2014届高考数学知识点总复习教案变化率与导数、导数的运算

2014届高考数学知识点总复习教案变化率与导数、导数的运算
2014届高考数学知识点总复习教案变化率与导数、导数的运算

第三篇

导数及其应用

第1讲 变化率与导数、导数的运算

A 级 基础演练(时间:30分钟 满分:55分)

一、选择题(每小题5分,共20分)

1.(2011·全国)曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三

角形的面积为

( ). A.13 B.12 C.23 D .1

解析 y ′=-2e -2x ,曲线在点(0,2)处的切线

斜率k =-2,∴切线方程为y =-2x +2,该

直线与直线y =0和y =x 围成的三角形如图所

示,其中直线y =-2x +2与y =x 的交点

A ? ??

??23,23,y =-2x +2与x 轴的交点B (1,0).所以三角形面积S =12×1×23=13,故选A.

答案 A

2.函数f (x )是定义在(0,+∞)上的可导函数,且满足f (x )>0,xf ′(x )+f (x )<0,

则对任意正数a ,b ,若a >b ,则必有

( ). A .af (b )

B .bf (a )

C .af (a )

D .bf (b )

解析 构造函数F (x )=f (x )x (x >0),F ′(x )=xf ′(x )-f (x )x 2

,由条件知F ′(x )<0,

∴函数F (x )=f (x )x 在(0,+∞)上单调递减,又a >b >0,∴f (a )a

答案 B

3.(2013·南京模拟)已知函数f (x )=x 3+2ax 2+1a x (a >0),则f (2)的最小值为

( ). A .1232 B .12+8a +1a

C .8+8a +2a

D .16 解析 f (2)=8+8a +2a ,令g (a )=8+8a +2a ,则g ′(a )=8-2a 2,由g ′(a )>0

得a >12,由g ′(a )<0得0

+212

=16.故选D.

答案 D

4.已知对任意实数x ,有f (-x )=-f (x ),g (-x )=g (x ),且x >0时,f ′(x )>0,g ′(x )>0

则x <0时

( ). A .f ′(x )>0,g ′(x )>0

B .f ′(x )>0,g ′(x )<0

C .f ′(x )<0,g ′(x )>0

D .f ′(x )<0,g ′(x )<0

解析 依题意得,函数f ′(x )、g ′(x )分别是偶函数、奇函数,当x <0时,-x >0,f ′(x )=f ′(-x )>0,g ′(x )=-g ′(-x )<0,选B.

答案 B

二、填空题(每小题5分,共10分)

5.(2012·新课标全国)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.

解析 ∵y =x (3ln x +1),∴y ′=3ln x +1+x ·3x =3ln x +4,∴k =y ′|x =1=4,

∴所求切线的方程为y -1=4(x -1),即y =4x -3.

答案 y =4x -3

6.曲线y =x 3+x -2在点P 处的切线平行于直线y =4x -1,则点P 的坐标为

________.

1.2导数的计算第3课时 精品教案

1.2导数的计算 【课题】:1.2.3导数的运算法则 【教学目标】: (1)知识与技能:掌握一个函数的和、差、积、商的求导法则并能求某些简单函数的导数;通过实例,理解复合函数的求导法则。 (2)过程与方法:利用学生已掌握的导数的定义,得出一个简单的两个函数的和的导数,从而提出问题,引入新课,通过学生的猜想,尝试探究出函数的和、差、积、商的求导法则,使学生加深对求导法则的理解. (3)情感、态度与价值观:通过学生的主动参与,师生、生生的合作交流,,提高学生的学习兴趣,激发学生的求知欲,培养探索精神. 【教学重点】:掌握函数的和、差、积、商的求导法则以及复合函数的求导法则. 【教学难点】:学生对积和商的求导法则的理解和运用以及复合函数的求导法则. 【课前准备】:课件 这种商品的价格上涨的速度大约是多少?根据上一节课的内容,我们知道,求在第)()]g x f ='')()]f x g =

u. x .求下列函数的导数: ;(2)y

练习与测试: A .基础题 1.函数2 (1)y x x =+的导数是( ) (A)2 1x + (B)2 3x (C)2 31x + (D)2 3x x + 答案:C 2.函数1()2 x x y e e -=+的导数是( ) (A)1()2x x e e -- (B)1()2 x x e e -+ (C)x x e e -- (D)x x e e -+ 答案:A 3.若2 ' ()(2),(2)20,f x x a f a =+==且则 . 答案:1 4.某汽车启动阶段的路程函数为3 2 ()2(1)10s t t t =+-,则汽车在1t =秒时的瞬时速度为 . 答案:4 5.求下列函数的导数: (1)3 cos y x x =- (2)( )()2325y x x =+- (3)sin x y x = (4)()8 57y x =- 答案:(1)' 2 3sin y x x =+ (2) ' 2 9302y x x =-+ (3) ' 2 cos sin x x x y x -= (4) '7 40(57)y x =- B .难题 1.已知曲线4 3 2 :3294C y x x x =--+ (1)求曲线C 在点()1,4-的切线方程; (2)对于(1)中的切线与曲线C 是否还有其他公共点?若有,求出公共点;若没有,说明理由.

