高海拔对电气设备影响

高海拔对电气设备影响
高海拔对电气设备影响

高海拔对电气设备主要的影响是绝缘和温升两方面。对不同的电气设备影响的侧重点不同。

一、高压开关设备

海拔升高,气压降低,空气的绝缘强度减弱,使电器外绝缘降低而对内绝缘影响很小。由于设备的出厂试验是在正常海拔地点进行的,因此,根据IEC出版物694对于开关设备以其额定工频耐压值和额定脉冲耐压值来鉴定绝缘能力,对于使用地点超过1000M以上时,应作适当的校正。对于10KV开关柜来说,其额定电压为12KV;额定工频耐压值(有效值)为32KV(对隔离距离)和28KV(各相之间及对地);额定脉冲耐压值(峰值)为85KV(对隔离距离)和75KV(各相之

间及对地)。

而随着海拔的升高,空气密度降低,散热条件变差,会使高压电器在运行中温升增加,但空气温度随海拔高度的增加而

逐渐降低,基本可以补偿由海拔升高对电器温升的影响。

但对于阀式避雷器来说,情况就较为复杂。由于避雷器自身并不密封,其阀片的间距不可调,因此其火花间隙的放电电压易受空气密度的影响,所以应向设备厂商注明海拔高度,或使用高压型阀式避雷器。

二、干式变压器

环氧树脂干式变压器,国家标准关于以上两个因素有着明确的校正方法。根据GB6450)《干式变压器》中第,对于在超过1000M海拔处运行,并在正常海拔进行试验的变压器,其温升限值应相应递减,超过1000M海拔部分以第500M为一级,温升限值接自冷变压器2.5%、风冷变压器5%减小;额定短时工频耐受电压值同时增加6.25%。

三、低压电气设备

对于低压电气设备,情况要稍好一些。根据JB/Z0103-11标准及科研部门的调查研究,现有普通型低压电器在高原地区

的使用如下:

1、温度:现有一般低压电器产品,使用于高原地区时,其动、静触头和导电体以及线圈等部分的温度随海拔高度的增加而递增。其温升递增率为海拔每升高100M,温升增加0.1-0.5K,但大多数产品均小于0.4K。而高原地区气温随海拔高度的增加而降低,其递减率为海拔每升高100M,气温降低足够补偿由海拔升高对电器温升的影响。因此,低压电器的额定电流值可以保持不变,对于连续工作的大发热量电器,可适当降低电源等级使用。

2、绝缘耐压:普通型低压电器在海拔2500米时仍有60%的耐压裕度,且通过对国产常用继电器与转换开关等的试验表

明,在海拔4000M及以下地区,均可在其额定电压下正常运行。

3、动作特性:海拔升高时,双金属片热继电器和熔断器的动作特性有少许变化,但在海拔4000M下时,均在其技术条件规定的特性曲线"带"范围内RTO等国产常用熔断器的熔化特性最大偏差均在容许偏差的50%以内。而国产常用热继电器的动作稳定性较好,其动作时间随海拔升高有显著缩短,根据不同的型号,分别为正常动作时间和40%-73%。也可在现场调节电流整定值,使其动作特性满足要求。通过对低压熔断器非线性的环境温度对时间-电流特性曲线研究表明,熔体的载流能力在同样的较小的过载电流倍数情况下(即轻过载)熔断时间随环境温度减小而增加,在20度以下时,变化的程度则更大;而在同样的较大的过载电流倍数情况下(即短路保护时),熔断时间随环境温度的变化可不作考虑。因此,在高原地区的使用熔断器开关作为配电线路的过载与短路保护时,其上下级之间的选择性应特别加以考虑。在采用低压断路器时,应留有一定的断路与工作余量。由此可见,熔断器在高原的使用环境下可靠性和保护特性更为理想。我们厂在3000KM的地方,设备的降容系数是0.8,电机的系数是0.83,此数供参考。

高海拔、低气压对循环流化床燃煤锅炉炉内燃烧的影响

摘要:

煤粒在流化床内的燃烧涉及到流动、传热、化学反应及若干相关的物理化学现象。煤粒送入循环流化床内迅速受到高温物料及烟气的加热,首先是水分蒸发,接着是挥发份析出和燃烧,以及焦炭的燃烧,其间还伴随着发生煤粒的破碎、磨损等现象。煤粒在炉内将依次发生如下的过程:

①煤粒得到高温床料的加热并干燥;

②热解及挥发份燃烧;

③发生颗粒膨胀和一级破碎现象;

④焦炭燃烧并伴随着二级破碎和磨损现象。

流化床内煤粒的燃烧包括挥发份的析出燃烧和焦炭的燃烧,这与煤粉炉是一致的。与煤粉炉不同之处在于:

①对煤粉炉而言,煤粒的干燥和破碎是在炉外(也就是在制粉系统内)完成,而循环流化床在炉内完成干燥过程和部分破碎过程。

②由于炉内煤粒浓度较大,循环流化床炉内煤粒间存在磨损现象。

③煤粉炉是一次燃烧,循环流化床锅炉通过飞灰循环实现多次燃烧。

④循环流化床的燃烧是低温燃烧,焦炭的燃烧主要以扩散燃烧为主。

⑤循环流化床内的温度梯度较小。

⑥循环流化床热容量较大,煤粒燃烧产生的热量较总热容量的比例较小。

⑦由于干燥过程激烈和快速,挥发份量有所增加。

⑧化学反应基本是一致的,但传质过程有所不同。

以下就高海拔、低气压对循环流化床内煤粒燃烧特性的影响进行初步分析。

一、高海拔、低气压对挥发份析出燃烧的影响

高海拔、低气压使炉内煤粒的环境压力降低,研究表明,低的环境压力有利于减小挥发份逸出的阻力,缩短其在颗粒内部的停留时间。由于挥发份的析出燃烧过程中,挥发份的析出时间占绝大多数,而燃烧是在瞬间完成,因此,低的环境压力将使挥发份的析出加快,并使挥发份产物有所增加,使燃烧过程加快和更趋于激烈,在浓相区释放出的热量更多,使浓相区的温度升高。因此,对于燃用高挥发份的褐煤而言,应选用较高的流化风速和采取适当的防结焦措施。

二、高海拔、低气压焦炭燃烧过程的影响

煤中挥发份在流化床条件下具有短时大量析出的特点,这对炉内燃烧的组织和后续的焦炭燃烧产生较大的影响。在流化床条件下,煤粒挥发份析出燃烧过程与焦炭燃烧过程存在一定的重叠,即在初期以挥发份的析出和燃烧为主,后期以焦炭燃尽为主。实践证明,焦炭的燃尽时间比挥发份的析出燃烧时间长得多,也就是说,焦炭的燃烧过程控制着煤粒在流化床中的整个燃烧过程。

根据文献[1]介绍,焦炭燃尽时间可用下式表示:

τ=ρc R c[δe Bδ-(e Bδ-1)/B]/(M cε0D0C f B)----------(1)

其中:ρc——焦炭表观密度,kg/m3;

R c——焦炭含碳量,kg/kg;

M c——碳的摩尔质量,kg/mol;

δ——灰层厚度,m;

ε0、B——特定煤种的表面灰层结构参数;

C f——环境氧浓度,mol/m3;

D0——气体在灰层中的分子扩散系数,m2/s。

循环流化床的燃烧是低温燃烧,焦炭的燃烧主要以扩散燃烧为主。从式(1)中可看出,焦炭燃尽时间(τ)与环境氧浓度(C f)成反比关系。高海拔、低气压将使环境氧浓度降低,如果不考虑煤质和其它因素的影响,高海拔、低气压将使焦炭燃尽时间延长。也就是说,高海拔、低气压最终将使煤粒燃尽时间延长。因此,在燃用相同煤种的情况下,高海拔地区的循环流化床锅炉要获得与平原地区循环流化床锅炉相同的燃烧效率,只有提高循环倍率或提高炉膛高度。对于高挥发份的褐煤而言,由于其挥发份大量析出造成焦炭的多孔性,使物性参数得以改善,有助于缩短燃尽时间,这样就使得锅炉燃烧效率得以部分弥补。炉膛高度不需按大气压力成比例地增加。

三、对流化床内煤粒破碎特性的影响

高海拔、低气压对炉内煤粒破碎特性无明显影响。

四、对流化床内煤粒磨损特性的影响

在流化床内,煤粒因燃烧而在其表面有一灰壳生成,脱硫剂也会在其外表面形成一个脱硫产物层,因此会影响燃烧的进一步进行和脱硫剂的有效性,从这个意义上讲,流化床内煤粒的磨损有利于燃烧和脱硫反应的进行。同时,磨损产生的细粒子可燃物扬析损失,也会导致燃烧效率的降低。

