地铁车辆基础制动装置.doc

地铁车辆基础制动装置.doc
地铁车辆基础制动装置.doc

地铁车辆基础制动装置

地铁车辆基础制动装置介绍了地铁车辆基础制动装置的特点,分析了踏面制动和盘形制动的不同,得出盘形制动的优势。

地铁车辆基础制动装置【1】

摘要:介绍了地铁车辆基础制动装置的特点,分析了踏面制动和盘形制动的不同,得出盘形制动的优势。

关键词:地铁车辆制动盘形制动

1 概述

随着我国城市化进程的发展,城市吸引力不断扩大,人口集聚力不断增强,大、中城市人口数量屡创新高。

为了更好的缓解城市交通拥堵的问题,许多城市选择了建设轨道交通来改善交通状况。

地铁车辆的运行速度也由最初的60km/h,逐渐提高到80 km/h、100 km/h,甚至更高。

车辆在高速运行中必须依赖制动系统调节列车运行速度和及时准确地在预定地在预定地点停车,保证列车安全正点地运行。

制动系统是地铁车辆安全可靠运行的基本保障,通常包括空气制动机、基础制动装置、手制动机。

基础制动装置是确保地铁车辆行车安全的最重要的措施之一,它最基本的功能是吸收制动动能并将之转化为热能散发到空气中。

基础制动装置分为两类:一类是由踏面和闸瓦组成摩擦副的踏面制动;一类是由制动盘和闸片组成摩擦副的盘形制动。

2 地铁车辆制动的特点

地铁与铁路虽都属于轨道交通,但地铁车辆主要在城市内运营与铁路运输还是存在一些区别,在车辆制动方面主要有以下特点。

2.1 制动频繁

地铁车站之间距离较近,平均在1公里左右,这必然带来车辆须频繁启动、制动,以满足乘客上、下车的需要。

而铁路运输两个车站之间的距离通长在几十公里以上。

2.2 制动减速度大

地铁站间距短,要提高乘客旅行速度只有增加启动加速度和制动减速度。

因此地铁车辆紧急制动平均减速度一般要求大于等于1.2m/s2, 而铁路机车车辆和动车组的紧急制动平均减速度一般为0.7-1.2 m/s2。

2.3 制动精度高

地铁车站站台上均安装有屏蔽门系统,因此车辆定点停车的精度要求比铁路机车车辆和动车组高,一般在00mm左右。

这些特点要求地铁车辆制动系统须有稳定的摩擦副和良好的控制精度能力以及承受频繁制动热负荷的性能。

3 盘形制动与踏面制动比较

3.1 制动对车轮的影响

(1)踏面制动的热负荷

从热应力角度考虑:评价赫兹接触应力和热应力共同作用引起的车轮损伤, 如图1所示, 图1中横坐标为车轮踏面最大热应力,纵坐标

为轮轨接触最大赫兹接触压力, 区域a是常用制动区, 区域b是少量制动区, 区域c是危险区。

图1 车轮热损伤评价示意

图2 车轮踏面非正常磨耗

在制动频繁、热负荷较大的城轨车辆上,使用热负荷性能较高的合成闸瓦,导致制动过程中产生总热能的90%以上被车轮吸收。

因此当车轮踏面最高热应力位于赫兹接触应力和热应力共同作用的危险区域,导致车轮踏面异常损伤。

在上海地铁、广州地铁、北京地铁均批量出现过车轮踏面非正常磨耗。

(见图2)车轮踏面异常磨耗将会恶化轮轨匹配关系,严重影响行车安全。

(2)盘形制动

由于盘形制动是由制动盘和闸片组成摩擦副,制动过程中产生的热能对车轮不产生直接影响。

3.2 轮缘润滑对制动系统的影响

(1)踏面制动

在曲线多、弯曲半径小的城轨线路上,为了减少轮缘和钢轨的磨损和降低车辆通过曲线时的噪声,均采用轮缘润滑。