高中数学《导数的概念及几何意义》公开课优秀教学设计

《导数的概念及几何意义》教学设计 教材内容分析 本节课的教学内容选自人教社普通高中课程标准实验教科书( A 版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念及几何意义》是在学习了函数平均变化率以后,过渡到瞬时变化率,从而得出导数的概念,再从平均变化率的几何意义,迁移至瞬时变化率即导数的几何意义。 导数是微积分的核心概念之一,是从生产技术和自然科学的需要中产生的,它深刻揭示了函数变化的本质,其思想方法和基本理论在在天文、物理、工程技术中有着广泛的应用,而且在日常生活及经济领域也日渐显示出其重要的功能。 在中学数学中,导数具有相当重要的地位和作用。 从横向看,导数在现行高中教材体系中处于一种特殊的地位。它是众多知识的交汇点,是解决函数、不等式、数列、几何等多章节相关问题的重要工具, 它以更高的观点和更简捷的方法对中学数学的许多问题起到以简驭繁的处理。 从纵向看,导数是函数一章学习的延续和深化,也是对极限知识的发展, 同时为后继研究导数的几何意义及应用打下必备的基础, 具有承前启后的重要作用。 学生学情分析 学生在高一年级的物理课程中已经学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度, 再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型, 并将瞬时变化率定义为导数,这是符合学生认知规律的. 而在第一课时平均变化率的学习中,课本给出了一个思考,观察函数 )(x f y 的图像,平均变化x y 表示什么?这个思考为研究导数的几何意义埋下 了伏笔。因此,在将瞬时变化率定义为导数之后, 立即让学生继续探索导数的几何意义,学生会对导数的几何意义有更为深刻的认识。 教学目标 1、知识与技能目标会从数值逼近、几何直观感知,解析式抽象三个角度认识导数的含义,应用导数的定义求简单函数在某点处的导数, 掌握求导数的基本步骤,初步学会求解 简单函数在一点处的切线方程。 2、过程与方法目标 通过动手计算培养学生观察、分析、比较和归纳能力,通过问题的探究体会逼近、类比、以及用已知探求未知、从特殊到一般的数学思想方法。 3、情感态度与价值观

《导数的概念与基本运算》教案1

导数的概念与基本运算 1.导数的概念 设函数y =f (x )在x 0附近有定义,自变量x 在点x 0有增量△x ,函数y =f (x )相应有增量 △y =f (x 0+△x )-f (x 0),比值 x x f x x f x y ?-?+= ??) ()(00是函数y =f (x )在x 0到x 0+△x 的平均变化率。如果当0→?x 时, x y ??有极限,则称函数y =f (x )在点x 0处有导数(又称可导),而这个极限值就叫做函数y =f (x )在点x 0处的导数(或变化率),记作f ' (x 0)或y'|0x x =,即 )(x f '=x y x ??→?0lim =x x f x x f x ?-?+→?)()(lim 000。 2.导数概念的某些实际背景 瞬时速度是导数概念的一个物理背景,切线的斜率是导数概念的一个几何背景。 3.求导数的方法 导数应用很广泛,经常需要求导,如果都用定义求一遍,不胜其烦,人们就用定义推导出一些常见函数的导函数,并作为公式加以应用。教科书上只介绍了两个求导公式:C'=0, 及()n x '= (n 为正整数);两个法则:[f(x)±g(x)]'=f '(x)±g '(x), [Cf (x )]'=C f '(x) 。 根据定义不难证明上述两个法则: [f(x)±g(x)]'= = = ±= ()f x '()g x '±; ()Cf x '????0 lim x C ?→==()Cf x ' 。 有了这些工具,我们就能求出一切多项式函数的导数了。 另外,∵=≈, ∴当△x 很小时,可把它作为一个简单易记的近似计算公式。 (1)几种常用函数的导数公式如下:

变化率与导数教案

变化率与导数教案 Prepared on 24 November 2020

第三章 变化率和导数 3.1.1瞬时变化率—导数 教学目标: (1)理解并掌握曲线在某一点处的切线的概念 (2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度 (3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想 教学过程:时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的内容以及上一节课学的是我们学习导数的一些实际背景 一、复习引入 1、什么叫做平均变化率; 2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[x A ,x B ]上的平均变化率 3、如何精确地刻画曲线上某一点处的变化趋势呢 下面我们来看一个动画。从这个动画可以看出,随着点P 沿曲线向点Q 运动,随着点P 无限逼近点Q 时,则割线的斜率就会无限逼近曲线在点Q 处的切线的斜率。 所以我们可以用Q 点处的切线的斜率来刻画曲线在点Q 处的变化趋势 二、新课讲解 1、曲线上一点处的切线斜率 不妨设P(x 1,f(x 1)),Q(x 0,f(x 0)),则割线PQ 的斜率为0 101) ()(x x x f x f k PQ --=, 设x 1-x 0=△x ,则x 1 =△x +x 0,

