乙酸乙酯皂化反应实验报告

乙酸乙酯皂化反应实验报告
乙酸乙酯皂化反应实验报告

浙江万里学院生物与环境学院

化学工程实验技术实验报告

实验名称:乙酸乙酯皂化反应

姓名成绩

班级学号

同组姓名实验日期

指导教师签字批改日期年月日

一、实验预习(30分)

1.实验装置预习(10分)_____年____月____日

指导教师______(签字)成绩

2.实验仿真预习(10分)_____年____月____日

指导教师______(签字)成绩

3.预习报告(10分)

指导教师______(签字)成绩

(1)实验目的

1.用电导率仪测定乙酸乙酯皂化反应进程中的电导率。

2.掌握用图解法求二级反应的速率常数,并计算该反应的活化能。

3.学会使用电导率仪和超级恒温水槽。

(2)实验原理

乙酸乙酯皂化反应是个二级反应,其反应方程式为

CH3COOC2H5+Na++OH-→CH3COO-+Na++C2H5OH

当乙酸乙酯与氢氧化钠溶液的起始浓度相同时,如均为a,则反应速率表示为

(1)式中,x为时间t时反应物消耗掉的浓度,k为反应速率常数。将上式积分得

(2)

起始浓度a为已知,因此只要由实验测得不同时间t时的x值,以对t作图,应得一直线,从直线的斜率便可求出k值。

乙酸乙酯皂化反应中,参加导电的离子有OH-、Na+和CH3COO-,由

于反应体系是很稀的水溶液,可认为CH3COONa是全部电离的,因此,反应前后Na+的浓度不变,随着反应的进行,仅仅是导电能力很强的OH-离子逐渐被导电能力弱的CH3COO-离子所取代,致使溶液的电导逐渐减小,因此可用电导率仪测量皂化反应进程中电导率随时间的变化,从而达到跟踪反应物浓度随时间变化的目的。

令G0为t=0时溶液的电导,G t为时间t时混合溶液的电导,G∞为t=∞(反应完毕)时溶液的电导。则稀溶液中,电导值的减少量与CH3COO-浓度成正比,设K为比例常数,则

由此可得

所以(2)式中的a-x和x可以用溶液相应的电导表示,将其代入(2)式得:

重新排列得:

(3)

因此,只要测不同时间溶液的电导值G t和起始溶液的电导值G0,然后

以G t对作图应得一直线,直线的斜率为,由此便求出某温

度下的反应速率常数k值。由电导与电导率κ的关系式:G=κ代入(3)式得: (4)

通过实验测定不同时间溶液的电导率κt和起始溶液

的电导率κ0,以κt,对作图,也得一直线,从直线的斜率也可求出反应速率数k值。如果知道不同温度下的反应速率常数k(T2)和k(T1),根据Arrhenius公式,可计算出该反应的活化能E和反应半衰期。

(5)

(3)简述实验所需测定参数及其测定方法:

根据此公式,再利用MATLAB软件处理数据。

(4)实验操作要点:

1.配制溶液

配制与NaOH准确浓度(约0.1000mol·L-3)相等的乙酸乙酯溶液。其方法是:找出室温下乙酸乙酯的密度,进而计算出配制250mL0.1000mol·L-3(与NaOH准确浓度相同)的乙酸乙酯水溶液所需的乙酸乙酯的毫升数V,然后用lmL移液管吸取VmL乙酸乙酯注入250mL容量瓶中,稀释至刻度,即为0.1000mol·L-3的乙酸乙酯水溶液。

2.调节恒温槽

将恒温槽的温度调至(25.0±0.1)℃[或(30.0±0.1)℃],恒温槽的使用见仪器说明书。

3.调节电导率仪

每次测定电导率前,都要用少量蒸馏水将恒温夹套反应池和电极洗净,并用滤纸吸干。注意每次洗涤恒温夹套反应池时不要将通恒温水的胶管拆除。电导率仪的使用如图所示。

(1)打开电源开关

20mS档

温度补偿旋钮

(3)调节常数校正

4.溶液起始电导率κ0的测定

分别用2支移液管吸取25mL0.1000mol·L-3的NaOH溶液和同数量的蒸馏水,加入恒温夹套反应池 (盖过电极上沿约2cm),恒温约15min,并开启磁力搅拌器搅拌,然后将电极插入溶液,测定溶液电导率,直至不变为止,此数值即为κ0。

5.反应时电导率κt的测定

用移液管移取25mL0.1000mol·L-3的CH3COOC2H5,加入干燥的25mL 容量瓶中,用另一只移液管取25mL0.1000mol·L-3的NaOH,加入另一干燥的25mL容量瓶中。将两个容量瓶置于恒温槽中恒温15min。同时,将恒温夹套反应池中测试过的废液倒入废液烧杯中,用蒸馏水水洗净恒温夹套反应池,滤纸吸干;电极用蒸馏水洗净,并用滤纸吸干。开启磁力搅拌器,将恒温好的分别装有NaOH溶液与CH3COOC2H5溶液的2个容量瓶从恒温槽中取出,打开盖子,迅速、同时将2个容量瓶中的溶液倒入恒温夹套反应池中(溶液高度同前),同时开动停表(记录反应的开始时间),并将电极插入恒温夹套反应池溶液中,测定溶液的电导率κt,在4min、6min、8min、10min、12min、15min、20min、25min、30min、35min、40min各测电导率一次,记下k t和对应的时

间t。

6.另一温度下κ0和κt的测定

调节恒温槽温度为(35.0±0.1)℃[或(40.0±0.1)℃]。重复上述4、5步骤,测定另一温度下的κo和κt。但在测定κt时,按反应

进行4min、6min、8min、10min、12min、15min、18min、21min、24min、

27min、30min测其电导率。实验结束后,关闭电源,取出电极,用

电导水洗净并置于电导水中保存待用。

二、实验操作及原始数据表(20分)

恒温槽温度:20.7℃

时间0 0.5min 1min 1.5 min 2 min 2.5 min 3 min 3.5 min 4 min 4.5 min 5 min 6min 电导率8.14 7.94 7.74 7.46 7.22 6.96 6.74 6.51 6.28 6.10 5.92 5.61 时间7min 8min 9min 10min 11min 12min 13min 14min 15min

电导率 5.34 5.11 4.91 4.74 4.59 4.46 4.34 4.24 4.14

恒温槽温度:60.3℃

时间 0 0.5min 1min

1.5 min

2 min 2.5 min

3 min 3.5 min

4 min 4.

