锁相实验报告

锁相实验报告
锁相实验报告

实验一集成压控振荡器构成的频率调制器

1.1 实验目的

1.进一步了解压控振荡器和用它构成频率调制的原理

2.掌握集成电路频率调制器的工作原理。

1.2 预习要求

1.查阅有关集成电路压控振荡器资料。

2.认真阅读指导书,了解566(VCO的单片集成电路)的内部电路及原理。

3.搞清566外接元件的作用。

4、弄懂实验原理与实验步骤。

5、写好预习报告。

1.3 实验仪器设备

1. 双踪示波器,≥60MHz,1台,可用一般示波器。

2. 频率计,测量范围≥10MHz,分辨率≤1Hz,1台(也可使用示波器)。

3. 高频信号发生器,≥60MHz,1台。

4. 电容表,测量范围10pF~1μF。

5. 万用表,MF-47或其他,1块(也可使用示波器)。

6. 实验电路板及相应元器件,按电路图配置,1套。

1.4 实验原理

1、566(VCO的单片集成电路)的电路组成及工作原理

566采用的是积分施密特触发器型的压控振荡器,其原理电路如图15.6.1所示,电路由恒流源控制电路(I O)、积分器(T1、T2、T3、D1、D2、C T) 和施密特触发器三部分组成。

E C

施密特触发器的输入输出信号关系如图15.6.2所示。

施密特触发器的正向触发电平定义为U SP ,反向触发电平定义为U SM ,当电容C T 充电使其电压上升至U SP ,

此时施密特触发器

翻转,输出为高电平,从而使内部的控制电压形成电路

的输出电压,该电压u 0为高电平;当

电容C T 放电时,其电压下降,降至U SM 时施密特触发器再次翻转,输出为低电平从而使u 0也变为低电平。

用u 0的高、低电平控制三极管T 3的通断,也控制了二极管D 1、D 2即S 1和S 2两开关的)闭合与断开。u 0为低电平时T 3截止,T 1、T 2也截止,二极管D 1截止,D 2加正端高电位,负极低电位导通,这时I 0全部给电容C T 充电,使电容上的电位上升,由于I 0为恒流源,电容电位线性斜升,升至U SP 时u 0跳变为高电平,u 0高电平时控制T 3、T 1、T 2导通,T 1的集电极为低电位,T 2的集电极也是充放电电容电位为高电位,此时D 1导通,D 2截止,恒流源I 0全部流经D 1、T 1到T 3入地,因T 2与T 1同时导通,当两管参数对称时,I B1=I B2,I C1=I C2=I 0,T 2的电流由C T 放电电流提供,因此电容电位线性斜降,降至U SM 时u 0跳变为低电平,如此周而复始循环下去。积分电容C T 以恒流充放电,故u C 为对称的三角波电压,u O 输出占空比为50%的方波。u C 及u 0波形如图15.6.3。

控制电压u C 控制恒流源I O ,可以调节充放电电流I 0的大小,也就控制了电容的充放电速度,从而改变了振荡信号的频率,达到电压控制频率的目的。

VCO 的输出频率与控制电压之间的关系可用最典型的调频表达式表示

)()(00t u k t c f +ω=ω,其中ω0为载波频率,由一直流电压u C0控制,k f 为调制灵敏度。

2、566芯片

566芯片的框图及引脚排列如图15.6.4,框图中幅度鉴别器功能由施密特触发器完成。控制电压u C 从5端输入。

566输出的方波及三角波的载波频率(或称中心频率)可用外加电阻R 和外加电容C 来确定。

)()

(Hz u C R u u f 8

58??-=

其中: R 为时基电阻,R 连在正电源到6端之间,调节其大小可以改变在相同的控制电压u 5情况下恒流源电流的大小。

图15.6.2 施密特触发器电压响

图15.6.3 VCO 的波形

u U U u

C为时基电容

u8是566管脚⑧至地的电压,它是电压的工作电源电压。

u5是566管脚⑤至地的电压。

566芯片的内部实际电路如图15.6.5所示

3、实验电路说明

实验电路见图15.6.6,第7脚对负电源接振荡定时电容C1,第6脚接一可调电阻(R3+R W1)到正电源,它与第5脚的控制电压一起确定恒流源I0的大小。三者共同决定输出信号的频率f0

1.5 实验内容

1.观察R、C1对频率的影响(其中

R=R3+R W1)。

按图15.6.6接线,将C1接入566

管脚⑦,R W2及C2接至566管脚⑤;接通

电源(±5V)。

图15.6.6 566构成的调频器

R1

R2

1

2

3

45

6

7

8

566

+5V

-5V

R3R W1

3k1k

C2

15n

R

R4

C1

2200P

+5V

-5V

图15.6.5 566(VCO)的内部实际电路

调R W2使U5=3.5V,将频率计接至566管脚③,改变R W1观察方波输出信号频率,记录当R为最大和最小值时的输出频率。当R分别为R max和R min及C1=2200pF时,计算这二种情况下的频率,并与实际测量值进行比较。用双踪示波器观察并记录R=R min时方波及三角波的输出波形。

实验结果:

R值Rmax Rmin

频率f(kHz)

计算值34.0945.45

测量值28.9237.33

R为最小值时的方波输出波形:

R为最小值时的三角波输出波形:

k。

2.观察输入电压对输出频率的影响,并计算VCO的调制灵敏度

f

直流电压控制:先调R W1至最大,然后改变R W2调整输入电压,测当U5在2.2V~4.2V 变化时输出频率f的变化,U5按0.2V递增。将测得的结果填入表15.6.1。并计算K0的平均值。

实验结果:

U5(V) 2.2 2.4 2.6 2.83 3.2 3.4 3.6 3.84 4.2 f(kHz)61.057.954.249.844.839.332.926.820.915.88.20

K0(计算)27.2

324.1

7

20.8

6

17.9

5

14.9

3

12.0

7

9.787.56 5.04 3.64 1.48

3、观察VCO的调频

仍将R设置为最大,断开⑤脚所接C2,R W2,将图15.6.7(即:输入信号电路)的输出OUT接至图15.6.6中566的⑤脚。

(1)将函数发生器的正弦波调制信号uΩ(输入的调制信号)置为f=5kHz、U P-P=1V,然后接至图15.6.7电路的IN端。用双踪示波器同时观察输入信号uΩ和566管脚③的调频(FM)方波输出信号,观察并记录输入信号的电压变化时,输出信

号波形的频率变化。注意:输入信号uΩ的U P-P不要大于1.3V。实验结果:图15.6.7 输入电路

+5V

C

R5

R6

0.1μ

(2)调制信号改用方波信号uΩ,使其频率f m=1kHz,U P-P=1V,用双踪示波器观察并记录uΩ和566管脚③的调频(FM)方波输出信号。

实验结果:

实验二集成电路锁相环(PLL)构成的频率解调器

2.1 实验目的

1.了解用锁相环构成调频波的解调原理。

2.学习掌握集成电路频率调制器/解调器系统的工作原理。

2.2 预习要求

1.查阅有关锁相环内部结构及工作原理。

2.弄清锁相环集成电路NE565的内部电路组成,及其与外部元器件之间的关系。 3、弄懂实验原理与实验步骤。 4、写好预习报告。

2.3 实验原理

1、锁相环工作的基本原理

锁相环的一个相位负反馈控制系统,其组成框图如图15.7.1,由鉴相器,环路滤波器和压控振荡器组成,鉴相器将输入输出信号的相位进行比较,产生一差拍波,经环路滤波器滤除高频分量后,去控制压控振荡器的输出频率和相