根据文献[1]介绍,对于低灰份煤(Aar<20),磨损速率可用近似公式表示为:

R a=2.33×10-8(u0-u mf) 0.3]--------(2)

R a——磨损速率,kg/s;

(u0-u mf)——剩余气速,m/s;

C——颗粒浓度,kg/m3;

τ——磨损时间,s。

从式(2)中可以看出,磨损速率与颗粒浓度(C0.8)有关。在相同的循环倍率和流化速度下,高海拔、低气压必然使炉膛截面增大,炉膛容积增加,空隙率增加,平均颗粒浓度降低,使磨损速率下降。这样,一方面使焦炭燃烧速度和脱硫效率降低,另一方面使细粒子可燃物扬析损失减少。高挥发份褐煤燃烧过程中产生大量的细颗粒,造成剩余气速减小,将进一步减缓磨损作用。所以,为增强磨损作用,提高燃烧效率和脱硫效率,高海拔地区的循环流化床锅炉应选取较高的循环倍率和流化速度。

五、对流化床内流体动力特性的影响

①在高海拔、低气压条件下,流体密度减小,空隙率增加,多相流的表观粘度减小,使流体在同一风速下对颗粒的曳力减小,并使燃料层达到一定的流化状态所需的流速增加。这可从文献[1]中推荐的燃料层能够保持稳定的临界雷诺数经验公式中分析得出:

Re cr1=Ar/(1400

式中,阿基米德数:Ar=d p3(ρp-ρg)g/ρgυ2,------(4)

其中d p、ρg、ρp、υ分别为颗粒平均尺寸、烟气密度、颗粒真密度、气体运动粘度。

对于循环流化床而言,由于ρp>>ρg,(ρp-ρg)≈ρp,于是式(4)可简化为:

Ar=d p3ρp g/ρgυ2-------(5)

根据文献2介绍,气体动力粘度与压力无关,而且:

υ=μg/ρg-------(6)

式中,μg为烟气动力粘度。

将式(6)带入(5)式中可得:

Ar=d p3ρgρp g/μg2-------(7)

将Re cr1=d pωcr1ρg/μg(ωcr1为流化速度)和(7)式带入(3)式中,经推导后得出:

ωcr1=d p2ρp g/μg/(1400

从式(7)中可以看出,假设颗粒的物性不变,阿基米德数(Ar)是烟气密度(ρg)的单调增函数,而式(8)表明,流化速度(ωcr1)是阿基米德数(Ar)的单调减函数。所以,由于在高海拔、低气压条件下,烟气密度减小,阿基米德数(Ar)相应减小,达到一定的流化状态的流化速度将增加。因此,临界流化风速将有所增加。

②根据文献[1],如果忽略颗粒之间的相互作用,考虑单颗粒在气流中的作用,气固之间的相对速度可以简单地用下式计算:

u g-u p=[4gd p(ρp-ρg)/(3×C Dρg)]0.5------(4)

式中,C D为曳力系数。

从式(4)中分析得出,由于高海拔、低气压使气体密度降低,最终使气固之间的相对速度增大,有利于絮状物的形成。在相同表观流速下,壁面返流也将增加,提高了炉内物料循环量。

六、结论

①高海拔、低气压条件使得挥发份的析出燃烧增强,密相区燃烧放热量有所增加,密相区升温速度加快。对于燃用高挥发份的褐煤循环流化床锅炉而言,选用较高的流化速度和采取一定的防结焦措施是有必要的。

②由于焦碳燃烧以扩散燃烧为主,高海拔、低气压条件使焦碳燃尽时间延长,为保证燃烧效率,可选用较高的循环倍率或提高炉膛高度。

③为增强磨损作用,提高燃烧效率和脱硫效率,高海拔地区的循环流化床锅炉应选取较高的循环倍率和流化速度。

④从炉内动力特性分析可知,为实现一定的流态化燃烧,应选用较高的流化风速。同时,絮状物和壁面返流的增加有助于提高炉内物料循环量。

⑤高海拔、低气压对炉内煤粒破碎特性无明显影响。

参考文献

1.《循环流化床锅炉理论设计与运行》岑可法等著

2.《工程流体力学》山东工学院南京电力学院合编

高原电工产品和电气设备新思路

王建文沈洪

摘要:根据铁路建设的特点和要求,提出青藏铁路电工产品和电气设备高原适用性研究的新思路。

关键词:青藏铁路;电工产品;电气设备;适用性;研究

中图分类号: TB 1 文献标识码:A

1 概述

关于电工产品和电气设备高原适用性,70年代曾结合青藏铁路做过大量的研究工作,后因青藏铁路的缓建而停止了研究工作。二十年过去了,我国经济得到了很大的发展,青藏高原的电力事业得到了相应的发展。

随着时代的步伐即将迈入21世纪,进藏铁路的建设也已进入新的历史日程。1994年,中共中央8号文件决定“抓紧做好进藏铁路的论证和勘查工作”。1996年,《中华人民共和国国民经济和社会发展“九五”计划和2010年远景目标纲要》指出:“下个世纪前十年,进行进藏铁路的论证工作”。为青藏铁路建设制定了发展前景。

青藏铁路格拉段通过的地区,平均海拔4500m,为了进一步做好进藏铁路的建设准备工作,进行电工产品和电气设备高原适用性的研究具有十分重要的意义。

2 青藏线格拉段的自然环境条件:

青藏线格拉段通过的地区深居大陆腹地,具有独特的冰缘干寒气候特征,为高原亚干旱——干旱气候区。铁路通过地区空气稀薄,气压低,平均海拔高程4500m,年平均气压为580MPa,最低的唐古拉山垭口为544MPa;年平均气温-3~-6℃,极端最低气温为-30~-35℃,但日照时间长,日照强度大,常年睛空无云。由此可以看出,青藏线格拉段的气候特征为:气压低,气温也低,气温日变化大,绝对湿度低,太阳辐射强度比较强烈。

3 高原气候对电工产品和电气设备的影响

高原气候对电工产品和电气设备的影响,根据原机械部有关单位经现场考核和人工模拟实验室研究实验,初步认为主要表现在以下方面:

低气压时的低空气密度使空气介电强度,空气冷却效应以及弧隙空气介质强度降低,因而引起电工产品和电气设备空气绝缘耐压降低;由空气冷却的电工产品和电气设备的零部件温升增高,以及在空气中灭弧比较困难。

气温日变化大,可能引起产品密封不易保持以及机械结构变形或开裂。

低气温对电工产品和电气设备因气压

低绝对湿度使电工产品和电气设备的干弧放电电压降低。

太阳辐射强度较大引起户外用电工产品和电气设备的温度增高,在氧气和水存在的条件下,还使有机绝缘材料和涂料等加速老化,缩短使用寿命。

4 高原电工产品和电气设备的应用现状

改革开放以来,西藏自治区的电力事业得到了很大的发展,已经建成了拉萨110kV电力网络和日喀则、那曲等35kV电力网络。

虽然如此,但由于受科研机构管理现状和财力的影响,目前对高原电工产品和电气设备的研究尚停留在原材料或单一元件的开发和测算阶段,而对其整体适用性还没有进行系统的研究。据我们了解,高海拔地区电力工程的建设和电气设备、电工产品的生产尚没有相应的设计、制造标准;一些高海拔环境条件对电工产品和电气设备的影响的科研项目尚处于申请立项阶段。

1998年7月,为了做好进藏铁路有关科研专题研究工作,我院专门对青藏高原的电工产品和电气设备应用状况进行了调查,经过调查研究得出:青藏高原上现行采用的电气设备大致可以分为以下三种情况。

(1) 低压设备采用与平原地区相同标准的低压设备。

(2) 为高海拔地区试验研制的专用电气设备,如采用高原型变压器,高原型真空断路器等。

(3) 为了处理高海拔地区普通电气设备绝缘距离不够等问题,防止绝缘击穿,采用高电压等级的电工产品和电气设备,如35kV线路中的电流互感器采用63kV电压等级的电流互感器等。

经对部分电厂、变电所电气设备现状分析,我们认为目前高原上应用的电工产品和电气设备存在着以下缺点:

① 将普通电工产品和电气设备应用于高海拔地区,不能解决电工产品和电气设备高原适用性问题,使得电力线路故障多,供电可靠性低,供电质量差。

② 盲目提高电工产品和电气设备的标准,如35kV线路中的电流互感器采用63kV电压等级的电流互感器,使得电工产品和电气设备的外绝缘裕度很大,从而使电力工程的建设费用提高,浪费国家资金。