∴x x f x x f k PQ ?-?+= ) ()(00 当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x x f x x f k PQ ?-?+= ) ()(00无限趋近点Q 处切线斜率。 2、曲线上任一点(x 0,f(x 0))切线斜率的求法: x x f x x f k ?-?+= ) ()(00,当△x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的 斜率。 3、瞬时速度与瞬时加速度 (1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度 (2) 位移的平均变化率: t t s t t s ?-?+) ()(00 (3)瞬时速度:当无限趋近于0 时,t t s t t s ?-?+) ()(00无限趋近于一个常数,这个常 数称为t=t 0时的瞬时速度 求瞬时速度的步骤: 1.先求时间改变量t ?和位置改变量)()(00t s t t s s -?+=? 2.再求平均速度t s v ??= 3.后求瞬时速度:当t ?无限趋近于0,t s ??无限趋近于常数v 为瞬时速度 (4)速度的平均变化率: t t v t t v ?-?+) ()(00 (5)瞬时加速度:当t ?无限趋近于0 时,t t v t t v ?-?+) ()(00无限趋近于一个常数,这 个常数称为t=t 0时的瞬时加速度 注:瞬时加速度是速度对于时间的瞬时变化率

北师大版计算导数教案

计算导数(2) 一、教学目标:掌握初等函数的求导公式,并能熟练运用。 二、教学重难点:用定义推导常见函数的导数公式. 三、教学方法:探析归纳,讲练结合 四、课时安排:1课时 四、教学过程 (一)、复习 1、导数的定义; 2、导数的几何意义; 3、导函数的定义; 4、求函数的导数的流程图。 (1)求函数的改变量)()(x f x x f y -?+=? (2)求平均变化率 x x f x x f x y ?-?+=??) ()( (3)取极限,得导数/ y =()f x '=x y x ??→?0lim 本节课我们将学习常见函数的导数。首先我们来求下面几个函数的导数。 (1)、y=x (2)、y=x 2 (3)、y=x 3 问题:1-=x y ,2-=x y ,3-=x y 呢? 问题:从对上面几个幂函数求导,我们能发现有什么规律吗? (二)、新课探析 1、基本初等函数的求导公式: ⑴ ()kx b k '+= (k,b 为常数) ⑵ 0)(='C (C 为常数) ⑶ ()1x '= ⑷ 2 ()2x x '= ⑸ 32 ()3x x '= ⑹ 2 11()x x '=- ⑺ '= 由⑶~⑹你能发现什么规律? ⑻ 1 ()x x α αα-'= (α为常数) ⑼ ()ln (01)x x a a a a a '=>≠, ⑽ a a 11(log x)log e (01)x xlna a a '= =>≠,且

⑾ x x e )(e =' ⑿ x 1 )(lnx = ' ⒀ cosx )(sinx =' ⒁ sinx )(cosx -=' 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。 2、例题探析 例1、求下列函数导数。 (1)5-=x y (2)x y 4= (3)x x x y = (4)x y 3log = (5)y=sin( 2π+x) (6) y=sin 3 π (7)y=cos(2π-x) (8)y=(1)f ' 例2、已知点P 在函数y=cosx 上,(0≤x ≤2π),在P 处的切线斜率大于0,求点P 的横坐标的取值范围。 例3、若直线y x b =-+为函数1 y x = 图象的切线,求b 的值和切点坐标. 变式1、求曲线y=x 2 在点(1,1)处的切线方程. 总结切线问题:找切点 求导数 得斜率 变式2、求曲线y=x 2 过点(0,-1)的切线方程 变式3、求曲线y=x 3过点(1,1)的切线方程 变式4、已知直线1y x =-,点P 为y=x 2 上任意一点,求P 在什么位置时到直线距离最短. (三)、课堂小结:(1)基本初等函数公式的求导公式(2)公式的应用 导数公式表 (四)、课堂练习:假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与

《导数的概念》(第1课时)教案1

导数的概念(第1课时) 一、教学目标: 1.了解曲线的切线的概念. 2.在了解瞬时速度的基础上,抽象出变化率的概念. 3.掌握切线的斜率、瞬时速度,它们都是一种特殊的极限,为学习导数的定义奠定基础. 二、教学重点:切线的概念和瞬时速度的概念. 教学难点:在了解曲线的切线和瞬时速度的基础上抽象出变化率的概念. 三、教学用具:多媒体 四、教学过程: 1.曲线的切线 如图,设曲线C 是函数)(x f y =的图像,点),(00y x P 是曲线C 上一点,点),(00y y x x Q ?+?+是曲线C 上与点P 邻近的任一点.作割线PQ ,当点Q 沿着曲线C 无限地趋近于点P ,割线PQ 便无限地趋近于某一极限位置PT .我们就把极限位置上的直线PT ,叫做曲线C 在点P 处的切线. 问:怎样确定曲线C 在点P 处的切线呢?因为P 是给定的,根据解析几何中直线的点斜式方程的知识,只要求出切线的斜率就够了.设割线PQ 的倾斜角为β,切线PT 的倾斜角为α,既然割线PQ 的极限位置上的直线PT 是切线,所以割线PQ 斜率的极限就是切线PT 的斜率αtan ,即.)()(lim lim tan 0000x x f x x f x y x x ?-?+=??=→?→?α 例题 求曲线12+=x y 在点P (1,2)处的切线的斜率k . 解:x x x f x f x f x x f y ?+?=+-+?+=-?+=-?+=?2)11(1)1()1()1()()(2200 222+?=??+?=??x x x x x y ∴2)2(lim lim 0 0=+?=??=→?→?x x y k x x ,即2=k . 2.瞬时速度 我们知道,物体作直线运动时,它的运动规律可用函数)(t s s =描述.