位。锁相环路的输入输出相位关系可以用动态方程描述,动态方程如下

)(sin )()()(t p KF t p t p e e θθθ-=1,其中)(t e θ为环路的瞬时相差,)(t 1θ为输入信号以VCO 的载波相位为参考时的相位。在环路锁定时,输入输出信号的频率相等,瞬时相位差在一个有限值的范围内变化,如果是输入固定频率信号,则相位差为一常量,即这时输出信号相位跟踪输入信号的相位。PLL 的闭环频率特性定义为)

()

()(ΩΩ=

Ω12j j j H θθ,它

呈现低通特性,截止频率为n ω,如果瞬时相位较小时,PLL 可近似为一线性系统。

2、锁相环的鉴频原理

PLL 的鉴频原理可以用图15.7.2表示。

首先,设有一角频率为Ω、初相位为θi 的正弦调制信号u Ω(t ),u Ω(t )=

U Ωcos(Ωt +θi ) ,用它来调制一个角频率等于ω0的载波,那么可以得到瞬时角频率为

ωi (t)= ω0+K t U Ωcos(Ωt+θi )= ω0+△ω cos(Ωt+θi )

的已调波。式中K t [rad/s ·V]为调制器的灵敏度;

△ω=K t ·U Ω为峰值频偏。

已调波的瞬时相位

图15.7.1 锁相环的组成框图

u i (t u O (t )

τθτωωτθτωωθd t d t t

i t i i ??+Ω?+=+Ω?+=0

00

0)cos()]cos([)(,调频波的完整

表达式为

)](sin[])cos(sin[)(00

0i i t

i i i t U d t U t u θτω

ωτθτωω+ΩΩ

?+

=+Ω?+=?。 将此信号作为锁相环的输入信号,则输入信号的瞬时相位就是调频波的瞬时相位。

其次,当此信号加到PLL 时,如果环路工作在调制跟踪状态,即调制信号频率Ω小于锁相环的截止频率ωn ,处于PLL 闭环低通特性的通带之内时,锁相环的输出相位θ2(t )将跟踪输入相位

θ1(t )的瞬时变化,即输出相位

)](cos[)()(2Ω++ΩΩΩ

?=j ArgH t j H t i θωθ。

对应的输出电压为u o (t ),??????Ω++ΩΩΩ?+=)](sin[)(cos )(0j ArgH t j H t U t u i om o θωω 这时锁相环路的输出信号是环内压控振荡器的输出电压u o (t ),根据压控振荡器的

控制特性,控制电压)(t u c 可写为

)](cos[)()(Ω++ΩΩ=

Ωj ArgH t j H U K K t u i m o

t

c θ。

现在我们比较一下PLL 的VCO 的控制信号)(t u c 与FM 波调制信号u Ω(t ),可以发现调制两者幅值成比例,相位差了一个相移量ArgH(j Ω),故)(t u c 可作为u Ω(t )解调输出。

3、PLL 单片集成电路565

图15.7.3为 565(PLL 单片集成电路) 的框图及管脚排列,锁相环内部电路由相位鉴别器、压控振荡器、放大器三部分构成,相位鉴别器由模拟乘法器构成,它有二组输入信号,一组为外部管脚②、③输入信号e 1,其频率为f 1;另一组为内部压控振荡器产生信号e 2,经④脚输出,接至⑤脚送到相位鉴别器,其频率为f 2,当f 1和f 2差别很小时,可用频率差代表两信号之间的相位差,即f 1-f 2的值使相位鉴别器输出一直流电压,该电压经 ⑦ 脚送至 VCO 的输入端,控制VCO ,使其输出信号频率f 2发生变化,这一过程不断进行,直至f 2=f 1为止,这时称为锁相环锁定。

2.4 实验仪器设备

1. 双踪示波器,≥60MHz ,1台,可用一般示波器。

图15.7.2 565(PLL)构成的频率

图15.7.3 565(PLL)的框图及管脚排

-输入(频率)输入

VCO 输出频率相位鉴别器 VCO VCO V CC 时基电阻

2. 频率计,测量范围≥10MHz ,分辨率≤1Hz ,1台(用数字示波器时可以不需频率计)。

3. 高频信号发生器,≥60MHz ,带调频输出,1台。

4. 实验电路板及相应元器件,按电路图配置,1套。

2.5 实验内容

实验电路见图15.7.4。 1、测量PLL 的固有振荡频率 环路输入端IN 端不接任何信号,用示波器观察VCO 输出端信号的波形,并测量输出频率。调R W 使其中VCO 的输出频率f 0(A 点:即④⑤脚)为50kHz 。

2、测量PLL 的同步带和捕获带 在IN 端输入一取自信号源来的

V PP =1V ,频率为5kHz 的方波信号,用示波器同时观察输入和输出(A 点)的波形,并同时观察两信号的频率。若两信号频率相等,环路锁定,若频率不相等则环路失锁。

缓慢加大输入信号频率,密切注视两信号的频率值,当频率从不相等到突然地相等,波形上观察也完全同频(但不一定同相),说明环路已经捕获住了输入信号,记下此频率值f 1,再进一步增加输入信号频率,输出频率也同步增加,一直到突然两信号频率不相等,此时环路失锁,记下此频率值f 2。同样的方法让输入信号频率从大到小慢慢改变,找到环路的捕获频率点f 3和失锁频率点f 4。如图15.7.5 PLL 的同步带与捕获带。

则环路的同步带为2

4

2f f f H -=?。 捕获带为2

1

3f f f P -=

?。 实验结果:

f

f 图15.7.5 PLL 的同步带与捕获

图15.7.4 565组成的解调器实验电路

3.正弦波解调器

先按15.4节的实验内容3(1)的要求获得调频方波输出信号(③脚),要求输入的正弦调制信号uΩ为:U P-P=0.8V,f=1kHz ,然后将其接至565锁相环的IN输入端。用双踪示波器观察并记录566的输入调制信号uΩ和565“B”点的解调输出信号。

实验结果:

4.方波的解调

在3步基础上,将调制信号uΩ改为:U P-P=0.5V,f=1kHz的方波,用双踪示波器观察并记录566的输入调制信号uΩ和565“B”点的解调输出信号。注意B点方波上升沿与下降沿的波形形状与幅度。再观察并记录565“OUT”点的解调输出信号,比较“B”点与“OUT”点信号的波形。

实验结果:

实验总结

在本次试验中我学到一些比较新鲜的东西,因为在做此实验之前,由于我没有好好的去预习实验内容和教科书上相关的知识点,从而影响了在做整个实验的时候思路的连贯性。但是我一边在做实验的时候,一边向旁边的同学请教,同时还请教老师一些现在想起来非常幼稚的问题,但是有些东西不问自己就永远不知道当时的迷惑,所以现在想起来,当时问的问题还是对现在重新来复习相关的知识是有帮助的。

此次做实验我了解了了压控振荡器并用它构成频率调制原理和锁相环构成调频波

的解调原理,掌握了集成电路频率调制器和解调器的工作原理。然而在做完实验之后我重新复习书上相关的知识点时,感觉复习起来有一种非常熟悉的感觉,可以说是一种实践操作之后再回顾书上的东西时,学起东西来非常轻松,这对于我们工科专业学生来说,实践与理论相结合是学习的良好方法,动起手来比我们在这里干瘪瘪的学知识点有趣多了。