③ 采用的某些高原型电工产品和电气设备没有完全解决高原环境对电工产品和电气设备的影响问题,遗留了事故隐患。

5 对高原电器研究工作的几点要求

随着时代的步伐即将进入21世纪,西藏自治区必将在21世纪全面走向现代化。

为了实现这一宏伟目标,西藏自治区的电力工业应达到电力供应充足,供电质量高,供电可靠、安全。因此,只有不断改进高原电工产品和电气设备,为电力供应安全性、可靠性提供保障,才能使西藏自治区的电力事业得到应有的发展。

研制具有高科技含量的现代化的电工产品和电气设备,在新形势下尤为重要。根据笔者对高原型电工产品和电气设备的认识以及青藏铁路的特点的要求,认为今后高原性电工产品和电气设备应以下几方面进行研究。

(1) 研制开发受海拔或低空气压力影响小和不受影响的设备,要在免维修,高自动化、远动水平上下功夫。北京开关厂、西安高压电器研究所研制的充气(SF6)式组合电器,使整个高压系统被完全密封在金属柜中,可以做到不受外界环境诸如凝露、污秽、高海拔等因素的影响,是整体小型化、高可靠性、免维护气体绝缘开关设备。是在高原上很有应用前景的电气设备之一。

(2) 成套性高,更换方便。高原气候十分恶劣,给高原电力工程的施工和维修带来了极大的困难,从目前电工产品和电气设备的使用情况来看,高原地区的

维修量普遍比平原地区的维修量大,维修难度高,因此,有必要为高原地区研究成套性高,更换方便的电工产品和电气设备,从而缩短高原地区的维修时间,减少施工难度。

(3) 采用新工艺、新技术、新材料,不断提高产品的质量,降低产品成本,为电力事业发展提供可靠的经济、技术保障。这就意味着在电工产品和电气设备高原适用性研究中,要充分利用现有的国内、国外科学技术成果,使得高原型电工产品和电气设备在现有的技术条件下,最经济、最可靠,消除和减小高原环境对电工产品和电气设备的影响。

(4) 应用先进的电子技术,作为电力系统综合自动化控制装置。90年代以来,电子技术的发展和电子产品的应用突飞猛进,为电子技术的应用开辟了广阔的前景。

电子产品的成本低,可靠性高,而且电子产品属于弱电产品,受高海拔的影响较小,容易解决高海拔的影响问题。因此,高原地区的电力设备控制装置应尽量采用电子设备。

综上所述,在新世纪即将到来之际,为了加快西藏经济建设和进藏铁路的建设,提高产品的性能价格比,利用新技术、新工艺,新材料,着手研制系列高原型电工产品和电气设备,具有十分重要的意义。

作者简介:王建文(1965-)男,铁道部第一勘测设计院电气化处,工程师

或空气密度降低而引起的温度增高有补偿作用。

作者单位:王建文,沈洪(铁道部第一勘测设计院电气化处,兰州730000)

静电除尘器在高海拔地区电厂的应用

除尘器投运状况某电厂机组投产后,电除尘器运行参数偏离设计值,除尘器运行时,出现二次电压低、二次电流大,除尘效率低,烟囱冒黑烟的状况。通过除尘器伏安特性试验得知,电除尘器运行时产生反电晕现象见图1。图1伏安特性曲线(反电晕)2影响除尘器效率的原因2·1高海拔的影响研

温湿度对电气设备的影响

温湿度对电气设备的影响 近年来由于温室效应,气温逐年上升,大气环境因素逐步变差,诸如:高温,高湿等多变气候,使室内配电设施面临的威胁越来越明显。在电气运行时空气的温、湿度对电气设备安全运行就会产生很多、很大的影响。 对于长期从事电气工作的人来说,很容易认识到这样的规律: 1.配电设备突发事故往往发生在夜深人静的时候; 2.机电设备的故障多发季节在潮湿的春季; 3.气温骤变(骤然降低或升高)的季节交换时节,往往也容易使电气设备发生故障。 一、温湿度产生的现象 产生以上现象的主要原因是湿度与温度:首先让我们回顾一下空气的物理性质。我们知道,上海地区属于暖温区。温度范围: -5℃~+35℃,日温差:10℃,相对湿度: 相对环境温度20±5℃,月平均值:≤75%≤5m。空气的吸湿能力随温度的变化而改变的。温度越高,空气的吸湿能力越大;温度越低,空气的吸湿能力越弱。所以,由于白天温度升高,空气吸收水分。到夜间,由于温度降低,空气释放水分,使得空气的相对湿度增大。例如夏季,当地气象台预报,一天内的相对湿度,多为65%-95%以上。空气的最大湿度应当发生在夜间温

度最低的时候。然而,我们又知道,电器设备要求的相对湿度不能超过90%(25℃及以下)。由此可见,在夜里设备发生事故,湿度过高是产生设备事故的主要因素。过去,很多人认为是由于深夜,负载减轻,电压升高的缘故,现在看来是不成立的。因为现代电力系统的自动化程度很高,电压总是稳定的。所以在电气工程中,当相对湿度大于80%时,则称为高湿。 二、温湿度对电气设备的影响 湿度过高,降低电气设备的绝缘强度。一方面湿度过高,使空气的绝缘性能降低,开关设备中很多地方是靠空气间隙绝缘的。另一方面空气中的水分附着在绝缘材料表面,使电气设备的绝缘电阻降低,特别是使用年限较长的设备,由于内部有积尘吸附水分,潮湿程度将更严重,绝缘电阻更低。设备的泄露电流大大增加,甚至造成绝缘击穿,产生事故。 湿度与霉菌:潮湿的空气有利于霉菌的生长。实践表明当温度为25-30度,相对湿度为75%~95%时,是霉菌生长的良好条件。所以,如果通风不好将会加快霉菌的生长速度。霉菌中含有大量的水分,使设备的绝缘性能将大大降低。对一些多孔的绝缘材料,霉菌根部还能深入到材料的内部,造成绝缘击穿。霉菌的代谢过程中所分泌出的酸性物质与绝缘相互作用,使设备绝缘性能下降。

电气设备型号说明书

熔断器: 熔断器-R(熔断器)W(户外)□(设计序号)-□□(额定电压kV)/□□(额定电流A)- □□(开端电流kA) 避雷器: HY5W-51/134 上述涉及到的所有电压和电流均为kA和kV 变压器: 干式变压器; 例如,(SCB10-1000KVA/10KV/0.4KV): S的意思表示此变压器为三相变压器,如果S换成D则表示此变压器为单相。C的意思表示此变压器的绕组为树脂浇注成形固体。B的意思是箔式绕组,如果是R则表示为缠绕式绕组,如果是L则表示为铝绕组,如果是Z则表示为有载调压(铜不标)。10的意示是设计序号,也叫技术序号。1000KVA则表示此台变压器的额定容量(1000千伏安)。10KV的意思是一次额定电压,0.4kV 意思是二次额定电压。电力变压器产品型号其它的字母排列顺序及涵义。

(1)绕组藕合方式,涵义分:独立(不标);自藕(O表示)。 (2)相数,涵义分:单相(D);三相(S)。 (3)绕组外绝缘介质,涵义分;变压器油(不标);空气(G):气体(Q);成型固体浇注式(C):包绕式(CR):难燃液体(R)。 (4)冷却装置种类,涵义分;自然循环冷却装置(不标):风冷却器(F):水冷却器(S)。 (5)油循环方式,涵义:自然循环(不标);强迫油循环(P)。 (6)绕组数,涵义分;双绕组(不标);三绕组(S);双分裂绕组(F)。 (7)调压方式,涵义分;无励磁调压(不标):有载调压抑(Z)。 (8)线圈导线材质,涵义分:铜(不标);铜箔(B);铝(L)铝箔(LB)。(9)铁心材质,涵义;电工钢片(不标);非晶合金(H)。 (10)特殊用途或特殊结构,涵义分;密封式(M);串联用(C);起动用(Q);防雷保护用(B);调容用(T);高阻抗(K)地面站牵引用(QY);低噪音用(Z);电缆引出(L);隔离用(G);电容补偿用(RB);油田动力照明用(Y);厂用变压器(CY);全绝缘(J);同步电机励磁用(LC)。不对的地方请各位专家朋友指正。 变压器型号

