1450mm六辊可逆冷轧机组整流变压器的选用

1450mm六辊可逆冷轧机组整流变压器的选用
1450mm六辊可逆冷轧机组整流变压器的选用

1450mm六辊可逆冷轧机组整流变压器的选用

?作者:袁欢媚,李俊明

?出处:

?阅读:

?发布时间:2007-7-3 9:20:00

?供稿:西安重型机械研究所第六研究室

[摘要]介绍了整流装置的两种供电方式即电源进线加进线电抗器方式和整流变压器方式,并探讨了这两种供电方式的区别。介绍了1450mm六辊可逆冷轧机组的传动特点和整流变压器的选用,并给出了整流变压器及进线电抗器的重要参数电压、容量、短路阻抗及电感量等的计算和选用方法。

0 前言

近年来,六辊可逆冷轧机组成品宽度1000mm以上的高精度、高质量的冷轧板带材轧制方面的良好表现及其便于控制板型、适应来料宽度变化大的特点,使其逐步占领更多的市场,1450mm六辊可逆冷轧机组是六辊可逆冷轧机组典型代表。对于这样一个轧机,为其传动装置选配整流变压器是一个重要的问题。本文着重介绍了1450mm六辊可逆冷轧机组中整流变压器的选用。

1 六辊可逆冷轧机组

六辊可逆冷轧机组为上下工作辊传动,机组由上卷小车、开卷机、开头矫直机、左卷取机、机前装置、1450mm六辊可逆冷轧机、机后装置、右卷取机、卸卷小车、轧制线调整机构及换辊车等组成,见图1。其中开卷机、左右卷取机、主轧机采用直流电机传动。

轧机主传动上工作辊由两台直流电机串联经减速箱驱动,下工作辊亦由两台直流电机串联经减速箱驱动。轧机主传动直流电机型号Z710-4B,电机功率1250kW,电枢额定电压

DC660V,电枢额定电流2030A。

左、右卷取机传动均采用两台直流电机串联经减速箱驱动,左、右卷取机直流电机型号

Z710-4B,电机额定功率为1000kW,电枢额定电压为DC660V,电枢额定电流为1640A。开卷机传动采用一台直流电机经减速箱驱动,开卷机直流电机型号Z560-3B,电机额定功率510kW,电枢额定电压DC660V,电枢额定电流830A。

直流电机总容量为9510kw。

2 供电方式

对于整流装置的供电,一般采取两种方式:一为电源进线加进线电抗器方式,二为选用整流变压器,如图2所示。

对于整流装置的进线电压与电网电源电压一致的情况,采用第1种方式供电;另在第1种供电方式下,如果有多台单机容量较小的装置,可采用一台整流变压器供电,由整流装置经过进线电抗器与整流变压器连接,如图3所示。

交流进线电抗器可以限制晶闸管换向时短路而造成的短路电流的上升率及短路电流,改善电源电压波形。进线电抗器的压降为2%~4%,电感量的计算公式为:

式中,U Vφ为电源相电压有效值;I dN为整流装置的额定电流;f为电网频率。

对于整流装置的进线电压与电网电压不一致且整流装置电流大于2000A的情况,采用第2种方式供电,一台整流变压器供一台装置,由整流装置经过整流变压器与电网直接连接,而不用进线电抗器,利用变压器的漏抗来限制晶闸管换向时的短路电流。

当整流装置在工作时,晶闸管在换向瞬间存在相间短路情况,造成进线电压被瞬间短路及电网波形畸变,电网电压出现严重换向缺口,电网功率因数恶化,因此需有一定的阻抗值来限制短路电流值。

经过合理设计的供电系统,电网容量应该足够大,使得在晶闸管换向时,由于换向短路所造成的电网电压换向缺口不大于换向时刻电源电压的20%。

3 整流变压器的选用方法

3.1 整流变压器的选用

对于1450mm六辊可逆冷轧机组,整流装置电流大,单机容量大,又考虑轧机的工艺及布置特点,故采用第2种供电方式,选取整流变压器。由于主轧机上下辊及左右卷取机均采用两台电机、主从控制方式,两台电机相同,工作状态相同,因此选用裂解式变压器。本轧机共选用四台裂解式变压器,即主扎机上辊两台直流以电机、主扎机下辊两台直流电机和右卷取机两台直流电机分别选用一台双副国裂解式整流变压器(分别为1#,2#,3#整流变压器)供电,由于开卷机和左卷取机不同时工作,左卷取机两台直流电机和开卷机直流电机选用一台三副边裂解式整流变压器(4#整流变压器)供电。如图4所示。

采用裂解式整流变压器,变压器数量少,变压器制造成本低,可以节约供电成本。

3.2 整流变压器的参数计算

根据整流变压器的一次容量(S1)和二次容量(S2)计算容量(S T):

每台裂解式整流变压器容量为根据两个副边容量所计算出的变压器容量之和。对于4#三副边的整流变压器,由于开卷机和左卷取机不同时使用,故整流变压器的容量只考虑左卷取机的两个电机的容量即可。

整流变压器的副边电压与轧机的工作方式(可逆或不可逆)、整流桥的形式、整流变压器的短路阻抗及直流电动机的额定电压等都有关系。轧机中整流变压器的副边电压线电压可根据直流电动机的额定电压计算得出:

U=(0.95~1.0)×U MN

式中,U MN为直流电动机的额定电压。

变压器的原边接法选择三角形,避免了电压畸变和负载不平衡时原点浮动。副边两个绕组一

个采用星形接法,另一个采用三角形接法,故连接组号为D/y11,d0(原边△,副边△/Y)。于整流变压器,短路电压值为整流变压器的重要参数,可根据变压器的容量进行选择。变压器的短路电压是指当变压器二次绕组短路,一次绕组中电流达到额定电流时,一次绕组上的阻抗电压与变压器额定电压之比的百分值。当变压器的阻抗电压大时,即变压器总的漏阻抗压降大,变压器的短路电流小;当变压器的阻抗电压小时,二次绕组电压受负载变化影响小,变压器的短路电流会大一些。因此从限制短路电流的角度来看,希望短路阻抗大一些,但这将导致换向电压降△U x增加,使功率因数恶化,故需综合考虑。

整流变压器的短路电压值根据变压器的容量来进行设计,一般为5%~10%。若变压器容量小于100kVA,短路电压值为5%;若变压器容量小于1000kVA,短路电压值为5%~7%;若变压器容量大于1000kVA,短路电压值为7%~10%。

3.3 整流变压器的衍生接法

另有一种从图4中衍生出来的六辊可逆冷轧机的整流变压器接法,如图5所示。

此接法的特点为左卷取机的两台整流装置分别由3#整流变压器和4#整流变压器供电,绕组为一个星形、一个三角形,右卷取机接法同左卷取机。这种供电方式时3#整流变压器可为三副边整流变压器,给开卷机整流装置供电,4#整流变压器为双副边整流变压器。根据变压器副边电流的傅里叶分析,可知此种接法能够减小电网供电电流,减小电流的谐波,从而减少电网无功补偿的投入。