在做实验的时候,一开始我们并不知道该怎么去进行实验,虽然有实验指导书的指导,但是我们仍然是一头雾水。好不容易在老师的帮助下终于步入了正轨,但是又有着各种各样的问题是不是的蹦出来,让我们尝尽了苦头。在做第一个实验的时候,由于没有认真预习,导致根本不知道做出来的实验结果是不是正确的,根本不能确定。在观察了其他同学的内容后,才知道自己的错得一塌糊涂。然而这虽然让我们感到了挫败感却并不能让我们屈服,终于在自身的努力和他人的帮助下我们取得了成功。让我印象特别深的是在第二个实验的时候,由于自身的努力和进步,我们很快就做到了最后一步,但是就是这个最后一步硬是深深的卡住了我们的步伐,在我们按照指导书一遍又一遍的排错,硬是找不出问题的所在,在观看了其他成功的同学的情况下依然难以发现问题的所在。最后看着同学们一个一个的完成了,我们简直是心急如焚,更加使我们感到急躁,感觉好像不是我们的问题而是实验仪器的问题,然而最后在其他同学的指导下才终于明白是由于自己的小失误而导致的,这使我更加认识到了实验的严谨性,任何一个小小的失误都能导致实验的功败垂成。

总之,通过本次实验使我更深刻地了解到了实践的重要性,通过实验我更加体会到了“学以致用”这句话的道理,终于体会到“实习前的自大,实习时的迷惘,实习后的感思”这句话的含义了,有感思就有收获,有感思就有提高。巩固了我的部分理论知识掌握了电子元器件的识别方法和频率调制解调的原理,培养了我的实践技能,更为了我以后的学习相关知识奠定了一定的基础。

锁相环电路设计

锁相环的原理 2007-01-23 00:24 1.锁相环的基本组成 许多电子设备要正常工作,通常需要外部的 输入信号与部的振荡信号同步,利用锁相环 路就可以实现这个目的。 锁相环路是一种反馈控制电路,简称锁相环(PLL)。锁相环的特点是:利用外部输入的参考信号控制环路部振荡信号的频率和相位。 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u D(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压u C(t),对振荡器输出信号的频率实施控制。 2.锁相环的工作原理 锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为: (8-4-1) (8-4-2) 式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。则模拟乘法器的输出电压u D为: 用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压u C (t)。即u C(t)为: (8-4-3) 式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:

锁相环应用电路仿真

高频电子线路实训报告锁相环路仿真设计 专业 学生姓名 学号 2015 年 6 月24日

锁相环应用电路仿真 锁相环是一种自动相位控制系统,广泛应用于通信、雷达、导航以及各种测量仪器中。锁相环及其应用电路是“通信电子电路”课程教学中的重点容,但比较抽象,还涉及到新的概念和复杂的数学分析。因此无论是教师授课还是学生理解都比较困难。为此,我们将基于Multisim的锁相环应用仿真电路引入课堂教学和课后实验。实践证明,这些仿真电路可以帮助学生对相关容的理解,并为进行系统设计工作打下良好的基础。锁相环的应用电路很多,这里介绍锁相环调频、鉴频及锁相接收机的Multisim仿真电路。 1.锁相环的仿真模型 首先在Multisim软件中构造锁相环的仿真模型(图1)。基本的锁相环由鉴相器(PD)、环路滤波器(I P)和压控振荡器(VCO)三个部分组成。图中,鉴相器由模拟乘法器A 实现,压控振荡器为V3,环路滤波器由R1、C1构成。环路滤波器的输出通过R2、R3串联分压后加到 压控振荡器的输入端,直流电源V2用来调整压控振荡器的中心频率。仿真模型中,增加R2、R3及的目的就是为了便于调整压控振荡器的中心频率。 图1 锁相环的仿真模型 2.锁相接收机的仿真电路 直接调频电路的振荡器中心频率稳定度较低,而采用晶体振荡器的调频电路,其调频围又太窄。采用锁相环的调频器可以解决这个矛盾。其结构原理如图2所示。

图2 锁相环调频电路的原理框图 实现锁相调频的条件是调制信号的频谱要处于低通滤波器通带之外,也就是说,锁相环路只对慢变化的频率偏移有响应,使压控振荡器的中心频率锁定在稳定度很高的晶振频率上。而随着输人调制信号的变化,振荡频率可以发生很大偏移。 图3 锁相环调频的仿真电路 根据图2建立的仿真电路如图3所示。图中,设置压控振荡器V1在控制电压为0时,输出频率为0;控制电压为5V时,输出频率为50kHz。这样,实际上就选定了压控振荡器的中心频率为25kHz,为此设定直流电压V3为2.5V。调制电压V4通过电阻Rs接到VCO的输人端,R实际上是作为调制信号源V4的阻,这样可以保证加到VCO输人端的电压是低通滤波器的输出电压和调制电压之和,从而满足了原理图的要求。本电路中,相加功能也可以通过一个加法器来完成,但电路要变得相对复杂一些。 VCO输出波形和输人调制电压的关系如图4所示。由图可见,输出信号频率随着输人信号的变化而变化,从而实现了调频功能。

实验报告一 模拟锁相环模块

模拟锁相环模块 信息工程学院08级电子班安艳芳0839107 一、实验目的 1、熟悉模拟锁相环的基本工作原理 2、掌握模拟字锁相环的基本参数及设计 二、实验仪器 JH5001通信原理综合实验系统(一台)、20MHz双踪示波器(一台)、函数信号发生器(一台) 三、实验原理和电路说明 锁相的重要性:在电信网中,同步是一个十分重要的概念。其最终目的使本地终端时钟源锁定在另一个参考时钟源上。同步的技术基础是锁相,因而锁相技术是通信中最重要的技术之一在系统工作中模拟锁相环将接收端的256KHz时钟锁在发端的256KHz的时钟上,来获得系统的同步时钟,如HDB3接收的同步时钟及后续电路同步时钟。 该模块主要由模拟锁相环UP01(MC4046)、数字分频器UP02(74LS161)、D触发器UP04(74LS74)、环路滤波器和由运放UP03(TEL2702)及阻容器件构成的输入带通滤波器(中心频率:256KHz)组成。因来自发端信道的HDB3码为归零码,归零码中含有256KHz时钟分量,经UP03B构成中心频率为256KHz 有源带通滤波器后,滤出256KHz时钟信号,该信号再通过UP03A放大,然后经UP04A和UP04B两个除二分频器(共四分频)变为64KHz信号,进入UP01鉴相输入A脚;VCO输出的512KHz输出信号经UP02进行八分频变为64KHz信号,送入UP01的鉴相输入B脚。经UP01内部鉴相器鉴相之后的误差控制信号经环路滤波器滤波送入UP01的压控振荡器输入端;WP01可以改变模拟锁相环的环路参数。正常时,VCO 锁定在外来的256KHz频率上。 模拟锁相环模块各跳线开关功能如下: 1、跳线开关KP01用于选择UP01的鉴相输出。当KP01设置于1_2时(左端),环路锁定时TPP03、 TPP05输出信号将存在一定相差;当KP01设置于2_3时(右端),选择三态门鉴相输出,环路锁定时TPP03、TPP05输出信号将不存在相差。 2、跳线开关KP021是用于选择输入锁相信号:当KP021置于1_2时,输入信号来自HDB3编码模块 的HDB3码信号;当KP021置于2_3时,选择外部的测试信号(J007输入),此信号用于测量该模拟锁相环模块的性能。