5 min 5 min 6min

电导率

9.43

9.64 9.43 9.05 8.47 7.93 7.46 7.04 6.69 6.40 6.19 5.84

时间

7min

8min

9min

10min

11min

12min

13min

14min

15min

电导率

5.78 5.73 5.66 5.58 5.51 5.50 5.44 5.44 5.40

三、 数据处理结果(30分)

1、由∞+-?=

κκκκt

ak tt

t 01方程 以κt 对

t

t

κκ-0作图,从直线的斜率也可求出反应速率数k 值。

恒温槽温度:20.7℃

时间

0.5min

1min

1.5 min

2 min

2.5 min

3 min

3.5 min

4 min

4.5 min

5 min

6min

电导率

8.14 7.94 7.74 7.46 7.22 6.96 6.74 6.51 6.28 6.10 5.92 5.61

t

t

κκ-0

1.82

1.11 0.927 0.815 0.756 0.703 0.669 0.643 0.611 0.586 0.54

时间

7min

8min 9min 10min 11min 12min 13min 14min 15min

电导率

5.34 5.11 4.91 4.74 4.59 4.46 4.34 4.24 4.14

t

t κκ-0

0.5014 0.46

75

0.438

0.411

0.387

0.366

0.347

0.329

0.314

K 1=3.056

恒温槽温度:60.3℃

时间

0.5min

1min

1.5 min

2 min

2.5 min

3 min

3.5 min

4 min

4.5 min

5 min

6min

电导率

9.43 9.64 9.43 9.05 8.47 7.93 7.46 7.04 6.69 6.40 6.19 5.84

t

t

κκ-0

13.16 6.97 4.78

3.875

3.316 2.92 2.623

2.3825 2.182 2.006

1.73

时间

7min 8min 9min 10min 11min 12min 13min 14min 15min

电导率

5.78 5.73 5.66 5.58 5.51 5.50 5.44 5.44 5.40

t

t

κκ-0

1.491 1.311

1.173

1.064

0.974

0.893 0.829 0.77

0.712

K 2=0.4282

2、不同温度下的反应速率常数k (T2)和k (T1),根据Arrhenius 公式,可计算出该反应的活化能E :

???? ??-=211211)()(ln T T R E T k T k

T 1=298.85K T 2=333.45K

ln(k1/k2)=E/R ·(1/T1-1/T2) =ln(3.056/0.4282)=E/(8.314)*(1/298.85-1/333.45)

最后解得 E=47.053kJ/mol

四、 思考题(20分)

1. 为什么由0.0100mol ·dm -3的NaOH 溶液和0.0100mol ·dm -3

的CH 3COONa 溶液测得的电导率可以认为是κ0、κ∞?

答:k 0是反应:CH3COOC2H5+NaOH →CH3COONa +C2H5OH 体系t=0时的电导率,但是CH3COOC2H5与NaOH 混合的瞬间就已开始反应,因而混合后第一时间测的k 也不是t=0时的电导率。根据CH3COOC2H5与NaOH 体积和浓度都相等,二者混合后浓度均稀释一倍,若忽略CH3COOC2H5的电导率,0.0100mol ·dm-3NaOH 所测κ即为k 0。

k ∞是上述反应t=∞时的电导率,当反应完全时,CH3COONa 的浓度和t=0时NaOH 浓度相同,若忽略C2H5OH 的电导率,

0.0100mol·dm-3的CH3COONa所测k即为k∞。

2.如果和起始浓度不相等,试问应怎样计算k值?

答:相关公式:ln((a(L0-L∞)-b(L0-Lt))/(a(Lt-L∞)))=(a-b)kt

a-乙酸乙酯浓度;b-NaOH浓度;L0-开始时电导率;L∞-结束时电导率,Lt-t时刻电导率用ln((a(L0-L∞)-b(L0-Lt))/(a(Lt-L∞)))对t作图求得。

3.如果NaOH和乙酸乙酯溶液为浓溶液时,能否用此法求k值,为什么?

答:不能。因为反应过程中浓溶液稀释会放出大量的热,对实验温度有影响。而且只有强电解质的稀溶液的电导率与其浓度成正比。

乙酸乙酯皂化反应实验报告

乙酸乙酯皂化反应速度常相数的测定 一、实验目的 1.通过电导法测定乙酸乙酯皂化反应速度常数。 2.求反应的活化能。 3.进一步理解二级反应的特点。 4.掌握电导仪的使用方法。 二、基本原理 乙酸乙酯的皂化反应是一个典型的二级反应: 325325CH COOC H OH CH COO C H OH --+??→+ 设在时间t 时生成浓度为x ,则该反应的动力学方程式为 ()()dx k a x b x dt - =-- (8-1) 式中,a ,b 分别为乙酸乙酯和碱的起始浓度,k 为反应速率常数,若a=b,则(8-1)式变为 2()dx k a x dt =- (8-2) 积分上式得: 1() x k t a a x =?- (8-3) 由实验测的不同t 时的x 值,则可根据式(8-3)计算出不同t 时的k 值。如果k 值为常数,就可证明反应是二级的。通常是作 () x a x -对t 图,如果所的是直线,也可证明反应是二级 反应,并可从直线的斜率求出k 值。 不同时间下生成物的浓度可用化学分析法测定,也可用物理化学分析法测定。本实验用电导法测定x 值,测定的根据是: (1) 溶液中OH -离子的电导率比离子(即3CH COO -)的电导率要大很多。因此,随着反应的进行,OH -离子的浓度不断降低,溶液的电导率就随着下降。 (2) 在稀溶液中,每种强电解质的电导率与其浓度成正比,而且溶液的总电导率

就等于组成溶液的电解质的电导率之和。 依据上述两点,对乙酸乙酯皂化反应来说,反映物和生成物只有NaOH 和NaAc 是 强电解质,乙酸乙酯和乙醇不具有明显的导电性,它们的浓度变化不至于影响电导率的数值。如果是在稀溶液下进行反应,则 01A a κ= 2A a κ∞= 12()t A a x A x κ=-+ 式中:1A ,2A 是与温度、溶剂、电解质NaOH 和NaAc 的性质有关的比例常数; 0κ,κ∞分别为反应开始和终了是溶液的总电导率;t κ为时间t 时溶液的总电导率。由此三 式可以得到: 00( )t x a κκκκ∞ -=- (8-4) 若乙酸乙酯与NaOH 的起始浓度相等,将(8-4)式代入(8-3)式得: 01t t k ta κκκκ∞ -= ?- (8-5) 由上式变换为: 0t t kat κκκκ∞-= + (8-6) 作0~ t t t κκκ-图,由直线的斜率可求k 值,即 1m ka = ,1k ma = 由(8-3)式可知,本反应的半衰期为: 1/21 t ka = (8-7) 可见,两反应物起始浓度相同的二级反应,其半衰期1/2t 与起始浓度成反比,由(8-7)式可知,此处1/2t 亦即作图所得直线之斜率。 若由实验求得两个不同温度下的速度常数k ,则可利用公式(8-8)计算出反应的活化能a E 。

化学实验报告——乙酸乙酯的合成

乙酸乙酯的合成 一、 实验目的和要求 1、 通过乙酸乙酯的制备,加深对酯化反应的理解; 2、 了解提高可逆反应转化率的实验方法; 3、 熟练蒸馏、回流、干燥、气相色谱、液态样品折光率测定等技术。 二、 实验内容和原理 本实验用乙酸与乙醇在少量浓硫酸催化下反应生成乙酸乙酯: 243323252H SO CH COOH CH CH OH CH COOC H H O ++ 副反应: 24 32322322H SO CH CH OH CH CH OCH CH H O ???→+ 由于酯化反应为可逆反应,达到平衡时只有2/3的物料转变为酯。为了提高酯的产率,通常都让某 一原料过量,或采用不断将反应产物酯或水蒸出等措施,使平衡不断向右移动。因为乙醇便宜、易得,本实验中乙醇过量。但在工业生产中一般使乙酸过量,以便使乙醇转化完全,避免由于乙醇和水及乙酸乙酯形成二元或三元共沸物给分离带来困难,而乙酸通过洗涤、分液很容易除去。 由于反应中有水生成,而水和过量的乙醇均可与乙酸乙酯形成共沸物,如表一表示。这些共沸物的沸点都很低,不超过72 ℃,较乙醇的沸点和乙酸的沸点都低,因此很容易被蒸馏出来。蒸出的粗馏液可用洗涤、分液除去溶于其中的乙酸、乙醇等,然后用干燥剂去除共沸物中的水分,再进行精馏便可以得到纯的乙酸乙酯产品。 表一、乙酸乙酯共沸物的组成与沸点 三、 主要物料及产物的物理常数 表二、主要物料及产物的物理常数