根据以上内容选用的整流变压器自2005年以来已在温州大自然集团、深圳华美集团及苏州开元集团等多台六辊冷轧机组上使用,设备运行良好。

本文探讨了整流装置的两种供电方式的区别,着重介绍了1450mm六辊可逆冷轧机组中整流变压器的选用,包括变压器的型式、接法、容量等。本文对其他六辊可逆冷轧机组的整流变压器的选用亦适用,对其他的四辊轧机及平整机的整流变压器的选用亦有借鉴作用。

最新四辊可逆冷轧机传动电控系统设计设计

四辊可逆冷轧机传动电控系统设计设计

摘要 轧制是各种变形手段中效率高、产量大、成本低、成型精确的加工方式。而轧机是实现金属轧制过程的设备,泛指完成轧材生产全过程的装备,包括有主要设备﹑辅助设备﹑起重运输设备和附属设备等。从炼钢厂出来的钢坯还仅仅是半成品,必须到轧钢厂去进行热轧与冷轧后,才能成为合格的产品。 论文通过吸收和借鉴校内实训中心的四辊可逆冷轧机的先进设计理念,提出了四辊可逆冷轧机的电控系统设计方案,并总结出了电气调试方案。完成了整个轧机电控系统的硬件方案设计以及相关器件的选型工作。在硬件设计中,提出了PLC+变频器+电机等的闭环控制系统,从而达到变频器控制电机转速的目的。 关键词:轧机电控系统四辊闭环

ABSTRACT Means all kinds of deformation in rolling, high efficiency, large output, low cost, precision molding processing methods. The mill is the equipment of metal rolling process, rolled the whole production process refers to the completion of equipment, including major Equipment, Auxiliary Equipment, lifting and other transport equipment and ancillary equipment. Out from the steel mill is just the semi-finished billets to be to go for hot and cold rolling mills, the products can become qualified. Articles by absorb and learn the four-campus training center roller cold rolling mill of the advanced design concept, put forward a four-high reversing cold rolling mill electrical control system design. Completion of the entire rolling mill electrical control system hardware design and selection of work-related devices. In the hardware design is proposed such as PLC + inverter + motor closed-loop control system, so as to achieve the purpose inverter control motor speed. Keywords:Rolling mill;Electronic Control System;Four roller;Closed loop

六辊可逆轧机生产中出现的问题解答

轧钢中出现的问题解答 1怎样控制轧制力? 轧制力大板型不好控制,轧辊温度不均,轧辊承受能力下降。新换工作辊一般用大张力可以减少轧制力,轧制2-3卷以后可以减小。 相对而言轧制力太小厚度不好控制。可以减小张力轧辊阻力增大轧制力相对也能大一些. 2怎样控制厚度波动? 轧制过程中出现厚度波动大首先降速和减少张力差,厚度波动大的可以把监控取消。 对于厚度波动在20ym以内速度应该在500米以下,波动在20ym以上速度在300米以下。 3裂边怎样造成的? 1轧辊边部粗糙度低。 2带钢边部出现色差。 3总变形量太高,最后道次压下量太大,有可能轧后产生边裂。 4原料有边浪起鼓涨裂。 5酸洗剪边不好。 4怎样控制裂边断带? 裂边严重时减少工作辊弯辊力,降低轧制速度,减少出口张力。使带钢边部承受的张力减小,不会把裂边拉断。发现带钢边部起鼓及时更换工作辊。\ 5在轧制过程中,带纲出现跑偏错卷的原因是什么?如何处理?

在轧制过程中,带钢出现跑偏一般在穿带或甩尾时发生,造成带钢跑偏的主要原因有以下几个方面: 1由于来料的原因来料板形不好,有严重的边浪或错边,使开卷机对中装置不能准确及时地进行有效调节,造成第一道次带钢跑偏,采取措施是轧制速度不要太高,及时调节压下量侧位置或及时停车。 2操作原因由于操作压下摆动调节不合理,造成带钢跑偏。 3电气原因由于在轧制过程卷取机张力突然减小或消失造成带钢跑偏、断带。4轧辊由于轧辊磨削后有严重的锥度,使压下找不准,在轧制中给操作压下摆动增加了难度,轻者会产生严重一边浪造成板形缺陷,重者造成跑偏断带。 5开卷对中装置故障、灯管或接受装置污染等,使跑偏装置失效造成第一道次跑偏。 6主控工、机前、机后怎样控制头尾勒辊? 1在轧制带头、带尾时,主控工应该及时的加大出口张力5KN左右,启车后轧制力减小时,在把出口张力调整到工艺要求的数量。由于带头、带尾速度较低,造成轧制力大、厚度不好控制,弯辊跟不上易勒辊。 2机前、机后要及时观察轧制力、板型。轧制力大时及时加大弯辊。观察板型及时调整辊缝调偏,以免造成跑偏勒辊。 7无压偏情况下出现勒辊注意事项有那些? 一般无压偏的情况下勒辊,注意事项有:道次变形量是否过大、轧制力是否过大、弯辊力是否太小以及启车时有无失张现象。 8轧制过程中带钢表面突然出现色差该这么办?

650四辊可逆轧机性能

650全液压四辊可逆轧机技术协议1 设备主要工艺参数 1.1 原料:经酸洗后的热轧卷板、热轧中宽带钢 材质:优质碳素钢、低合金钢 厚度:δ≤4.5 mm 最大强度极限:бb=610 N/mm2 最大屈服极限:бs=360 N/ mm2 宽度:≤650 mm 卷径:Φ508/Φ900~Φ1650 mm 最大卷重:8 T 1.2 成品 成品厚度:≥0.2 mm 带钢宽度:≤520 mm 卷径:Φ508/Φ900~Φ1650 mm 最大卷重:8T 成品厚度公差:0.01~0.02 mm(去掉头尾各8米) 1.3 主要技术参数: 最大轧制力:5000 KN 最大轧制力矩:35 KN . M 最大轧制速度:8 m/s 穿带速度:0.3 m/s 开卷最高速度:3.3 m/s 卷取最高速度:8.2 m/s 卷取张力:0~60 KN 工作辊规格:Φ220/Φ190×650 mm 支撑辊规格:Φ650/Φ680×600 mm 开卷机卷筒直径:Φ480~Φ520 mm 卷取机卷筒直径:Φ488~Φ508 mm

轧制线标高:+1000 mm 最大弯辊力:400 KN 冷却液类型:乳化液 工艺润滑系统流量:1000 L/min 稀油润滑系统流量:250 L/min 稀油润滑系统压力:0.4 Mpa 稀油润滑系统介质:中负荷No20 机组进料方向: 液压系统压力:压下、弯辊液压系统:3~25Mpa 一般液压系统:0~10Mpa 设备总重量:约140 T 传动方式:工作辊传动 年产量: 传动电机: 主机电机Z560-2A 440V 600KW n=600~1400rpm 1台 卷取电机Z4-355-11 440V 180KW n=500~1500rpm 2台 开卷电机Z4-250-41 440V 75 KW n=500~1500rpm 1台 2 设备组成 2.1 机械设备 2.1.1 开卷机1台 悬臂机构,由传动装置和卷筒组成,传动装置为二级减速箱,卷筒为四棱锥结构,主要参数为: 卷筒工作直径:Φ500 mm 卷筒涨缩范围:Φ452~Φ544 mm 开卷速度:≤3.3 m/s 开卷张力:4~30 KN 对中移动范围:±50 mm 对中横移缸:缸径Φ125 mm,