滤波法及数字锁相环法位同步提取实验 模拟锁相环实验 载波同步帧同步实验

实验十九滤波法及数字锁相环法位同步提取实验 实验项目三数字锁相环法位同步观测 (1)观测“数字锁相环输入”和“输入跳变指示”,观测当“数字锁相环输入”没有跳变和有跳变时“输入跳变指示”的波形。 从图中可以观察出,若前一位数据有跳变,则判断有效,“输入跳变指示”输出表示1;否则,输出0表示判断无效。 (2)观测“数字锁相环输入”和“鉴相输出”。观测相位超前滞后的情况 数字锁相环的超前—滞后鉴相器需要排除位流数据输入连续几位码值保持不变的不利影响。在有效的相位比较结果中仅给出相位超前或相位滞后两种相位误差极性,而相位误差的绝对大小固定不变。经观察比较,“鉴相输出”比“数字锁相环输入”超前两个码元。

(3)观测“插入指示”和“扣除指示”。 (4)以信号源模块“CLK ”为触发,观测13号模块的“BS2”。 思考题:分析波形有何特点,为什么会出现这种情况。 因为可变分频器的输出信号频率与实验所需频率接近,将其和从信号中提取的相位参考信号同时送入相位比较器,比较的结果若是载波频率高了,就通过补抹门抹掉一个输入分频器的脉冲,相当于本地振荡频率降低;相反,若示出本地频率低了时就在分频器输入端的两个输入脉冲间插入 一个脉冲,相当于本地振荡频率上升,从而了达到同步的目的。 思考题:BS2恢复的时钟是否有抖动的情况,为什么?试分析BS2抖动的区间有多大?如何减小这个抖动的区间? 有抖动的存在,是因为可变分频器的存在使得下一个时钟沿的到来时间不确定,从而引入了相位抖动。而这种引入的误差是无法消除的。减小相位抖动的方法就是将分频器的分频数提高。

实验二十 模拟锁相环实验 实验项目一 VCO 自由振荡观测 (1)示波器CH1接TH8,CH2接TH4输出,对比观测输入及输出波形。 实验项目二 同步带测量 (1) 示波器CH1接13号模块TH8模拟锁相环输入,CH2接TH4输出BS1,观察TH4 输出处于锁定状态。将正弦波频率调小直到输出波形失锁,此时的频率大小f1为 400Hz ;将频率调大,直到TH4输出处于失锁状态,记下此时频率f2为 9.25kHz 。 对比波形可以发现TH8与TH4信号输入与输出错位半个周期 如右图所示,方波抖动,说明处于失锁状态。 记下两次波形失锁的频率,可计 算 出 同 步 带 f=9.25KHz-400Hz=8.85KHz 。

模拟锁相环实验报告

实验一 模拟锁相环模块 一、实验原理和电路说明 模拟锁相环模块在通信原理综合实验系统中可作为一个独立的模块进行测试。在系统工作中模拟锁相环将接收端的256KHz 时钟锁在发端的256KHz 的时钟上,来获得系统的同步时钟,如HDB3接收的同步时钟及后续电路同步时钟。 f 0=256K H z 64K H z U P 04U P 03B U P 02 U P 01512K H z 分频器÷4 分频器÷8 H D B 3 环路 滤波器 放大器图 2.1.1 模拟锁相环组成框图 T P P 02T E S T 跳线器K P 02V C O T P P 03T P P 06 T P P 04T P P 05 256K b itp s T P P 07带通滤波器 T P P 01 U P 03A 64K H z 该模块主要由模拟锁相环UP01(MC4046)、数字分频器UP02(74LS161)、D 触发器UP04(74LS74)、环路滤波器和由运放UP03(TEL2702)及阻容器件构成的输入带通滤波器(中心频率:256KHz )组成。在UP01内部有一个振荡器与一个高速鉴相器组成。该模拟锁相环模块的框图见图2.1.1。因来自发端信道的HDB3码为归零码,归零码中含有256KHz 时钟分量,经UP03B 构成中心频率为256KHz 有源带通滤波器后,滤出256KHz 时钟信号,该信号再通过UP03A 放大,然后经UP04A 和UP04B 两个除二分频器(共四分频)变为64KHz 信号,进入UP01鉴相输入A 脚;VCO 输出的512KHz 输出信号经UP02进行八分频变为64KHz 信号,送入UP01的鉴相输入B 脚。经UP01内部鉴相器鉴相之后的误差控制信号经环路滤波器滤波送入UP01的压控振荡器输入端;WP01可以改变模拟锁相环的环路参数。正常时,VCO 锁定在外来的256KHz 频率上。 模拟锁相环模块各跳线开关功能如下:

基于锁相环的频率合成电路设计

基于锁相环的频率合成电路设计 0 引言 锁相环简称PLL,是实现相位自动控制的一门技术,早期是为了解决接收机的同步接收问题而开发的,后来应用在电视机的扫描电路中。由于锁相技术的发展,该技术已逐渐应用到通信、导航、雷达、计算机到家用电器的各个领域。自从20 世纪70年代起,随着集成电路的发展,开始出现集成的锁相环器件、通用和专用集成单片锁相环,使锁相环逐渐变成一个低成本、使用简便的多功能器件。如今,PLL 技术主要应用在调制解调、频率合成、彩电色幅载波提取、雷达、FM立体声解码等各个领域。随着数字技术的发展,还出现了各种数字PLL器件,它们在数字通信中的载波同步、位同步、相干解调等方面起着重要的作用。随着现代电子技术的飞快发展,具有高稳定性和准确度的频率源已经成为科研生产的重要组成部分。高性能的频率源可通过频率合成技术获得。随着大规模集成电路的发展,锁相式频率合成技术占有越来越重要的地位。由一个或几个高稳定度、高准确度的参考频率源通过数字锁相频率合成技术可获得高品质的离散频率源。 1 锁相环及频率合成器的原理 1.1 锁相环原理 PLL是一种反馈控制电路,其特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。因PLL可以实现输出信号频率对输入信号频率的自动跟踪,所以PLL通常用于闭环跟踪电路。PLL在工作的过程中,当输出信号的频率与输入信号的频率相同时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是PLL名称的由来。PLL通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,PLL组成的原理框图如图1所示。 PLL中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图2所示。

通信原理数字锁相环实验

通信原理实验报告三数字锁相环实验

实验3数字锁相环实验 一、实验原理和电路说明 在电信网中,同步是一个十分重要的概念。同步的种类很多,有时钟同步、比特同步等等,其最终目的使本地终端时钟源锁定在另一个参考时钟源上,如果所有的终端均采用这种方式,则所有终端将以统一步调进行工作。 同步的技术基础是锁相,因而锁相技术是通信中最重要的技术之一。锁相环分为模拟锁相环与数字锁相环,本实验将对数字锁相环进行实验。 图2.2.1 数字锁相环的结构 数字锁相环的结构如图所示,其主要由四大部分组成:参考时钟、多模分频器(一般为三种模式:超前分频、正常分频、滞后分频)、相位比较(双路相位比较)、高倍时钟振荡器(一般为参考时钟的整数倍,此倍数大于20)等。数字锁相环均在FPGA内部实现,其工作过程如图所示。