四、主要仪器设备 仪器100mL三口烧瓶;滴液漏斗;蒸馏弯头;温度计;直形冷凝管;250mL分液漏斗;50mL锥形瓶3个;25mL梨形烧瓶;蒸馏头;阿贝(Abbe)折光仪;气相色谱仪。 试剂冰醋酸;无水乙醇;浓硫酸;Na2CO3饱和溶液;CaCl2饱和溶液;NaCl饱和溶液。 五、实验步骤及现象 表三、实验步骤及现象

乙酸乙酯皂化反应实验报告(详细参考)

浙江万里学院生物与环境学院 化学工程实验技术实验报告 实验名称:乙酸乙酯皂化反应 姓名成绩 班级学号 同组姓名实验日期 指导教师签字批改日期年月日

一、实验预习(30分) 1.实验装置预习(10分)_____年____月____日 指导教师______(签字)成绩 2.实验仿真预习(10分)_____年____月____日 指导教师______(签字)成绩 3.预习报告(10分) 指导教师______(签字)成绩 (1)实验目的 1.用电导率仪测定乙酸乙酯皂化反应进程中的电导率。 2.掌握用图解法求二级反应的速率常数,并计算该反应的活化能。 3.学会使用电导率仪和超级恒温水槽。 (2)实验原理 乙酸乙酯皂化反应是个二级反应,其反应方程式为 CH3COOC2H5+Na++OH-→CH3COO-+Na++C2H5OH 当乙酸乙酯与氢氧化钠溶液的起始浓度相同时,如均为a,则反应速率表示为 (1)式中,x为时间t时反应物消耗掉的浓度,k为反应速率常数。将上式积分得 (2) 起始浓度a为已知,因此只要由实验测得不同时间t时

的x值,以对t作图,应得一直线,从直线的斜率便可求出k值。 乙酸乙酯皂化反应中,参加导电的离子有OH-、Na+和CH3COO-,由于反应体系是很稀的水溶液,可认为CH3COONa是全部电离的,因此,反应前后Na+的浓度不变,随着反应的进行,仅仅是导电能力很强的OH-离子逐渐被导电能力弱的CH3COO-离子所取代,致使溶液的电导逐渐减小,因此可用电导率仪测量皂化反应进程中电导率随时间的变化,从而达到跟踪反应物浓度随时间变化的目的。 令G0为t=0时溶液的电导,G t为时间t时混合溶液的电导,G∞为t=∞(反应完毕)时溶液的电导。则稀溶液中,电导值的减少量与CH3COO-浓度成正比,设K为比例常数,则 由此可得 所以(2)式中的a-x和x可以用溶液相应的电导表示,将其代入(2)式得: 重新排列得: (3) 因此,只要测不同时间溶液的电导值G t和起始溶液的电导值G0,然后 以G t对作图应得一直线,直线的斜率为,由此便求出某温 度下的反应速率常数k值。由电导与电导率κ的关系式:G=κ代入(3)式得: (4) 通过实验测定不同时间溶液的电导率κt和起始溶液 的电导率κ0,以κt,对作图,也得一直线,从直线的斜率也可求出反应速率数k值。如果知道不同温度下的反应速率常数k(T2)和k(T1),根据Arrhenius公式,可计算出该反应的活化能E和反应半衰期。 (5)

乙酸乙酯实验报告

青岛大学实验报告 2011年11月30日姓名唐慧系年级08级应用化学组别同组者 科目有机化学题目乙酸乙酯的制备仪器编号 一、实验目的 1.掌握酯化反应原理以及由乙酸和乙醇制备乙酸乙酯的方法。 2.学会回流反应装置的搭置方法。 3.复习蒸馏、液体的洗涤与干燥、分液漏斗的使用等基本操作。 二、实验原理 1.本实验用冰醋酸和乙醇(过量)为原料,利用浓硫酸的吸水作用使反应顺利进 行。除生成乙酸乙酯的主反应外,还有生成乙醚等的副反应。 主反应 副反应 2.物理常数 名称相对分 子质量 性状 折射 率 相对 密度 熔点/℃ 沸点 /℃ 溶解度/g·(100mL溶剂)-1 水醇醚 冰醋酸60.05 无色 液体 1.3698 1.049 16.6 118.1 ∞∞∞ 乙醇46.07 无色 液体 1.3614 0.78 -117 78.3 ∞∞∞ 乙酸乙酯88.1 无色 液体 1.3722 0.905 -84 77.15 8.6 ∞∞ 2CH3CH2OH 浓H2SO4 140℃ (CH3CH2)2O+H2O CH3CH2OH 浓H2SO4 170℃ CH2=CH2+H 2 O CH3COOH+CH 3 CH2OH 浓 H2SO4 CH3COOCH2CH3+H2O

3. 乙酸乙酯的三维结构 乙酸乙酯三维图像 三、仪器试剂 仪器:100mL 圆底烧瓶,冷凝管,温度计,分液漏斗,水浴锅,维氏分馏柱,锥形瓶,接引管等。 试剂: 名称 规格 用量 冰醋酸 化学纯 50mL 乙醇 95% 50mL 浓硫酸 化学纯 50mL 碳酸钠 饱和溶液 50mL 氯化钠 饱和溶液 50mL 氯化钙 饱和溶液 50mL 硫酸镁 无水固体 10g 四、实验装置 五、实验流程 反应装置 蒸出装置 蒸馏装置

乙酸乙酯实验报告

乙酸乙酯皂化反应速率常数测定 实验日期: 提交报告日期: 带实验的老师 一、 引言 1. 实验目的 1.学习测定化学反应动力学参数的一种物理化学分析方法——电导法。 2.了解二级反应的特点,学习反应动力学参数的求解方法,加深理解反应动力学特征。 3.进一步认识电导测定的应用,熟练掌握电导率仪的使用方法。 2. 实验原理 反应速率与反应物浓度的二次方成正比的反应为二级反应,其速率方程式可以表示为 22dc - =k c dt (1) 将(1)积分可得动力学方程: c t 22c 0dc -=k dt c ?? (2) 20 11-=k t c c (3) 式中:0c 为反应物的初始浓度;c 为t 时刻反应物的浓度;2k 为二级反应的反应速率常数。将1/c 对t 作图应得到一条直线,直线的斜率即为2k 。 对于大多数反应,反应速率与温度的关系可以用阿累尼乌斯经验方程式来表示: a E ln k=lnA-RT (4) 式中:a E 为阿累尼乌斯活化能或反应活化能;A 为指前因子;k 为速率常数。 实验中若测得两个不同温度下的速率常数,就很容易得到 21T a 21T 12k E T -T ln =k R T T ?? ??? (5) 由(5)就可以求出活化能a E 。 乙酸乙酯皂化反应是一个典型的二级反应,