1100HC六辊可逆式冷轧机的设计-文献综述

附录2 文献综述 一、课题的国内外现状 HC 轧机全名为HITACHI HIGH CROWNCONT ROLMILL,即日立中心高性能轧辊凸度控制轧机。该机型是日立公司于1972 年研究开发的轧机,两年后正式投入工业化应用。它具有普通四辊冷轧机不能达到的性能和优点,首先在日本得到推广使用,继而受到全世界的瞩目,广泛用于热轧和冷轧生产中的单机可逆轧机、连轧机和平整机。其主要结构特点是:在支撑辊和工作辊之间加入一对能够沿着轧辊轴向相对移动的中间辊,通过中间辊的相对移动来改变轧制压力在带钢方向上的分布,加上工作辊的正负弯辊作用,对改善带钢板形起到了明显的效果。 在国外,除日本各大钢铁公司普遍采用HC轧机机型外,美国、德国、加拿大、瑞典、巴西、墨西哥、韩国等国家均从日本引进了该轧机。 在国内,武汉钢铁公司为生产镀锡板基板,1987年首先引进1250HC六辊轧机,之后上海宝钢、辽宁鞍钢等国内各大钢铁公司先后引进了这种轧机机型。在引进设备的同时,国内相关单位也开始跟踪并开发国产的HC六辊轧机。国产大型六辊轧机已成功地用于工业生产,而且主要的技术水平和功能已达到国外同类设备水平。但是,六辊轧机种工作辊弯辊、中间辊横移、中间辊弯辊三种方式与带材板型的检测、控制相结合,实施有效的闭环控制,目前国内虽然在这方面也取得了不少成绩,但在精确度和稳定性方面仍然需要花大力气研究。 二、现有的主要研究成果 随着科学技术的不断进步,日本最近几年又在HC轧机的结构上进行了改进,推出了一些新型的HC轧机。例如,HCMW 轧机是综合HC轧机和HCM轧机的优点,其特点是中间辊和工作辊都能轴向移动。 在国内,HC轧机方面的研究也取得了很多可喜的成绩:降低轧辊表面缺陷的措施,预防轧辊剥落的措施,预防轧辊断裂的措施。近几年来,随着控制理论的发展,人们不断把一些新型控制方法引入板形自动控制系统中,以弥补PID控制中很难满足高精度控制要求的不足,比如基于动态负荷分配的板形控制方法。在日本,成品机架或成品道次采用软刚度的方法

中南大学 四辊可逆冷轧机的卷宗取机直流调速系统设计

第一章总的设计概述 1.1 设计目的 运动控制系统是自动化专业的主干专业课,具有很强的系统性、实践性和工程背景,运动控制系统课程设计的目的在于培养学生综合运用运动控制系统的知识和理论分析个解决运动控制系统设计问题,使学生建立正确的设计思想,掌握工程设计的一般程序、规范和方法,提高学生调查研究、查阅文献及正确使用技术资料、标准、手册等工具书的能力,理解分析、制定设计方案的能力,设计计算和绘图能力,实验研究及系统调试能力,编写设计说明书的能力。 1.2 设计内容 (1)根据工艺要求,论证、分析、设计主电路和控制电路方案,绘出该系统的原理图。 (2)设计组成该系统的各单元,分析说明。 (3)选择主电路的主要设备,计算其参数(含整流变压器的容量S,电抗器的电感量L,晶闸管的电流、电压定额,快熔的容量等),并说明保护元件的作用(必须有电流和电压保护)。 (4)设计电流环和转速环(或张力环),确定ASR和ACR(或张力调节器ZL)的结构,并计算其参数。 (5)结合实验,论述该系统设计的正确性。 1.3 课题设计要求 四辊可逆冷轧机的卷宗取机直流调速系统设计 (1)生产工艺和机械性能 四辊可逆冷轧机是供冷轧紫铜及其合金成卷带材之用,为提高其生产效率,冷轧机要往、返轧制其金属材料。直到达到要求的厚度时才停止。因为要求冷轧机左右两边的两台卷取机在从左往右的正向轧制过程中,左边一台卷取机用,其

工作在发电机状态,右边一台卷取机作卷取机用,工作在电动状态。若逆向轧制(从左往右轧制),右边卷取机作开卷机,工作在发电机状态,左边卷取机则作卷取机用,工作在电动状态。 两台卷取机的电动机参数完全一样,机械参数如下: 带卷内径(卷筒直径):500mm 带卷外径:680~1100mm 带卷最大重量:2000kg 带卷最大张力:2000kg 卷取机传动比:i=1.87 图一 设备结构简图 (2)设计要求 1、两台卷取机控制原理完全一样,仅设计其中一台; 2、技术指标:稳态无静差,电流超调量% 5≤σi ,空载启动至额定转速 时的转速超调量% 10≤σ n 能实现快速制动。 (3)直流电动机参数: 150n P k w =、 230n U V =、 165n I A =、 1400m in n n r =、 0.08a R =Ω 电枢回路电阻0.18R =Ω 、电流过载倍数 2.5λ=、2 2 121.5.G D N M =。

四辊与六辊轧机的比较

比较四辊和六辊轧制技术在冷轧机上的应用 Dr.mont.Dipl.Ing.Gerhard Finstermann,冷轧部和带钢加工厂的首席经理; Dipl.Ing.Alois Seilinger,轧制技术的仿真的首席专家;Dipl.Ing.Gregor Nopp,冷轧部门经理;Dipl.Ing.Gerlinde Djumlija,澳大利亚,林茨,西门子奥钢联冶金技术冷 轧的部门经理 摘要:通过西门子奥钢联模拟冷轧过程,得出四辊轧制技术和六辊轧制技术在冷连轧应用上关键轧制参数的不同。这涉及到研究不同的轧机的性能。 本文全面讨论了Smart Crown 系统,在连轧控制下通过条形过渡区的平直度表现,轧机的刚度,厚度方面及边降控制对平直度的影响。 制造出平直度完美,厚度不变的板带是每一个轧制工作者的追求。这就要求轧制设备不仅能制造出在质量和尺寸精度方面满足市场需求的带钢,而且也要满足轧制工作者对产品的灵活和产品 组合的广泛性的要求。近年来,一些 新的冷连 轧生产线已经使用了可靠的四辊和 六辊轧制技术(图一)。然而,我们 并不知道到底是四辊轧机还是六辊 轧机能够满足市场对厚度公差和平 直度公差的进一步要求,甚至要求更 宽的产品组合。 板带的强度等级越高,冷轧就越 困难。新的连续冷连轧机应该能够轧制抗拉强度达1300MPa 的钢材,因为将来需要这些设备去轧制范围更加宽广的钢种并且很大一部分是先进的高强钢包括汽车用的多相特种钢和高硅钢片。同时板带的表面质量(对所有的产品尤其是用于汽车工业的产品是一个关键的特征)和保持板带的边降在允许的公差带范围内是至关重要的。边降对于晶粒取向的电工用钢尤为重要。 为了能够更好的比较四辊和六辊轧机的性能,采用了五台相同混合型轧机,其中一号和二号轧机采用六辊配置,三到五号轧机采用四辊配置,并且要求得到以下结果:厚度变化的范围,平直度的控制和边降控制的能力。 图 1

单机架六辊可逆冷轧机电气自动化技术方案(精)