由于润滑剂残留在车轮踏面和钢轨上,降低了轮轨间的粘着系数和摩擦系数,使制动力难以保证,列车紧急制动距离将被延长。

这给高密度行车的地铁车辆运行留下了安全隐患。

(2)盘形制动

盘形制动的摩擦系数不受轮轨间的状态影响,制动力在曲线上不会发生可以得到保证。

3.3 成本的影响

车辆基础制动装置的成本是包含设备购置费和运营成本的全寿命成本。

(1)踏面制动

踏面制动的全寿命成本主要由设备购置费、闸瓦消耗、车轮磨损等构成。

经过某条使用踏面制动地铁线路统计1年有526条轮对需要旋修,其中274条轮对发生非正常磨耗,占52.1%。

全年旋修轮对每条平均被切削8.89mm。

地铁车辆的车轮直径一般为840mm,磨耗到限的车轮直径是770mm,则1条轮对1年被切削量占12.7%。

这大大缩短了轮对的使用寿命,增加轮对成本。

(2)盘形制动

盘形制动的全寿命成本主要由设备购置费、闸片消耗。

采用盘形制动,将减少车轮踏面非正常磨耗,延长轮对镟修周期,有利于延长车轮使用寿命。

从设备购置费来看,盘形制动要比踏面制动高出20%左右。

从材料消耗来看,虽然每辆车使用的闸片数量比闸瓦大,但由于闸片使用寿命普遍高于闸瓦,因此费用基本相同。

从长期运营来看,踏面制动缩短了轮对的使用寿命,增加了轮对成本的支出。

4 盘形制动计算

我们以4动2拖b 型地铁车辆为例,计算不同速度下制动时列车的制动距离、制动盘片压力、轮/轨粘着力。

制动距离:

s = v2 /

整列车的平均减速度:

a1= v * a2 / (v + 2 * a2 * t1)

整列车的瞬间减速度:

a2= sum(a3) - g * sin(a) /

(a3:单量车瞬时减速度;a:倾角;mr:整车的转动惯量;m:全部车辆惯量)

制动盘片压力:

p= f / k

f:每个制动盘的制动力;k:每个制动盘的有效摩擦面积;

必需的轮/轨粘着力:

= / m * g

f2:动力制动在轮径上的减速度;mr:每个转向架的转动惯量;m:每个转向架的惯量

具体计算结果见表1

表1

从表1计算结果可以看出制动盘片压力、制动距离、轮/轨粘着力均满足地铁车辆制动的要求。

5 结论

(1)在地铁车辆运行速度在100km/h及以上的城市轨道交通线路上,应采用盘形制动方式。

(2)在曲线多、弯曲半径小的城市轨道交通线路,采用盘形制动更加安全。

(3)根据我国各地城市轨道交通车辆的运营情况,综合分析运营维护成本可以看出,采用盘形制动方式综合性价比更好。

参考文献:

g.donzella(意大利).闸瓦制动对实心车轮残余应力水平的影响.国外机车车辆工艺,2000,(5):38-45.

王京波.合成闸瓦对车轮热影响的研究.铁道机车车辆,2003,23(2):77-82.

地铁车辆再生制动能量吸收装置设置的分析【2】

摘要:随着国内各城市轨道交通建设的发展,节能减排需求日趋明显,本文从目前国内外轨道交通再生制动能量吸收装置使用情况出发,分析了各类装置的优缺点,着重介绍了逆变至中压型再生制动能量吸收装置,并讨论了成都市地铁10号线一期工程再生制动能量吸收装置设置、经济性等,最后展望逆变至中压型再生制动能量吸收装置在轨道交通行业的应用前景,作为今后轨道交通节能减排的参考。关键词:再生制动;逆变至中压型;轨道交通;节能减排

