旋转编码器应用注意事项

旋转编码器应用注意事项
旋转编码器应用注意事项

旋转编码器应用注意事项

作者: 激情^^微笑 ,2006-2-25 14:07:00 发表于:《传感器与仪表论坛》 共有4人回复,848次点击 加为好友 发送留言

■一.※ 有网友问:增量旋转编码器选型有哪些注意事项?

应注意三方面的参数:

1. 械安装尺寸,包括定位止口,轴径,安装孔位;电缆出线方式;安装空间体积;工作环境防护等级是否满足要求。

2. 分辨率,即编码器工作时每圈输出的脉冲数,是否满足设计使用精度要求。

3.电气接口,编码器输出方式常见有推拉输出(F型HTL格式),电压输出(E),集电极开路(C,常见C为NPN型管输出,C2为PNP型管输出),长线驱动器输出。其输出方式应和其控制系统的接口电路相匹配。

■二.※ 有网友问:请教如何使用增量编码器?

1,增量型旋转编码器有分辨率的差异,使用每圈产生的脉冲数来计量,数目从6到5400或更高,脉冲数越多,分辨率越高;这是选型的重要依据之一。

2,增量型编码器通常有三路信号输出(差分有六路信号):A,B和Z,一般采用TTL电平,A脉冲在前,B脉冲在后,A,B脉冲相差90度,每圈发出一个Z脉冲,可作为参考机械零位。一般利用A超前B或B超前A进行判向,我公司增量型编码器定义为轴端看编码器顺时针旋转为正转,A超前B为90°,反之逆时针旋转为反转B超前A为90°。也有不相同的,要看产品说明。

3,使用PLC采集数据,可选用高速计数模块;使用工控机采集数据,可选用高速计数板卡;使用单片机采集数据,建议选用带光电耦合器的输入端口。

4,建议B脉冲做顺向(前向)脉冲,A脉冲做逆向(后向)脉冲,Z原点零位脉冲。

5,在电子装置中设立计数栈。

■三.※ 关于户外使用或恶劣环境下使用

有网友来email问,他的设备在野外使用,现场环境脏,而且怕撞坏编码器。

我公司有铝合金(特殊要求可做不锈钢材质)密封保护外壳,双重轴承重载型编码器,放在户外不怕脏,钢厂、重型设备里都可以用。

不过如果编码器安装部分有空间,我还是建议在编码器外部再加装一防护壳,以加强对其进行保护,必竟编码器属精密元件,一台编码器和一个防护壳的价值比较还是有一定差距的。 ■四.※ 从接近开关、光电开关到旋转编码器:

工业控制中的定位,接近开关、光电开关的应用已经相当成熟了,而且很好用。可是,随着工控的不断发展,又有了新的要求,这样,选用旋转编码器的应用优点就突出了: 信息化:除了定位,控制室还可知道其具体位置;

柔性化:定位可以在控制室柔性调整;

现场安装的方便和安全、长寿:拳头大小的一个旋转编码器,可以测量从几个µ到几十、几百米的距离,n个工位,只要解决一个旋转编码器的安全安装问题,可以避免诸多接近开关、光电开关在现场机械安装麻烦,容易被撞坏和遭高温、水气困扰等问题。由于是光电码盘,无机械损耗,只要安装位置准确,其使用寿命往往很长。

多功能化:除了定位,还可以远传当前位置,换算运动速度,对于变频器,步进电机等的应用尤为重要。

经济化:对于多个控制工位,只需一个旋转编码器的成本,以及更主要的安装、维护、损耗成本降低,使用寿命增长,其经济化逐渐突显出来。

如上所述优点,旋转编码器已经越来越广泛地被应用于各种工控场合。

■五. ※ 关于电源供应及编码器和PLC连接:

一般编码器的工作电源有三种:5Vdc、5-13 Vdc或11-26Vdc。如果你买的编码器用的是11-26Vdc的,就可以用PLC的24V电源,需注意的是:

1. 编码器的耗电流,在PLC的电源功率范围内。

2. 编码器如是并行输出,连接PLC的I/O点,需了解编码器的信号电平是推拉式(或称推挽式)输出还是集电极开路输出,如是集电极开路输出的,有N型和P型两种,需与PLC 的I/O极性相同。如是推拉式输出则连接没有什么问题。

3. 编码器如是驱动器输出,一般信号电平是5V的,连接的时候要小心,不要让24V 的电源电平串入5V的信号接线中去而损坏编码器的信号端。(我公司也可以做宽电压驱动器输出(5-30 Vdc),有此要求定货时要注明)

■六. ※在很多的情况之下是编码器并没有坏,而只是干扰的原因,造成波型不好,导致计数不准。请教如何进行判断?谢谢!

编码器属精密元件,这主要因为编码器周围干扰比较严重,比如:是否有大型电动机、电焊机频繁起动造成干扰,是否和动力线同一管道传输等。

选择什么样的输出对抗干扰也很重要,一般输出带反向信号的抗干扰要好一些,即A+~A-,B+~B-,Z+~Z-,其特征是加上电源8根线,而不是5根线(共零)。带反向信号的在电缆中的传输是对称的,受干扰小,在接受设备中也可以再增加判断(例如接受设备的信号利用A、B信号90°相位差,读到电平10、11、01、00四种状态时,计为一有效脉冲,此方案可有效提高系统抗干扰性能(计数准确))。

就是编码器也有好坏,其码盘\电子芯片\内部电路\信号输出的差别很大,要不然怎么一个1000线的增量型编码器会从300多元到3000多元差别那么大呢?

①排除(搬离、关闭、隔离)干扰源,②判断是否为机械间隙累计误差,③判断是否为控制系统和编码器的电路接口不匹配(编码器选型错误);①②③方法偿试后故障现象排除,则可初步判断,若未排除须进一步分析。

判断是否为编码器自身故障的简单方法是排除法。现在我公司编码器已大规模生产,技术生产已成熟运用,产品故障率控制在千分之几。排除法的具体方法是:用一台相同型号的编码器替换上去,如果故障现象相同,可基本排除是编码器故障问题,因为两台编码器同时有故障的小概率事件发生可能很小,可以看作为0。假如换一台相同型号编码器上去,故障现象立刻排除,则可基本判定是编码器故障。

■七. ※请教一下,何为长线驱动?普通型编码器能否远距离传送?

答:长线驱动也称差分长线驱动,5V,TTL的正负波形对称形式,由于其正负电流方向相反,对外电磁场抵消,故抗干扰能力较强。

普通型编码器一般传输距离是100米,如果是24V HTL型且有对称负信号的,传输距离300-400米。

■八. ※有网友问:能否简单介绍旋转编码器检测直线位移的方法?

答:1,使用“弹性连轴器”将旋转编码器与驱动直线位移的动力装置的主轴直接联轴。

2,使用小型齿轮(直齿,伞齿或蜗轮蜗杆)箱与动力装置联轴。

3,使用在直齿条上转动的齿轮来传递直线位移信息。

4,在传动链条的链轮上获得直线位移信息。

5,在同步带轮的同步带上获得直线位移信息。

6,使用安装有磁性滚轮的旋转编码器在直线位移的平整钢铁材料表面获得位移信息(避免滑差)。

7,使用类似“钢皮尺”的“可回缩钢丝总成”连接旋转编码器来探测直线位移信息(数据处理中须克服叠层卷绕误差)。

8,类似7,使用带小型力矩电机的“可回缩钢丝总成”连接旋转编码器来探测直线位移信息(目前德国有类似产品,结构复杂,几乎无叠层卷绕误差)。

■九. ※ 求教:增量光栅Z信号可否作零点?圆光栅编码器如何选用?

无论直线光栅还是轴编码器其Z信号的均可达到同A\B信号相同的精确度,只不过轴编码器是一圈一个,而直线光栅是每隔一定距离一个,用这个信号可达到很高的重复精度。可先用普通的接近开关初定位,然后找最为接近的Z信号(每次同方向找),装的时候不要望忘了将其相位调的和光栅相位一致,否则不准。

根据你的细分精度要求和分辩率要求选用。精度高自然要选用每周线纹高的,精度不高,就没必要选用高线纹数的圆光栅编码器了。

■十. ※请教两个问题:增量型编码器和绝对型编码器有何区别?做一个伺服系统时怎么选择呢?