2012届高考数学复习 第95课时 第十三章 导数-导数的概念及运算名师精品教案

第95课时:第十三章 导数——导数的概念及运算 课题:导数的概念及运算 一.复习目标: 理解导数的概念和导数的几何意义,会求简单的函数的导数和曲线在一点处的切线方程. 二.知识要点: 1.导数的概念:0()f x '= ; ()f x '= . 2.求导数的步骤是 3.导数的几何意义是 . 三.课前预习: 1.函数2 2 (21)y x =+的导数是 ( C ) ()A 32164x x + ()B 348x x + ()C 3168x x + ()D 3164x x + 2.已知函数)(,31)(x f x x f 则处的导数为在=的解析式可( A ) ()A )1(3)1()(2-+-=x x x f ()B )1(2)(-=x x f ()C 2)1(2)(-=x x f ()D 1)(-=x x f 3.曲线2 4y x x =-上两点(4,0),(2,4)A B ,若曲线上一点P 处的切线恰好平行于弦AB ,则点P 的坐标为 ( B ) ()A (1,3) ()B (3,3) ()C (6,12)- ()D (2,4) 4.若函数2 ()f x x bx c =++的图象的顶点在第四象限,则函数()f x '的图象是( A ) 5.已知曲线()y f x =在2x =-处的切线的倾斜角为 34 π ,则(2)f '-=1-,[( 2)]f '-=0.

6.曲线2122y x =- 与3124y x =-在交点处的切线的夹角是4 π. 四.例题分析: 例1.(1)设函数2 ()(31)(23)f x x x x =+++,求(),(1)f x f ''-; (2)设函数32 ()25f x x x x =-++,若()0f x '=,求x 的值. (3)设函数()(2)n f x x a =-,求()f x '. 解:(1)32()61153f x x x x =+++,∴2 ()18225f x x x '=++ (2)∵32()25f x x x x =-++,∴2 ()341f x x x '=-+ 由()0f x '=得:2 03410x x -+=,解得:01x =或013 x = (3)0(22)(2)()lim n n x x a x x a f x x ?→-+?--'=? 112 210 lim[(2)24(2)2()]n n n n n n n n x C x a C x x a C x ---?→=-?+?-++?12(2)n n x a -=- 例2.物体在地球上作自由落体运动时,下落距离2 12 S gt = 其中t 为经历的时间,29.8/g m s =,若 0(1)(1) lim t S t S V t ?→+?-=?9.8/m s =,则下列说法正确的是( C ) (A )0~1s 时间段内的速率为9.8/m s (B )在1~1+△ts 时间段内的速率为9.8/m s (C )在1s 末的速率为9.8/m s (D )若△t >0,则9.8/m s 是1~1+△ts 时段的速率; 若△t <0,则9.8/m s 是1+△ts ~1时段的速率. 小结:本例旨在强化对导数意义的理解,0lim →?t t S t S ?-?+) 1()1(中的△t 可正可负 例3.(1)曲线C :3 2 y ax bx cx d =+++在(0,1)点处的切线为1:1l y x =+ 在(3,4)点处的切线为2:210l y x =-+,求曲线C 的方程; (2)求曲线3:2S y x x =-的过点(1,1)A 的切线方程. 解:(1)已知两点均在曲线C 上. ∴? ??=+++=439271 d c b a d ∵2 32y ax bx c '=++ / (0)f c = / (3)276f a b c =++

高等数学导数的概念学习教案.docx

教学合班 1:专业班合计人授课 合班 2:专业班合计人日期对象 合班 3:专业班合计人地点教学第二章导数与微分计划 内容 第一节导数的概念 2学时 (课题) 通过学习,学生能够: 1.理解导数概念,会用定义求函数在一点处的导数; 2.理解导数的几何意义,会求曲线的切线; 3.理解可导与连续的关系。 具体目标如下: 教学 目的 知识目标:技能目标:素养目标: 教学重点难点教学资源 1.理解导数的概念;1.会用定义求函数在一点处 1 .培养学生的数学思维 2.理解导数的几何意义;的导数;能力和解决问题的能 3.把握可导与连续的关系。2.会求曲线的切线。力; 2.培养学生严谨、求实 的作风。 重点:导数的定义。 难点:理解导数的几何意义。 教材、例子(幻灯片)、课件。 教学后记 对培养方案、大纲修改意见对授课计划修改意见对本教案修改意见需增加资源其他教研室主任:系主任:教务处:

教学活动流程 教学步骤与内容教学目标教学方法时间 对前面的知 识进行复习 A. 复习内容与巩固,并简述 1.极限的定义为新知识和6mins 2.极限的计算方法新技能的学 习奠定必要 的基础。 板书 ( 或 PPT展 B. 板书课题,明确学习目标及主要学习内容示)课题简介 明确本次课的辅以2mins (略。详见教案首页)内容重点及目PPT展示 标 C.讲授新知 导数与微分是微积分的基本概念,要更好地理解导数 的概念,应从解决实际问题的背景出发,在解决问题的过 程中自然抽象出导数的概念。导数与微分在理论上和实践 中都有非常广泛的应用。 一、瞬时速度、曲线的切线斜率 1.变速直线运动的瞬时速度 设一质点作变速直线运动,质点的运行路程s与时间t的 关系为 s s(t ) ,求质点在 t0时刻的瞬时速度. 分析:如果质点做匀速直线运动,给时间一个增量t ,讲解20mins 那么质点在时刻 t0与时刻 t0t 间隔内的平均速度也就是 辅以 PPT展示 引入导数概念 质点在时刻 t0的瞬时速度为 v0v s(t0t ) s(t0 ) t 在匀速直线运动中,这个比值是常数,但是如果质点作 变速直线运动,它的运行速度时刻都在发生变化,为了计算 瞬时速度,首先在时刻 t0任给时间一个增量t ,考虑质点由 t0到 t0 Vt 这段时间的平均速度:v s(t0t )s(t0 ) t

《导数的概念》说课稿(完成稿)

实验探究,让数学概念自然生长 ——《导数的概念》说课 江苏省常州市第五中学张志勇 一. 教学内容与内容解析 1、教学内容:本节课的教学内容选自苏教版普通高中课程标准实验教科书数学选修2-2第一章第一节的《导数的概念》第2课时“瞬时变化率——导数”,导数的概念包括三部分教学内容,即平均变化率、瞬时变化率、导数,其中瞬时变化率包括曲线上一点处的切线和瞬时速度、瞬时加速度,本节课之前学生已完成平均变化率的学习. 2、内容解析:导数是研究现代科学技术必不可少的工具,是进一步学习数学和其他自然科学的基础,在物理学、经济学等领域都有广泛的应用.对于中学阶段而言,导数是研究函数的有力工具,在求函数的单调性、极值、曲线的切线以及一些优化问题时有着广泛的应用,同时对研究几何、不等式起着重要作用.从而导数在函数研究中的应用应是整个章节的重点,但不能仅仅将导数作为一种规则和步骤来学习,导数的概念无疑是教学的起点也是关键,否则学生很难体会导数的思想及其内涵.事实上导数概念的建立基于“无限逼近”的过程,这与初等数学所涉及的思想方法有本质的不同.囿于学生的认知水平和可接受能力,教材中并没有引进极限概念(过多的极限知识可能会冲淡甚至干扰对导数本质的理解),而是从学生的生活经验出发,通过实例引导学生经历由平均变化率到瞬时变化率的过程,直至建立起导数的数学模型. 3、教学设想:导数的本质在于从平均变化率到瞬时变化率的“无限逼近”,而无限逼近有三种方式:数值逼近、几何直观感知、解析式抽象;而达成学生极限思想形成之教学目标,需要以问题为背景,关键是设计活动让学生经历从平均变化率到瞬时变化率的过程.因此教学处理时,试图还 原知识建构的完整过 程,实现导数概念的“再 创造”,其中数学探究 环节采用数学实验的方

《变化率问题与导数的概念》导学案

第1课时变化率问题与导数的概念 a 1.通过物理中的变化率问题和瞬时速度引入导数的概念. 2.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤. 3.通过构建导数概念,使学生体会极限思想,为将来学习极限概念积累学习经验. 4.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程. 借助多媒体播放2012年伦敦奥运会中国跳水运动员陈若琳夺得女子单人10米跳台冠军的视频.上节课我们已经学习了平均变化率的问题,我们知道运动员的平均速度不一定能够反映她在某一时刻的运动状态,而运动员在不同时刻的运动状态是不同的,我们需要借助于瞬时速度这样的量来刻画,那么我们如何才能求出运动员在某一时刻的瞬时速度呢? 问题1:根据以上情境,设陈若琳相对于水面的高度h (单位:m)与起跳后的时间t (单位:s) 存在函数关系h(t)=-4.9t2+6.5t+10,如果用她在某段时间内的平均速度描述其运动状态, 那么: (1)在0≤t≤0.5这段时间里,运动员的平均速度= . (2)在1≤t≤2这段时间里, 运动员的平均速度= . 问题2:函数y=f(x)从x1到x2的平均变化率公式是.如果用x1与增量Δx

表示,平均变化率的公式是. 问题3:函数f(x)在x=x0处的瞬时变化率的定义:一般地,函数y=f(x)在x=x0处的瞬时变化率是=,我们称它为函数y=f(x)在x=x 0处的导数,记作f'(x0)或y',即f'(x0)== . 问题4:在导数的定义中,对Δx→0的理解是:Δx>0,Δx<0,但. 1.已知函数y=f(x)=x2+1,当x=2,Δx=0.1时,Δy的值为(). A.0.40 B.0.41 C.0.43 D.0.44 2.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则(). A.f'(x)=a B.f'(x)=b C.f'(x0)=a D.f'(x0)=b 3.一质点按规律s(t)=2t2运动,则在t=2时的瞬时速度为. 4.求y=2x2+4x在点x=3处的导数.