T1时刻T2时刻T3时刻T4时刻 图2.2.2 数字锁相环的基本锁相过程与数字锁相环的基本特征 在图,采样器1、2构成一个数字鉴相器,时钟信号E、F对D信号进行采样,如果采样值为01,则数字锁相环不进行调整(÷64);如果采样值为00,则下一个分频系数为(1/63);如果采样值为11,则下一分频系数为(÷65)。数字锁相环调整的最终结果使本地分频时钟锁在输入的信道时钟上。 在图中也给出了数字锁相环的基本锁相过程与数字锁相环的基本特征。在锁相环开始工作之前的T1时该,图中D点的时钟与输入参考时钟C没有确定的相关系,鉴相输出为00,则下一时刻分频器为÷63模式,这样使D点信号前沿提前。在T2时刻,鉴相输出为01,则下一时刻分频器为÷64模式。由于振荡器为自由方式,因而在T3时刻,鉴相输出为11,则下一时刻分频器为÷65模式,这样使D点信号前沿滞后。这样,可变分频器不断在三种模式之间进行切换,其最终目的使D点时钟信号的时钟沿在E、F时钟上升沿之间,从而使D 点信号与外部参考信号达到同步。 在该模块中,各测试点定义如下: 1、TPMZ01:本地经数字锁相环之后输出时钟(56KHz) 2、TPMZ02:本地经数字锁相环之后输出时钟(16KHz) 3、TPMZ03:外部输入时钟÷4分频后信号(16KHz) 4、TPMZ04:外部输入时钟÷4分频后延时信号(16KHz) 5、TPMZ05:数字锁相环调整信号

基于Matlab的数字锁相环的仿真设计

基于Matlab的数字锁相环的仿真设计 摘要:锁相环是一个能够跟踪输入信号相位变化的闭环自动跟踪系统。它广泛应用于无线电的各个领域,并且,现在已成为通信、雷达、导航、电子仪器等设备中不可缺少的一部分。然而由于锁相环设计的复杂性,用SPICE对锁相环进行仿真,数据量大,仿真时间长,而且需进行多次仿真以提取设计参数,设计周期长。本文借助于Matlab中Simulink仿真软件的灵活性、直观性,在Simulink 中利用仿真模块搭建了全数字锁相环的仿真模型。先借助模拟锁相环直观形象、易于理解的特点,通过锁相环在频率合成方面的应用,先对模拟锁相环进行了仿真,对锁相环的工作原理进行了形象的说明。在模拟锁相环的基础上,重新利用仿真模块搭建了全数字锁相环的仿真模型,通过仿真达到了设计的目的,验证了此全数字锁相环完全能达到模拟锁相环的各项功能要求。 关键词:锁相环,压控振荡器,锁定,Simulink,频率合成,仿真模块 1引言 1932年法国的H.de Bellescize提出同步捡波的理论,首次公开发表了对锁相环路的描述。到1947年,锁相环路第一次应用于电视接收机的水平和垂直扫描的同步。到70年代,随着集成电路技术的发展,逐渐出现集成的环路部件、通用单片集成锁相环路以及多种专用集成锁相环路,锁相环路逐渐变成了一个成本低、使用简便的多功能组件,为锁相技术在更广泛的领域应用提供了条件。锁相环独特的优良性能使其得到了广泛的应用,其被普遍应用于调制解调、频率合成、电视机彩色副载波提取、FM立体声解码等。随着数字技术的发展,相应出现了各种数字锁相环,它们在数字信号传输的载波同步、位同步、相干解调等方面发挥了重要的作用。而Matlab强大的数据处理和图形显示功能以及简单易学的语言形式使Matlab在工程领域得到了非常广泛的应用,特别是在系统建模与仿真方面,Matlab已成为应用最广泛的动态系统仿真软件。利用MATLAB建模可以快速地对锁相环进行仿真进而缩短开发时间。 1.1选题背景与意义 Matlab是英文MATrix LABoratory(矩阵实验室)的缩写。1980年,时任美国新墨西哥大学计算机系主任的Cleve Moler教授在给学生讲授线性代数课程时,为使学生从繁重的数值计算中解放出来,用FORTRAN语言为学生编写了方便使用Linpack和Eispack的接口程序并命名为MATLAB,这便是MATLAB的雏形。经过几年的校际流

实验三:模拟锁相环与载波同步

实验三:模拟锁相环与载波同步 一、实验目的 1.模拟锁相环工作原理以及环路锁定状态、失锁状态、同步带、捕捉带等基本概念。 2.掌握用平方法从2DPSK信号中提取相干载波的原理及模拟锁相环的设计方法。 3.了解相干载波相位模糊现象产生的原因。 二、实验内容 1. 观察模拟锁相环的锁定状态、失锁状态及捕捉过程。 2. 观察环路的捕捉带和同步带。 3. 用平方环法从2DPSK信号中提取载波同步信号,观察相位模糊现象。 三、实验步骤 本实验使用数字信源单元、数字调制单元和载波同步单元。 1.熟悉载波同步单元的工作原理。接好电源线,打开实验箱电源开关。 2.检查要用到的数字信源单元和数字调制单元是否工作正常(用示波器观察信源NRZ-OUT(AK)和调制2DPSK信号有无,两者逻辑关系正确与否)。 3. 用示波器观察载波同步模块锁相环的锁定状态、失锁状态,测量环路的同步带、捕捉带。 环路锁定时u d 为直流、环路输入信号频率等于反馈信号频率(此锁相环中 即等于VCO信号频率)。环路失锁时u d 为差拍电压,环路输入信号频率与反馈信号频率不相等。本环路输入信号频率等于2DPSK载频的两倍,即等于调制单元CAR信号频率的两倍。环路锁定时VCO信号频率等于CAR-OUT信号频率的两倍。所以环路锁定时调制单元的CAR和载波同步单元的CAR-OUT频率完全相等。 根据上述特点可判断环路的工作状态,具体实验步骤如下: (1)观察锁定状态与失锁状态 打开电源后用示波器观察u d ,若u d 为直流,则调节载波同步模块上的可变电 容C 34,u d 随C 34 减小而减小,随C 34 增大而增大(为什么?请思考),这说明环路 处于锁定状态。用示波器同时观察调制单元的CAR和载波同步单元的CAR-OUT,可以看到两个信号频率相等。若有频率计则可分别测量CAR和CAR-OUT频率。在 锁定状态下,向某一方向变化C 34,可使u d 由直流变为交流,CAR和CAR-OUT频 率不再相等,环路由锁定状态变为失锁。