1.概述

轨道交通作为一种大运量、高密度的交通工具,它在城市公共交通中扮演着越来越重要的角色,其列车运行具有站间运行距离短、运行速度较高、起动及制动频繁等特点。

目前轨道交通普遍采用的vvvf动车组列车,其制动一般为电制动(再生制动、电阻制动)和空气制动两级制动,运行中以再生制动和电阻制动为主,空气制动为辅。

传统的列车电阻制动做法是将制动电阻装设在车辆底部,当再生电阻不再起作用时采用空气制动。

传统的列车电阻制动产生的大量热量散发在地铁隧道内,在大运量、高密度的运行条件下,使地铁洞体的温升加剧,增加了环控系统的压力。

随着科技的进步和技术的发展,人们在节约能源、减少排放、环境保护方面意识逐渐增强,在全球倡导节能、低碳的今天,城市轨道交通中的再生制动能量回收利用问题得到了全世界轨道交通界的广泛关注。

在城市轨道交通系统中,对有效利用城市轨道电动车组再生制动所产生的电能以减少城市轨道交通运营的用电量,同时改善城市轨道交通公共场所的环境以消除对城市环境和人民身体的影响是非常重要的。

因此在牵引供电系统中装设电能吸收装置对再生制动所产生的电能进行吸收、储存和再利用是必要的,人们在这方面进行了有益的探

索。

2.再生制动能量吸收装置技术发展现状

目前再生制动能量吸收装置类型主要分三大类,即消耗型(主要包括电阻耗能型)、储能型(主要包括电容、电池、飞轮)和回馈型(低压回馈型和中压回馈型)。

较常用的有电阻耗能型、电容储能型、飞轮储能型和逆变回馈型四种方式。

其主要工作原理是:当处于再生制动工况的列车产生的制动能量不能完全被其它车辆和本车的用电设备吸收时,牵引网电压将很快上升,网压上升到一定程度后,牵引变电所中设置的再生能量吸收装置投入工作,吸收掉多余的再生电流,使车辆再生电流持续稳定,以最大限度地发挥再生制动性能。

几种再生制动能量吸收装置接线方式如下:

2.1电阻耗能型

电阻耗能型再生能量吸收装置主要采用多相igbt斩波器和吸收电阻配合的恒压吸收方式,根据再生制动时直流母线电压的变化状态调节斩波器的占空比,从而改变吸收功率,将直流电压恒定在某一设定值的范围内,并将制动能量消耗在吸收电阻上。

该装置控制简单和直观,可以取消(或减少)列车电阻制动装置,降低车辆投资,提高列车动力性能;能够降低隧道温度、减少闸瓦制动对闸瓦的消耗和闸瓦制动粉尘、净化隧道环境,国内有比较成熟产品制造,价格较低;判断是否有再生能量需要吸收的判断条件完善,不

会引起误判,造成电能的额外消耗。

但是该装置对再生能量不能有效利用;电阻散热导致环境温度上升,设置在地下变电所内时,电阻柜需单独放置,需设置相应的通风动力装置,增加相应的投资。

2.2电容储能型

电容储能型再生能量吸收装置主要采用igbt逆变器将列车的再生制动能量吸收到大容量电容器组中,当供电区间内有列车起动、加速需要取流时,该装置将所储存的电能释放出去并进行再利用。

电容储能装置具有储能(储存车辆再生能量)和稳压(稳定牵引网电压)两种工作模式。

两种工作模式可以相互切换。

该技术有效利用了列车制动时再生能量,节能效益好;直接接在牵引网或变电所正负母线间,再生能量直接在直流系统内转换,对系统不会造成影响;该装置为静态电容储能装置,维护和元器件更换较为方便。

装置的缺点是目前国内无成功的运行经验,国外产品价格较高;电容发生故障时,装置无法继续正常工作。

2.3飞轮储能型

该产品对变电所直流空载电压、母线电压的跟踪判断,确定是否有列车在再生制动且再生能量不能完全被本车辅助设备和相邻车辆吸收,当判断变电所附近列车有再生能量需要吸收时,飞轮加速转动,储存能量;当判断变电所附近有列车启动牵引用电时,飞轮转速降低,

作为发电设备向牵引网反馈电能。

该产品除具有电能吸收功能外还具有稳压功能,该技术有效利用了列车制动时再生能量,具有节能效益;直接接在牵引网与回流轨间或变电所正负母线间,再生能量直接在直流系统内转换,对系统不会造成影响。