高海拔地区电气设备选型

高海拔地区户内设备器件选型和结构设计要求 1 高海拔地区的特征 一般来说,对于低压配电系统海拔在2000m 以上,高压配电系统海拔在1000m以上的地区统称为高海拔地区。据测算,我国高海拔地区面积占全国总面积65%。高海拔地区具有的自然气候条件较恶劣,其特征为: (1) 空气密度及气压较低。 (2) 空气温度较低,温度变化较大。 (3) 空气绝对湿度小。 (4) 太阳辐射强度较高。 (5) 降水量较少。 (6) 大风日多。 (7) 土壤温度较低,且冻结期长。 2 高海拔地区户内中压开关柜的设计要求 气压及空气密度的降低,引起了外绝缘强度的降低 对绝缘介质强度的影响 空气的介质绝缘强度是随着气压的升高而增加,在空气稀薄或真空状态下又随着真空度的提高而增加。试验表明,海拔每升高1000 m,平均气压则降低~ kPa,外绝缘强度降低8%~13%。 对电气间隙击穿电压的影响 对于设计定型的产品,由于电气间隙已固定,随着空气压力的降低,击穿电压也下降。为了保证产品在高海拔地区使用时有足够的耐击穿能力,必须增大电气间隙和爬电距离。 在不同海拔海拔高度,不同电压等级以空气作为绝缘介质柜内各相导体间及对地净距如下表(单位:mm) 当海拔在2000~ 常断路器和隔离开关的相间距决定了柜中铜排的相间距,所以断路器和隔离开关的相间距应该根据海拔高度选用。 12kV的断路器和隔离开关相间距有210,230,250,275mm四种,通常采用的铜排宽度有50,60,80,100mm 80mm时,电气间隙能够满足要求;铜排宽度为100mm时,海拔超过1000m就应该选用230mm相间距的断路器和隔离开关。对于12kV

电气设备的选择

第六章电气设备的选择 6.1 电气设备选择的一般原则 6.1.1 按正常工作条件选择电气设备 1)电气设备的额定电压 2)电气设备的额定电流 3)电气设备的型号 6.1.2 按短路情况进行校验 1)短路热稳定校验 I2t ima<=I2t t 2)短路动稳定校验 i sh<=i max I sh<=I max 3)开关设备断流能力校验 S OFF>=S KMAX I OFF>=I(3)K MAX 6.1.3常用电气设备的选择及校验项目 6.2高压开关设备的选择 高压断路器、负荷开关、隔离开关和熔断器的选择条件基本相同。除了按电压、电流、装置类型选择,校验热、动稳定性外,对高压断路器、负荷开关和熔断器还应校验其开断能力。 6.2.1 高压断路器的选择 1)断路器的种类和类型 少油断路器、真空断路器、SF6断路器。 2)开断电流能力 I OFF>=I11 S OFF>=S11 3)短路关合电流的选择 为了保证断路器在关合短路电流时的安全,断路器的额定关合电流需满足 i mc>=i sh 6.2.2 高压隔离开关的选择 高压隔离开关的选择和校验同高压断路器差不多。 例:试选择图书6.2.1所示变压器10.5KV侧高压断路器QF和高压隔离开关QS.已知图中K点短路时I11=4.8KA,继电保护动作时间为t ac=1s.拟采用快速开断的高压断路器,其固有分闸时间t tr=0.1秒,采用弹簧操作机构. 35/10.5KV 10.5KV母线 K

解:变压器计算电流按变压器的额定电流计算 8000 439.9 1.732*10.5 CA I A === 短路冲击电流的冲击值:11 2.55 2.55*4.812.24 sh i I KA === 短路容量 : 1187.92 K S S MVA == 短路电流假想时间:t imar=t ac+t tr=1+0.1=1.1s 根据上述计算参数结合具体的情况选择条件,初步选择ZN12-10I型630A 6.2.3 高压熔断器的选择 应根椐负荷的大小、重要程度、短路电流大小、使用环境及安装条件等综合考虑决定。 1)额定电压选择 2)熔断器熔体额定电流选择 熔断器额定电流应大于或等于熔体额定电流,即 I N?FU>=I N?FE 此外熔体额定电流应必须满足以下几个条件。 A、正常工作时熔体不应该熔断,即要求熔体额定电流大于或等到于通过熔体的最大工作电流。 In?fu>=Iw?max B、电动机启动时,熔断器的熔体在尖峰电流I PK的作用下不应熔断。 I N?FE>=K?I PK 式中: K——计算糸数。当电动机的启动时间T ST小于3秒,K取0.25—0.4;当T ST 在3—8秒时,K取0.35—0.5;当T ST大于8秒或电动机为频繁启动,反接制动时,K 取0.5—0.6 对于单台电动机的启动,尖峰电流即为电动机的启动电流;多台电动机运行的线路,如果是同时启动,尖峰电流为所有电动机的启动电流之和,如果不同时启动,其尖峰电流为取超过工作电流最大一台的启动电流与其它(N-1)台计算电流之和. C、熔断器保护变压器时,熔体额定电流的选择.对于6—10KV的变压器,凡容

高原海拔对低压电器的影响

高原环境对低压电器产品的影晌及其对策 高原环境对低压电器产品的影晌及其对策 侯婉秋。李海燕(青海省高原科技发展有限公司,青海西宁810006) 摘要:本文通过高原环境对低压电器产品影响因素的分析及适应性研究,提出了高原环境下使用低压电器产品应采取的对应措施: 关键词:低压电器;高原环境;适应研究;影响分析 随着科学的进步,各种施工设备的自动化程度越来越高,对电器的性能要求也日益提高。高原空气密度低、含氧量少、昼夜温差大,以及气温、气压和空气密度等大气参数随海拔升高而递减,对所使用的低压电器设备有着不可低估的影响。 1 高原环境对低压电器产品的主要影响 高原环境对低压电器产品的影响主要体现在温升、绝缘性能、接通能力和分断能力、对产品动作性能的影响、电寿命、对PLC的干扰。 1.1 温升 海拔升高,空气密度降低,散热的对流作用减弱,对于以空气为冷却介质的电器其温升就会随之升高,额定容量下降,影响电器使用寿命。海拔每升高lOOm,电器温升增加0.1~0.5 (一般在0.4 以下1;而气温随海拔高度的升高而降低,直减率为海拔每升高lOOm气温约降低0.6 ,可以部分补偿由海拔升高对电器温升的影响。 1.2 绝缘性能 海拔升高,空气密度降低,空气的介电强度也相应下降,使空气间隔的放电电压明显降低,导致电器的外部绝缘强度降低,外绝表面及不同电位的带电间隙比较容易击穿,特别是对电气间隙和爬电距离的影响较大。通常,电器间隙以电器承受所要求的冲击耐受电压来确定,而爬电距离以作用在跨接爬电距离两端的长期电压有效值来确定。 1.3 接通能力和分断能力 空气压力和空气密度的降低,会对空气介质灭弧的开关电器灭弧性能造成影响。这种影响来自两个方而,一方面会造成开关电器灭弧时间延长,触头烧损严重,从而使得接通和通断能力降低;另一方面有利于开关电器灭弧。 1.4 对产品动作性能的影响 由于高原地区散热的对流作用减弱,且最低气温较低,日温差较大,会给一些低压电器产品的动作特性带来一定影响,如热磁式低压断路器的动作特性、热继电器的动作特性均会发生一定变化。 1.5 电寿命 由于受高海拔地区极端最低气温过低及电器产品温升和灭弧时间的综合影响,高原环境会对低压电器产品的电寿命产生一定影响。 1.6 对PLC的影响 高海拔地区灰尘、风沙等自然环境对PLC的影响尤为突出,使得磁盘和磁头上的灰尘过多,轻则出现内存数据丢失、逻辑运算结果错误,重则造成划盘。灰尘对触点的接触阻抗有影响,

(推荐)温湿度对电气设备的影响

温湿度对电气设备的影响

近年来由于温室效应,气温逐年上升,大气环境因素逐步变差,诸如:高温,高湿等多变气候,使室内配电设施面临的威胁越来越明显。在电气运行时空气的温、湿度对电气设备安全运行就会产生很多、很大的影响。 对于长期从事电气工作的人来说,很容易认识到这样的规律: 1.配电设备突发事故往往发生在夜深人静的时候; 2.机电设备的故障多发季节在潮湿的春季; 3.气温骤变(骤然降低或升高)的季节交换时节,往往也容易使电气设备发生故障。 一、温湿度产生的现象 产生以上现象的主要原因是湿度与温度:首先让我们回顾一下空气的物理性质。我们知道,上海地区属于暖温区。温度范围: -5℃~+35℃,日温差:10℃,相对湿度: 相对环境温度20±5℃,月平均值:≤75%≤5m。空气的吸湿能力随温度的变化而改变的。温度越高,空气的吸湿能力越大;温度越低,空气的吸湿能力越弱。所以,由于白天温度升高,空气吸收水分。到夜间,由于温度降低,空气释放水分,使得空气的相对湿度增大。例如夏季,当地气象台预报,一天内的相对湿度,多为65%-95%以上。空气的最大湿度应当发生在夜间温度最低的时候。然而,我们又知道,电器设备要求的相对湿度不能超