《导数的概念》说课稿与教学说明

《导数的概念》说课稿 本节课的教学内容选自人教社普通高中课程标准实验教科书(A版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念》是第2课时. 教学内容分析 1.导数的地位、作用 导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度.导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用.导数概念是我们今后学习微积分的基础.同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具. 2.本课内容剖析 教材安排导数内容时,学生是没有学习极限概念的.教材这样处理的原因,一方面是因为极限概念高度抽象,不适合在没有任何极限认识的基础上学习.所以,让学生通过学习导数这个特殊的极限去体会极限的思想,这为今后学习极限提供了认识基础.另一方面,函数是高中的重要数学概念,而导数是研究函数的有力工具,因此,安排先学习导数方便学生学习和研究函数. 基于学生已经在高一年级的物理课程中学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的. 进行导数概念教学时还应该看到,通过若干个特殊时刻的瞬时速度过渡到任意时刻的瞬时速度;从物体运动的平均速度的极限是瞬时速度过渡到函数的平均变化率的极限是瞬时变化率,我们可以向学生渗透从特殊到一般的研究问题基本思想.

教学目的 1.使学生认识到:当时间间隔越来越小时,运动物体在某一时刻附近的平均速度趋向于一个常数,并且这个常数就是物体在这一时刻的瞬时速度; 2.使学生通过运动物体瞬时速度的探求,体会函数在某点附近的平均变化率的极限就是函数在该点的瞬时变化率,并由此建构导数的概念; 3.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤; 4.通过导数概念的构建,使学生体会极限思想,为将来学习极限概念积累学习经验; 5.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程. 教学重点 通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念. 教学难点 使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念. 教学准备 1.查找实际测速中测量瞬时速度的方法; 2.为学生每人准备一台Ti-nspire CAS图形计算器,并对学生进行技术培训; 3.制作《数学实验记录单》及上课课件. 教学流程框图 教学流程设计充分尊重学生认知事物的基本规律,使学生在操作感知的基础上形成导数概念的表象,再通过表象抽象出导数概念,并通过运用导数概念解决实际问题使学生进一步体会导数的本质.教学的主要过程设计如下:

变化率与导数、导数的计算

第十一节变化率与导数、导数的计算 [备考方向要明了] 考什么怎么考 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数y=c(c为常 数),y=x,y=x2,y=x3, y= 1 x的导数. 4.能利用基本初等函数的导数公式和 导数的四则运算法则求简单函数的导 数. 1.对于导数的几何意义,高考要求较高,主要以选择 题或填空题的形式考查曲线在某点处的切线问题, 如2012年广东T12,辽宁T12等. 2.导数的基本运算多涉及三次函数、指数函数与对数 函数、三角函数等,主要考查对基本初等函数的导 数及求导法则的正确利用. [归纳·知识整合] 1.导数的概念 (1)函数y=f(x)在x=x0处的导数: 称函数y=f(x)在x=x0处的瞬时变化率 lim Δx→0 f(x0+Δx)-f(x0) Δx=lim Δx→0 Δy Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即 f′(x0)=lim Δx→0 Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx. (2)导数的几何意义: 函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0). (3)函数f(x)的导函数:

称函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. [探究] 1.f ′(x )与f ′(x 0)有何区别与联系? 提示:f ′(x )是一个函数,f ′(x 0)是常数,f ′(x 0)是函数f ′(x )在x 0处的函数值. 2.曲线y =f (x )在点P 0(x 0,y 0)处的切线与过点P 0(x 0,y 0)的切线,两种说法有区别吗? 提示:(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 3.过圆上一点P 的切线与圆只有公共点P ,过函数y =f (x )图象上一点P 的切线与图象也只有公共点P 吗? 提示:不一定,它们可能有2个或3个或无数多个公共点. 2.几种常见函数的导数 3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.

导数的计算(教)新课教案

导数的计算 一、考点热点回顾 教学目标: 1.使学生应用由定义求导数的三个步骤推导四种常见函数y c =、y x =、2 y x =、1 y x =的导数公式; 2.掌握并能运用这四个公式正确求函数的导数. 教学重点:四种常见函数y c =、y x =、2 y x =、1 y x = 的导数公式; 教学难点:四种常见函数y c =、y x =、2 y x =、1y x =的导数公式. 几个常见函数的导数 探究1.函数()y f x c ==的导数 根据导数定义,因为 ()()0y f x x f x c c x x x ?+?--===??? 所以00 lim lim 00x x y y ?→?→?'=== 0y '=表示函数y c =图像(图3.2-1)上每一点处的切线的斜率都为0.若y c =表示路程关于时间 的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态. 探究2.函数()y f x x ==的导数 因为 ()()1y f x x f x x x x x ?+?-+?-===?所以00lim lim11x x y y x ?→?→?'=== 1y '=表示函数y x =图像(图3.2-2)上每一点处的切线的斜率都为1.若y x =表示路程关于时间 的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速运动.