325325CH COOC H +NaOH CH COONa+C H OH → t=0时, 0c 0c 0 0 t=t 时, 0c -x 0c -x x x t=∞时, 0 0 0x c → 0x c → 设在时间t 内生成物的浓度为x ,则反应的动力学方程为 220dx =k (c -x)dt (6) 2001x k =t c (c -x) (7) 本实验使用电导法测量皂化反应进程中电导率随时间的变化。设0κ、t κ和κ∞分别代表时间为0、t 和∞(反应完毕)时溶液的电导率,则在稀溶液中有: 010=A c κ 20=A c κ∞ t 102=A (c -x)+A x κ 式中A 1和A 2是与温度、溶剂和电解质的性质有关的比例常数,由上面的三式可得 0t 00-x= -c -κκκκ∞ (8) 将(8)式代入(7)式得: 0t 20t -1k = t c -κκκκ∞ (9) 整理上式得到 t 20t 0=-k c (-)t+κκκκ∞ (10) 以t κ对t (-)t κκ∞作图可得一直线,直线的斜率为20-k c ,由此可以得到反应速率系数2k 。 溶液中的电导(对应于某一电导池)与电导率成正比,因此以电导代替电导率,(10)式也成立。本实验既可采用电导率仪,也可采用电导仪。 3实验操作 3.1 实验用品

乙酸乙酯皂化反应速率常数的测定

乙酸乙酯皂化反应速率常数的测定 一、实验目的 1.学习电导法测定乙酸乙酯皂化反应速率常数的原理和方法以及活化能的测定方法; 2.了解二级反应的特点,学会用图解计算法求二级反应的速率常数; 3.熟悉电导仪的使用。 二、实验原理 (1)速率常数的测定 乙酸乙酯皂化反应时典型的二级反应,其反应式为: CH 3COOC 2H 5+NaOH = CH 3OONa +C 2H 5OH t=0 C 0 C 0 0 0 t=t Ct Ct C 0 - Ct C 0 -Ct t=∞ 0 0 C 0 C 0 速率方程式 2kc dt dc =- ,积分并整理得速率常数k 的表达式为: t 0t 0c c c c t 1k -?= 假定此反应在稀溶液中进行,且CH 3COONa 全部电离。则参加导电离子有Na + 、OH -、CH 3COO -,而Na +反应前后不变,OH -的迁移率远远大于CH 3COO -,随着反 应的进行, OH - 不断减小,CH 3COO -不断增加,所以体系的电导率不断下降,且体系电导率(κ) 的下降和产物CH 3COO -的浓度成正比。 令0κ、t κ和∞κ分别为0、t 和∞时刻的电导率,则: t=t 时,C 0 –Ct=K (0κ-t κ) K 为比例常数 t→∞时,C 0= K (0κ-∞κ) 联立以上式子,整理得:

∞+-?= κκκκt kc 1t 00t 可见,即已知起始浓度C 0,在恒温条件下,测得0κ和t κ,并以t κ对t t 0κκ-作图,可得一直线,则直线斜率0 kc 1 m = ,从而求得此温度下的反应速率常数k 。 (2)活化能的测定原理: )11(k k ln 2 1a 12T T R E -= 因此只要测出两个不同温度对应的速率常数,就可以算出反应的表观活化能。 三、仪器与试剂 电导率仪 1台 铂黑电极 1支 大试管 5支 恒温槽 1台 移液管 3支 氢氧化钠溶液(0.02mol/L ) 乙酸乙酯溶液(0.02mol/L ) 四、实验步骤 1.标定NaOH 溶液及乙酸乙酯溶液的配制 计算标定0.023/dm mol NaOH 溶液所需的草酸二份,放入锥形瓶中,用少量去离子水溶解之,标定溶液。计算出配制与NaOH 等浓度的乙酸乙酯溶液100mL 所需化学纯乙酸乙酯的质量,根据不同温度下乙酸乙酯的密度计算其体积(乙酸乙酯的取样是通过量取一定量的体积),于ml 100容量瓶中加入约3/2容积的去离子水,然后用1mL 移液管吸取所需的乙酸乙酯加入容量瓶中,加水至刻度,摇匀。 2.调节恒温水浴调节恒温水浴温度为30℃1.0±℃。 3.电导率0K 的测定 用mL 20移液管量取去离子水及标定过的NaOH 溶液各mL 20,在干燥的100mL 烧杯中混匀,用少量稀释后的NaOH 溶液淋洗电导电极及电极管3次,装入适量的此NaOH 溶液于电极管中,浸入电导电极并置于恒温水浴中恒温。将

乙酸乙酯皂化反应实验报告精选doc

浙江万里学院生物与环境学院化学工程实验技术实验报告 实验名称:乙酸乙酯皂化反应

一、实验预习(30分) 1.实验装置预习(10分)_____年____月____日 指导教师______(签字)成绩 2.实验仿真预习(10分)_____年____月____日 指导教师______(签字)成绩 3.预习报告(10分) 指导教师______(签字)成绩 (1)实验目的 1.用电导率仪测定乙酸乙酯皂化反应进程中的电导率。 2.掌握用图解法求二级反应的速率常数,并计算该反应的活化能。 3.学会使用电导率仪和超级恒温水槽。 (2)实验原理 乙酸乙酯皂化反应是个二级反应,其反应方程式为 CH3COOC2H5+Na++OH-→CH3COO-+Na++C2H5OH 当乙酸乙酯与氢氧化钠溶液的起始浓度相同时,如均为a,则反应速率表示为

(1) 式中,x为时间t时反应物消耗掉的浓度,k为反应速率常数。将上式积分得 (2) 起始浓度a为已知,因此只要由实验测得不同时间t时的x值,以对t作图,应得一直线,从直线的斜率便可求出k值。

乙酸乙酯皂化反应中,参加导电的离子有OH-、Na+和CH3COO-,由于反应体系是很稀的水溶液,可认为CH3COONa是全部电离的,因此,反应前后Na+的浓度不变,随着反应的进行,仅仅是导电能力很强的OH-离子逐渐被导电能力弱的CH3COO-离子所取代,致使溶液的电导逐渐减小,因此可用电导率仪测量皂化反应进程中电导率随时间的变化,从而达到跟踪反应物浓度随时间变化的目的。 令G0为t=0时溶液的电导,G t为时间t时混合溶液的电导,G∞为t=∞(反应完毕)时溶液的电导。则稀溶液中,电导值的减少量与CH3COO-浓度成正比,设K为比例常数,则 由此可得 所以(2)式中的a-x和x可以用溶液相应的电导表示,将其代入(2)式得:

(整理)实验八十二电导法测定乙酸乙酯皂化反应的速率常数题目.