过90%(25℃及以下)。由此可见,在夜里设备发生事故,湿度过高是产生设备事故的主要因素。过去,很多人认为是由于深夜,负载减轻,电压升高的缘故,现在看来是不成立的。因为现代电力系统的自动化程度很高,电压总是稳定的。所以在电气工程中,当相对湿度大于80%时,则称为高湿。 二、温湿度对电气设备的影响 湿度过高,降低电气设备的绝缘强度。一方面湿度过高,使空气的绝缘性能降低,开关设备中很多地方是靠空气间隙绝缘的。另一方面空气中的水分附着在绝缘材料表面,使电气设备的绝缘电阻降低,特别是使用年限较长的设备,由于内部有积尘吸附水分,潮湿程度将更严重,绝缘电阻更低。设备的泄露电流大大增加,甚至造成绝缘击穿,产生事故。 湿度与霉菌:潮湿的空气有利于霉菌的生长。实践表明当温度为25-30度,相对湿度为75%~95%时,是霉菌生长的良好条件。所以,如果通风不好将会加快霉菌的生长速度。霉菌中含有大量的水分,使设备的绝缘性能将大大降低。对一些多孔的绝缘材料,霉菌根部还能深入到材料的内部,造成绝缘击穿。霉菌的代谢过程中所分泌出的酸性物质与绝缘相互作用,使设备绝缘性能下降。

外部环境因素对电气设备的寿命影响

电气设备在使用过程中受到湿度的危害,如在高湿度环境下使用时间过长,将导致故障发生,对于计算机板卡CPU等会使金手指氧化导致接触不良发生故障。 大多电气设备的使用环境湿度应该在40%以下。 三、粉尘影响 粉尘影响电气设备的控制系统及其它电子元器件可靠性,使设备使用寿命缩短,产品质量的无保障,工作条件及环境变差,各种烟尘和废气对人体造成伤害。 笔者以冶金粉尘为例来讨论风尘对电气设备的影响: 在冶金生产过程中不可避免会产生大量的有害粉尘。粉尘的产生不仅污染环境,损害人们的身体健康,而且对电气设备的安全运行也带来很大危害。 3.1 造成电气设备短路 冶金生产过程中产生的粉尘大多为矿物性粉尘和金属性粉尘,而这些粉尘的比电阻都不高,如烧结机尾粉尘的比电阻为1.47×10~9.06×10Ω·cm,又由于粉尘的尘粒荷电性(飘浮在空气中的尘粒有90%—95%荷正电或荷负电),吸水性(吸水量多少与环境温度、湿度有关),很容易使粉尘在电气设备的周围凝集沉降,从而减少了电气距离,破坏了电气设备的绝缘强度、在线路过电压或电气操作过程中极易造成电气击穿短路事故。如总降压站因与炼钢厂较近,户外高压瓷瓶积炼钢粉尘较多,造成爬电对地短路,使全厂停电,造成很大损失。又如2低夺配电室,由于处于多产尘区,粉尘堆积在DZ型自动空气天关上部,使相间绝缘强度大大降低,造成进线母排相间短路事故,使生产停产达十几个小时。还有粉尘堆集在端子板上,造成电气误动、短路等,对其安全运行造成很大危害。 3.2 造成电气开关接触不良 粉尘堆集存于电气开关的触头之间、电磁铁芯之间都会造成电气开关接触不良故障,尤其是在继电气一接触器控制电路中影响最大。电气控制系统动作不稳定,时好时坏,从而引起的单相运行触头粘连等现象时常造成设备事故的发生。 3.3 粉尘造成的通风不良 电动机的冷却是由通风道的排热、自带风扇强迫冷却和机壳散热所完成的,往往由于通风道粉尘堵塞或机壳上粉尘堆积,使电动机的温升比平常情况下高出10℃以上,造成电动机运行温度过高,承载能力下降。 四、海拔影响 常规电气设备是指海拔在1000米以下使用来做的实验,能完成的工况。海拔影响通常是指电气设备使用场合海拔比常规实验海拔高出很多,比如我国的西藏地区。 4.1海拔对温度的影响 4.1.1海拔高会使电气设备产生发热严重,例如我们常用的电磁感应,电动机接触器都是使用它的原理,他们工作要靠旋转磁场,在高海拔下由于我们使用绝缘材料不同会产生严重发热影响到绝缘缩短使用寿命。 4.1.2海拔过高会使环境温度低:温度过低有的运转设备的润滑油会干涩,甚至不能用,会导致设备过负荷。低温也会影响继电器。继电器虽然是怕热元件,但对过低温度(如军用航空条件-55℃)也不能忽视。低温可使触点冷粘作用加剧,触点表面起露,衔铁表面产生冰膜,使触点不能正常转换,尤其是小功率继电器更为严重。试验证明,对于有些按部标生产的国产小功率继电器,虽然使用条件规定低温为-55℃,但实际上在此条件下继电器根本无法进行正常转换。 4.2海拔对气压的影响 4.2.1海拔过高会产生低气压:在低气压条件下,继电器散热条件变坏,线圈温度升高,使继电器给定的吸合、释放参数发生变化,影响继电器的正常工作;低气压还可使继电器绝缘电阻降低、触点熄弧困难,容易使触点烧熔,影响继电器的可靠性。对于使用环境较恶劣的条件,建议采用整机密封的办法。低气压还会造成断路器的外绝缘强度降低。起晕电压低,造成电晕放电。

(完整word版)高海拔对电气设备的影响

海拔高度对电气产品的影响 随着海拔高度的增加,大气的压力下降,空气密度和湿度相应地减少,其特征为:a、空气压力或空气密度较低;b、空气温度较低,温度变化较大;c、空气绝对湿度较小;d、大阳辐射照度较高;e、降水量较少;f、年大风日多;g、土壤温度较低,且冻结期长。这些特征对电工产品性能有下面四大影响规律,列出如下: 1、空气压力或空气密度降低的影响 1)对绝缘介质强度的影响 空气压力或空气密度的降低,引起外绝缘强度的降低。在海拔至5000m范围内,每升高1000m,即平均气压每降低7.7~10.5kPa,外绝缘强度降低8%~13%. 2)对电气间隙击穿电压的影响对于设计定型的产品,由于其电气间隙已经固定,随空气压力的降低,其击穿电压也下降.为了保证产品在高原环境使用时有足够的耐击穿能力,必须增大电气间隙.高原用电工产品的电气间隙可按下表进行修正. 3)对电晕及放电电压的影响 a、高海拔低气压使高压电机的局部放电起始电压降低,电晕起始电压降低,电晕腐蚀严重; b、高海拔低气压使电力电容器内部气压下降,导致局部放电起始电压降低; c、高海拔低气压使避雷器内腔电压降低,导致工频放电电压降低。 4)对开关电器灭弧性能的影响 空气压力或空气密度的降低使空气介质灭弧的开关电器灭弧性能降低,通断能力下降和电寿命缩短。a)、直流电弧的燃弧时间随海拔升高或气压降低而延长;b)、直流与交流电弧的飞弧距离随海拔升高或气压降低而增加。 5)对介质冷却效应,即产品温升的影响 空气压力或空气密度的降低引起空气介质冷却效应的降低。对于以自然对流、强迫通风或空气散热器为主要散热方式的电工产品,由于散热能力的下降,温升增加。在海拔至5000m 范围内,每升高1000m,即平均气压每降低7.7~10.5kPa,温升增加3%~10%. a、静止电器的温升随海拔升高的增高率,每100m一般在0.4K以内,但对高发热电器,如电炉、电阻器、电焊机等电器,温升随海拔升高的增高率,每100m达到2K以上。 b、电力变压器温升随海拔的增高与冷却方式有关,其增加率每100m为:油浸自冷,额定温升的0.4%;干式自冷,额定温升的0.5%;油浸强迫风冷,额定温升的0.6%;干式强迫风冷,额定温升的1.0%; c、电机的温升随海拔升高的增高率每100m为额定温升的1%。 6)对产品机械结构和密封的影响 a、引起低密度、低浓度、多孔性材料(例如:电工绝缘材料、隔热材料等)的物理和化学性质的变化; b、润滑剂的蒸发及塑料制品中增塑剂的挥发加速; c、由于内外压力差的增大,气体或液体易从密封容器中泄漏或泄露率增大,有密封要求的电工产品,间接影响到电气性能; d、引起受压容器所承受压力的变化,导致受压容器容易破裂。 2、空气温度降低及温度变化(包括日温差)增大的影响 1)高原环境空气温度对产品温升的补偿 平均空气温度和最高空气温度均随海拔升高而降低,电工绝缘材料的热老化寿命决定于平均空气温度。高原环境空气温度的降低可以部分或全部补偿因气压降低而引起电工产品运