探究3.函数2 ()y f x x ==的导数 因为22()()()y f x x f x x x x x x x ?+?-+?-==???222 2()2x x x x x x x x +?+?-==+?? 所以00 lim lim(2)2x x y y x x x x ?→?→?'==+?=? 2y x '=表示函数2y x =图像(图3.2-3)上点(,)x y 处的切线的斜率都为2x ,说明随着x 的变化, 切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2 y x =减少得越来越慢;当0x >时,随着x 的增加,函数2 y x =增加得越来越快.若 2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度 为2x . 探究4.函数1 ()y f x x == 的导数 因为11 ()()y f x x f x x x x x x x - ?+?-+?== ???2() 1()x x x x x x x x x x -+?==-+??+?? 所以220011 lim lim()x x y y x ?→?→? '==-=-? 探究5.函数()y f x == 的导数 因为 ()()y f x x f x x x x ?+?-== ?? ? = = 所以0lim lim x x y y x ?→?→?'===?

高中数学选修2-2教学设计9:1.1.2 导数的概念教案

1.1.2 导数的概念 教学目标:1、会用极限给瞬时速度下精确的定义;并能说出导数的概念. 2、会运用瞬时速度的定义,求物体在某一时刻的瞬时速度. 教学重难点: 重点:1、导数的求解方法和过程;2、导数符号的灵活运用 难点:导数概念的理解. 教学过程: 情境导入: 高台跳水运动中,运动员相对于水面的高度h 与起跳后的时间t 的关系为: 2() 4.9 6.510h t t t =-++.通过上一节的学习,我们可以求在某时间段的平均速度.这节课我们将学到如何求在某一时刻的瞬时速度,例当t =1时的瞬时速度. 合作探究: 探究任务一:瞬时速度 问题1:在高台跳水运动中,运动员在不同时刻的速度是不同的. 新知: 瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度. 探究任务二:导数 问题2: 瞬时速度是平均速度t s ??当t ?趋近于0时的速度. 得导数的定义:函数()y f x =在0x x =处的瞬时变化率是0000()()lim lim x x f x x f x f x x ?→?→+?-?=??,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0 |x x y =' 即000()()()lim x f x x f x f x x ?→+?-'=? 注意:(1)函数应在点0x 的附近有定义,否则导数不存在 (2)在定义导数的极限式中,x ?趋近于0可正、可负、但不为0,而y ?可以为0 (3)x y ??是函数)(x f y =对自变量x 在x ?范围内的平均变化率,它的几何意义是过曲线)(x f y =上点()(,00x f x )及点)(,(00x x f x x ?+?+)的割线斜率 (4)导数x x f x x f x f x ?-?+=→?)()(lim )(0000/ 是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处变化的快慢程度.

人教版高中数学(文科)选修导数的概念及运算教案

导数的概念及运算 【考点指津】 1.了解导数的概念,掌握函数在一点处的导数的定义和导数的几何意义. 2.熟记基本导数公式.掌握两个函数四则运算的求导法则,会求多项式的导数. 【知识在线】 1.函数y =14223++x x 的导数是 . 2.曲线y =x 4+x 2上P 处的切线的斜率为6,则点P 的坐标是 . 3.设函数f(x)= -35 x 5 - 74 x 4+8,则0 lim →?x f(x+Δx)-f(x)Δx = . 4.已知使函数y=x 3+ax 2- 43 a ,若存在0)()(,000=='∈x f x f R x 使的求常数a . 【讲练平台】 例1 函数y=(3x 2+x+1)(2x+3)的导数是 ( ) A . (6x+1)(2x+3) B . 2(6x+1) C . 2(3x 2+x+1) D . 18x+22x+5 分析 先把函数式右边展开,再用和的求导法则求导数. 解 y=(3x 2+x+1)(2x+3)=6x 3+11x 2+5x+3 ∴y'=18x 2+22x+5,故应选D 点评 要善于化归,本题函数解析式就可转化为多项式. 例2 设函数f(x)=x 3-2x 2+x+5, 若f'(x 0)=0,则x 0= . 分析 x 0是方程f'(x)=0的根,只要解方程f'(x)=0 解 f(x)=x 3-2x 2+x+5, 求f'(x)=3x 2-4x+1 由f'(x 0)=0, 得3x 2-4x+1=0 解得x 0=1或13 ∴应填写答案为1或13 点评 导数的运算法则再加上已有的导数公式(如(x n )'=n .x n -1, 其中n ∈N*)是求某些简单函数的导 数的常用工具. 例3 已知抛物线y=ax 2+bx+c 通过点(1,1),且在(2,-1)处的切线的斜率为1, 求a ,b ,c 的值. 分析 题中涉及三个未知数,而已知中有三个独立条件,故可通过解方程组来确定a ,b ,c . 解 ∵y=ax 2+bx+c 分别过(1,1)点和(2,1)点 ∴a+b+c=1 (1) 4a+2b+c=-1 (2) 又 y'=2ax+b ∴y'|x=2=4a+b=1 (3) 由(1)(2)(3)可得,a=3,b=-11,c=9. 点评 函数的导数的几何意义决定了函数的导数知识与平面解析几何中直线的知识有着密切的联系.利用导数能解决许多曲线的切线的问题,使确定曲线在某处的切线斜率变得简单易求. 【知能集成】 1.两种常见函数的导数:c'=0 (C 是常数);(x n )'= nx n - 1(n ∈N *). 导数和运算法则:若 f(x),g(x)的导数存在,则[f(x)±g(x)]' = f '(x)+g'(x), [cf(x)]' = cf '(x).(C 是常数) 2.能应用由定义求导数的三个步骤推导出常数及函数y=x n (n ∈N*)的导数公式,掌握两个函数的和与差的求导法则及常数与函数的积的求导法则,能正确运用这些求导法则及导数公式求某些简单函数的导数.