1200六辊可逆冷轧机电气自动化系统控制方案

1概述 根据《1200六辊可逆冷轧机技术规格电气招标书》所提供的工艺设备和技术要求,并参考了同类型的单机架六辊可逆冷轧机的工艺技术,编写了本电气传动及基础自动化控制的技术方案。 2 供电 2.1 电气设备运行条件 1)电气设备运行环境要求 环境温度 现场:0~40?C 电气室:10~35?C 操作室:25±5?C 空气湿度:相对湿度≤95%且无凝露; 污染等级:III级,无火灾爆炸危险、无导电性尘埃、不腐蚀金属物及不破坏绝缘介质的环境。 2)电气设备运输及储存环境要求 环境温度-20~65?C ; 空气湿度及污染等级要求与运行时相同。 3)电气设备使用的电压等级及技术条件 本机组所使用电气设备电压等级符合我国国家标准,主要用电设备的电压等级为: ◆供电电压及频率:10±5%kV,50±1Hz ◆低压供电电压:AC380/220V ◆交流电动机电压:AC380V ◆直流电动机电压:DC440~660V ◆电磁阀:DC24V

◆电磁抱闸:AC220V ◆控制电压:AC220V,DC24V ◆保护地:接地电阻<4Ω ◆系统地:接地电阻<4Ω 2.2低压供配电 辅传动供电系统 (1)辅传动供电系统单线图见MCC单线图。 (2)MCC设备(见附表) 由于本机组负荷较小,因此不设负荷中心。本机组负荷MCC(即马达控制中心)将采用GGD3柜,包含MCC的受电、馈出回路、UPS 系统、比例、伺服阀控制回路和照明开关柜,开关柜额定短路短时承受能>80kA/s。 额定短路分断能力与电网短路电流相适应,Icu >50kA 根据需要配置必要的电流、电压表计,端子板采用Phoenix端子。 单机架可逆冷轧机组设一套MCC,不同容量不同控制类型的回路至少有一个备用回路。 注①:主传动电动机均配置有空间加热器,这些加热器是在长期停机时防止电机绕组受潮而设置的。由本MCC供电。 注②:为了保证乳化液站的检修供电,需要检修电源或者备用一路供电回路。 (3) UPS电源 为保证控制系统运行的可靠性,机组设置一套容量为10kV A的UPS 电源为机组控制系统(PLC、AGC控制器、HMI设备等)提供可靠稳定电源。电池和逆变器选用进口产品。 容量:10kV A,30min;进线:220V AC

负荷平衡控制在1200mm四辊可逆式冷轧机中的应用

负荷平衡控制在1200mm四辊可逆式冷轧机中的应用 文章介紹了负荷平衡控制在1200mm四辊可逆式冷轧机中的应用,避免了上辊和下辊之间由于负荷不平衡出现的电机过载、以至于功率组件损坏的情况,使得上辊和下辊的运行速度得到最佳匹配,对消除钛及钛合金板材在轧制过程中出现的上翘及下扣等不良板形问题取得良好效果。 标签:四辊可逆冷轧机;负荷平衡;直流调速系统;钛及钛合金板材;板形前言 我厂于上世纪六十年代中期引进的日本设备1200mm四辊可逆式冷轧机,已运行了近半个世纪,在生产过程中,经常出现上辊和下辊之间负荷分配不均、造成电机负荷剧烈波动及过载的情况,并且在钛及钛合金板材轧制过程中频频出现上翘和下扣之类的板形问题,制约了产品质量的提高,大大降低了生产效率以及成品率,也影响了该机组潜力的发挥,不能满足产品质量和精度日益提高的市场需求,直接影响了该机组的经济效益。 分析影响钛板上翘和下扣的原因,主要有两点:上下辊的传动系统动态特性和上下辊的辊径。所以,要改善和消除不良板型,大步提高生产效率及成品率,关键要从电气传动系统入手。该轧机传动系统采用的是旋转变流机组,不仅能耗大效率低,而且电气控制系统操作条件比较多,设备维护工作量比较大,系统可靠性也相对较低。运行了近半个世纪,元器件的老化造成系统故障频繁,调速性能变差,精度降低。因此对其电气控制系统进行了技术改造升级。 1 系统构成 该轧机是由两台1500kW直流电动机分别驱动上辊和下辊。在改造方案中,采用了SIEMENS数字式直流调速装置代替旋转变流机组,分别用两套独立的直流调速装置作为其原有的直流电动机的传动控制。为了改善和消除上翘和下扣之类的不良钛板板形,需保证上下辊电机出力平衡,使上下辊的速度得到最佳匹配,因此在两台驱动装置间引入了负荷平衡控制。 2 负荷平衡控制 2.1 负荷平衡的分类 两台电机组成的传动系统中的负荷平衡控制,一般有两种方法实现:一类由一套转速调节器为两套电机控制系统公用,该转速调节器的输出作为两套转矩控制环转矩的共同给定。此类负荷平衡控制系统响应快,动态平衡效果比较好,但是有可能会产生扭振,即两台电机负荷有可能会来回波动,可能会出现电流激磁震荡,甚至严重时引起系统过流跳闸。此种方法适用于两台电机之间通过“刚性”联系的情况,比如两台电机的串轴控制系统。第二类负荷平衡控制是两套电机传

六辊轧机轧辊装置的设计

毕业设计 题目:六辊轧机轧辊装置的设计 学生: 学号: 院(系): 专业: 指导教师: 2011 年 6 月 3日

目录 摘要 (1) ABSTRACT (2) 1.概述 (4) 1.1国内外发展现状及特点 (4) 1.2 轧辊装置的组成和工作原理 (4) 2.方案设计 (5) 2.1轧辊传动方案的设计 (5) 2.2压下量调整机构的设计 (5) 2.3中间辊横移机构的结构设计 (6) 2.4轧件宽度调整机构的设计 (7) 3.零件结构和尺寸的设计 (9) 3.1工作辊 (9) 3.1.1工作辊的设计 (9) 3.1.2工作辊轴承的选用 (11) 3.2中间辊 (12) 3.2.1中间辊的设计 (12) 3.2.2中间辊轴承的选用 (14) 3.2.3中间辊横移机构 (14) 3.3支承辊 (16) 3.3.1支承辊的设计 (16) 3.3.2支承辊轴承的选用 (18) 3.4轧件宽度调整机构 (19) 4.校核 (20) 4.1轧制力计算 (20) 4.2轧辊强度分析 (22) 4.3支承辊弯曲强度的验算 (25) 4.4轧辊辊面接触强度的验算 (26) 4.4.1 工作辊与中间辊之间的辊面接触强度 (26) 4.4.2 中间辊与支撑辊之间的辊面接触强度 (27) 5安装与调试 (29) 5.1维护和保养 (29) 5.2液压系统维护 (29)

5.3润滑系统维护 (29) 6.总结 (30) 7.致谢 (31) 参考文献 (32)