数字锁相环试验讲义锁相环的分类模拟数字如何定义何谓

数字锁相环试验讲义 一、锁相环的分类 模拟、数字如何定义?何谓数字锁相环。是指对模拟信号进行采样量化之后(数字化)的“数字信号”的处理中应用的锁相环,还是指的对真正的“数字信号”如时钟波形进行锁定的锁相环? 二、数字锁相环的实际应用 欲成其事,先明其义。 现代数字系统设计中,锁相环有什么样的作用。 1)在ASIC设计中的应用。 主要应用领域:窄带跟踪接收;锁相鉴频;载波恢复;频率合成。 例一:为了达到ASIC设计对时钟的要求,许多工程师都在他们的设计中加入了锁相环(PLL)。PLL有很多理想的特性,例如可以倍频、纠正时钟信号的占空比以及消除时钟在分布中产生的延迟等。这些特性使设计者们可以将价格便宜的低频晶振置于芯片外作为时钟源,然后通过在芯片中对该低频时钟源产生的信号进行倍频来得到任意更高频率的内部时钟信号。同时,通过加入PLL,设计者还可以将建立-保持时间窗与芯片时钟源的边沿对齐,并以此来控制建立-保持时间窗和输入时钟源与输出信号之间的延迟。 2)在信号源产生方面的应用 例二:由于无线电通信技术的迅速发展,对振荡信号源的要求也在不断提高。不但要求它的频率稳定度和准确度高,而且要求能方便地改换频率。实现频率合成有多种方法,但基本上可以归纳为直接合成法与间接合成法(锁相环路)两大类。 3)无线通信领域的实际应用 例三:GSM手机的频率系统包括参考频率锁相环,射频本振锁相环、中频本振锁相环。 广义的数字锁相环包括扩频通信中的码跟踪。 三、数字锁相环的基本原理 一般数字锁相环路的组成与模拟锁相环路相同,即也是由相位检波器、环路滤波器和本地振荡器等基本部件构成,但这些部件全部采用数字电路。具体来说数字锁相环由:数字鉴相器、数字环路滤波器、NCO和分频器组成。 四、实际应用中的数字锁相环的实现方法 PLL的结构和功能看起来十分简单,但实际上却非常复杂,因而即使是最好的电路设计者也很难十分顺利地完成PLL的设计。 在实际应用中,针对数字信号或数字时钟的特点,数字锁相环多采用超前滞后型吞吐脉冲的锁相环路来实现。 下面的框图是一个实用的数字锁相环的实现框图。

简述锁相环

南京机电职业技术学院 毕业设计(论文) 题目 40MHz简易锁相环的设计 系部电子工程系专业电子信息技术工程 姓名王鑫学号 G1210145 指导教师吕彬森 2015 年 04 月09日

摘要 在无线收发信机电路中,除了发射机和接收机外,还有一个非常重要的部分就是本地振荡电路。为了保证本地振荡模块输出信号的频率稳定性和较低的相位噪声,通常本振采用锁相环技术来实现,特别在无线通信领域。 本文阐述了锁相环的基本结构和工作原理,从锁相环稳定性的角度出发,给出了无线通信电路中使用40MHz 锁相环的电路设计,并且将方案中锁相环电路进行了仿真,最终满足40MHz 锁相环的设计要求。 关键词:锁相环;鉴相器;压控振荡器

Abstract(外语专业的需要) 【英文摘要正文输入】 In the wireless transceiver circuit, in addition to the transmitter and the receiver, there is a very important part of the local oscillator circuit is. In order to ensure the stability of the local oscillator module, output signal frequency and low phase noise, the vibration by using phase locked loop technique, especially in the field of wireless communications. This paper introduces the basic structure and working principle of the phase-locked loop PLL, starting from the stability of the 40MHz PLL circuit design is given of the use of wireless communication circuit, and the scheme of PLL circuit simulation, and ultimately meet the design requirements of 40MHz phase locked loop. Keywords: Attenuation network; Attenuation quantity; Amplifier; broadband

实验三 模拟锁相环与载波同步实验

实验三模拟锁相环与载波同步实验 一、实验目的 1. 掌握模拟锁相环的工作原理,以及环路的锁定状态、失锁状态、同步带、捕捉带等基本概念 2. 掌握用平方环法从2DPSK信号中提取相干载波的原理及模拟锁相环的设计方法 3. 了解相干载波相位模糊现象产生的原因 二、实验内容 1. 观察模拟锁相环的锁定状态、失锁状态及捕捉过程 2. 观察环路的捕捉带和同步带 3. 用平方环法从2DPSK信号中提取载波同步信号,观察相位模糊现象 三、基本原理 常用平方环或同相正交环(科斯塔斯环)从2DPSK信号中提取相干载波。本实验用平方环,其原理方框图及电路原理图如图3-1、图3-2所示。 图3-1 载波同步方框图 载波同步模块上有以下测试点及输入输出点: ? 2DPSK-IN 2DPSK信号输入点 ? MU 平方器输出测试点,V P-P>1V ? COMP 锁相环输入信号测试点 ? Ud 锁相环压控电压测试点 ? VCO 锁相环输出信号测试点,V P-P>0.2V ? CAR-OUT 相干载波信号输出点/测试点

图3-2 载波同步电原理图

图3-1中各单元与图3-2中的主要元器件的对应关系如下: ? 平方器 U2:模拟乘法器MC1496 ? 鉴相器 U4: 锁相环HC4046 ? 环路滤波器 U4: 锁相环HC4046 ? 压控振荡器 U4: 锁相环HC4046 ? ÷2 U6:D 触发器74HC74 ? 移相器 U8:单稳态触发器74LS123 ? 滤波器 电感L1;电容C43 ? 压控振荡器 U5: 锁相环CD4046 锁相环由鉴相器(PD )、环路滤波器(LF )及压控振荡器(VCO )组成,如图3-3所示。 u o (t) 图3-3 锁相环方框图 模拟锁相环中,PD 是一个模拟乘法器,LF 是一个有源或无源低通滤波器。锁相环路是一个相位负反馈系统,PD 检测u i (t)与u o (t)之间的相位误差并进行运算形成误差电压u d (t),LF 用来滤除乘法器输出的高频分量(包括和频及其他的高频噪声)形成控制电压u c (t),在u c (t)的作用下、u o (t)的相位向u i (t)的相位靠近。设u i (t)=U i sin[ωi t+θi (t)],u o (t)=U o cos[ωi t+θo (t)],则u d (t)=U d sin θe (t),θe (t)=θi (t)-θo (t),故模拟锁相环的PD 是一个正弦PD 。设u c (t)=u d (t)F(P),F(P)为LF 的传输算子,VCO 的压控灵敏度为K o ,则环路的数学模型如图3-4所示。 θi (t) o (t) 图3-4 模拟环数学模型 当6 )(π θ≤ t e 时,e d e d U t U θθ=)(sin ,令K d =U d 为PD 的线性化鉴相灵敏度、单位

实验三 模拟锁相环与载波同步

实验三 模拟锁相环与载波同步 一、实验目的 1.掌握模拟锁相环的工作原理,以及环路的锁定状态、失锁状态、同步带、捕捉带等基本概念。 2.掌握用平方环法从 2DPSK 信号中提取相干载波的原理及模拟锁相环的设计方法。 3.了解2DPSK 相干载波相位模糊现象产生的原因。 二、实验原理 通信系统常用平方环或同相正交环(科斯塔斯环)从 2DPSK 信号中提取相干载波。本实验使用平方环提取想干载波,其载波同步原理方框图如图 l 所示。 图1 载波同步方框图 锁相环由鉴相器(PD )、环路滤波器(LF )、及压控振荡器(VCO )组成,如图2所示。 图2 锁相环方框图 模拟锁相环中,PD 是一个模拟乘法器,LF 是一个有源或无源低通滤波器。锁相环路是一个相位负反馈系统,PD 检测 u i (t)与 u o (t)之间的相位误差并进行运算形成误差电压 u d (t),LF 来滤除乘法器输出的高频分量(包括和频及其他的高频噪声)形成控制电压 u c (t),在 u o (t)的作用下、u o (t)的相位向u i (t)的相位靠近。设u i (t)=U i sin [ωi t+θi (t)],u o (t)=U o sin [ωo t+θo (t)],则 ud(t) =Udsin θe (t),θe (t) =θi (t)- θo (t),故模拟锁相环的 PD 是一个正弦PD 。设u c (t)=u d (t)F (P),F (P )为LF 的传输算子,VCO 的压控灵敏度为K ,则环路的数学模型如图 3 所示。 图3 模拟环数学模型 当6)(π θ≤t e 时,U d sin =)(t c θU d e θ,令d d U K =为PD 的线性化鉴相灵敏度、单位为V/rad ,则环路线性化数学模型如图4所示。