常用的为增量型编码器,如果对位置、零位有严格要求用绝对型编码器。伺服系统要具体分析,看应用场合。

测速度用常用增量型编码器,可无限累加测量;测位置用绝对型编码器,位置唯一性(单圈或多圈),最终看应用场合,看要实现的目的和要求。

■十一. ※绝对型旋转编码器选型注意事项,旋转编码器和接近开关、光电开关优势比较: 绝对编码器单圈从经济型8位到高精度17位,价格可以从几百元到1万多不等;

绝对编码器多圈大部分用25位,输出有SSI,总线Profibus-DP,Can L2,Interbus,DeviceNet,价格也可以从3千多到1万多不等。

旋转光电编码器测量角度和长度,已是很成熟的技术了,现今再用上高精度大量程的绝对型编码器,大大提高了测量精度和可靠性,而且经济实用。就目前来看,其仍然是测量长度的最多选择。

■十二. ※从增量式编码器到绝对式编码器

旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。

解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。

比如,打印机扫描仪的定位就是用的增量式编码器原理,每次开机,我们都能听到噼哩啪啦的一阵响,它在找参考零点,然后才工作。

这样的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位置),于是就有了绝对编码器的出现。

绝对编码器光码盘上有许多道刻线,每道刻线依次以2线、4线、8线、16线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。

绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。

由于绝对编码器在位置定位方面明显地优于增量式编码器,已经越来越多地应用于工控定位中。

测速度需要可以无限累加测量,目前增量型编码器在测速应用方面仍处于无可取代的主流位

置。

■十三. ※能不能告诉我选用绝对型编码器应注意哪些事项?

(一).机械部分:

1.测长度还是测角度,测长度如何通过机械方式转换(在上面有一些介绍,如不清楚可来电讨论)。测角度是360度内(单圈),还是可能过360度(多圈)。生产过程是一个方向旋转循环工作,还是来回方向循环工作。

2.轴连接安装形式,有轴型通过软性联轴器连接,还是轴套型连接。

3.使用环境:粉尘,水气,震动,撞击?

(二)电气部分

1.连接的输出接收部分是什么?

2.信号形式?

3.分辨率要求?

4.控制要求?

■十四. ※从单圈绝对式编码器到多圈绝对式编码器

旋转单圈绝对式编码器,以转动中测量光码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码器只能用于旋转范围360度以内的测量,称为单圈绝对式编码器。

如果要测量旋转超过360度范围,就要用到多圈绝对式编码器。

编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。

多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位置作为起始点就可以了,而大大简化了安装调试难度。

多圈式绝对编码器在长度定位方面的优势明显,已经越来越多地应用于工控定位中。 ■十五. ※能介绍一下绝对型编码器的串行和并行输出的详细一点的信息,谢谢!

并行输出:

绝对型编码器输出的是多位数码(格雷码或纯二进制码),并行输出就是在接口上有多点高低电平输出,以代表数码的1或0,对于位数不高的绝对编码器,一般就直接以此形式输出数码,可直接进入PLC或上位机的I/O接口,输出即时,连接简单。但是并行输出有如下问题:

1。必须是格雷码,因为如是纯二进制码,在数据刷新时可能有多位变化,读数会在短时间里造成错码。

2。所有接口必须确保连接好,因为如有个别连接不良点,该点电位始终是0,造成错码而无法判断。

3。传输距离不能远,一般在一两米,对于复杂环境,最好有隔离。

4。对于位数较多,要许多芯电缆,并要确保连接优良,由此带来工程难度,同样,对于编码器,要同时有许多节点输出,增加编码器的故障损坏率。

并行:时间上,数据同时发出;空间上,每个位数的数据各占用一根线缆。

增量型编码器输出的通常是并行输出。

串行输出:

串行输出就是通过约定,在时间上有先后的数据输出,这种约定称为通讯规约,其连接的物理形式有RS232、RS422(TTL)、RS485等。

串行输出连接线少,传输距离远,对于编码器的保护和可靠性就大大提高了,一般高位

数的绝对编码器都是用串行输出的。

由于绝对型编码器的部分知名厂家在德国,所以串行输出大部分是与德国的西门子配套的,如SSI同步串行输出,总线型是PROFIBUS-DP的输出等。

串行输出编码器连接德国西门子的设备是比较容易的,但是连接非德国系的设备,接口就是问题了,我公司提供各种接口输出的仪表,可以解决这样的问题。

串行:时间上,数据按照约定,有先后;空间上,所有位数的数据都在一组线缆上(先后)发出。

■十六. ※串行编码器应该都是绝对式的?

串行是指按时间约定,串行输出数字编码信号,基本是绝对的,但也有一些增量编码器,通过内置电池记忆原点,其也可以通过串行输出位置值,如电池线不联,还是增量编码器,此也称为伪绝对值编码器,在一些日本伺服系统中较多见。其本质其实还是增量编码器。

■十七. ※有网友问:为什么叫“绝对型编码器”?

“绝对型编码器”相对于“增量型编码器”而言。

“绝对型编码器”使用某种方式表示并记忆物体的绝对位置,角度和圈数。即一旦位置,角度和圈数固定,什么时候编码器的示值都唯一固定,包括停电后投电。“增量型编码器”做不到这一点。一般“增量型编码器”输出两个A、B脉冲信号,和一个Z(L)零位信号,A、B脉冲互差90度相位角。通过脉冲计数可以知道位置,角度和圈数增量,通过A,B脉冲信号超前或滞后可以知道方向,停电后,必须从约定的基准重新开始计数。“增量型编码器”表示位置,角度和圈数需要做后处理,重新投电要做“复零”操作,所以,“增量型编码器”比“绝对型编码器”在价格上便宜许多。

■十八. ※有网友问:光电编码器、光学电子尺和静磁栅绝对编码器的优缺点?

光电编码器:

1,优点:体积小,精密,本身分辨度可以很高(目前我公司通过细分技术在直径φ66的编码器上可达到54000cpr) ,无接触无磨损;同一品种既可检测角度位移,又可在机械转换装置帮助下检测直线位移;多圈光电绝对编码器可以检测相当长量程的直线位移(如25位多圈)。寿命长,安装随意,接口形式丰富,价格合理。成熟技术,多年前已在国内外得到广泛应用。

2,缺点:精密但对户外及恶劣环境下使用提出较高的保护要求;量测直线位移需依赖机械装置转换,需消除机械间隙带来的误差;检测轨道运行物体难以克服滑差。

光学电子尺:

1,优点:精密,本身分辨度较高(可达到0.005mm);体积适中,直接测量直线位移;无接触无磨损,测量间隙宽泛;价格适中,接口形式丰富,已在国内外金属切削机械行业得到较多应用(如线切割、电火花等)。

2,缺点:测量直线和角度要使用不同品种;量程受限制(量程超过4m,生产制造困难价格昂贵),不适于在大量程恶劣环境处实施位移检测。

静磁栅绝对编码器:

1,优点:体积适中,直接测量直线位移,绝对数字编码,理论量程没有限制;无接触无磨损,抗恶劣环境,可水下1000米使用;接口形式丰富,量测方式多样;价格尚能接受。

2,缺点:分辨度1mm不高;测量直线和角度要使用不同品种;不适于在精小处实施位移检测(大于260毫米)。

■十九. ※我是个新手,想请问,一个圆盘,分50个点,要实现定位控制,转速很慢,是要用到绝对型编码器吗?怎么找原点呢?50个位置定位是360度均匀等分吗?谢谢

绝对编码器的编码都是2的幂次方,没有360度均匀50等分的,要近似,看精度要求有多高,选多高线数的编码器,如果精度要求不是太高的话,用8位256线的就可以了。编码器的每

个位置都有唯一编码,编码为零的就可以作为零点,也可以任意位置定义为零,其他位置与其比较计算。

如果可以用参考点的话,也可以用增量式的,因速度慢,应该选3000线或以上的,每圈一个零位。

■二十. 请简单介绍:RS-232、RS-422与RS-485标准及应用?

RS-232、RS-422与RS-485都是串行数据接口标准,最初都是由电子工业协会(EIA)制订并发布的。

目前RS-232是PC机与通信工业中应用最广泛的一种串行接口。RS-232被定义为一种在低速率串行通讯中增加通讯距离的单端标准。RS-232采取不平衡传输方式,即所谓单端通讯。 RS-422、RS-485与RS-232不一样,数据信号采用差分传输方式,也称作平衡传输,它使用一对双绞线,将其中一线定义为A,另一线定义为B。

通常情况下,发送驱动器A、B之间的正电平在+2~+6V,是一个逻辑状态,负电平在-2~6V,是另一个逻辑状态。另有一个信号地C,在RS-485中还有一“使能”端,而在RS-422中这是可用可不用的。“使能”端是用于控制发送驱动器与传输线的切断与连接。当“使能”端起作用时,发送驱动器处于高阻状态,称作“第三态”,即它是有别于逻辑“1”与“0”的第三态。

由于RS-485是从RS-422基础上发展而来的,所以RS-485许多电气规定与RS-422相仿。如都采用平衡传输方式、都需要在传输线上接终接电阻等。RS-485可以采用二线与四线方式,二线制可实现真正的多点双向通信。

RS-485与RS-422的不同还在于其共模输出电压是不同的,RS-485是-7V至+12V之间,而RS-422在-7V至+7V之间,RS-485接收器最小输入阻抗为12k RS-422是4k;由于RS-485满足所有RS-422的规范,所以RS-485的驱动器可以用在RS-422网络中应用。

详细资料请查阅相关资料。

变频器的常见使用问题之2

作者: 激情如火 ,2006-2-16 15:32:00 发表于:《变频器与调速论坛》 共有48人回复,2836次点击 加为好友 发送留言

警告!因各厂家变频器设计和使用有区别,所以下面解答不一定满足所有品牌变频器要求,在实际使用中,一切以厂家提供的产品使用说明书为准则!如您有疑问欢迎讨论!