六辊轧机轧辊装置的设计 摘要 国产六辊冷轧机从上世纪80年代起就在国内成功运行,但只是一些单机架的 中小型冷轧机。进入21世纪以来,经济快速发展,对高质量板(带)材的需求也 在迅速增长。具有国际先进水平的高速现代化冷轧机的开发和研制成为当务之急。 采用辊缝连续可变凸度控制技术的六辊冷轧机在生产实践中不断的凸显出它 的优点:由于辊缝断面可以连续调整,对规定的轧制参数具有高度适应性;由于 使用经过优选的工作辊,压下量可以很大;轧出的带材,有良好的平直度和表面 质量;轧件边部减薄明显改善;由于轧辊的库存量可以明显减少,即整个产品范 围可以用同一个辊轧制,因而降低了轧辊的成本。目前,具有板形控制功能的轧 机有日立HITACHI的HC(UC)、德国SMS公司的CVC轧机、法国CLECM公司开发 的DSR轧机、以北科大为代表的VCL以及依靠鞍钢和一重等国内力量自主开发的VCMS新一代六辊冷轧机。 为了满足对冷轧机高速、高效、高质量、低成本、低能耗、易维护等一些生 产要求,经过对比,我们发现采用辊缝连续可变凸度控制技术的六辊冷轧机可以 兼顾满足我们的生产需求。所以高速现代化的六辊冷轧机必是目前以及将来的重 点发展方向。 通过六辊轧机轧辊装置的设计,使我在结构设计和装配、制造工艺以及零件 设计计算、机械制图和编写技术文件等方面得到综合训练;并对已经学过的基本 知识、基本理论和基本技能进行综合运用。从而培养我具有结构分析和结构设计 的初步能力;使我树立正确的设计思想、理论联系实际和实事求是的工作作风。 本装置主要由五个部分组成。第一部分是工作辊;第二部分是中间辊及其横移机构;第三部分是支承辊;第四部分是压下量调整机构;第五部分是机架。 关键字:六辊冷轧机,中间辊横移,凸度控制

1050六辊可逆冷轧机组工艺流程、技术参数及装机水平

附件1 机组工艺流程、技术参数及装机水平 1.1工艺流程描述 1.1.1 经酸洗处理后的热轧带卷由天车吊放到开卷机操作侧的受卷台上(此受卷台可以同时存放两个带卷)。上卷小车鞍座在受卷台下上升使带卷内孔对准开卷机卷筒中心后,小车继续向前运动将带卷套在开卷机卷筒上并使带卷在宽度方向上与机组中心线对中。开卷机卷筒涨径撑起带卷。上卷小车鞍座下降至下极限后小车退回到受卷台第二个带卷下面等候上第二卷。压辊压住带卷,人工将捆带剪断、拉走。开头机刮板抬起对准带卷头部,同时开卷机活动支承闭合,开卷机以穿带速度转动,使带头沿着刮板进入开头机,上夹送辊、上矫直辊压下夹送、矫直,进入切头剪,切下不合格的带头。如此反复数次,直到将不合格的带材头部全部剪下为止。机组继续以穿带速度将带材向前推进,先后经过导板、机前转向辊、机前张力装置、激光测速仪、测厚仪台架(此时测厚仪处于机组轧线以外)、机前辊式吹扫除油装置、可开合的对中导卫装置,六辊冷轧机、机后辊式吹扫除油装置、测厚仪台架、圆盘剪(此时测厚仪、圆盘剪均处于机组轧线以外)、激光测速仪、机后张力装置、机后转向辊、最后进入机后卷取机(此时卷取机卷筒处于缩径状态)。 1.1.2当带材进入机后卷取机钳口后,机前导卫装置合上,对中带材。机后卷取机卷筒涨径同时钳口动作夹住带头,卷取机压辊压上卷筒,卷取机活动支承闭合,卷筒启动开始卷取带材。卷取带材2~3圈后,AGC液压缸压上,建张,同时卷取机压辊、开头机上夹送辊、上矫直辊抬起,机前、机后激光测速仪、测张装置、测厚仪投入,机前导卫装置打开,工艺润滑乳化液自动从带材入口喷向轧辊,机组升速轧制。轧制到带尾时,机组减速轧制,开卷机压辊压住带卷,当带尾过机前转向辊进入轧辊前机组停止轧制,乳化液自动停喷,打开辊缝,卸张,

四辊可逆冷轧机的卷取机直流调速系统设计

前言 直流电机在现代工业中是一种很重要的电机.它可以作电动机使用,也可以作发电机使用,此外还有其它特殊的用途。 直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。近年来,在电力电子变换器中以晶闸管为主的可控器件已经基本被功率开关器件所取代,因而变换技术也由相位控制转变成脉宽调制(PWM);交流可调拖动系统正逐步取代直流拖动系统。然而,直流拖动控制毕竟在理论上和实践上都比较成熟,而且我国早期的许多工业生产机械都是采用直流拖动控制系统,所以它在工业生产中还占有相当大的比重,短时间内不可能完全被交流拖动系统所取代。 从生产机械要求控制的物理量来看,电力拖动自动控制系统有调速系统、位置随动系统(伺服系统)、张力控制系统、多电机同步控制系统等多种类型,各种系统往往都是通过控制转速来实现的,因此调速系统是最基本的电力拖动控制系统。 调速系统按照不同的标准又可分为不同的控制系统。但是,从一定角度上来说,可以把调速系统笼统的分为开环调速系统和闭环调速系统。开环调速系统结构简单、容易实现、维护方便,但是它的静态和动态性能往往不能满足生产和控制要求。而闭环控制系统可以很好的解决这些问题,因此在实际生产中得到了广泛的应用。其中,转速、电流双闭环控制直流系统是性能最好、应用最广的直流调速系统。 本文为直流调速系统的设计,包括系统设计方案选择,各单元的组成,元件的参数与选择等内容!通过本系统的设计,了解运动控制在工业上的应用!

目录 前言 0 第一章设计的介绍 (3) 1.1 设计目的 (3) 1.2 设计内容 (3) 1.3 设计题目 (3) 1.3.1 生产工艺和机械性能 (3) 1.3.2 设计要求 (4) 1.3.3 直流电动机参数 (4) 第二章四辊可逆冷轧机的介绍 (5) 第三章系统各模块及其电路设计 (6) 3.1 主回路设计 (6) 3.2 控制回路设计 (6) 3.2.1 给定单元 (8) 3.2.2 转速调节器 (8) 3.2.4 反号器 (12) 3.2.5 触发电路 (12) 3.2.6 逻辑控制单元 (13) 3.2.7 零转矩检测单元和零电流检测单元 (14) 3.2.8 零封锁环节 (15) 3.2.9 电流反馈与过流保护 (16) 第四章系统参数设计与计算 (18) 4.1 整流变压器的选择 (18) 4.2 晶闸管的选择 (18) 4.3 晶闸管保护措施 (19) 4.4 电流互感器的选择 (19) 4.5 平波电抗器的计算 (20) 第五章双闭环的动态设计和校验 (22) 5.1 静特性分析和计算 (22) 5.2 系统动态结构参数设计 (22) 5.2.1 电流调节器的设计和校验 (23) 5.2.2 转速调节器的设计和校验 (25) 第六章系统调试和校正 (27) 6.1 系统各功能模块性能的调试与测试 (27) 6.1.1 系统的相位整定 (27) 6.1.2 触发器的整定 (27) 6.1.3 系统的开环运行及特性测试 (28) 6.1.4 速度反馈特性的测试 (29) 6.1.5 调节器的调试 (30) 6.1.6 电流调节器ACR的调试 (30) 6.1.7 反相器AR的调试 (30) 6.2 系统整体功能测试 (30)