用LabVIEW模拟锁相环

用LabVIEW模拟锁相环毕业设计(论文)中文摘要 毕业设计(论文)外文摘要

目录1 引言 1.1 LabVIEW概述 1.2 LabVIEW 工作环境 1.2.1 LABVIEW 的工作窗口 1.2.2 LabVIEW的操作模块 1.2.3 虚拟仪器程序(VI)的基本组成 2 锁相环理论介绍 2.1 锁定与跟踪的概念 2.1.1锁相环理论分析 2.1.3环路组成 3 虚拟锁相环电路的具体实现 3.1正弦鉴相器的实现 3.1.1正弦鉴相器理论分析 3.1.2正弦鉴相器虚拟转换 3.2 滤波器(LF) 3.3 压控振荡器(VCO) 4 子VI 4.1 时钟发生器的实现 4.2移位寄存器的实现 4.3分频器的实现 4.4子VI的具体实现步骤 5 程序的前面板图和程序图

结论 参考文献 1 引言 锁相环路(PLL)是一个能够跟踪输入信号相位的闭环自动控制系统。 它在无线电技术的各个领域得到了广泛的应用。锁相环路具有载波跟踪特性,作为一个窄带跟踪滤波器,可提取淹没在噪声之中的信号;用高稳定的 参考振荡器锁定,可以提供一系列频率稳定的频率源;可进行高精度的相位 与频率测量等等。它具有调制跟踪特性,可制成高性能的调制器和解调器。 它具有低门限特性,可以大大改善模拟信号和数字信号的解调质量。 对所相环路的研究需首先建立完整的数学模型,继而以模型为基础,用LabVIEW实现其各种工作状态下的性能与指标,诸如跟踪、捕获等等。 1.1 LabVIEW概述 LabVIEW(Laboratory Virtual Instrument Workbench, 实验室虚拟仪器工程平台)是美国NI公司(National Instrument Company)推出的一种基于G语言(Graphics Language,图形化编程语言 )的虚拟仪器软件开发工具。 用LabVIEW设计的虚拟仪器可脱离LabVIEW 开发环境,最终用户看见的是和实际的硬件仪器相似的操作面板。 LabVIEW 为虚拟仪器设计者提供了一个便捷轻松的设计环境。利用它设计者可以像搭积木一样,轻松组建一个测量系统和构建自己的仪器面板,而无需进行任何烦琐的计算机代码的编写。 1.2 LabVIEW 工作环境 1.2.1 LABVIEW 的工作窗口 主要由两个窗口组成:一个是前面板开发窗口,用于编辑和显示VI前面板

通信原理实验大全(完整版)

通信实验指导书电气信息工程学院

目录 实验一AM调制与解调实验???????? 1 实验二FM调制与解调实验??????????? 5 实验三ASK调制与解调实验?????????8 实验四FSK调制与解调实验?????????11 实验五时分复用数字基带传输??????14 实验六光纤传输实验???????????19 实验七模拟锁相环与载波同步????????27 实验八数字锁相环与位同步????????32

实验一AM 调制与解调实验 一、实验目的 理解AM 调制方法与解调方法。 二、实验原理 本实验中AM 调制方法:原始调制信号为 1.5V 直流+1KHZ 正弦交流信号,载波为20KHZ 正弦交流信号,两者通过相乘器实现调制过程。 本实验中AM 解调方法:非相干解调(包络检波法)。 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1. 熟悉实验所需部件。 2. 按下图接线。 3. 用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面 各图中。 4. 结合上述实验结果深入理解AM 调制方法与解调方法。

实验一参考结果

实验二FM 调制与解调实验 一、实验目的 理解FM 调制方法与解调方法。 二、实验原理 本实验中FM 调制方法:原始调制信号为2KHZ 正弦交流信号,让其通过V/F (电压/频率转换,即VCO 压控振荡器)实现调制过程。 本实验中FM 解调方法:鉴频法(电容鉴频+包络检波+低通滤波) 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1. 熟悉实验所需部件。 2. 按下图接线。 3. 用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面 各图中。 4. 结合上述实验结果深入理解FM 调制方法与解调方法。

基于matlab的二阶锁相环仿真设计

1 绪论 1.1 课题背景及研究意义 在现代集成电路中,锁相环(Phase Locked Loop)是一种广泛应用于模拟、数字及数模混合电路系统中的非常重要的电路模块。该模块用于在通信的接收机中,其作用是对接收到的信号进行处理,并从其中提取某个时钟的相位信息。或者说,对于接收到的信号,仿制一个时钟信号,使得这两个信号从某种角度来看是同步的(或者说,相干的)。其作用是使得电路上的时钟和某一外部时钟的相位同步,用于完成两个信号相位同步的自动控制,即锁相。它是一个闭环的自动控制系统,它将自动频率控制和自动相位控制技术融合,它使我们的世界的一部分有序化,它的输出信号能够自动跟踪输入信号的相位变化,也可以将之称为一个相位差自动跟踪系统,它能够自动跟踪两个信号的相位差,并且靠反馈控制来达到自动调节输出信号相位的目的。其理论原理早在上世纪30年代无线电技术发展的初期就已出现,至今已逐步渗透到各个领域。伴随着空间技术的出现,锁相技术大力发展起来,其应用范围已大大拓宽,覆盖了从通信、雷达、计算机到家用电器等各领域。锁相环在通信和数字系统中可以作为时钟恢复电路应用;在电视和无线通信系统中可以用作频率合成器来选择不同的频道;此外,PLL还可应用于频率调制信号的解调。总之,PLL已经成为许多电子系统的核心部分。 锁相环路种类繁多,大致可分类如下]1[。 1.按输入信号特点分类 [1]恒定输入环路:用于稳频、频率合成等系统。 [2]随动输入环路:用于跟踪解调系统。 2.按环路构成特点分类 [1]模拟锁相环路:环路部件全部采用模拟电路,其中鉴相器为模拟乘法器,该类型的锁相环也被称作线性锁相环。 [2]混合锁相环路:即由模拟和数字电路构成,鉴相器由数字电路构成,如异或门、JK触发器等,而其他模块由模拟电路构成。 [3]全数字锁相环路:即由纯数字电路构成,该类型的锁相环的模块完全由数字电路构成而且不包括任何无源器件,如电阻和电容。 [4]集成锁相环路:环路全部构成部件做在一片集成电路中。

模拟锁相环实验报告

实验十四模拟锁相环实验 一、实验目的 1、了解用锁相环构成的调频波解调原理。 2、学习用集成锁相环构成的锁相解调电路。 二、实验容 1、掌握锁相环锁相原理。 2、掌握同步带和捕捉带的测量。 三、实验仪器 1、1号模块1块 2、6号模块1块 3、5号模块1块 4、双踪示波器1台 四、锁相环的构成及工作原理 1、锁相环路的基本组成 锁相环由三部分组成,如图14-1所示,它由相位比较器PD、低通滤波器LF、压控振荡器VCO三个部分组成一个闭合环路,输入信号为V i(t),输出信号为V0(t),反馈至输入端。下面逐一说明基本部件的作用。 图14-1 锁相环组成框图 一、压控振荡器(VCO) VCO是本控制系统的控制对象,被控参数通常是其振荡频率,控制信号为加在VCO上的电压,故称为压控振荡器,也就是一个电压-频率变换器,实际上还有一种电流-频率变换器,但习惯上仍称为压控振荡器。 二、鉴相器(PD)