1:1台变频器带多台电机时,怎么选定变频器容量?

1台变频器并联驱动多台电机,请使电机额定容量的总和在变频器的额定输出电流以下,并保留10%余量。

2:怎么解决高次谐波问题?

二极管整流电路会产生……5、7、11、13次……的高次谐波。

影响:电流增大、功率因数下降

对策:请装上AC或DC电抗器(3%压降左右)

3:对于变频器输入侧变压器有什么要求?

当安装大容量机器时,请事先确认变压器阻抗值,变压器容量是否合适。

另外,在下面3个情况下,请在变频器输入侧装上AC电抗器。

特别在小容量变频器和大容量变频器安装在同一地方时要注意以下三点:

①变压器容量超过500KVA时

②变压器与变频器之间的距离小于10M时

③输入电流值大于变频器额定输出电流值时

由于电网电感越小高次谐波电流就会越大,故甚至可能会引起变频器整流桥损坏 4:怎么解决电压不平衡问题?

有时很小的电压不平衡会引起很严重的电流不平衡,甚至产生缺相。

后果:整流桥损坏,电解电容损坏(由脉动电流增大)

对策:如果某一相的电流超过变频器的额定输出电流时,必须装上电抗器.

*在轻载时出现电流不平衡,不会损坏机器。

5:对于空气开关有什么要求?

MCCB的推荐参数一览表,如下所示:

此推荐参数是以一般型MCCB规格为基准的。你可采用更高档的规格。

与变频器相配的(降压)变压器容量:

6:对于输入电压波动有什么要求?

一般输入电压范围相当宽,故基本上能适应国内的任何地区。

但在安装时一定要事先确认输入电压。

①.容许电压范围

低值:380V-15%=323V(负载过量时,电流增加)

高值:460V+10%=506V

受接触器和风扇制约(18.5Kw以上)小于15Kw是DC励磁。

②.超过限定的容许电压范围时

下限:出现欠压保护(LV),变频器就会停机(约300V)

上限:出现过电压保护(OV),变频器也会停机

*输入电压超过 506V时,OV也保护不了接触器、风扇等。

*整流模块的耐压承受能力为1600V,一般不会因过电压损坏.

③.对于输入电压波动,平时AVR(稳压)功能会自动地工作。

7:如在输出侧有电磁接触器,有什么注意事项

①在运行中请勿断开再吸合,因会产生很大的冲击电流。故有时变频器可能会跳闸。

②发生瞬时停电时,使变频器停机。

因在发生极电短时间的瞬时停电(0.1秒左右)时,接触器会断开而变频器不出现欠压报警。故在复电时,产生冲击电流,变频器可能会过流跳闸。

8:对于使用坏环境有什么要求?

①温度

*允许周围温度:-10到40℃(如取下通风壳,可到50℃)

变频器内部温度比周围温度还高10~20℃

*安装在柜子里时,一定要注意柜子的体积、变频器的位置、排气风扇的风量。

*周围温度越低,变频器寿命就会越长。

②湿度

*90%以下(无水珠凝结现象)

在相当于户外的情况下。如果周围温度突然下降,水珠凝结现象是会很容易出现的。

线路板接插件部分干燥后,绝缘会下降,可能引起误动作。

③导电性灰尘、油雾、腐蚀性气体

虽然电路基板已防尘防湿处理过,但接插件等接触部分无法处理。

*油雾 →主要是风扇受影响

*腐蚀性气体→主要是铜排、各器件的管脚会腐蚀

9:如果现场的海拔标准高度超过1000M,有什么...

现场的海拔标高过1000m时,请把负载率减少(因冷却效果降低)。

标准2000m:把负载电流下降到90%

3000m:把负载电流下降80%

10:如果在安装场所有振动,如何解决?

基本上变频器不允许振动 即使开始的时候没问题,时间长了也会出现故障

*如果没有无振动的安装场所,请采用防振胶垫。

*一般规格表上的"振动"表示"运输过程中的振动"并不是"使用时的振动"。

11:变频器的过电流保护及处理方法?

1、 过电流保护功能

变频器中,过电流保护的对象主要指带有突变性质的、电流的峰值超过了变频器的容许值的情形.

由于逆变器件的过载能力较差,所以变频器的过电流保护是至关重要的一环,迄今为止,已发展得十分完善.

(1) 过电流的原因

1、工作中过电流 即拖动系统在工作过程中出现过电流.其原因大致来自以下几方面:

① 电动机遇到冲击负载,或传动机构出现“卡住”现象,引起电动机电流的突然增加.

② 变频器的输出侧短路,如输出端到电动机之间的连接线发生相互短路,或电动机内部发生短路等.

③ 变频器自身工作的不正常,如逆变桥中同一桥臂的两个逆变器件在不断交替的工作过程中出现异常。例如由于环境温度过高,或逆变器件本身老化等原因,使逆变器件的参数发生变化,导致在交替过程中,一个器件已经导通、而另一个器件却还未来得及关断,引起同一个桥臂的上、下两个器件的“直通”,使直流电压的正、负极间处于短路状态。

2、升速时过电流 当负载的惯性较大,而升速时间又设定得太短时,意味着在升速过程中,变频器的工作效率上升太快,电动机的同步转速迅速上升,而电动机转子的转速因负载惯性较大而跟不上去,结果是升速电流太大。

3、降速中的过电流 当负载的惯性较大,而降速时间设定得太短时,也会引起过电流。因为,降速时间太短,同步转速迅速下降,而电动机转子因负载的惯性大,仍维持较高的转速,这时同样可以是转子绕组切割磁力线的速度太大而产生过电流。

(2)处理方法

1、 起动时一升速就跳闸,这是过电流十分严重的现象,主要检查

① 工作机械有没有卡住

② 负载侧有没有短路,用兆欧表检查对地有没有短路

③ 变频器功率模块有没有损坏

④ 电动机的起动转矩过小,拖动系统转不起来

2、 起动时不马上跳闸,而在运行过程中跳闸,主要检查

① 升速时间设定太短,加长加速时间

② 减速时间设定太短,加长减速时间

③ 转矩补偿(U/F比)设定太大,引起低频时空载电流过大

④ 电子热继电器整定不当,动作电流设定得太小,引起变频器误动作

12:一般变频器有几种干扰?

①传导干扰……通过电线、接地线

②感应干扰……由电磁感应、静电感应

③辐射干扰……通过电线、变频器

13:对于干扰问题有什么具体对策?

*对产生干扰方(变频器)的对策

①传导干扰……在输入侧用干扰滤波器,在输入侧使用干扰滤波器(输入专用)、零相电抗器、接地电容、绝缘变压器。

②感应干扰……把输入/输出线、动力线、信号线分离。采用屏蔽线,并使用电源线滤波

器(共用扼流圈、磁环),正确接地。

③辐射干扰……注意控制柜子中的安装和动力线的金属配管。

降低载波频率也有效果。

对产生干扰方(变频器)的对策体积又大,价格又高。

*对被干扰方的对策

如果受到干扰的电线或对象明确的话,就针对处理。

如果不明确,就根据以下顺序处理。

①尽量远离变频器。

②信号线采用屏蔽线,且屏蔽线只有一端和共用端相接。

③还可以使用磁环和滤波电容。

④在电源线中插入电源线滤波器(正常状态扼流器、小型的噪音滤波器)。

⑤接地线的分离。

14:怎么延长变频器寿命?(主要是电解电容、风扇)

请尽量把环境温度降低。如果周围温度高10℃,寿命就会降低一半。

*电解电容:由于电解液的自然蒸发。标准寿命为5年。

*风扇 :由于润滑油的老化。标准寿命为2-3年。

寿命的判断方法

*电解容器: ①断电后,LED灯灭得太快(与其他机器比较)

②频繁出现低电压报警。(以前很少出现)

*风扇: ①风扇运转时,有摩擦音。

②电源切断时,很快停下来。

15:长期保管后,有什么注意事项?