实验八十二 电导法测定乙酸乙酯皂化反应的速率常数 一、预习提问 1、简述电导法测定乙酸乙酯皂化反应的速率常数的实验原理。 答:乙酸乙酯皂化反应是一个二级反应,其反应式为: CH 3COOC 2H 5 +Na + + OH - → CH 3COO - + Na + +C 2H 5OH 随着反应的进行,OH -离子浓度减低,使得溶液的电导率逐渐减少。故用电导率法测定反应速率。 2、书上要测的是溶液的电导值,而我们测定的是溶液的电导率值,对结果有无影响? 答:没有影响,该实验是以()()0t t κκκκ∞--对t 作图 ,而电导池常数被约去,对())0t t κκκκ∞--没有影响。 3、实验中,初始浓度过大或过小,对实验有何影响? 答:初始浓度过大,离子就不能完全电离,不能以() ckt t t =--∞κκκκ0作图。 初始浓度过小,则电导率变化太小影响准确度。 4、可否将NaOH 溶液稀释一倍后测得的电导率值作为皂化反应的初始电导率?为什么? 答:可以,乙酸乙酯不具有明显的电导率。 5、如何测得乙酸乙酯皂化反应的活化能? 答:测定不同温度下的反应速率常数k 1,k 2 。根据阿仑尼乌斯(Arrhenius)公式

ln ()k k Ea R T T 212111=--来计算Ea 的值 计算得到。 二、书后思考题 1.反应分子数与反应级数是两个完全不同的概念,反应级数只能通过实验来确定。试问如何从实验结果来验证乙酸乙酯皂化反应为二级反应 ? 2.乙酸乙酯的皂化反应为吸热反应,试问在实验过程中如何处置这一影响而是使实验得到较好的结果? 答:采用稀溶液控制反应速率,并适当搅拌。 3.如果和溶液均为浓溶液,试问能否用此方法求得K 值?为什么? 答:不能。因为影响因素太多,在浓的溶液中不可认为CH 3COONa 全部电离,该反应的逆反应不能忽略,此时不可以认为体系电导率值的减少与CH 3COONa 的浓度x 的增加量成正比。 4.为什么两溶液混合一半是就开始计时? 答:因为溶液要尽快混合,而且反应速率较快,电导率也下降较快,所以加入一半时,就开始计时。

乙酸乙酯皂化反应

乙酸乙酯皂化反应 一、实验目的 1. 用电导法测定乙酸乙酯皂化反应的反应级数、速率常数和活化能 2. 通过实验掌握测量原理和电导率一的使用方法 二、实验原理 1. 乙酸乙酯皂化反应为典型的二级反应,其反应式为: CH3COOC2H5+NaOH→CH3COONa+C2H5OH A B C D 当C A,0=C B,0其速率方程为: -dC A/dt=kC A2 积分得: 由实验测得不同时间t时的C A 值,以1/C A 对t作图,得一直线,从直线斜率便可求出K的值。 2. 反应物浓度CA的分析 不同时间下反应物浓度C A可用化学分析发确定,也可用物理化学分析法确定,本实验采用电导率法测定。 对稀溶液,每种强电解质的电导率与其浓度成正比,对于乙酸乙酯皂化反应来说,溶液的电导率是反应物NaoH与产物CH3CooNa两种电解质的贡献: 式中:Gt—t时刻溶液的电导率;A1,A2—分别为两电解质的电导率与浓度关系的比例系数。反应开始时溶液电导率全由NaOH贡献,反应完毕时全由CH3COONa贡献,因此 代入动力学积分式中得: 由上式可知,以Gt对 作图可得一直线,其斜率等于 ,由此可求得反应速率常数k。

3. 变化皂化反应温度,根据阿雷尼乌斯公式: ,求出该反应的活化能Ea。 三、实验步骤 1. 恒温水浴调至20℃。 2. 反应物溶液的配置: 将盛有实验用乙酸乙酯的磨口三角瓶置入恒温水浴中,恒温10分钟。用带有刻度的移液管吸取V/ml乙酸乙酯,移入预先放有一定量蒸馏水的100毫升容量瓶中,再加蒸馏水稀释至刻度,所吸取乙酸乙酯的体积 V/ml可用下式计算: 式子:M =88.11, =0.9005, 和NaOH见所用药品标签。 3. G0的测定: (1)在一烘干洁净的大试管内,用移液管移入电导水和NaOH溶液(新配置)各15ml,摇匀并插入附有橡皮擦的260型电导电极(插入前应用蒸馏水淋洗,并用滤纸小心吸干,要特别注意切勿触及两电极的铂黑)赛还塞子,将其置入恒温槽中恒温。 (2)开启DDSJ-308A型电导仪电源开关,按下"ON/OFF"键,仪器将显示产标、仪器型号、名称。按“模式”键选择“电导率测量”状态,仪器自动进入上次关机时的测量工作状态,此时仪器采用的参数已设好,可直接进行测量,待样品恒温10分钟后,记录仪器显示的电导率值。 (3)将电导电极取出,用蒸馏水林洗干净后插入盛有蒸馏水的烧杯中,大试管中的溶液保留待用。 4. Gt的测定; (1)取烘干洁净的混合反应器一支,其粗管中用移液管移入15ml新鲜配置的乙酸乙酯溶液,插入已经用蒸馏水淋洗并用滤纸小心吸干(注意:滤纸切勿触及两级的铂黑)带有橡皮塞的电导电极,用另一只移液管于细管移入15ml已知浓度的NaOH溶液,然后将其置于20摄氏度的恒温槽中恒温。 注意:氢氧化钠和乙酸乙酯两种溶液此时不能混合。

【清华】乙酸乙酯实验报告

乙酸乙酯皂化反应速率系数测定 姓名:宋光 学号:2006011931 班级:化63 同组实验者姓名:茅羽佳 实验日期:2008年9月25日 提交日期:2008年10月9日 指导教师:曾光洪 1.引言 1.1实验目的 1.1.1学习测定化学反应动力学参数的一种物理化学分析方法——电导法。 1.1.2了解二级反应的特点,学习反应动力学参数的求解方法,加深理解反应动力学特征。 1.1.3进一步认识电导测定的应用,熟练掌握电导率仪的使用方法。 1.2实验原理 反应速率与反应物浓度的二次方成正比的反应为二级反应,其速率方程式可以表示为 22dc - =k c dt (1) 将(1)积分可得动力学方程: c t 22c 0dc -=k dt c ?? (2) 20 11-=k t c c (3) 式中:0c 为反应物的初始浓度;c 为t 时刻反应物的浓度;2k 为二级反应的反应速率常数。将1/c 对t 作图应得到一条直线,直线的斜率即为2k 。 对于大多数反应,反应速率与温度的关系可以用阿累尼乌斯经验方程式来表示: a E ln k=lnA-RT (4) 式中:a E 为阿累尼乌斯活化能或反应活化能;A 为指前因子;k 为速率常数。 实验中若测得两个不同温度下的速率常数,就很容易得到 21T a 21T 12k E T -T ln =k R T T ?? ??? (5) 由(5)就可以求出活化能a E 。 乙酸乙酯皂化反应是一个典型的二级反应, 325325CH COOC H +NaOH CH COONa+C H OH → t=0时, 0c 0c 0 0 t=t 时, 0c -x 0c -x x x t=∞时, 0 0 0x c → 0x c →