森吉米尔二十辊冷轧机介绍

森吉米尔二十辊冷轧机介绍 森吉米尔冷轧机与四辊轧机或其他类型轧机的本质区别是轧制力的传递方向不同。森吉米尔冷轧机轧制力从工作辊通过中间辊传到支撑辊装置,并最终传到坚固的整体机架上。这种设计保证了工作辊在整个长度方向的支撑。这样辊系变形极小,可以在轧制的整个宽度方向获得非常精确的厚度偏差。 森吉米尔轧机在结构性能上有如下主要特点: (1)具有整体铸造(或锻造)的机架,刚度大,并且轧制力呈放射状作用在机架的各个断面上。 (2)工作辊径小,道次压下率大,最大达60%。有些材料不需中间退火,就可以轧成很薄的带材。 (3)具有轴向、径向辊形调整,辊径尺寸补偿,轧制线调整等机构,并采用液压压下及液压AGC系统,因此产品板形好,尺寸精度高。 (4)设备质量轻,轧机质量仅为同规格的四辊轧机的三分之一。轧机外形尺寸小,所需基建投资少。 森吉米尔冷轧机基本上是单机架可逆式布置,灵活性大,产品范围广。但是亦有极个别呈连续布置的森吉米尔轧机,如日本森吉米尔公司1969年为日本日新制钢公司周南厂设计制造的一套1270mm四机架全连续式二十辊森吉米尔轧机。该轧机第一架为ZR22-50"型轧机,其余三架均为,ZR21-50"型轧机,轧制规格为O.3mm×1270mm不锈钢,卷重22t,轧制速度600m/min。 森吉米尔冷轧机的形式及命名法介绍如下: 最常用的森吉米尔冷轧机形式是1-2-3-4型二十辊轧机。例如ZR33-18″,“Z"是波兰语Zimna的第一个字母,意思是“冷”;“R”表示“可逆的”;“33”表示轧机的型号;“18″”是轧制带材宽度的英寸数。森吉米尔冷轧机还有1-2-3型十二辊轧机,但是1-2-3型森吉米尔冷轧机在1964年以后就不再生产制造了。 森吉米尔冷轧机1-2型六辊轧机,由2个传动的工作辊和4个背衬轴承辊装置组成, 如ZS06型,“S”表示“板材”,用来轧制宽的板材,但是它同样可以轧制带材,并且有一些还用在连续加工线上。 森吉米尔“ZR”型冷轧机有10个基本型号,其中1-2-3-4二十辊轧机7个;1-2-3.型十二辊轧机3个;“ZS”1-2型六辊轧机只有2个基本型号。 各型号轧机的背衬轴承外径、工作辊名义直径如下: 轧机型号背衬轴承直径/mm 工作辊名义直径/mm 1-2-3-4型: ZR32 47.6 6.35 ZR34 76.2 10.00

四辊可逆轧机机架辊故障分析及改造参考文本

四辊可逆轧机机架辊故障分析及改造参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

四辊可逆轧机机架辊故障分析及改造参 考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 针对3000mm中板四辊可逆轧机机架辊生产过程中易 出现的各类设备故障:轴承寿命短、传动易失效等具体问 题,结合现场生产条件,经过多次摸索、试制对机架辊结 构进行了改造优化,收到了实际成效,实现了三钢中板轧 机机架辊的使用寿命由4~6个月延长至10~12个月。 轧机机架辊简介 三钢中板四辊轧机机架辊位于轧辊两侧,是将板坯顺 利送入轧机辊缝并接受轧出的轧件的设备,通过斜垫、导 板、楔块卡紧在牌坊予设的凸台及卡槽内。每个辊子的传 动端辊颈内嵌入鼓形齿内齿套,与带鼓形齿的传动轴、电 机相接而传动。

机架辊故障分析 机架辊在轧制过程中,由于处于轧制坯料热幅射、轧辊冷却水及除鳞高压水的冷热工况下,且频繁受到轧件下扣的巨大撞击,导致了轧机机架辊使用寿命普遍较短。现通过结合现场轧制条件及原机架辊设计结构,分析出三钢中板轧机机架辊寿命较短的主要原因,并通过改造优化各零部件结构,以提高机架辊使用寿命。机架辊故障主要因素总结如下: 2.1.机架辊轴承易损坏 原设计机架辊传动侧轴承座是通过轴承座与牌坊之间的O圈挤压变形,通过变形量以防止冷却水及氧化铁皮进入机架辊轴承座。机架辊在生产过程中,O圈易受板坯温度、氧化铁皮及机架辊与牌坊相互振动挤压而变形失效,致轧辊冷却水及氧化铁皮沿轴承座与牌坊配合面,并透过透盖内侧与定距环、内齿套之间的间隙渗入到轴承座内

四辊可逆式冷轧机辊系设计

太原科技大学 毕业设计(论文)设计(论文)题目:四辊可逆式冷轧机的辊系设计 姓名 学院(系) 专业 _ 年级 _08级 指导教师 2011年 6月10日

太原科技大学毕业设计(论文)任务书 学院(直属系):时间:2011 年 6 月10 日 说明:一式两份,一份装订入学生毕业设计(论文)内,一份交学院(直属系)。

目录 摘要................................................................... II A BSTRACT................................................................... III 第1章绪论. (1) 1.1冷轧机的发展概况 (1) 1.2四辊可逆式冷轧机的发展 (1) 1.3冷轧带钢生产发展与新技术 (2) 1.3.1冷轧带钢生产技术设备的发展 (2) 1.3.2冷轧窄带钢轧机的技术特点 (3) 第2章轧辊 (5) 2.1冷轧轧辊的组成 (5) 2.2轧辊材质的选择 (5) 2.3辊系尺寸的确定 (6) 2.4轧辊力能参数计算 (7) 2.4.1基本参数 (7) 2.4.2艾克隆德方法计算轧制时的平均单位压力 (8) 2.4.3轧辊传动力矩 (11) 2.5轧辊的强度校核 (12) 第3章轧辊轴承 (16) 3.1轴承的选择 (16) 3.2轴承寿命计算 (16) 3.3轧辊轴承润滑 (17) 参考文献 (18) 致谢 (19) 附录1英文原稿 (20) 附录2英文翻译 (24)

四辊可逆式冷轧机的辊系设计 摘要 这篇文章主要讲述了冷轧机生产与发展概述,通过运用已知参数,如钢板的厚度、宽度、轧制速度和压下速度等,对工作辊、支撑辊及相关尺寸进行了计算和校核,然后选择合适的轧辊材质和轴承,并对轴承寿命进行计算和校核。 四辊可逆式冷轧机,衔接连铸后的技术工艺,减少工艺,可实现往返可逆轧制。四辊轧机还能提供较大的轧制压力,提高软件的可轧硬度范围,实现产品规格多样化。 关键词:四辊可逆式;冷连轧;工作辊