电解电容长期不通电,会导致漏电流增大,额定电压下降。 通电时内部温度上升,电容裂开。

厂方推荐:保存2年以内后通电,要缓慢加压。

最好使用调压装置(最差的方法,先通单相220V电1小时后,加三相380V电)。

16: 漏电断路器经常跳闸,如何解决?

输出线与电机之间的分布电容引起,电线越长或电机容量越大时,漏电流越大,漏电断路器容易动作。

对策: ①增加漏电开关的漏电设定电流。

②使用带高频对策的漏电开关。

③降低载波频率。

④采用输出电抗器。

17:怎么解决电机的机械振动?

*设备的共振:用回避频率处理

*如变频器提供了参数修正不稳定现象,由小到大逐渐改变该设定值(去除不稳定现象)10Hz-40Hz轻负载时容易产生不稳定现象。

18:电机损耗及发热问题,如何解决?

使用变频器后,由于高次谐波的影响,温度比工频驱动高(主要是二次铜损增大)对于大多数风冷电机来说,在保持低于50Hz连续运行,散热效果变差。

*对策:

①加交流输出电抗器(阻抗为3%)

②采用变频电机。

速度为额定速度1/2时,输出转矩降低10%,速度为额定速度1/3时,输出转矩降低20%。

19:如何避免电机绝缘击穿事故?

由输出线上的分布电容和分布电感的共振产生浪涌电压,叠加到输出电压而产生的。

晶体管、IGBT的开关频率越高,配线越长,产生的浪涌电压越高,最大时,可产生直流电压2倍的浪涌电压。

*对策:

采用高绝缘强度的电机

加交流输出电抗器(阻抗为3%)

加输出电感L、电容C、电阻R滤波器。

*如果绝缘问题存在的话,会在短期内出现问题。

20:用在变级对数电机时,有什么注意事项?

*把变极对数电机在低级侧固定。这样,当瞬时停电时,会防止因接触器切换而引起的过电流。

*切换极数一定要在电机停止后进行。

21:关于单相电机

*电容启动的单相电机,会导致电容烧坏,引起过电流保护。

*分相和斥相启动的单相电机,会使启动器线圈烧坏。

因此,一般单相电机不采用通用频率器调速:

22:关于用同步电机

*负载变动大时,容易引起失步,从而导致过电流,电机烧坏。所以要确定电流和电机的温度。

*轻负载也会引起失步。加交流输出电抗器是解决此问题的有效方法。

与工频电源相比,降低输出容量10%~20%。变频器的连续输出电流要大于同步电机额定电流与同步导入电流的标值的乘积。

23:关于高频电机

*载波频率低,电流增加。

*额定电压低的电机(如:200Hz/200V)可以使用输出降压变压器,或加交流输出电抗器 高速电机产生的高次谐波也增加电流值,因此选择变频器时容量因比普通电机稍大。

在转动惯量一定情况下,高速电器的调速范围宽,加/减速时间设定也要大些。

24: 怎么设定加减速时间及转矩提升?

*负载的惯量大,一般起动转矩小。所以,加减速度时间值设定大时,转矩提升值要设定小。

*起动转矩大的负载,一般惯量小。所以,加减速时间设定小时,转矩提升要设定大一些。

而且

①如果加减速时间长,大电流流过的时间长。

②逐步加大转矩提升,电流会逐步减小,直到电流反而增大时,停止转矩补偿的提升。

③始动频率设得高一些(5-10Hz)

*用无速度传感器模式,自动设转矩补偿。

25:出现整流桥损坏如何解决?

电网与变频器的不协调,可能造成变频器整流桥的损坏,可以考虑装输入交流电抗器选购件对应。

需要装交流电抗器的判断条件如下:

(1) 变压器容量大于500KVA,且变压器容量与变频器容量的比大于10时。

(2) 同一电源变压器装有可控硅负载或功率因素补偿电容器时。

(3) 电源三相电压不平衡超过(4) 需要改善输入功率因素时。

旋转编码器原理及其应用

旋转编码器的原理及其应用 摘要:本文介绍了常用编码器的原理、分类以及其应用的注意事项,并以德国P+F公司的编码器产品为参照,重点介绍了增量型编码器和绝对值型编码器的原理及应用,其中绝对值型编码器中以格雷码为主作了详细的介绍。 关键词:编码器增量型绝对值格雷码 一、前言 在自动化领域,旋转编码器是用来检测角度、速度、长度、位移和加速度的传感器。依靠轴杆、齿轮、测量轮或绳缆的控制,线性的移动能被检测。编码器也把实际的机械参数值转换成电气信号,这些电气信号可以被计数器、转速表、PLC和工业PC处理。 二、功能原理 由玻璃或塑料制成的圆盘被分成透明和非透明的区域,如果一个光源固定在圆盘的一侧,光敏元件固定在另一侧,旋转的移动没有接触就可获得。如果一束光打在透明的区域,接收器接收到,产生脉冲,当光束被 黑色区域隔断式,不产生脉冲。发光二极管 通常用作光源,发光范围在红外线范围内, 光敏二极管或光敏晶体管作为接收器。(见 右图) 如果按照此原理没有其它功能加入的 话,仅能推论出圆盘在转动,旋转的感应或 绝对值位置不能被确定。 编码器根据它们的功能原理和机械形式 和安装系统有不同的区别。 1、功能原理 1.1增量型旋转编码器 轴的每圈转动,增量型编码器提供一定数量的脉冲,周期性的测量或者单位时间内的脉冲数可以用来测量移动的速度。如果在一个参考点后面脉冲数被累加,计算值就代表了转动角度或行程的参数。双通道编码器输出脉冲之间相差900。能使接收脉冲的电子设备接收轴的旋转感应信号,因此可用来实现双向的定位控制。另外,三通道增量型编码器每一圈产生一个称之为零位信号的脉冲。 旋转增量型编码器以转动时输出脉冲,通过计数设备来计算其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备计算并记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的产生结果出现后才能知道。 解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。 这样的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位置),于是就有了绝对编码器的出现。 1.2绝对值旋转编码器 绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。特别是在定位控制应用中,绝对值编码器减轻了电子接收设备的计算任务,从而省去了复杂的和昂贵

磁旋转编码器常见问题

磁旋转编码器常见问题 常见问题:磁旋转编码器I C 一般性问题 Q1:芯片如果不能按预期工作,我需要进行哪些测试才能找出原因? Q2:可以在不编程的情况下使用旋转编码器芯片吗? Q3:如何知道上电之后角度数据何时有效? Q4:启动时间是否会随温度而改变? Q5:不同类型的输出可用于哪些应用? Q6:我可以利用数字输出驱动大于4m A的电流,例如驱动一个10m A的L E D吗?Q7:为什么已存在下拉电阻还必须将P R O G连接到V S S? Q8:对准模式下限制数值32是什么意思? Q9:可以得到的最佳精度是多少? Q10:可以得到优于0.1度的精度吗? Q11地利微电子可以校准芯片以实现最佳的精度吗? Q12:数据资料中显示的误差曲线对于所有产品都是一样的吗? Q13:编码器的重复性是指什么? Q14:重复性怎样随着温度改变? Q15:C S n引脚可以永久地连接到V S S吗? Q16:角度数据采样与C S n是同步的吗? Q17:奥地利微电子可以提供预先编程的定制化编码器吗? Q18:编码器可承受的振动水平怎样? Q19:怎样降低A S5040/43/45的功耗? 磁铁相关问题 Q20:推荐的磁铁水平偏离容差是多少? Q21:如果不能将磁铁对准在推荐的容差内,会发生什么呢? Q22:我可以将编码器I C安装在环形磁铁的周围吗? Q23:怎样才能扩展磁铁的垂直间距? Q24:如果在―绿色‖(适当)范围之外使用传感器会有什么后果? Q25:哪些类型的磁铁可以和A S5035/40/43/45配合使用? Q26:在旋转轴内安装磁铁的时候需要注意什么? Q27:为什么在移除磁铁的时候不能触发C O F和L I N报警? Q28:为什么即使移除磁铁时我仍可以得到随机的角度数据? Q29:在什么磁场范围可以得到M a g I n c/-D e c、L I N和C O F报警信号? Q30:如何分辨磁铁场强过弱(或丢失)与磁铁场强过强的情况? Q31:要获得零位读数时,磁铁要处于哪一个缺省位置? Q32:磁编码器是如何做到对于外部磁场不敏感的? A S5035,A S5040,A S5045 磁旋转编码器产品系列常见问题 A S50000磁旋转编码器产品系列 常见问题 Q33:是否需要屏蔽传感器以避免外部磁场的影响? Q34:B L D C电动机的强磁场转子磁铁会对编码器造成什么影响? Q35:我可以将其它材料放置到磁铁和I C之间吗?