11乙酸乙酯皂化反应试题

实验十一乙酸乙酯皂化反应 第一题、填空题 1. 乙酸乙酯溶液应在使用前现配,目的是____________________________。 2. 乙酸乙酯皂化反应中,我们将酯加入到NaOH溶液中,而不是反过来操作,目的是__________________________________________。 3. 二级反应的速度常数有K=1/t(a-b)lnb(a-x)/a(b-x)和K=X/a(a-x)·1/t二种形式,条 件分别为__________________________和______________________________。 4.乙酸乙酯皂化反应,K(G0--G t )可表示________________________________。 5.乙酸乙酯皂化反应中,给出了________________________,测定_________________,用_________________与______________________作图处理,求得反应速度常数。 6. 测定乙酸乙酯皂化反应中的实验用水应为。 7. 常时间放置的去离子水内含有。 8. 测量溶液电导值时,须对其恒温,因为____________________,若温度升高,则电导 值_____________________。 9.乙酸乙酯皂化反应中,以K t对(K0 -K t )/t作图,初期点偏离直线的原因是_________________或__________________所致。 10.电导池常数是法得到的。向电导池内加入溶液的量定量加入,因为 11. 电导测量时须使用____电源,目的是防止____________________。 12.电导法测HAc电离常数时,测量KCI溶液电导的目的是_____________________。 13.电导池常数是____________________________法得到的。 14. 若将15℃下配制的饱和硫酸钡溶液用电导法测其25℃时的Ksp,其结果必然 _________理论值。 15. 电导电极上镀有一层铂黑目的是__________________________________,防止__________________________。 16. 电导测量时,若采用直流电将_________________,若采用低频交流电,会使电极__________。 第二题、选择题 1.若将氢氧化钠加入到乙酸乙酯中一半时作为反应起点,不考虑酯的挥发,对所测结果: 有正误差;有负误差;

乙酸乙酯的制备实验报告61112

青 岛 大 学 实 验 报 告 年 月 日 姓 名 系年级 组 别 同组者 科 目 有机化学 题 目 乙酸乙酯的制备 仪器编号 一.实验目的 1.掌握酯化反应原理以及由乙酸和乙醇制备乙酸乙酯的方法。 2.学会回流反应装置的搭制方法。 3.复习蒸馏、分液漏斗的使用、液体的洗涤与干燥等基本操作。 二.实验原理 本实验用冰醋酸和乙醇为原料,采用乙醇过量、利用浓硫酸的吸水作用使反 应顺利进行。除生成乙酸乙酯的主反应外,还有生成乙醚的副反应。 主反应: 浓H 2S O 4 CH 3 COOH + CH 3CH 2OH CH 3COOCH 2CH 3 H 2O + 副反应: CH 3CH 2 OH H 2 O 浓H 2S O 4170 o C C H 2 C H 2+ H 2O (CH 3CH 2)2 O 2(CH 3CH 2)2 O + 浓H 2S O 4 140 o C 乙酸乙酯的立体结构 三.仪器与试剂 仪器:100ml 、50ml 圆底烧瓶,冷凝管,温度计,分液漏斗,电热套,维氏分馏 柱,接引管,铁架台,胶管等。 试剂: 试剂名称 用量 规格 试剂名称 用量 规格 冰醋酸 20ml CP NaCl 4g CP 95%乙醇 25ml CaCl 2 15g 98%浓硫酸 10ml NaCO 3 10g 无水MgSO 4 5g

四.实验装置图 2 345 67 891 10 2 3456789 反应装置 蒸馏装置 五.实验步骤流程图 浓H 2SO 4 蒸馏 饱和Na 2CO 3洗涤 饱和NaCl 洗涤 饱和CaCl 2洗涤 无水硫酸镁干燥 蒸馏(水浴) CH 3COOH+C 2H 5OH CH 3COOC 2H 5,CH 3COOH,C 2H 5OH,H 2SO 4,H 2O,(CH 3CH 2)2O 馏出物CH 3COOC 2H 5, C 2H 5OH,H 2O,(CH 3CH 2)2O,CH 3COO H 残馏液CH 3COOH, H 2SO 4,H 2O,(CH 3CH 2)2O 有机层(上层)CH 3COOC 2H, C 2H 5OH,(CH 3CH 2)2O,Na 2CO 3 水层(下层)CH3COONa,C 2H 5OH,H 2O 有机层(上层)C 2H 5OH, CH 3COOC 2H 5, (CH 3CH 2)2O 水层(下层) C 2H 5OH,Na 2CO 3,H 2O,NaCl 有机层(上层) CH 3COOC 2H 5,C 2H 5OH,H 2O(微量) 水层(下层) C 2H 5OH,H 2O,CaCl 2 CH 3COOC 2H 5,C 2H 5OH CH 3COOC 2H 5(73~78℃)

乙酸乙酯皂化反应速率常数测定

乙酸乙酯皂化反应速率系数测定 :腾 学号:2012011864 班级:化21 同组人:田雨禾 实验日期:2014年10月23日 提交报告日期:2014年10月30日 指导教师: 麻英 1 引言 1.1 实验目的 (1)学习测定化学反应动力学参数的一种物理化学分析方法——电导法。 (2)了解二级反应的特点,学习反应动力学参数的求解方法,加深理解反应动力学特征。 (3)进一步认识电导测定的应用,熟练掌握电导率仪的使用方法。 1.2 实验原理 反应速率与反应物浓度的二次方成正比的反应为二级反应,其速率方程式可以表示为 22dc -=k c dt (1) 将(1)积分可得动力学方程: c t 22c 0dc - =k dt c ? ? (2) 20 11 -=k t c c (3) 式中: 为反应物的初始浓度;c 为t 时刻反应物的浓度; 为二级反应的反应速率常数。 将1/c 对t 作图应得到一条直线,直线的斜率即为 。 对于大多数反应,反应速率与温度的关系可以用阿累经验方程式来表示: a E ln k=lnA-RT (4) 式中: 乌斯活化能或反应活化能;A 指前因子;k 为速率常数。 实验中若测得两个不同温度下的速率常数,就很容易得到 21 T a 21T 12k E T -T ln = k R T T ?? ??? (5) 由(5)就可以求出活化能。

乙酸乙酯皂化反应是一个典型的二级反应, 325325CH COOC H +NaOH CH COONa+C H OH → t=0时, 0c 0c 0 0 t=t 时, 0c -x 0c -x x x t=∞时, 0 0 0x c → 0x c → 设在时间t 生成物的浓度为x ,则反应的动力学方程为 220dx =k (c -x)dt (6) 2001x k = t c (c -x) (7) 本实验使用电导法测量皂化反应进程中电导率随时间的变化。设 、 和 分别代表时间为0、t 和∞(反应完毕)时溶液的电导率,则在稀溶液中有: 010=A c κ 20=A c κ∞ t 102=A (c -x)+A x κ 式中A 1和A 2是与温度、溶剂和电解质的性质有关的比例常数,由上面的三式可得 0t 00-x= -c -κκκκ∞ (8) 将(8)式代入(7)式得:

乙酸乙酯皂化反应动力学

实验报告:乙酸乙酯皂化反应动力学 一.实验目的 1?了解二级反应的特点。 2?用电导法测定乙酸乙酯皂化反应的速率常数。 3.由不同温度下的反应速率常数求反应的活化能 二.实验原理 乙酸乙酯皂化反应方程式为: CH 3COOC2H5+ Na + + OH - H3COO - + Na + + C2H5OH 在反应过程中,各物质的浓度随时间而改变(注:Na +离子在反应前后浓 度不变)。若乙酸乙酯的初始浓度为a,氢氧化钠的初始浓度为b,当时间为t 时,各生成物的浓度均为x,此时刻的反应速度为: dx ka dt它 k为反应的速率常数,当a=b时, dx dt 反应开始时t=0,反应物浓度为 x)(b x) 上式为: k(a x)2 k t 改变实验温度,求得不同温度下的a,积分上式得: x a(a x) k值: I n E a C RT 若求得热力学温度T1,、T2,时的反应速率常数k1,、k2,可得: k1 1 1 E a (Rln )/( ) k2 T1 T2 令0、t和分别为0、t和x时刻的电导率,贝U: t=0 时,0 = A1a t=t 时,t = A1(a x) A2X

联立以上式子,整理得: 恒温槽、电导率仪、电导电极、叉形电导池、秒表、滴定管(碱式)、移 液管10ml 25ml 、容量瓶100ml 50ml 、磨口塞锥形瓶100ml 、NaOH 溶液 (约 0.04 mol ?dm -3 )、乙酸乙酯(A.R.)。 四.实验步骤 1?实验装置如图C19.1所示,叉形电导池如图C19.2所示,将叉形电导池洗净 烘干,调节恒温槽至25 C 。 2.配希9 100ml 浓度约0.02 mol ?dm -3 的乙酸乙酯水溶液:乙酸乙酯的相对分子 质量为88.12,配制100ml 浓度0.02 mol ?dm -3的乙酸乙酯水溶液需要乙酸乙 酯0.1762g 。在洁净的100ml 容量瓶中加入少量去离子水,使用 0.0001g 精 度的天平,通过称量加入乙酸乙酯 0.1762g 左右。加入去离子水至刻度,根据 加入的乙酸乙酯的质量,计算乙酸乙酯溶液的精确浓度。注意在滴加乙酸乙酯 之前,应在容量瓶中加入少量去离子水,以免乙酸乙酯滴加在空瓶中容易挥 发,称量不准。在滴加乙酸乙酯时尽量使用细小的滴管,使加入的乙酸乙酯的 质量尽量接近0.1762g ,但小于0.1762g 为宜。滴加乙酸乙酯时不要滴加在瓶 壁上,要完全滴加到溶液中。 3.配制100ml 与上面所配乙酸乙酯溶液浓度相同的 NaOH 水溶液:根据实验 室所提供NaOH 溶液的精确浓度,计算所需该 NaOH 溶液的体积,用滴定管 将所需该NaOH 溶液加入到洁净的100ml 容量瓶中,用去离子水稀释至刻 度。 4 0的测量:用移液管取与乙酸乙酯浓度相同的 NaOH 溶液25.00ml ,加入到 洁净的50ml 容量瓶中,用去离子水稀释至刻度,用于测量 °。取此溶液一部 分放入到洁净干燥的叉形电导池直支管中,用部分溶液淋洗电导电极,将电导 电极放入到叉形电导池直支管中,溶液应能将铂电极完全淹没。将叉形电导池 放入到恒温槽中恒温。 10min 以后,读取记录电导率值。保留此叉形电导池中 的溶液(加塞),用于后面35 °C 时测量°。 5 t 的测量:用移液管取所配制的乙酸乙酯溶液 10ml ,加入到洁净干燥的叉形 电导池直支管中,取浓度相同的 NaOH 溶液 10ml ,加入到同一叉形电导池侧 支管中,注意此时两t= X 时, =A 2a .仪器与试剂 1 ka

1乙酸乙酯皂化反应试题

实验一乙酸乙酯皂化反应 简答题 1.在乙酸乙酯皂化反应中,为什么所配NaOH和乙酸乙酯必须是稀溶液? 2.为何乙酸乙酯皂化反应实验要在恒温条件下进行,且氢氧化钠和乙酸乙酯溶液在混合前 还要预先恒温? 3.电导xx常数如何校正? 4.为什么乙酸乙酯皂化反应可用电导结果测其不同时刻的浓度变化?测定时对反应液 的浓度有什么要求?为什么? 5.在乙酸乙酯皂化反应中,若反应起始时间计时不准,对反应速度常数K有何影响?为什么? 6.乙酸乙脂皂化反应中,反应起始时间必须是绝对时间吗?为什么? 7.对乙酸乙酯皂化反应,当a=b时,有x=K(G 0-G t ),c=K(G 0-G ∞)。若[NaOH]≠[酯]时应怎样计算x和c值? 8.某人使用电导率仪时,为快而保险起见老在最大量程处测定,这样做行吗?为什么?测量 水的电导率时,能否选用仪器上ms.cm-1量程来测量,为什么?

9.电导率测量中,由于恒温槽性能不佳,温度逐渐升高,由此导致不同浓度时的K c 值将发生什么变化? 10.在乙酸乙酯造化反应实验过程中,我们先校正电极常数,后测定水以及溶液的电导率,请叙述原因、操作过程以及目的? 11.在乙酸乙酯皀化实验中为什么由 0.0100mol·dm-3的NaOH溶液测得的电导率可以认为是κ 0? 12.在乙酸乙酯皀化实验中为什么由 0.0100mol·dm-3的CH 3COONa溶液测得的电导率可以认为是κ ∞? 13.在乙酸乙酯皀化实验中如果NaOH和乙酸乙酯溶液为浓溶液时,能否用此法求k值,为什么? 14.乙酸乙酯皂化反应实验中,乙酸乙酯溶液应在使用前现配,目的是什么? 15.乙酸乙酯皂化反应实验中,反应体系的电导率随温度变化情况如何? 16.在乙酸乙酯皀化实验中铂电极的电极常数是如何确定的? 17、在乙酸乙酯皀化实验中电导率仪面板上温度补偿旋钮有何用途?怎样使用? 18.乙酸乙酯皂化反应是通过利用测定反应体系在不同时刻的电导或者电导率来跟踪产物和反应物浓度的变化,试问,溶液的电导或者电导率和反应物或者产物的浓度之间是什么样的关系?

物理化学实验报告-乙酸乙酯皂化反应动力学

乙酸乙酯皂化反应动力学 一、实验目的 1)了解二级反应的特点。 2)用电导法测定乙酸乙酯皂化反应的速率常数。 3)由不同温度下的速率常数求反应的活化能。 二、实验原理 乙酸乙酯在碱性水溶液中的消解反应即皂化反应,其反应式为: +→+ 反应式是二级反应,反应速率与及的浓度成正比。用分别表示乙酸乙酯和氢氧化钠的初始浓度,表示在时间间隔内反应了的乙酸乙酯或氢 氧化钠的浓度。反应速率为: 为反应速率常数,当时,上式为: 反应开始时,反应物的浓度为,积分上式得: 在一定温度下,由实验测得不同时的值,由上式可计算出值。 改变实验温度,求得不同温度下的值,根据Arrhenius方程的不定积分式有:

以对作图,得一条直线,从直线斜率可求得。 若求得热力学温度时的反应速率常数,也可由Arrhenius方程的定积分式变化为下式求得值: 本实验通过测量溶液的电导率代替测量生成物浓度(或反应物浓度)。乙酸乙酯、乙醇是非电解质。在稀溶液中,非电解质电导率与浓度成正比,溶液的电导率是各离子电导之和。反应前后离子浓度不变,整个反应过程电导率的变化取决于与浓度的变化,溶液中的导电能力约为的五倍,随着反应的进行,浓度降低,的尝试升高,溶液导电能力明显下降。 一定温度下,在稀溶液中反应,为溶液在时的电导率,分别是与、电导率有关的比例常数,于是: ,; ,; ,; 由此得 即