电气设备基础知识

电气设备基础知识 一、一次设备(高压设备) 变电站内的主要设备包括: 1、主变压器 2、断路器(开关) 3、母线、绝缘子、电缆 4、避雷器 5、互感器 二、二次设备 1、一次设备是直接生产、输送和分配电能的设备。 2、二次设备是对一次设备的工作进行监察测量、操作控制盒保护的辅助设备。(包括电流表、电压表等,还有各种通信屏、直流屏等还有各种保护) 三、变压器 1、原理 电磁感应 2、结构 铁芯、线圈(高、中、低压)、油箱、绝缘套管出线装置(高、中、低压瓷套)、冷却装置、 保护装置 3、有载调压装置:就是变压器在带负荷运行中可手动或电动变化一次分接头,以改变一次线圈的匝数,进行分级调压。

4、变压器的技术参数 1)型号 2)额定容量 是指变压器在厂家铭牌规定的额定电压、额定电流下连续运行时能输送的容量。 3)额定电压 是指变压器长时间运行所能承受的工作电压 4)额定电流 是指变压器在额定容量下允许长期通过的电流。 5)阻抗电压Ud 对变压器的并列运行有重要意义,并对变压器二次侧发生突然短路时将产生多大的短路电流起决定性的作用。是考虑短路热稳定和动稳定及继电保护整定的重要依据。 6)短路损耗(铜损) 7)空载电流

8)空载损耗(铁损) 变压器的额定工作状态 在额定电压、额定频率、额定负载及规定使用条件下的工作状态称为额定工作状态。在此状态下,变压器运行时经济效果好、寿命长;反之,则变差,甚至会出事故。 5、变压器并列运行的条件: 1)绕组接线组别相同 2)一、二次侧的额定电压分别相等(变比相等) 3)阻抗电压相等 4)变压器容量比不超过3:1 6、变压器投入运行注意事项: 新投运的变压器必须在额定电压下做冲击合闸试验,冲击五次。大修后在全电压下合闸冲击三次。 7、变压器特殊巡视检查项目: 1)起大风时,检查变压器附近应无易被吹动飞起的杂物,防止吹落至变压器带电部分。 2)引线摆动情况和有无松动现象。 3)大雾、毛毛雨时,检查瓷瓶应无严重电晕和放电闪络现象。 4)大雪天,引线触头应无落雪立即融化或蒸发冒汽现象,导电部分应无冰柱。 5)雷雨后,应检查变压器各侧避雷器计数器动作情况,检查套管有无破损、裂纹和放电痕迹。

海拔对电子元件影响

海拔对电子元件器件的使用主要为 海拔超过2000米时,元气件的绝缘性能将下降,需要使用大爬距的加强型绝缘件。 另外还把过高时还需考虑元器件的降容系数,具体到每个元件,厂家会有说明降容系数的。 空气稀薄散热差元件降容系数大 易击穿,因此电气间隙要大。 电气元件和成套标注的2000米是针对试验条件的,不代表不能在2000米以上应用。 海拔高度对温升的影响 很多公司在电子设备产品的设计时,都要求设备能在高海拔下稳定工作。通常“高海拔”指的是海拔1500m(约5000英尺)或3000m(10000英尺)的高度。对于设计和质量控制来说,预测产品在高海拔下运行时的温升是非常重要的。有许多方法可以用于修正海拔高度对于温升的影响,而其中的许多方法都为了简化计算过程而牺牲了精度。尽管许多公司确实使用了有依据的修正方式,然而其他很多公司不必要使用这样的复杂公式。 如今电子设备的结构很复杂。电路板上安装着不同的电子元件,这些电子元件使得流经电路板的空气有着复杂的流场,如回流,死区和其他热源引起的热尾流。如果不考虑这些造成分析的困难,所有表面温度的计算和海平面的测量数据都可以使用本文中的推荐方法外推到任何海拔高度(作者吹牛啦,超过海拔6000米就不好这样修正了,当然,提供的数据也截止到6000m,即20000英尺) 高度修正 以海平面为条件测量或者计算得到的空气冷却的表面温度能够使用系数进行修正得到高海拔条件下的结果。这种方式适用于任何依赖空气对流散热的表面,如壳温,电路板的温度和散热片的温度,甚至在不知道准确的耗散功率的情况下也能使用这种方法。并且在一个强迫风冷系统中的空气温升也可以使用这种方法估算。 高度修正系数表达了特定的高度下对流环境的影响。这种方法首先是参考文献1所提出的。电子设备的对流环境包括:轴流/离心风扇冷却系统,有通风孔的机箱中的或是直接暴露在外以自然对流冷却的电子元件。系数表如下表1。

电气设备的额定耐冲击电压及分级

电气设备的额定耐冲击电压及分级 电气设备的绝缘被瞬态雷电冲击电压击坏的危险程度, 与设备本身耐 瞬态过电压水平、设备安装位置及瞬态过电压强度等因素有关。IEC 标准将电气设备按耐瞬态雷电冲击过电压水平划分为Ⅰ、Ⅱ、Ⅲ及Ⅳ四级。 各级电气设备的额定耐冲击过电压值 U P 电气装置的 标称电压 ( V ) 电气设备应具有的耐冲击过电压值 ( KV ) 三相系统 带中点的 单相系统 电气装置进 线处的设备 (Ⅳ级) 配电回路和 末端回路 (Ⅲ级) 用电器具 (Ⅱ级) 需特殊保护 的设备(Ⅰ 级) — 120~240 4 2.5 1.5

0.8 230/400 277/480 — 6 4 2.5 1.5 400/690 — 8 6 4 2.5 1000 — 由设计电网的工程师确定 防范瞬态冲击过电压的危害有两个主要措施: 一、 防止在设备线路上这种危险过电压的产生 二、 在过电压产生后消除或减少其有害效应。即装设电涌防护器SPD SPD 类型 开关型 放电间隙 要求通过 10/350 μ S 电流波形实验 主要作用是 用于泄放雷电能量 限压型 压敏电阻 要求通过 8/20 μ S 电流波形实验 主要作用是 限制雷电冲击过电压的幅值 SPD

主要参数 : 保护水平 U P SPD 的作用是将雷电流泻放入地并将雷电冲击电压幅值降低到所要求的水平,这一电压水平就是保护水平 保护水平 U P 冲击电流 I imp I imp ≥ 12.5KA 额定放电电流 I N I N ≥ 5KA 最大持续工作电压 U C U C ≥ 1.15U O 接线要求及参数选择 对 TN 系统,只要在三个 L 线与 PE 线间装设开关型即可。 SPD 的 I

海拔高度对电器设备的影响

海拔高度对电器设备的 影响 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

海拔高度对电气设备的影响 随着海拔高度的增加,大气的压力下降,空气密度和湿度相应地减少,其特征为:a、空气压力或空气密度较低;b、空气温度较低,温度变化较大;c、空气绝对湿度较小;d、大阳辐射照度较高;e、降水量较少;f、年大风日多;g、土壤温度较低,且冻结期长。这些特征对电工产品性能有下面四大影响规律,列出如下: 1、空气压力或空气密度降低的影响。 1)对绝缘介质强度的影响 空气压力或空气密度的降低,引起外绝缘强度的降低。在海拔至5000m范围内,每升高1000m,即平均气压每降低~,外绝缘强度降低8%~13%. 2)对电气间隙击穿电压的影响 对于设计定型的产品,由于其电气间隙已经固定,随空气压力的降低,其击穿电压也下降.为了保证产品在高原环境使用时有足够的耐击穿能力,必须增大电气间隙.高原用电工产品的电气间隙可按下表进行修正. 3)对电晕及放电电压的影响 a、高海拔低气压使高压电机的局部放电起始电压降低,电晕起始电压降低,电晕腐蚀严重;

b、高海拔低气压使电力电容器内部气压下降,导致局部放电起始电压降低; c、高海拔低气压使避雷器内腔电压降低,导致工频放电电压降低。 4)对开关电器灭弧性能的影响 空气压力或空气密度的降低使空气介质灭弧的开关电器灭弧性能降低,通断能力下降和电寿命缩短。a)、直流电弧的燃弧时间随海拔升高或气压降低而延长;b)、直流与交流电弧的飞弧距离随海拔升高或气压降低而增加。 5)对介质冷却效应,即产品温升的影响 空气压力或空气密度的降低引起空气介质冷却效应的降低。对于以自然对流、强迫通风或空气散热器为主要散热方式的电工产品,由于散热能力的下降,温升增加。在海拔至5000m范围内,每升高1000m,即平均气压每降低~,温升增加3%~10%. a、静止电器的温升随海拔升高的增高率,每100m一般在以内,但对高发热电器,如 电炉、电阻器、电焊机等电器,温升随海拔升高的增高率,每100m达到2K以上。 b、电力变压器温升随海拔的增高与冷却方式有关,其增加率每100m为:油浸自 冷,额定温升的%;干式自冷,额定温升的%;油浸强迫风冷,额定温升的%;干式强迫风冷,额定温升的%; c、电机的温升随海拔升高的增高率每100m为额定温升的1%。 6)对产品机械结构和密封的影响