导数概念 教案

导数的概念 (教案?讲稿?PPT) 一、教案 【教学目标】 (1)、知识与技能目标 1.了解导数的历史背景,体会导数定义的探索过程 2.掌握导数的内容,初步会用它进行有关的计算求解. 3.使学生深刻理解导数的概念,理解导数在几何、物理上的意义,能够根据导数的定义求函数在区间上的导数. (2)、过程与方法目标 1. 在导数定义的过程中,用形象直观的两个实际例子作为引例,培养学生的观察能力、抽象思维能力.体会数形结合的思想. 2.通过探究导数定义的过程,体验数学思维的严谨性。 (3)、情感、态度与价值观目标 1. 了解导数发现的历史,感受数学知识所蕴含的数学文化,培养学生学习数学,探究数学的兴趣与本领。 2. 在探究活动中,体验用极限方法解决平均变化率逼近某点处的变化率的思想,培养学生的探究精神。 【教学重点】导数的概念. 【教学难点】如何引出导数的概念,并根据导数的定义计算导数. 【教学方法】形象直观式教学法、问题探究式教学法. 【背景知识】自由落体物体的瞬时速度问题,曲线切线的斜率问题等. 【特色和创新之处】 用通俗易懂的语言,通过文、理结合的方式,最后以口诀的形式结尾,讲解抽象的内容,体现数学的草根本色。 【教学进程概要】 用两个实际问题阐述函数在一点上导数的定义,由例题1和例题2,来讲述在一点上求导的方法;接着由例题2,引出函数左、右导数的概念;用例题3引出在开区间上的导数,即导函数的定义,在此基础上给出求导函数的例子,例题4;最后以口诀的形式结尾。 【板书内容】 导数的概念

00000 ()()()lim lim t t s t t s t s v t t t ?→?→+?-?==?? 0000 ()()lim lim MT x x f x x f x y k x x ?→?→+?-?==?? 对一般函数: ()y f x = 0000 0()()|lim lim x x x x f x x f x y y x x =?→?→+?-?'==?? x x f x x f x y y x x ?-?+=??='→?→?) ()(lim lim 00

2021版高考数学一轮复习第三章导数及其应用第1讲变化率与导数、导数的计算教学案理北师大版

第1讲变化率与导数、导数的计算 一、知识梳理 1.导数的概念 (1)函数y=f(x)在x=x0处的导数 称函数y=f(x)在x=x0处的瞬时变化率 lim Δx→0f(x0+Δx)-f(x0) Δx =lim Δx→0 Δy Δx 为函数y=f(x)在x=x0处的导数,记作f′(x0), 即f′(x0)=lim Δx→0Δy Δx =lim Δx→0 f(x0+Δx)-f(x0) Δx . (2)导数的几何意义 函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x -x0). (3)函数f(x)的导函数 称函数f′(x)=_lim Δx→0_ f(x+Δx)-f(x) Δx 为f(x)的导函数. 2.基本初等函数的导数公式 原函数导函数y=c(c为常数) y′=0 y=xα(α为实数) y′=αxα-1 y=a x (a>0且a≠1) y′=a x ln a 特别地(e x)′=e x y=log a x (x>0,a>0,且a≠1) y′= 1 x ln a 特别地(ln x)′= 1 x y=sin x y′=cos__x

(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)?? ?? ??f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2 (g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′= y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 常用结论 1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. 2.[af (x )+bg (x )]′=af ′(x )+bg ′(x ). 3.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. 二、教材衍化 1.函数y =x cos x -sin x 的导数为( ) A .x sin x B .-x sin x C .x cos x D .-x cos x 解析:选B.y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 2.曲线y =1- 2 x +2 在点(-1,-1)处的切线方程为________. 解析:因为y ′=2 (x +2)2,所以y ′|x =-1=2. 故所求切线方程为2x -y +1=0. 答案:2x -y +1=0 3.有一机器人的运动方程为s =t 2 +3t (t 是时间,s 是位移),则该机器人在t =2时的 瞬时速度为________. 解析:因为s =t 2 +3t ,所以s ′=2t -3t 2,

相关文档
最新文档