即 而即 上式变形为: 以对作图为一直线,斜率为,由此可求出。三、仪器和试剂 恒温槽、电导率仪、电导电极、叉形电导池、秒表、碱式滴定管、10ml、25m移液 管、100mL,50ml容量瓶、乙酸乙酯(A.R.)、氢氧化钠溶液(0.04mol·) 四、实验步骤 1.准备溶液: 1)打开恒温槽,设置温度为25℃。将叉形电导池洗净、烘干。同时清洗两个100ml、一个50ml的容量瓶;

实验六 乙酸乙酯皂化反应

实验六 乙酸乙酯皂化反应 【目的要求】 1. 用电导率仪测定乙酸乙酯皂化反应进程中的电导率。 2. 学会用图解法求二级反应的速率常数,并计算该反应的活化能。 3. 学会使用电导率仪和恒温水浴。 【实验原理】 乙酸乙酯皂化反应是个二级反应,其反应方程式为: CH 3COOC 2H 5 +Na ++ OH - → CH 3COO - + Na ++C 2H 5OH 当乙酸乙酯与氢氧化钠溶液的起始浓度相同时,如均为a ,则反应速率表示为 2)(d d x a k t x -= (1) 式中,x 为时间t 时反应物消耗掉的浓度,k 为反应速率常数。将上式积分得 kt x a a x =-) ( (2) 起始浓度a 为已知,因此只要由实验测得不同时间t 时的x 值,以x /(a -x )对t 作图,若所得为一直线,证明是二级反应,并可以从直线的斜率求出k 值。 乙酸乙酯皂化反应中,参加导电的离子有OH -、Na +和CH 3COO -,由于反应体系是很稀的水溶液,可认为CH 3COONa 是全部电离的,因此,反应前后Na +的浓度不变,随着反应的进行,仅仅是导电能力很强的OH -离子逐渐被导电能力弱的CH 3COO -离子所取代,致使溶液的电导逐渐减小,因此可用电导率仪测量皂化反应进程中电导率随时间的变化,从而达到跟踪反应物浓度随时间变化的目的。 令G 0为t =0时溶液的电导,G t 为时间t 时混合溶液的电导,G ∞为t = ∞(反应完毕)时溶液的电导。则稀溶液中,电导值的减少量与CH 3COO -浓度成正比,设K 为比例常数,则 t =t 时, x =x , x =K (G 0-G t ) t = ∞时, x →a , a =K (G 0-G ∞) 由此可得: a -x =K (G t -G ∞) 所以a -x 和x 可以用溶液相应的电导表示,将其代入(2)式得: kt G G G G a t t =--∞ 01 重新排列得: ∞+-?=G t G G ak G t t 01 (3)

乙酸乙酯的制备实验报告

乙酸乙酯的制备实验报 告 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

班级:煤化111姓名:郝海平学号:10乙酸乙酯的制备实验报告 一.实验目的 1.掌握酯化反应原理以及由乙酸和乙醇制备乙酸乙酯的方法。 2.学会回流反应装置的搭制方法。 3.复习蒸馏、分液漏斗的使用、液体的洗涤与干燥等基本操作。 二.实验原理 本实验用冰醋酸和乙醇为原料,采用乙醇过量、利用浓硫酸的吸水作用使反应顺利进行。除生成乙酸乙酯的主反应外,还有生成乙醚的副反应。 主反应: 副反应: 三.仪器与试剂 仪器:100ml、50ml圆底烧瓶,冷凝管,温度计,分液漏斗,电热套,分馏柱,接引管,铁架台,胶管量筒等。 试剂:无水乙醇冰醋酸浓硫酸碳酸钠食盐水氯化钙硫酸镁 四.实验步骤 1.向烧瓶中加入19ml无水乙醇和5ml浓硫酸,向恒压漏斗中加入8ml冰醋酸。 2.开始加热,加热电压控制在70V----80V,并冰醋酸缓慢滴入烧瓶,微沸30----40min。 3.蒸馏温度控制在温度严格控制在73-----78℃直至反应结束。

五.产品精制 1.首先加入7ml碳酸钠饱和溶液,用分液漏斗分,目的是离除去冰醋酸。 2.再向分液漏斗上层液中加入7ml饱和食盐水,目的是防止乙酸乙酯水解。 3.加入7ml饱和氯化钙溶液,目的是出去无水乙醇。 4.加入2g MgSO4 固体,目的是除水。 六.数据处理 最后量取乙酸乙酯为。(冰醋酸相对分子质量相对 密度)(乙酸乙酯相对分子质量相对密度) 产率=()//60)X100%=57% 七.讨论 1.浓硫酸加入时会放热,应在摇动中缓慢加入。 2.加入饱和NaCO3时,应在摇动后放气,以避免产生CO2而使分液漏斗内压力过 大。 3.若CO32-洗涤不完全,加入CaCl2时会有Ca CO3沉淀生成,应加入稀盐酸溶解。 4.干燥时应塞上瓶塞,并间歇振荡。 5.蒸馏时,所有仪器均需烘干。

实验七 乙酸乙酯皂化反应速率常数的测定

实验七乙酸乙酯皂化反应速率常数得测定 [日期:2008—06 来源:作者: [字体:大中小]-18] 乙酸乙酯皂化反应速率常数得测定 一、目得及要求 1、测定皂化反应中电导得变化,计算反应速率常数。 2、了解二级反应得特点,学会用图解法求二级反应得速率常数。 3、熟悉电导率仪得使用。 二、原理 乙酸乙酯得皂化反应为二级反应: CH3COOC2H5+NaOH=CH3COONa+C2H5OH 在这个实验中,将CH3COOC2H5与NaOH采用相同得浓度,设a为起始浓度,同时设反 应时间为t时,反应所生成得CH3COONa与C2H5OH得浓度为x,那么CH3COOC2H5与NaO H得浓度为(a—x),即 CH3COOC2H5+NaOH=CH3COONa+ C2H5OH t=0时,a a 0 0 t=t时, a-xa-x x x t→∞时,0 0 a a 其反应速度得表达式为: dx/dt=k(a-x)2 k—反应速率常数,将上式积分,可得 kt=x/[a(a—x)]* 乙酸乙酯皂化反应得全部过程就是在稀溶液中进行得,可以认为生成得CH3COONa就 是全部电离得,因此对体系电导值有影响得有Na+、OH-与CH3COO—,而Na+、在反应得过 程中浓度保持不变,因此其电导值不发生改变,可以不考虑,而OH—得减少量与CH3COO-得 增加量又恰好相等,又因为OH—得导电能力要大于CH3COO-得导电能力,所以体系得电导 值随着反应得进行就是减少得,并且减少得量与CH3COO-得浓度成正比,设L0—反应开始 时体系得电导值,L∞-反应完全结束时体系得电导值,L t-反应时间为t时体系得电导值,则有 t=t时,x=k’(L0-L t) t→∞时,a=k’(L0—L∞) k'为比例系数。 代入*式得 Lt=1/ka×[(L0-Lt)/t]+L∞

相关文档
最新文档