编码器详细介绍与编程指导

增量型编码器与绝对型编码器的区分 编码器如以信号原理来分,有增量型编码器,绝对型编码器。 增量型编码器 (旋转型) 工作原理: 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 信号输出: 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL 也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。 如单相联接,用于单方向计数,单方向测速。 A.B两相联接,用于正反向计数、判断正反向和测速。 A、B、Z三相联接,用于带参考位修正的位置测量。 A、A-, B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。 对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。 对于HTL的带有对称负信号输出的编码器,信号传输距离可达300米。

编码器和译码器的应用

编码器、译码器及应用电路设计 一、实验目的: 1、掌握中规模集成编码器、译码器的逻辑功能测试和使用方法; 2、学会编码器、译码器应用电路设计的方法; 3、熟悉译码显示电路的工作原理。 二、实验原理: 1、什么是编码: 教材说:用文字、符号、或者数字表示特定对象的过程称为编码 具体说:编码的逻辑功能是把输入的每个高、低电平信号编成对应的二进制代码 2、编码器74LS147的特点及引脚排列图: 74LS147是优先编码器,当输入端有两个或两个以上为低电平,它将对优先级别相对较高的优先编码。其引脚排列图: 3、什么是译码:译码是编码的逆过程,把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出,译码器广泛用于代码转换、终端的数字显示、数据分配、组合控制信号等。 译码器按照功能的不同,一般分为三类:二进制译码器、二—十进制译码器、显示译码器。 (1)变量译码器(用以表示输入变量的状态) 74LS138的特点及其引脚排列图:反码输出。 ABC是地址输入端,Y0—Y7是输出端,G1、G2A’、G2B’为 使能端,只有当G1=G2A’=G2B’=1时,译码器才工作。 (2)码制变换译码器:用于同一个数据的不同代码之间的相互转换,代表是4—10线译码器 译码器74LS42的特点及其引脚排列图: 译码器74LS42的功能是将8421BCD码译成10个对象 其原理与74LS138类同,只不过它有四个输入端, 十个输出端,4位输入代码0000—1111十六种状态组合

其中有1010—1111六个没有与其对应的输出端, 这六组代码叫做伪码,十个输出端均为无效状态。 (3)数码显示与七段译码驱动器:将数字、文字、符号的代码译成数字、文字、符号的电路 a、七段发光二极管数码显示管的特点:(共阴极) b、七段译码驱动器: 4、在本数字电路实验装置上已完成了译码器74LS48和数码管之间的连接图。 三四五脚接高电频,数码管的单独端接低电频。

旋转编码器详解

增量式编码器的A.B.Z 编码器A、B、Z相及其关系

TTL编码器A相,B相信号,Z相信号,U相信号,V相信号,W相信号,分别有什么关系? 对于这个问题的回答我们从以下几个方面说明: 编码器只有A相、B相、Z相信号的概念。 所谓U相、V相、W相是指的电机的主电源的三相交流供电,与编码器没有任何关系。“A相、B相、Z相”与“U相、V相、W相”是完全没有什么关系的两种概念,前者是编码器的通道输出信号;后者是交流电机的三 相主回路供电。 而编码器的A相、B相、Z相信号中,A、B两个通道的信号一般是正交(即互差90°)脉冲信号;而Z相是零脉冲信号。详细来说,就是——一般编码器输出信号除A、B两相(A、B两通道的信号序列相位差为90度)外,每转一圈还输出一个零位脉冲Z。 当主轴以顺时针方向旋转时,输出脉冲A通道信号位于B通道之前;当主轴逆时针旋转时,A通道信号则位于B通道之后。从而由此判断主轴是正转还是反转。 另外,编码器每旋转一周发一个脉冲,称之为零位脉冲或标识脉冲(即Z相信号),零位脉冲用于决定零位置或标识位置。要准确测量零位脉冲,不论旋转方向,零位脉冲均被作为两个通道的高位组合输出。由于通道之间的相位差的存在,零位脉冲仅为脉冲长度的一半。 带U、V、W相的编码器,应该是伺服电机编码器 A、B相是两列脉冲,或正弦波、或方波,两者的相位相差90度,因此既可以测量转速,还可以测量电机的旋转方向Z相是参考脉冲,每转一圈输出一个脉冲,脉冲宽度往往只占1/4周期,其作用是编码器自我校正用的,使得编码器在断电或丢失脉冲的 时候也能正常使用。 ABZ是编码器的位置信号,UVW是电机的磁极信号,一般用于同步电机; AB对于TTL/HTL编码器来说,AB相根据编码器的细分度不同,每圈有很多个,但Z相每圈只有一个; UVW磁极信号之间相位差是120度,随着编码器的角度转动而转动,与ABZ 之间可以说没有直接关系。 /#############################################################

Arduino关于旋转编码器程序的介绍资料

Arduino关于旋转编码器程序的介绍介绍 旋转或编码器是一个角度测量装置. 他用作精确测量电机的旋转角度或者用来控制控制轮子(可以无限旋转,而电位器只能旋转到特定位置)。其中有一些还安装了一个可以在轴上按的按钮,就像音乐播放器的控制按钮。Some of them are also equipped with a pushbutton when you press on the axis (like the ones used for navigation on many music controllers). 它们的精度多种多样,有每圈16步到1024步的各种,价格也从2到200欧元不等。 我写了一个小例子去读旋转编码器,并且使将读数通过RS232显示。我们很容易实现当编码器每走一步更新一下计数,并且将它通过串口显示在电脑上(通过串口监视器)。这个程序在ALPS STEC12E08编码器(每圈有24步)上运行良好。但是我认为当它使用在一个有更高精度的编码器上时有可能就会失效或者当电机旋转很快,或者你拓展这个程序以适应多个编码器。请先试试他吧。 我在Arduino distribution(A VRLib的一部分)的encoder.h中学会了怎样操作编码器。谢谢作者:Pascal Stang,感谢他对每一个函数友好而详细的解释。如下: Example 1 /* Read Quadrature Encoder * Connect Encoder to Pins encoder0PinA, encoder0PinB, and +5V. * * Sketch by max wolf / https://www.360docs.net/doc/e115652923.html, * v. 0.1 - very basic functions - mw 20061220 * */ int val; int encoder0PinA = 3; int encoder0PinB = 4; int encoder0Pos = 0; int encoder0PinALast = LOW; int n = LOW; void setup() { pinMode (encoder0PinA,INPUT); pinMode (encoder0PinB,INPUT); Serial.begin (9600); } void loop() { n = digitalRead(encoder0PinA); if ((encoder0PinALast == LOW) && (n == HIGH)) {//上升沿

倍加福编码器基础讲解

P+F Absolute Rotary Encoder通讯参数设置 型号

1、地址选择和终端电阻1.1站地址 1.2 终端电阻 2、信号和电源线的连接

3、安装GSD文件 GSD文件为电子设备数据库文件,是可读的ASCII码文件。不同厂家的PROFIBUS产品集成在一起,生产厂家必须以GSD文件方式提供这些产品的功能参数,例如I/O点数、诊断信息、传输速率、时间监视等。在Step 7 的SIMATIC 管理器中打开硬件组态工具HW Config ,安装GSD后,在右边的硬件目录PROFIBUS DP→Additional Field Devices→Encoders→ENCODER将会出现刚刚安装的P+F Rotary Encoder。其数据传输原理如图所示。 4、组态通讯参数

在Step 7硬件配置窗口中,双击P+F Rotary Encoder 图标,打开编码器(DP Slave)的参数设置窗口,如图所示。结合工程实际,在此窗口中进行参数设置: a、代码顺序(Code Sequence):计数方向, CW(顺时针旋转,代码增加),CCW (逆时针旋转,代码增加); b、标定功能控制(Scaling function control):只有设置成Enable ,下面 c、d和e的设置才会生效; c、单圈分辨率(Measuring units per revolution):8192; d、测量范围高位(Total measuring range(units)hi): 512; e、测量范围低位(Total measuring range(units)lo): 0; f、其它参数采用默认值。 注:1、由c可以计算出编码器每圈产生(=8192)个二进制码,即单圈精度为13位。2、由d和e可以计算出编码器最大可以转(=512×65536+0)圈,即多圈精度为12位。 5、预置值 6、LED状态灯指示信息