环境对电气设备的影响及防护措施

环境对电气设备的影响及防护措施 发表时间:2018-10-01T11:42:58.843Z 来源:《电力设备》2018年第16期作者:刘志成姚志远郭文秀 [导读] 摘要:外部环境因素的影响对电气设备而言是一个无法回避的问题。 (内蒙古包钢钢联股份有限公司巴润矿业分公司内蒙古白云鄂博矿区 014080) 摘要:外部环境因素的影响对电气设备而言是一个无法回避的问题。温度、湿度、粉尘、振动等等都将直接或间接地对电气设备的正常工作造成威胁。在电气设备管理工作中,我们也应正视外部环境因素对设备可能造成的不利影响,合理制定有针对性的对策,有效地将可能造成的危害降至最小,保障设备的高效、稳定运行。探究外部环境因素对电气设备的影响,对于我们制定对策、采取针对性措施消除由此产生的不利影响,保障电气设备高效安全运行有着现实意义。 关键词:环境因素;电气设备;影响;防护措施 前言 不同的电气设备由于材料构造、使用情况等等不同其寿命也不同。但是,我们发现相同的电气设备在不同的使用环境中其损耗程度也大不相同,寿命相差很大。不同的自然环境对设备的影响程度不同,如温度、湿度等等都可能成为影响电气设备的主要因素。因此根据这些影响因素制定不同的对策,采取针对性措施,将有利于电气设备管理工作的顺利开展。 1外部环境因素对电气设备的影响 1.1温度环境 设备中电路网的器件多为塑料外壳、橡胶、蜡封以及塑料绝缘层,本身的受热性能较低,当处于高温环境中工作时,就会出现变形、烧坏等情况,器件也会出现发粘、融化等问题,会直接造成设备短路等故障的发生。而且高温环境会导致电机与电压器漆包线的绝缘强度的下降,最严重时会出现漏电等危险情况。温度较高会使润滑油融化蒸发,这就会对轴承造成影响,长时间没有润滑,很容易造成轴承受损,严重时会造成停转以及设备损毁等重大事故的发生。值得注意的是,长时间处于高温环境会加快设备的机件材料以及导线绝缘保护层的老化,造成硬化以及脆化裂纹情况的发生,机械强度迅速降低。 低温环境对电器中的油类、弹簧机构、液晶屏、电子芯片等的影响也是不容忽视的。 1.2潮湿环境 设备内部在潮湿的环境中会结成水珠附着于零部件,尤其是当电器件接触点出现水珠时,会在短时间内造成零件氧化以及腐蚀等情况,会出现接触不良以及火花等问题,严重时会直接造成设备的损毁。夏季降雨情况较多,企业虽然也做了相关的保护方案,但电器内部仍有可能会出现进水或者水汽较重的状况,这时如果程度较轻就会出现导线和插头以及电器件绝缘电阻降低、漏电等问题,但如果程度较高,则会导致电路和开关以及继电器短路、起火等故障,会对企业的人员和财产造成一定的损失。而湿度过高或设备进水会直接造成电路以及电气机件严重损坏的问题,导线、电缆以及配电盒的内部会出现大量霉菌,如果没有及时清理干净,就会造成配电器件与电缆外部的绝缘皮发生霉变,造成故障的发生。 1.3粉尘 粉尘的产生,不仅会污染环境,损害人的身体健康,还会对电气设备的安全运行带来危害。如粉尘在断路器上端凝结沉降容易造成相间绝缘强度大大降低,诱发相间短路事故。粉尘在继电器、接触器等触头间堆积容易造成接触不良故障。粉尘若堵塞通风道,导致设备散热不畅,温升过高,设备可能会无法正常运行。 1.4海拔 海拔对电气设备的影响主要体现在绝缘强度、分断能力和温升三个方面。海拔越高,气压降低,空气的密度和湿度相应减少,会引起外绝缘强度的降低。电气间隙击穿电压下降,空气介质开关电器灭弧性能降低,设备的分断可靠性下降。海拔越高,空气介质冷却效应降低,散热能力下降,加之紫外线辐射增强,绝缘材料易老化,电气设备易发生故障。 1.5振动 振动会造成电气设备零部件疲劳损坏,磨损和松动,使设备不能正常工作。如对于有触点元件而言,振动极易引起触点接触不良;对于机壳和机座而言,振动频繁容易出现断裂或变形。有数据显示,振动还将加大尘土进入电器内部的几率。 1.6其它 其它因素是指一些不可预见的外力因素,比如暴风、雷电、大雪等恶劣天气下产生的不可抗力。比如暴风刮倒电杆电线、雷电导致跳闸等等。在一定时期内有很大几率发生诸如此类的异常天气时,设备管理人员应提前做好应对措施,有针对性地开展电气设备检查和维护。 2针对影响制定的对策 2.1防暑、防冻措施高温天气,考虑温升的影响,应对电气设备采取“防暑”措施,包括加强通风管理,保证设备区域以及设备本身的散热;由于高温导致轴承润滑油易流出需补油;加强设备点检,及时反映设备的异常温升、响声、振动等;对工作在温度过高环境的电气设备,可采用冷却风机进行强制降温等。冬季低温天气,应注意防范油压控制的电气设备易因液压油粘性增大无法正常启动和运行,需提前投入电加热器,做好“防冻”措施。 2.2除湿措施环境相对湿度过高对电气设备的正常运行将造成较大威胁。因此采取合理措施,减轻环境湿度对电气设备运行的影响,有针对性地对其室内外环境进行防潮除湿是非常必要的。有效的防潮除湿措施包括:采取通风、局部隔离等除湿措施,必要时给电控柜加盖防水罩;有条件的安装空调或工业除湿机,快速自动解决潮湿问题;为防止凝露,可在电气柜内合适位置装设加温型或排水型除湿器;封堵连通室内外的电缆通道口,在防小动物的同时也能防止潮湿水气进入;杜绝屋顶屋面积水渗水透水;加强巡回检查,及时关好门窗和柜门;长期未开动设备,有可能受潮的必须先进行烘烤,经摇测绝缘电阻合格后方可送电运行等等。 2.3通风防尘措施使用场所中的粉尘在设备上沉降容易影响设备散热、导致触头电接触不良或加大相间短路的可能。对工作在灰尘过大环境的设备,要选用防护等级高的产品或及时采取通风防尘措施,必要时可在重点电气部位上加盖防尘罩。电气维护人员应定期对电缆接头、接触器和断路器等主要电器元件以及大型电机、变电所、变压器等等进行除尘,定期检查开关设备的触头及接线,提高电气设备的抗尘能力。有条件的电气柜或者场所,在采取通风措施,风道入口应设置过滤装置且保证足够的空气流量用于散热。

电气设备技术要求

电气设备技术要求 一、箱式变电站主要技术要求 1、使用条件 海拔高度不超过1000m 环境温度-30℃~+40℃ 最高月平均气温+30℃ 最高年平均气温+20℃ 相对湿度日平均不大于95%月平均不大于90% 地震水平加速度小于4m/s2,垂直加速度小于2m/s2 安装地点无剧烈冲击、无严重污染和化学腐蚀、无导电尘埃及爆炸危险场所。 2、主要技术参数 3、结构特点 箱式变电站由高压配电装置、变压器、低压出线装置、外壳及其附件按一定规律联接组合而成,分为三个功能隔室,即高压室、变压器室和低压出线室,各室功能齐全,结构合理,元件性能可靠。 (1)高压配电装置