张力辊计算

1张力辊直径计算 原则:带钢缠绕在张力辊上不产生塑性弯曲变形,即按厚带材绕过张力辊的弯矩小于或等于带材的弹性极限弯矩计算辊径。 计算公式如下: 参数:D h Eσs 单位:mm mm MPa MPa 计算值:1276.596 1.5200000235 计算值:857.1429 1.5200000350 计算值:600 1.5200000500 D:张力辊辊径。 h:钢板厚度。 E:带钢的弹性模量。 σs:带钢的屈服强度。 说明:1).由上述计算可以发现,带钢规格相同,屈服强度越高需要的辊径越小。这正是带退火炉的热镀锌线入口张力辊径小,出口张力辊径大的原因。 2).带钢经过张力辊不产生塑性变形的要求是相对的,为了不使辊径过大,实际生产中允许部分厚规格产品产生塑性变形。 3).根据产品规格不同,热镀锌及酸洗冷轧生产线常用的张力辊辊径范围是500~1200mm。 4).在实际生产中,最大带钢厚度为1.2mm的镀锌线,张力辊辊径通常选取为550~650mm;拉矫机张力辊径650~700mm; 最大带钢厚度为1.5mm的镀锌线,张力辊辊径通常选取为600~700mm;拉矫机张力辊径800mm; 最大带钢厚度为2.0mm的镀锌线,张力辊辊径通常选取为800~1000mm;拉矫机张力辊径1000~1200mm; 5).根据我公司的现有设计,张力辊辊径选取系列为:560mm;650mm;800mm;900mm;1000mm;1200mm。 6).辊身长度依据带钢的宽度选取,通常是带宽加200~300mm,常用的宽度系列是1000mm;1300mm;1500mm。 2张力辊允许产生的张力 说明带钢经过张力辊后,张力值可以得到放大,放大的量取决于张力辊的结构、辊面材质、传动功率等, 张力放大系数λ是张力辊的张力放大能力,是张力计算的重要参数。 参数:λμαμ*α 单位:弧度 计算值: 1.460.1 3.780.378 计算值: 1.760.15 3.780.567 计算值: 1.970.18 3.780.6804 μ:带钢与张力辊之间的摩擦系数;采用钢辊时取0.1~0.15;采用衬胶辊时取0.18~0.25;带钢表面有油时,摩擦系数降低。 α:带钢在张力辊上的包角。图一张力辊1#辊包角为180+61度=241度=4.2弧度。计算时取0.9的利用系数。 λ:张力辊传动带钢,保证带钢不打滑可能产生的张力放大倍数。这是可能产生的放大倍数,张力辊实际放大能力取决于传动功率,但是传动能力超过此范围也没有意义。 见图一 如果进入张力辊1#辊之前的带钢张力为F1,1#、2#辊之间的张力为F2,2#辊出口的张力为F3,如果两辊包角相同则:F2=F1*λ F3=F2*λ 如果每个辊子的包角不同,则分别使用不同的λ1和λ2进行计算。 说明:在设计中通常知道F1和F3,计算需要的辊子数量及包角,以此为依据设计张力辊的结构。 3张力辊的传动功率计算 张力辊的传动功率需要考虑三个方面:张力放大需要的功率、辊子摩擦损耗功率和弯曲变形损耗功率。 张力放大需要的功率: W1=(F2-F1)*v/η v:带钢速度 η:传动效率,通常取0.85-0.9。 辊子摩擦损耗功率: 图一1#辊子承受带钢的拉力应该是F1与F2的合力,其根据结构设计不同,其最大力为F1+F2。 辊子的摩擦力矩:M1=f*(d/2)*(F1+F2) 辊子摩擦损耗功率:W2=M1*ω/η M1:辊子的摩擦力矩 f:张力辊轴承摩擦系数 d:张力辊轴承平均直径 ω:张力辊的角速度

六辊可逆冷轧机组轧辊常见缺陷分析及改善2

六辊可逆冷轧机组轧辊常见缺陷分析及改善2

六辊可逆冷轧机组轧辊表面剥落原因分析及改善 摘要:以六辊可逆冷轧机组为研究对象,介绍常见轧辊的缺陷,主要是轧辊的表面剥落缺陷。从轧辊的使用、磨削、检测等方面,提出了相应的预防措施和消除措施. 关键词:轧辊、剥落、措施 THE ANALYSIS AND IMPROVEMENT FOR THE CAUSATION OF ROLLER SURFACE PEELING OFF OF THE SIX-ROLL REVERSING COLD ROLLING MILL Abstract :This thesis takes the Six-roll Reversing cold rolling Mill group as its object of study, it introduces the common defect of the roller, mainly for the defect of peeling off from the suface of the roller. On the other hand, it proposes the provention and elimination methods accordingly from several aspects such as the roller usage, grinding inspection and etc.

key words: roller, peel off, method 前言:轧辊是轧机的重要部件,轧辊的质量好坏直接影响轧机的运行,影响产品的产量质量和成本,冷轧过程中,轧辊表面承受着很大的挤压应力和强烈的磨损,高速轧制时,卡钢、过烧等会出现一些质量问题和质量缺陷,会造成辊面裂纹,因此,冷轧工作辊应具有极高而均匀的硬度,一定深度的硬化层,以及良好的耐磨性与抗裂性。以保证轧辊的使用要求和质量要求。所以分析轧辊缺陷产生的原因以及如何控制轧辊质量显得非常重要,本文将从轧辊的合理使用,合理磨削,改善轧制条件加强检测等方面研究控制轧辊质量,并对轧辊的常见缺陷提出相应的预防和纠正措施。 1、使用情况 广东华美集团有一台1450六辊可逆冷轧机组,2006年5月份安装并试运行,在试生产过程中,由于轧辊使用不当及轧制工艺条件不成熟,造成了轧辊事故率多,消耗高,另一方面因换辊的频繁,降低了轧机有效作业率,影响了小时产量和产品质量。

四辊可逆式冷轧机设计计算书

四辊轧机设计计算书 3.1 冷轧轧辊的组成 冷轧辊是冷轧机的主要部件。轧辊由辊身、辊颈和轴头三部分组成。辊颈安装在轴承中,并通过轴承座和压下装置把轧制力传给机架。轴头和连接轴相连,传递轧制力矩。工作辊和支撑辊的结构如图所示。 工作辊结构 支撑辊结构

3.2、 冷轧辊系尺寸的选择 冷轧过程中,轧辊表面承受很大的挤压应力和强烈的磨损,因此,冷轧工作辊应具有极高而均匀的硬度,一定深度的硬化层,以及良好的耐磨性与抗烈性。降低轧辊硬度,虽然改善抗烈性,但耐磨性降低,因此,必须正确选择轧辊表面硬度。 冷轧辊用钢均多为高碳合金钢,如29r C 、o r M C 29等,我们这里选工作辊的材质为o r M C 29。 轧件对冷轧工作辊巨大的轧制压力,大部分传递给支撑辊上。支撑辊既要能承受很大的弯曲应力,还要具有很大的刚性来限制工作辊的弹性变形,以保证钢板厚度均匀。 轧机支撑辊的表面肖氏硬度一般为HS45左右。目前为提高板厚精度与延长轧辊的寿命,支撑辊硬度有提高的趋势。 支撑辊常用钢号为o r M C 29、V C r 9、及o n r M M C 60,我们这里选支撑辊材质为 o r M C 29。 3.3、 辊系尺寸的确定 1) 辊身长度L 及直径D 的确定。 辊身长度L 应大于所轧钢板的最大宽度m ax b ,即 []2max a b L += (3.1) 当m ax b =400—1200 mm 时,a=50—100 mm ,现m ax b =500mm ,取a=50mm 所以 mm a b L 55050500max =+=+= 四辊轧机的辊身L 确定以后,根据经验数据: 8.18.02 -=D L 来确定支撑辊直径2D ,取 7.12 =D L 所以 mm L D 3207 .12== 对于支撑辊传动的四辊轧机,一般选 4312-=D D ,现取2.31 2=D D