PD 是一个相位比较装置,用来检测输出信号V 0(t)与输入信号V i (t)之间的相位差θe (t),并把θe (t)转化为电压V d (t)输出,V d (t)称为误差电压,通常V d (t)作为一直流分量或一低频交流量。 三、环路滤波器(LF ) LF 作为一低通滤波电路,其作用是滤除因PD 的非线性而在V d (t)中产生的无用的组合频率分量及干扰,产生一个只反映θe (t)大小的控制信号V e (t)。 按照反馈控制原理,如果由于某种原因使VCO 的频率发生变化使得与输入频率不相等,这必将使V 0(t)与V i (t)的相位差θe (t)发生变化,该相位差经过PD 转换成误差电压V d (t),此误差电压经LF 滤波后得到V c (t),由V c (t)去改变VCO 的振荡频率使趋近于输入信号的频率,最后达到相等。环路达到最后的这种状态就称为锁定状态,当然由于控制信号正比于相位差,即 )()(t t V e d θ∝ 因此在锁定状态,θe (t)不可能为零,换言之在锁定状态V 0(t)与V i (t)仍存在相位差。 2、 锁相环锁相原理 锁相环是一种以消除频率误差为目的的反馈控制电路,它的基本原理是利用相位误差电压去消除频率误差,所以当电路达到平衡状态后,虽然有剩余相位误差存在,但频率误差可以降低到零,从而实现无频差的频率跟踪和相位跟踪。 当调频信号没有频偏时,若压控振荡器的频率与外来载波信号频率有差异时,通过相位比较器输出一个误差电压。这个误差电压的频率较低,经过低通滤波器滤去所含的高频成份,再去控制压控振荡器,使振荡频率趋近于外来载波信号频率,于是误差越来越小,直至压控振荡频率和外来信号一样,压控振荡器的频率被锁定在与外来信号相同的频率上,环路处于锁定状态。 当调频信号有频偏时,和原来稳定在载波中心频率上的压控振荡器相位比较的结果,相位比较器输出一个误差电压,如图14-2,以使压控振荡器向外来信号的频率靠近。由于压控振荡器始终想要和外来信号的频率锁定,为达到锁定的条件,相位比较器和低通滤波器向压控振荡器输出的误差电压必须随外来信号的载波频率偏移的变化而变化。也就是说这个误差控制信号就是一个随调制信号频率而变化的解调信号,即实现了鉴频。

锁相环设计与MATLAB仿真

本科毕业设计论文 题目锁相环设计与MATLAB仿真 _______________________________________ 专业名称电子科学与技术 学生姓名何鹏 指导教师李立欣 毕业时间2010年6月

毕业 任务书 一、题目 《锁相环设计与MATLAB 仿真》 二、指导思想和目的要求 在了解锁相环的基本工作原理的基础上,熟悉其构成及数学模型,在对锁相环有了充分的要了解后,运用MATLAB 仿真软件对其进行仿真。通过仿真看锁相环是否工作正常,参数指标是否合格来判断是否达到了仿真要求。 三、主要技术指标 1.锁相环的基本原理 2.锁相环工作期间是否经历了失锁、跟踪、捕获、锁定等四个状态。 3.锁定后平率相位是否平稳。 四、进度和要求 第3~5 周:查阅和整理资料文献,确定研究模型和研究方向; 第6~8 周:分析模型,找出其中的缺陷; 第9~11 周: 提出更容易实现的结构,对该结构具体分析; 第11~13 周:整理资料进行论文撰写、装订并翻译英文文献; 第14~15 周: 论文评阅,答辩准备,答辩 五、主要参考书及参考资料 Floyd M .Gardner,锁相环技术(第三版)姚剑清 译,人民邮电出版社,2007 Roland E.Best,锁相环设计、仿真与应用(第五版),李永明 等译,清华学出版社,2007.4 学生 ___________ 指导教师 ___________ 系主任 ___________ 设计 论文

目录 中文摘要 (3) 英文摘要 (4) 前言 (6) 第一章绪论 (7) 1.1 锁相环的发展及国内外研究现状 (7) 1.2 本文的主要内容组织 (9) 第二章锁相环的基本理论 (10) 2.1锁相环的工作原理 (11) 2.1.1鉴相器 (11) 2.1.2 低通滤波器 (13) 2.1.3 压控振荡器 (15) 2.2锁相环的工作状态 (15) 2.3锁相环的非线性工作性能分析 (17) 2.3.1跟踪性能 (18) 2.3.2捕获性能 (18) 2.3.3失锁状态 (19) 2.4锁相环的稳定性 (20) 2.5信号流程图 (21) 2.6锁相环的优良特性 (21) 2.7锁相环的应用 (22) 2.7.1锁相环在调制和解调中的应用 (22) 2.7.2锁相环在频率合成器中的应用 (23) 2.8本章小结 (23) 第三章锁相环的噪声分析 (24)

锁相环Simulink仿真模型

锁相环学习总结 通过这段的学习,我对锁相环的一些基本概念、结构构成、工作原理、主要参数以及simulink 搭建仿真模型有了较清晰的把握与理解,同时,在仿真中也出现了一些实际问题,下面我将对这段学习中对锁相环的认识和理解、设计思路以及中间所遇到的问题作一下总结: 1. 概述 锁相环(PLL )是实现两个信号相位同步的自动控制系统,组成锁相环的基本部件有检相器(PD )、环路滤波器(LF )、压控振荡器(VCO ),其结构图如下所示: 2. 锁相环的基本概念和重要参数指标 锁相是相位锁定的简称,表示两个信号之间相位同步。若两正弦信号如下所示: 相位同步是指两个信号频率相等,相差为一固定值。 ) (sin )sin()()(sin )sin()('t U t U t u t U t U t u o o o o o i i i i i θθωθθω=+==+=

当i ω=o ω,两个信号之间的相位差 为一固定值, 不 随时间变化而变化,称两信号相位同步。 当i ω≠o ω,两个信号的相位差 ,不论i θ 是否等于o θ,只要时间有变化,那么相位差就会随时间变化而 变化,称此时两信号不同步。若这两个信号分别为锁相环的输入和输出,则此时环路出于失锁状态。 当环路工作时,且输入与输出信号频差在捕获带范围之内,通过环路的反馈控制,输出信号的瞬时角频率)(t v ω便由o ω向i ω方向变化,总会有一个时刻使得i ω=o ω,相位差等于0或一个非常小的常数,那么此时称为相位锁定,环路处于锁定状态。若达到锁定状态后,输入信号频率变化,通过环路控制,输出信号也继续变化 并向输入信号频率靠近,相位差保持在一个固定的常数之内,则称环路此时为跟踪状态。锁定状态可以认为是静态的相位同步,而跟踪状态则为动态的相位同步。 环路从失锁进入到锁定状态称为捕获状态。 其他几个环路工作时的重要概念: 快捕带:能使环路快捕入锁的最大频差称为环路的快捕带,记为 L ω?,两倍的快捕带为快捕范围。 捕获带:能使环路进入锁定的最大固有频差,用P ω?表示,两倍的捕获带为捕获范围。 同步带:环路在所定条件下,可缓慢增加固有频差,直到环路失锁,把能够维持环路锁定的最大固有频差成为同步带,用H ω?, o i t t θθθθ-=-)()('o i o i t t t θθωωθθ-+-=-)()()('

相关文档
最新文档