坑外侧深井管井降水,本工程场地潜水含水层渗透系数K 取108m/d ,在正式降水前须做抽水试验,对降水方案进行优化。设计考虑自然水位为-11.5m ,含水层厚度取21m 。 区间纵断采用V 字坡,盾构井埋深最深,根据区间结构、盾构井埋深情况,将降水区域分成两段进行计算,以竖井南侧双线单洞断面与大跨度断面为分界点,降水面积分别取A 1=9500㎡、A 2=4220㎡,区间暗挖段底板埋深按27.03m 计算,盾构井底板埋深按27.79m 计算,区间暗挖段最深水位(1)

几种隧道通风方案

几种隧道通风的通风方式比较 一、自然通风和机械通风。 1、双向交通隧道:L*N≥6*105时需机械通风。 2、单向交通隧道:L*N≥2*106时需机械通风。 其中L表示:隧道长度(m),N表示设计交通量(辆/h) 二、机械通风通风方式可分为纵向式、半横式、全横式以及这三种方式的组合。 选择机械通风方式应考虑以下因素: ①交通条件 ②地形、底物、地质条件 ③通风要求 ④环境保护要求 ⑤火灾时的通风控制 ⑥工程造价、运行费用、维护费用。 三、隧道通风要求: 1、单向交通的隧道设计风速不宜大于10m/s,特殊情况可取12m/s;双向交通的隧道设计风速不宜大于8m/s;人车混合通行的隧道设计风速不宜大于7m/s。 2、风机产生的噪声及隧道中废气的集中排放均应符合环保有关规定。 3、确定交通方式在交通条件发生变化时应具有较高的稳定性,并便于防灾时的气流组织。 4、隧道内通风的主流方向不应频繁变化。

四、机械通风的通风方式:射流风机通风方式、集中送入通风方式、竖井排除通风方式、竖井送排式纵向通风方式、竖井与射流风机组合通风方式、全横向和半横向通风方式、静电吸尘通风方式。 1、射流风机通风方式,其模式如下图所示。 适用于单向交通隧道,送风方向与车行方向相同。 2、集中送入通风方式,其模式如下图所示。 集中送入通风方式应符合下列规定: ①应充分比选送风机房结构形式和风道连接方式,减少压力损失;对送风口结 构形式也要做比选,确定经济、合理的风口形式。 ②应结合结构工程尽可能使送风口喷流方向与隧道轴向一致,并在弯曲部位设 置导流装置。 ③该通风方式可与其他通风方式组合采用,宜用于单向交通隧道。 ④3、竖井排除通风方式,其模式如下图所示.

相关文档
最新文档