译码器、编码器及其应用实验报告

实验四 译码器、编码器及其应用 实验人员: 班号: 学号: 一、实验目的 (1) 掌握中规模集成译码器的逻辑功能和使用方法; (2) 熟悉掌握集成译码器和编码器的应用; (3) 掌握集成译码器的扩展方法。 二、实验设备 数字电路实验箱,74LS20,74LS138。 三、实验容 (1) 74LS138译码器逻辑功能的测试。将74LS138输出Y 0????~Y 7????接数字实验箱LED 管,地址Y 2Y 1Y 0输入接实验箱开关,使能端接固定电平(Y YY 或GND )。电路图如Figure 1所示: Figure 1 E Y 1YY 2Y ?????????? YY 2Y ??????????≠100时,任意拨动开关,观察LED 显示状态,记录观察结果。 E Y 1YY 2Y ?????????? YY 2Y ??????????=100时,按二进制顺序拨动开关,观察LED 显示状态,并与功能表对照,记录观察结果。 用Multisim 进行仿真,电路如Figure 2所示。将结果与上面实验结果对照。

Figure 2 (2) 利用3-8译码器74LS138和与非门74LS20实现函数: Y =Y ???Y ???+Y ???Y ???+YYY 四输入与非门74LS20的管脚图如下: 对函数表达式进行化简: Y =Y ???Y ???+Y ???Y ???+YYY =Y ???Y ???Y ???+Y ???Y ???Y +A Y ???Y ???+YYY =Y 0+Y 1+Y 4+Y 7=Y 0????Y 1????Y 4????Y 7????????????????????? 按Figure 3所示的电路连接。并用Multisim 进行仿真,将结果对比。 Figure 3

旋转编码器的原理及应用

旋转编码器的原理及应用 旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。 什么是光电编码器? 工作原理:当光电编码器的轴转动时A、B两根线都产生脉冲输出,A、B两相脉冲相差90度相位角,由此可测出光电编码器转动方向与电机转速。如果A相脉冲比B相脉冲超前则光电编码器为正转,否则为反转.Z 线为零脉冲线,光电编码器每转一圈产生一个脉冲.主要用作计数。A线用来测量脉冲个数,B线与A线配合可测量出转动方向. N为电机转速Δn=ND测-ND理 例如:我们车的速度为1.5m/s,轮子的直径220mm,C=D*Pi,电机控制在21.7转/秒,根据伺服系统的指标, 设电机转速为1500转/分,故可求得当ND=21.7*60=130转/分时,光码盘每秒钟输出的脉冲数为: PD=130×600/60=1300个脉冲 当测出的脉冲个数与计算出的标准值有偏差时,可根据电压与脉冲 个数的对应关系计算出输出给伺服系统的增量电压△U,经过D/A转换,再计算出增量脉冲个数,等下减去。 当运行时间越长路线越长,离我们预制的路线偏离就多了。这时系统起动位置环,通过不断测量光电编码器每秒钟输出的脉冲个数,并与标准值PD(理想值)进行比较,计算出增量△P并将之转换成对应的D/A 输出数字量,通过控制器减少输个电机的脉冲个数,在原来输出电压的基础上减去增量,迫使电机转速降下来,当测出的△P近似为零时停止调节,这样可将电机转速始终控制在允许的范围内。

编码器原理及常见知识问答

编码器原理及常见知识问答 编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是"1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是"1”还是"0”,通过"1”和“0”的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。 编码器工作原理: 利用电磁感应原理将两个平面型绕组之间的相对位移转换成电信号的测量元件,用于长度测量工具。感应同步器(俗称编码器、光栅尺)分为直线式和旋转式两类。前者由定尺和滑尺组成,用于直线位移测量;后者由定子和转子组成,用于角位移测量。 1957年美国的R.W.特利普等在美国取得感应同步器的专利,原名是位置测量变压器,感应同步器是它的商品名称,初期用于雷达天线的定位和自动跟踪、导弹的导向等。在机械制造中,感应同步器常用于数字控制机床、加工中心等的定位反馈系统中和坐标测量机、镗床等的测量数字显示系统中。它对环境条件要求较低,能在有少量粉尘、油雾的环境下正常工作。定尺上的连续绕组的周期为2毫米。滑尺上有两个绕组,其周期与定尺上的相同,但相互错开1/4周期(电相位差90°)。 感应同步器的工作方式有鉴相型和鉴幅型的两种。前者是把两个相位差90°、频率和幅值相同的交流电压U1和U2分别输入滑尺上的两个绕组,按照电磁感应原理,定尺上的绕组会产生感应电势U。如滑尺相对定尺移动,则U的相位相应变化,经放大后与U1和U2比相、细分、计数,即可得出滑尺的位移量。在鉴幅型中,输入滑尺绕组的是频率、相位相同而幅值不同的交流电压,根据输入和输出电压的幅值变化,也可得出滑尺的位移量。由感应同步器和放大、整形、比相、细分、计数、显示等电子部分组成的系统称为感应同步器测量系统。它的测长精确度可达3微米/1000毫米,测角精度可达1″/360°。

绝对值旋转编码器程序

绝对值旋转编码器程序 #include // 寄存器头文件包含 #include // 寄存器头文件包含 #include // 空操作函数,移位函数头文件包含 #define uchar unsigned char #define uint unsigned int /* sbit SH_CP = P1^1; //移位时钟脉冲端口 sbit DS = P1^2; // 串行数据输入端口 sbit ST_CP = P3^7; //锁存端口 */ int inc_data=0; //每刷新一次的增量值 int jms=0; //累计增量 int m_iPrvSSI = 0; int m_bIsSPI = 0; uchar uPrvState = 0; sbit AA = P3^3;// sbit BB = P3^4;//这个是时钟 sbit ZZ = P3^5;//这个是数据 sbit BEEP=P1^5; //正反判断 bit t_bFang = 1; int a; int iSSI = 0;

int temp,num,j; uchar led_buf[12]; /*定义LED显示缓冲区*/ uchar code table[]="0123456789"; void delay (int t) { int i,j; for(i=1;i for (j=1;j } void GetSSI(void) { uchar ix = 0; // uchar uState = 0; //状态位数据 int iSSI = 0;//当前的角度数据(0-1023) bit bCrc = 0; // 奇数或偶数标志位 int ire = 0; //增量数据,表示上次正确读的数据,和这次正确读的位置差 AA = 0; //CSN _nop_();_nop_(); BB = 0;//CLK _nop_();_nop_(); BB = 1;//CLK _nop_();_nop_(); for(ix = 0; ix { BB = 0;//CLK

数控铣床的工作原理【详解】

数控铣床的工作原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 数控机床是一种装有程序控制系统的自动化机床。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,并将其译码,从而使机床动作数控折弯机并加工零件。 数控机床的机床本体与传统机床相似,由主轴传动装置、进给传动装置、床身、工作台以及辅助运动装置、液压气动系统、润滑系统、冷却装置等组成。但数控机床在整体布局、外观造型、传动系统、刀具系统的结构以及操作机构等方面都已发生了很大的变化,这种变化的目的是为了满足数控机床的要求和充分发挥数控机床的特点。 ⑵、CNC单元 CNC单元是数控机床的核心,CNC单元由信息的输入、处理和输出三个部分组成。CNC单元接受数字化信息,经过数控装置的控制软件和逻辑电路进行译码、插补、逻辑处理后,将各种指令信息输出给伺服系统,伺服系统驱动执行部件作进给运动。 ⑶输入/输出设备 输入装置将各种加工信息传递于计算机的外部设备。在数控机床产生初期,输入装置为穿孔纸带,现已淘汰,后发展成盒式磁带,再发展成键盘、磁盘等便携式硬件,极大方便了信息输入工作,现通用DNC网络通讯串行通信的方式输入。 输出指输出内部工作参数(含机床正常、理想工作状态下的原始参数,故障诊断参数等),一般在机床刚工作状态需输出这些参数作记录保存,待工作一段时间后,再将输出与原始资料作比较、对照,可帮助判断机床工作是否维持正常。