高压室由环网柜组成一次供电系统,可布置成环网供电,终端供电,双电源供电等多种供电方式,还可装设高压计量元件,满足高压计量的要求。高压部分选用产气式负荷开关如FN6;高压室“五防”功能齐全,还配有避雷器、带电显示器等保护元件,高压开关可手动和电动操作,附带一定容量的USP作为操作电源,可实现远方操作或监控。 (2)变压器 变压器室可选择S11-M-630。变压器室装设轨道,以便变压器从变压器室大门两侧进出。变压器室内有护栏及警告标志。 (3)低压室 低压室只供低压电缆出线用。 (4)壳体及其附件 箱体用优质冷轧钢板制作,经防腐处理,能防止雨水和小动物进入,具备长期户外使用条件,确保防腐、防水、防尘性能,使用寿命长,外型美观。 箱变门锁采用专用户外锁,具有防盗功能,钥匙可以制成通用或根据用户要求配制成专用门锁。 二、低压配电设备主要技术要求 低压配电设备包括:低压开关柜、PLC柜。 (一)、设备标准 低压柜产品符合满足以下标准,且不仅限以下标准: GB4942.2-85 外壳防护等级 GB7251-97 低压成套开关设备 JB/T9.661-1999 低压抽出式成套开关设备 GB 14048 低压开关设备和控制设备 (二)、技术指标 (1)工作环境: 海拔高度<1000米 不结露的最大相对湿度为95% 最高环境温度55?C 最低环境温度-10?C 日气温最大变化20?C

高海拔地区对变压器的影响及预防措施

高海拔地区对变压器的影响及预防措施洪边疆 李青 新疆建设兵团勘测设计院一分院(832000) 高海拔地区主要是由于空气稀薄、气压低造成变压器散热困难和外绝缘性能降低问题。因此,高海拔地区所使用的变压器必须在合同上注明产品运行地点的海拔实际高度,以便制造厂考虑变压器的温升限值以及外绝缘的最小空气间隙。 对外绝缘而言,一般是加强套管的外绝缘,加大沿面泄漏距离与对地放电距离,加大套管间与套管对地部件的空气间隙尺寸,以克服空气稀薄、气压低对变压器外绝缘的稳定性所造成的影响。通常油浸式变压器外绝缘距离按海拔1000m以上时,以每上升100m为一级,每级加大空气间隙1%;干式变压器按1000m以上,每上升500m为一级,每级加大额定短时工频耐受电压值6.25%。高海拔指海拔高程在1000m以上的地区。 对温升限值而言,一般在高海拔地区是以降低的温升限值来控制。通常也以1000m以上,每上升500m为一级,测得的温升不得超过按每500m为一级而降低的温升限值。油浸自冷式变压器为每升高500m降低2%;油浸风冷及强油风冷式变压器每升高500m降低3%;干式自冷式变压器每500m降低2.5%;干式风冷式每500m降低5%。(收稿日期:2001-3-13) 图1中以主变吸收无功为正值,送出无功为负值;直线a、b分别为允许无功的上、下限值,直线c、d分别为允许电压的上、下限值。 当系统进入不合格区域运行时,装置应达到下列效果: 当系统运行在区域1时,应投入电容补偿;当系统不能进入规定区域时再调整主变分接头。 当系统运行在区域2时,应调低主变分接头;当系统不能进入规定区域时再投入电容补偿。 当系统运行在区域3时,应退出电容补偿;当系统不能进入规定区域时再调整主变分接头。 !当系统运行在区域4时,应调高主变分接头;当系统不能进入规定区域时再退出电容补偿。 (2) 响应调度/控制中心通过远动信号发出的指令,闭锁装置并执行越级控制指令。应当注意,有时由于系统电压过高或者过低,经过上述调整后系统并不一定能进入规定区域运行,这时装置应自动闭锁,并应向调度控制中心发出信号,调度控制中心可以通过远动信号来调节临近变电所或上级变电所潮流达到该所的控制目标;另一方面,有时系统为了达到某种目标,需要个别变电所在 无功或电压上作出某种限度的牺牲, 或者调度控制中心为了实现全区域 潮流优化,最大程度地降低网损,也 可以对VQC发出越级控制的指令。 当然,这需要远动上有较好的“四遥” 手段。 2.3 人机界面问题 VQC的人机界面对运行和管理 人员十分重要。VQC的人机界面不 友好或不完善,则可能造成使用不方 便或不当。一般来说,VQC人机界面 应满足以下要求: (1) 参数设置方便,对用户开 放的参数要足够充分和全面。有关部 门对变电所电压/无功的考核常常会 有新的要求,有时甚至对峰谷时段的 定义都会有变化。如果VQC参数不 能方便设置,则会使厂方和用户都感 到麻烦。 (2) 闭锁条件应能在人机界面 中反映出来:VQC是一项涉及面颇 广的自动化装置,变电所的许多异常 和变化都会引起它的闭锁。如果 VQC的闭锁情况和闭锁原因不能在 人机界面上反映出来,则会使用户对 它的闭锁分析变得十分困难。 (3) VQC动作记录应全面:详 细的VQC动作记录有利于VQC的 运行和故障分析。因此,VQC的人机 界面应能全面显示其运行状态和闭 锁情况,并能在线灵活整定有关参 数。例如应显示:受控功率因数和母 线电压;各主变和电容器的运行状 态;变电所的运行方式,包括供电端 各母线的运行方式,主变运行方式 (独立运行还是并列运行);主变和电 容器的闭锁情况;峰谷时段及相应的 电压和功率因数限值;VQC的动作 记录等。 3 电压/无功自动控制装置的应用 条件 鉴于VQC装置的“自动”特点, 考虑采用该装置的变电所,其主变必 须是有载调压,而且主变档位最好采 用8×±1.25%,以便于灵活控制。 还有,必须有完善的远动“四遥”手 段。当然,如变电所采用无人值班设 计,则这些条件早就具备了。 我们相信,随着电压/无功自动 控制技术不断完善和深入应用,在对 系统的安全经济运行、提高电能质量 中,电压/无功自动控制装置将发挥 越来越大的作用。 (收稿日期:2001-04-15) (本栏编辑 天晴) 37 ○运行维护○ 《农村电气化》2001年第7期

高原环境下的低压电器如何选择

高原环境下的低压电器如何选择 摘要:本文通过高原环境对低压电器产品影响因素的分析及适应性研究,提出了高原环境下使用低压电器产品应采取的对应措施: 关键词:低压电器;高原环境;适应研究;影响分析 随着科学的进步,各种施工设备的自动化程度越来越高,对电器的性能要求也日益提高。高原空气密度低、含氧量少、昼夜温差大,以及气温、气压和空气密度等大气参数随海拔升高而递减,对所使用的低压电器设备有着不可低估的影响。 1 高原环境对低压电器产品的主要影响 高原环境对低压电器产品的影响主要体现在温升、绝缘性能、接通能力和分断能力、对产品动作性能的影响、电寿命、对PLC的干扰。 1.1 温升 海拔升高,空气密度降低,散热的对流作用减弱,对于以空气为冷却介质的电器其温升就会随之升高,额定容量下降,影响电器使用寿命。海拔每升高lOOm,电器温升增加0.1~0.5 (一般在0.4 以下1;而气温随海拔高度的升高而降低,直减率为海拔每升高lOOm气温约降低0.6 ,可以部分补偿由海拔升高对电器温升的影响。 1.2 绝缘性能 海拔升高,空气密度降低,空气的介电强度也相应下降,使空气间隔的放电电压明显降低,导致电器的外部绝缘强度降低,外绝表面及不同电位的带电间隙比较容易击穿,特别是对电气间隙和爬电距离的影响较大。通常,电器间隙以电器承受所要求的冲击耐受电压来确定,而爬电距离以作用在跨接爬电距离两端的长期电压有效值来确定。 1.3 接通能力和分断能力 空气压力和空气密度的降低,会对空气介质灭弧的开关电器灭弧性能造成影响。这种影响来自两个方而,一方面会造成开关电器灭弧时间延长,触头烧损严重,从而使得接通和通断能力降低;另一方面有利于开关电器灭弧。 1.4 对产品动作性能的影响 由于高原地区散热的对流作用减弱,且最低气温较低,日温差较大,会给一些低压电器产品的动作特性带来一定影响,如热磁式低压断路器的动作特性、热继电器的动作特性均会发生一定变化。 1.5 电寿命 由于受高海拔地区极端最低气温过低及电器产品温升和灭弧时间的综合影响,高原环境会对低压电器产品的电寿命产生一定影响。 1.6 对PLC的影响 高海拔地区灰尘、风沙等自然环境对PLC的影响尤为突出,使得磁盘和磁头上的灰尘过多,轻则出现内存数据丢失、逻辑运算结果错误,重则造成划盘。灰尘对触点的接触阻抗有影响,它将造成键盘不能进行正常的输入操作,还特别容易破坏磁盘的磁记录表面。在正常情况下

相关文档
最新文档