我国冷轧机的发展趋势分析

我国冷轧机的发展趋势分析 发表时间:2008-10-29T11:51:58.857Z 来源:《中小企业管理与科技》供稿作者:宋福明[导读] 我国国民经济的高速发展带动了国内铝加工业的快速发展,也促进了国内铝板带箔轧制技术的不断进步。目前国内的铝板带箔轧制生产企业正进入一个重整状态,大量的投资用于更新技术和设备。我国国民经济的高速发展带动了国内铝加工业的快速发展,也促进了国内铝板带箔轧制技术的不断进步。目前国内的铝板带箔轧制生产企业正进入一个重整状态,大量的投资用于更新技术和设备。除大、中型铝轧制企业引进先进的国外铝加工设备外,更多的中、小型铝轧制企业购 买的是国产设备,从而大大刺激和促进了我国铝加工设备的自主设计和研制,也不同程度地促进了国产铝轧制设备的技术进步。 一、我国铝板带冷轧机使用现状 我国拥有现代化四辊及六辊冷轧机108台,生产能力2100kt/a,二辊冷轧机约300台,生产能力450kt/a,总计冷轧板带生产能力2550kt/a;截至2005年底,引进轧机的生产能力为1000kt/a,中国四辊轧机的生产能力为2120kt/a,二辊轧机的生产能力为380kt/a,总计冷轧板带生产能力3500kt/a。有自制的辊宽≥800mm的四辊铝板带冷轧机约150台,其中1400mm级的达65台,占总数的43%;2006年全国投产的冷轧机26台,形成板带生产能力725kt/a,是投产能力最多的一年。另外,2006年在建的冷连轧生产线有2条,四辊及六辊单机架不可逆式冷轧机13台,总生产能力1750kt/a。 二、铝板带冷轧机的技术特点分析 1.机组设备布置紧凑,总体功能齐全,整机自动化程度提高。现代化铝板带冷轧机的轧制形式均为不可逆轧制,配有卷材自动运输装置。20世纪末至21世纪初年设计的机组中,同时配备了带卷自动测量和上卷自动对中装置,可实现上卸卷的自动化操作,使操作强度逐步降低,提高成品率,增加竞争能力。 2.轧制速度提高,单机产能增加。 前些年的国产铝板带冷轧机,最大轧制速度由原来的300m/min提高到近800m/min,随着板型自动控制系统的投入,最高轧制速度不断提高,达到1200m/min,但来料厚度较大,单机产量较低,单机产能由最初的7.5kt/a提高到现在的40kt/a,但轧制速度与国外相比,仍有一定的差距,单机产能也有较大差距。 3.整机国产化程度提高,设备维护方便。随着国产装备业的发展,国内配套能力进一步提高,国产冷轧机以前主要靠引进的检测元件或控制系统逐步被质优价廉的国产元件或系统代替:如厚度自动控制系统(AGC)、带材自动纠偏控制系统(EPC)、X射线测厚仪、板型自动控制系统(AFC)等。同时,由于国产化的提高,设备维护费用越来越经济,产品更具竞争力。 4.液压和润滑系统更加完善和标准化。国产铝板带冷轧机液压系统主要为整体泵站和分散阀台布置,轧机控制更趋于全液压化。对中伺服液压系统、弯辊伺服液压控制、厚度伺服液压控制以及上卸卷测量及液压控制系统等均广泛用于轧机控制。 5.电气传动系统有了比较大的发展。开卷机、卷取机和主传动电动机控制系统广泛采用全数字直流传动装置,供电全数字直流传动装置与交流传动装置相比,其优点在于造价较低,控制简单可靠、维护方便;交流传动与直流传动装置相比,其优点在于结构紧凑、维护量小、动态控制特性优良。 6.电气控制更加完善。 不管是自动控制部分还是传动部分,国产现代化轧机近期发展采用三级控制系统:即0级——自动化基础;1级——闭环控制;2级——过程控制。装配了多个CPU中央处理单元,系统的开放性很强,用户可以自己开发和自己修改。 7.完善的厚度自动控制系统。 其控制系统包括:辊缝控制、前馈控制、反馈控制、弯辊力补偿及轧辊偏心补偿。 8.板形自动控制系统应用越来越广泛。国产板形辊及板型自动控制系统的投入使用,将代替价格昂贵的进口板型控制系统。同时,产品质量又提高了档次。 三、铝板带冷轧机的发展趋势 1.以中色科技股份公司为国企代表的技术进步。 2007年6月28日在中铝郑州冷轧厂,由中色科技股份公司设计和研制的Φ480/Φ560/Φ1300×2050mm六辊不可逆铝板带箔冷轧机正式投入生产。这是一台具有国内先进水平的2050全数字智能六辊宽幅铝板带箔冷轧机,热轧坯料为纯铝及软铝合金1000、3000、5000、8000系,其技术进步主要反映在:铝板带箔冷轧机轧辊宽度2050mm为国内首创;采用六辊(工作辊、中间辊、支承辊)轧制技术,国内领先;铝板带箔冷轧机轧制速度达到1000m/min,国内领先;中间辊轴向移动机构开发和控制系统开发,有效改善轧制各种宽度带材的板形等方面。 2.以上海捷如重工为民企代表的技术进步。上海捷如重工机电设备公司作为新兴的民营企业,近年为中国铝板带箔轧制工业设计制造了一批又一批达到了国内一流水平的装备,在生产中发挥了很好的作用,获得业界的好评。上海捷如重工充分吸收国外的先进技术,结合中国市场的实际需求,上海捷如重工的这种中外合作制造方式,大大提高了国内大型现代化铝板带冷轧机的设计与制造、调试水平,从而从整体上提高国产铝板带箔冷轧机的研制水平。 四、我国铝板带冷轧机的未来发展 目前,现代化铝板带箔冷轧机在围绕完善控制系统和控制工作辊凸度等方面做了大量研究开发工作,朝着大卷重、宽幅、高速度、高自动化的方向发展。发达国家有的冷轧机轧制带材宽度已达3500mm,最小出口厚度达0.05mm,轧制速度达40m/s,最大卷重达30t,带材厚度公差不大于1%~1.5%,平直度不大于10I。高速、高质量、高配置、高性能的过程控制系统以及高度自动化是现代化轧机控制系统的特点。在未来一段时间,世界冷轧机的发展不会有重大的“发明创造”,而是会有许多小的进步。国产铝板带冷轧机的未来发展应学习和借鉴国外轧机设计中的综合问题处理模块的执行和描述轧机内部以及周围的卷材流程。纵观世界现代化铝板带箔轧制设备的设计、研制以及生产安装的发展趋势,我国如果要进一步提高国产铝轧制设备生产技术的整体水平,国内铝板带箔轧制设备生产企业应适应世界的发展趋势,建立现代铝轧制装备研制、设计、制造、生产、维护体系,将不同领域的独立的观念有机地结合到一起,生产出更现代化的轧机。

相关文档
最新文档