案例五旋转编码器的安装与应用

案例五旋转编码器的安装与应用 1.项目训练目的 掌握旋转编码器的安装与使用方法。 2.项目训练设备 旋转编码器及相应耦合器一套。 3.项目训练内容 先熟悉旋转编码器的使用说明书。 (1)旋转编码的安装步骤及注意事项 ①安装步骤: 第一步:把耦合器穿到轴上。不要用螺钉固定耦合器和轴。 第二步:固定旋转编码器。编码器的轴与耦合器连接时,插入量不能超过下列值。 E69-C04B型耦合器,插入量 5.2mm;E69-C06B型耦合器,插人量 5.5mm;E69-Cl0B型耦合器,插入量7.lmm。 第三步:固定耦合器。紧固力矩不能超过下列值。E69-C04B型耦合器,紧固力矩2.0kfg?cm;E69-C06B型耦合器,紧固力矩 2.5kgf?cm;E69B-Cl0B型耦合器,紧固力矩4.5kfg?cm。 第四步:连接电源输出线。配线时必须关断电源。 第五步:检查电源投入使用。 ②注意事项: 采用标准耦合器时,应在允许值内安装。如图5-1所示。 图5-1 标准耦合器安装 连接带及齿轮结合时,先用别的轴承支住,再将旋转编码器和耦合器结合起来。如图 5-2所示。 图5-2 旋转编码器安装 齿轮连接时,注意勿使轴受到过大荷重。 用螺钉紧固旋转编码器时,应用5kfg?cm左右的紧固力矩。 固定本体进行配线时,不要用大于3kg的力量拉线。 可逆旋转使用时,应注意本体的安装方向和加减法方向。 把设置的装置原点和编码器的Z相对准时,必须边确定Z相输出边安装耦合器。 使用时勿使本体上粘水滴和油污。如浸入内部会产生故障。 (2)配线及连接

①配线应在电源0FF状态下进行。电源接通时,若输出线接触电源线,则有时会损坏输出回路。 ②若配线错误,则有时会损坏内部回路,所以配线时应充分注意电源的极性等。 ③若和高压线、动力线并行配线,则有时会受到感应造成误动作或损坏。 ④延长电线时,应在10m以下。还由于电线的分布容量,波形的上升、下降时间会延长,所以有问题时,应采用施密特回路等对波形进行整形。 还有为了避免感应噪声等,也要尽量用最短距离配线。集成电路输人时,要特别注意。 ⑤电线延长时,因导体电阻及线间电容的影响。波形的上升、下降时间变长,容易产 生信号间的干扰(串音),因此应使用电阻小、线间电容低的电线(双绞线、屏蔽线)。

编码器编程

我用的是三菱PLC的FX2N,这里有A、B、Z相的HK38系列的增量式旋转编码器,将PLC 的X0,X1,X2分别接编码器的A相和B相及Z相,用PLC的双相计数器C252计数,虽然我知道A相超过B相90°为顺时针转,滞后就逆时针转,但不知道如何具体编程,我的目的是达到测旋转轴的角度,从-135°~-30°~-10°~10°~+30°~-135°,正反转旋转 多谢各位,我改了一下,但仍旧没找到问题原因,但测试中发现,接X2和X5都能使C252复位,尽管手册上说只有X2复位,但由于以上提到的Z相接入任何一个输入端都使之ON,所以我就避开了接X2和X5端子,改接其他的端子,比如X3,这并不是因为它是高速输入端的一种才选,其他端也一样,因此我采用了软件复位,也没办法了,效果倒是达到了想要的,

DHSZ D200 K8 C235 M8130 HSZ是高速区间比较指令,前面加D是32位的。运作如下: D200 > C235 M8130 ON D200<=C235>=k8 M8131 ON D200 < C235 M8132 ON

将旋转编码器的A相或B相的输出信号连接至X0~X5,(使用不同的计数器,接不同的输入点)然后用高速计数器对编码器的脉冲信号进行计数。以C235为例,只进行加计数,脉冲编码器的A相或B相需要接入PLC的X0,当设备带动编码器旋转,则X0就有信号输入,C235就会进行计数。使用很简单。 需求一段三菱PLC+旋转编码器+变频器实行多段距离控制,例如:上升总距离为50cm,0-15cm 实行20hz运行、16-25 cm 实行35HZ运行、26-35cm实行40HZ 运行、36-46cm实行20HZ 运行、47-50cm实行10HZ运行;下降反之! 程序中的数字,是按每厘米100个脉冲设计的,在实际中还要经过计算。

译码器和编码器实验

实验三译码器和编码器 一实验目的 1.掌握译码器、编码器的工作原理和特点。 2.熟悉常用译码器、编码器的逻辑功能和它们的典型应用。 二、实验原理和电路 按照逻辑功能的不同特点,常把数字电路分两大类:一类叫做组合逻辑电路,另一类称为时序逻辑电路。组合逻辑电路在任何时刻其输出的稳态值,仅决定于该时刻各个输入信号取值组合的电路。在这种电路中,输入信号作用以前电路所处的状态对输出信号无影响。通常,组合逻辑电路由门电路组成。 组合逻辑电路的分析方法:根据逻辑图进行二步工作: a.根据逻辑图,逐级写出函数表达式。 b.进行化简:用公式法、图形法或真值表进行化简、归纳。 组合逻辑电路的设计方法:就是从给定逻辑要求出发,求出逻辑图。一般分四步进行。 a.分析要求;将问题分析清楚,理清哪些是输入变量,哪些是输出函数。 b.列真值表。 c.进行化简:变量比较少时,用图形法。变量多时,可用公式化简。 d.画逻辑图:按函数要求画逻辑图。 进行前四步工作,设计已基本完成,但还需选择元件——集成电路,进行实验论证。 值得注意的是,这些步骤并不是固定不变的程序,实际设计时,应根据具体情况和问题难易程度进行取舍。 1.译码器 译码器是组合电路的一部分,所谓译码,就是把代码的特定含义“翻译”出来的过程,而实现译码操作的电路称为译码器。译码器分成三类: a.二进制译码器:如中规模2—4线译码器74LS139。,3—8线译码器74LS138等。 b.二—十进制译码器:实现各种代码之间的转换,如BCD码—十进制译码器74LS145等。 c.显示译码器:用来驱动各种数字显示器,如共阴数码管译码驱动74LS48,(74LS248),共阳数码管译码驱动74LS47(74LS247)等。 2.编码器 编码器也是组合电路的一部分。编码器就是实现编码操作的电路,编码实际上是译码相反的过程。按照被编码信号的不同特点和要求,编码器也分成三类: a.二进制编码器:如用门电路构成的4—2线,8—3线编码器等。 b.二—十进制编码器:将十进制的0~9编成BCD码,如:10线十进制—4线BCD码编码器74LS147等。 c.优先编码器:如8—3线优先编码器74LS148等。 三、实验内容及步骤 1.译码器实验 (1)将二进制2-4线译码器74LS139,及二进制3-8译码器74LS138分别插入实验系统IC 空插座中。 按图1.3.1接线,输入G、A、B信号(开关开为“1”、关为“0”),观察LED输出Yo、Y1、Y2、Y3的状态(亮为“1”,灭为“0”),并将结果填入表1.3.1中。

旋转编码器在S7-200的应用

运行工作方式,机器大概情况, 机器共18个工位,每个工位为一个机器过程,一个工件为5米(误差1CM)要求用2000线的轴式旋转编码器通过PLC协调控制完成每个工件。 每个工位都有一个人,1个绿启动按钮。一个绿灯,1个红色急停按钮,1个红灯。当1号工人按1号启动按钮后1号指示灯亮,2号工人按2号启动按钮后2号指示灯亮,直到第18个工人都按启动按钮后18灯全亮,机器开始运转,自动运转到5米后停止。绿灯全灭(记米自动复位)等待18个工人下一次继续给18个运行信号后运行。(红色按钮为紧急停车按钮:当工件工作到一半时紧急停车,手动不复位情况下,8个工人动启动后机器可继续当前的米数运转。手动复位则重新开始) 当18个工人无论哪个工人按红色按钮时机器立即停机(此时红色指示灯全亮,红色按钮释放后指示灯全灭)机器再次启动需18个工人都给启动信号才能运行。18个红色按钮共用PLC一个点。如果点富裕的话18个红按钮分为3组,一组6个共用一个点,用3个点实现这个功能。变频器运行过程,当给变频器运行信号时变频器缓慢启动逐渐加速到高速,指定记米到达时变频器缓慢减速到低速运行,记米到达后变频器立即停止刹车,18个工位如果少几个工位的把那几个工位短接,要不影响工作。

程序分为3部分,主程序,指示灯输出,初始化。初始化中有两个中断程序,分别为当前值=设定值时中断以及复位时产生的中断。高速计数器HDEF的通道是HSC0,意思为编码器的A、B相接I0.0、I0.1,复位接在I0.2。事件号是10,意思是选择A/B正交计数器。中断ATCH的事件号12代表当前值=设定值时中断。事件号28代表HSC0当I0.2高电平时产生中断。 主程序:

旋转编码器的输出电路以及常用术语介绍

旋转编码器的输出电路以及常用术语介绍 来源:互联网 旋转编码器是用来测量转速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。当旋转编码器轴带动光栅盘旋转时,经发光元件发出的光被光栅盘狭缝切割成断续光线,并被接收元件接收产生初始信号。该信号经后继电路处理后,输出脉冲或代码信号。旋转编码器的特点是体积小,重量轻,品种多,功能全,频响高,分辨能力高,力矩小,耗能低,性能稳定,可靠使用寿命长等特点。其主要种类有增量式编码器、绝对值编码器、正弦波编码器。 输出电路图解 1、NPN电压输出和NPN集电极开路输出线路 PNP开路集电极输出

电压输出 此线路仅有一个NPN型晶体管和一个上拉电阻组成,因此当晶体管处于静态时,输出电压是电源电压,它在电路上类似于TTL逻辑,因而可以与之兼容。在有输出时,晶体管饱和,输出转为0VDC的低电平,反之由零跳向正电压。 随着电缆长度、传递的脉冲频率、及负载的增加,这种线路形式所受的影响随之增加。因此要达到理想的使用效果,应该对这些影响加以考虑。集电极开路的线路取消了上拉电阻。这种方式晶体管的集电极与编码器电源的反馈线是互不相干的,因而可以获得与编码器电压不同的电流输出信号。 2、PNP和PNP集电极开路线路 该线路与NPN线路是相同,主要的差别是晶体管,它是PNP型,其发射极强制接到正电压,如果有电阻的话,电阻是下拉型的,连接到输出与零伏之间。 3、推挽式线路 这种线路用于提高线路的性能,使之高于前述各种线路。事实上,NPN电压输出线路的主要局限性是因为它们使用了电阻,在晶体管关闭时表现出比晶体管高得多的阻抗,为克服些这缺点,在推挽式线路中额外接入了另一个晶体管,这样无论是正方向还是零方向变换,输出都是低阻抗。推挽式线路提高了频率与特性,有利于更长的线路数据传输,即使是高速率时也是如此。信号饱和的电平仍然保持较低,但与上述的逻辑相比,有时较高。任何情况下推挽式线路也都可应用于NPN或PNP线路的接收器。

旋转编码器工作原理

增量式旋转编码器工作原理 增量式旋转编码器通过内部两个光敏接受管转化其角度码盘的时序和相位关系,得到其角度码盘角度位移量增加(正方向)或减少(负方向)。在接合数字电路特别是plc后,增量式旋转编码器在角度测量和角速度测量较绝对式旋转编码器更具有廉价和简易的优势。增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90o,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。 增量式旋转编码器的内部工作原理(附图) 增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90o,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。 A,B两点对应两个光敏接受管,A,B两点间距为 S2 ,角度码盘的光栅间距分别为S0和S1。 当角度码盘以某个速度匀速转动时,那么可知输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值相同,同理角度码盘以其他的速度匀速转动时,输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值仍相同。如果角度码盘做变速运动,把它看成为多个运动周期(在下面定义)的组合,那么每个运动周期中输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值仍相同。 通过输出波形图可知每个运动周期的时序为

旋转编码器应用注意事项

旋转编码器应用注意事项 有网友问:增量旋转编码器选型有哪些注意事项? 应注意三方面的参数: 1.械安装尺寸,包括定位止口,轴径,安装孔位;电缆出线方式;安装空间体积; 工作环境防护等级是否满足要求。 2.分辨率,即编码器工作时每圈输出的脉冲数,是否满足设计使用精度要求。 3.电气接口,编码器输出方式常见有推拉输出(F型HTL格式),电压输出(E), 集电极开路(C,常见C为NPN型管输出,C2为PNP型管输出),长线驱动器输出。其输出方式应和其控制系统的接口电路相匹配。 ■二.※有网友问:请教如何使用增量编码器? 1,增量型旋转编码器有分辨率的差异,使用每圈产生的脉冲数来计量,数目从 6到5400或更高,脉冲数越多,分辨率越高;这是选型的重要依据之一。 2,增量型编码器通常有三路信号输出(差分有六路信号):A,B和Z,一般采用 TTL电平,A脉冲在前,B脉冲在后,A,B脉冲相差90度,每圈发出一个Z脉冲,可作为参考机械零位。一般利用A超前B或B超前A进行判向,我公司增量型编码器定义为轴端看编码器顺时针旋转为正转,A超前B为90°,反之逆时针旋转为反转B超前A为90 °。也有不相同的,要看产品说明。 3,使用PLC采集数据,可选用高速计数模块;使用工控机采集数据,可选用高 速计数板卡;使用单片机采集数据,建议选用带光电耦合器的输入端口。 4,建议B脉冲做顺向(前向)脉冲,A脉冲做逆向(后向)脉冲,Z原点零位脉冲。 5,在电子装置中设立计数栈。 ■三.※关于户外使用或恶劣环境下使用 有网友来email问,他的设备在野外使用,现场环境脏,而且怕撞坏编码器。 我公司有铝合金(特殊要求可做不锈钢材质)密封保护外壳,双重轴承重载型 编码器,放在户外不怕脏,钢厂、重型设备里都可以用。 不过如果编码器安装部分有空间,我还是建议在编码器外部再加装一防护壳,以加 强对其进行保护,必竟编码器属精密元件,一台编码器和一个防护壳的价值比较还 是有一定差距的。 ■四.※从接近开关、光电开关到旋转编码器: 工业控制中的定位,接近开关、光电开关的应用已经相当成熟了,而且很好用 。可是,随着工控的不断发展,又有了新的要求,这样,选用旋转编码器的应用优 点就突出了: 信息化:除了定位,控制室还可知道其具体位置; 柔性化:定位可以在控制室柔性调整; 现场安装的方便和安全、长寿:拳头大小的一个旋转编码器,可以测量从几个 μ到几十、几百米的距离,n个工位,只要解决一个旋转编码器的安全安装问题,可 以避免诸多接近开关、光电开关在现场机械安装麻烦,容易被撞坏和遭高温、水气 困扰等问题。由于是光电码盘,无机械损耗,只要安装位置准确,其使用寿命往往 很长。 多功能化:除了定位,还可以远传当前位置,换算运动速度,对于变频器,步 进电机等的应用尤为重要。 经济化:对于多个控制工位,只需一个旋转编码器的成本,以及更主要的安装 、维护、损耗成本降低,使用寿命增长,其经济化逐渐突显出来。

旋转编码器在线速度检测控制中的应用

在电缆生产线上,通常需要检测电缆的走线速度,用来控制收线电机的转速和计算线缆的长度。成缆工艺参数的稳定,直接关系到电线电缆的质量。 该项目是为某电缆厂的技术改造项目,要改造的设备是利用束线原理制造的盘绞式成缆机,改造的内容是更换全部电气控制系统。这种成缆机的放线盘固定,而收线盘固定在盘绞架上同时完成绞合和收线的双重运动。工作时,在线缆盘直流电机的带动下,完成电缆的收线运动,在排线电机的带动下实现电缆在收线盘的整齐排列。在大盘电机的带动下,通过齿轮箱带动盘绞架实现轴向旋转,完成电缆绞合运动,是保证节距的关键。线速度是由收线盘的旋转速度决定的,如果收线电机的转速恒定,收线盘随着收线轴的变粗,线速度会增大,因此,为保证收线速度恒定,要逐渐降低收线电机的转速。 1 系统设计原理 根据电缆的生产工艺要求,不同型号的电缆,其走线速度是恒定的。通常,电缆的运行速度是由电缆带动旋转编码器来检测的。电缆线速度测速示意图如图1所示。 该项目中,采用的旋转编码器的型号是TRDJ1000系列,旋转一周输出1 000个脉冲。因此,根据在一定时间内检测到的脉冲数,就可以计算出电缆的走线速度。实际应用中,将其与一加工精度极高、周长为500 mm的旋转编码器测量主动轮与旋转编码器同轴安装,主动轮与电缆接触。在电缆生产运动过程中,依靠摩擦力拉动测量轮旋转,这样就把电缆的直线位移(长度)转化为旋转编码器的脉冲数字信号输出。

设旋转编码器每旋转一周,其计数脉冲个数为NP(脉冲个数/转),则旋转编码器角分辨率(单位:(°)/个)为: P=360/NP 假定固定在旋转编码器转轴上的主动导向轮半径为r m,则旋转编码器位移分辨率(单位:m/个)为: Ps=27πr/NP 这时,若计数脉冲个数为N(个),则由旋转编码器测量的位移量S(单位:m)为: S=Ps·N 线缆走线速度V(单位:m/s)为: V=S/T 式中:T为接收N个脉冲所用的时间(单位:s)。 2 硬件电路设计原理 该检测电路以AT89C51单片机为控制核心,如图2所示,旋转编码器输出的脉冲,经过电平转换,变成O~5 V的TTL电平脉冲,送到AT89 C51单片机的外部中断INT0端。每收到

相关文档
最新文档