但是飞轮毕竟是高速转动机械产品,尽管采用了真空环境和特殊轴类制造技术,但难免担心其使用寿命是否能满足要求,维护维修是否方便。

国内外成熟产品极少,投资经济性差。

2.4逆变回馈型

逆变回馈型再生能量吸收装置主要采用电力电子器件构成大功率三相逆变器,该逆变器的直流侧与牵引变电所中的整流器直流母线相联,其交流进线接到交流电网上;当再生制动使直流电压超过规定值时,逆变器启动并从直流母线吸收电流,将再生直流电能逆变成工频交流电回馈至交流电网。

12、地铁车辆基地信号系统

十一、地铁车辆基地信号系统 车辆基地是车辆段和停车场的总称,它是车辆停放、检修、整备、运用和管理的中心。 车辆基地信号系统的主要功能: 1)保证列车出入段(场)行车安全 2)保证段(场)内调车、洗车、试车作业安全 3)提高运输效率 4)改善行车工作人员劳动条件 5 )实现与其他系统设备的安全接口功能车辆基地信号系统由车辆段/停车场计算机联锁系统、微机监测系统及室外的电动转辙机、轨道电路、信号机等设备组成。 (1)计算机联锁系统 联锁:信号机、进路和进路上的道岔相互具有制约关系。 计算机联锁:利用计算机对行车作业人员的操作命令及现场设备状态表示的信息进行逻辑运算,从而实现对信号机、道岔、进路等进行集中控制,使其达到相互制约,以保证行车安全的计算机联锁设备。 计算机联锁系统:由联锁计算机、操作表示机、 维修诊断工作站、驱动采集接口电路等设备组成。 联锁计算机:主要实现联锁运算功能,保证信号 机、转辙机和进路之间正确联锁关系。目前使用的主 要是“二乘二取二”和“三取二”冗余结构的安全计 算机。 操作表示机:系统的人机界面、发送按钮操作、 显示系统和站场的实际状态 维修诊断工作站:故障诊断与查询的人机界面、

显示系统和站场的实际状态、监测与报警功能 驱动采集接口电路:室外信号设备状态采集、室外信号设备驱动、与其他系统或设备接口 (2)微机监测系统 1)微机监测的功能 实时监视信号设备工作状态,便于计算机联锁系统室内外设备的维护。 对故障提供记录和报警的功能,为现场维修分析故障提供可靠的科学依据。 2)微机监测的组成 车辆基地微机监测系统主要由监测机、工作站、采集设备等组成。 3)转辙机 实现室外道岔的转换锁闭功能,为列车进路的开放准备条 件 目前车辆基地主要使用的是ZDJ9型交流电动转辙机 4)信号机 通过信号机的不同现实来指示列车运行。 目前车辆基地主要使用的是LED信号机。

[工艺技术]成都地铁车辆基地总图及工艺设计要求(正式版)

(工艺技术)成都地铁车辆基地总图及工艺设计要求(正式版)

车辆基地总图及工艺设计要求参编单位及人员名单 (车辆基地总图及工艺) 主要参编单位:成都地铁有限责任公司建设分公司 成都地铁运营有限公司 成都地铁有限责任公司总工程师办公室 中铁二院工程集团有限责任公司 主要起草人员:阳丁山梁波李冬竹王明霞李儒英姚雪梅 主要参编人员:(以下按姓氏笔画为序)

万宇王尹马骞付笠刘振丰汤徐张定文李强胡兴宇陈后良陈礼周军峰涂一麟耿成帮高承敏曾 建谢波蔡冬兴谭成中魏玉龙 本标准审核人:陈华银时亚昕周勇义彭宝富蒋岿松凌喜华朱均 本标准审批人:张智

目录: 12 库内和库外标志标线42 1 一般规定2 2 车辆基地的功能与规模3 3 车辆基地的总平面设计6 4 车辆运用整备设施10 5 车辆检修设施16 6 综合维修中心23 7 物资库25 8 生产办公28 9 后勤服务设施30 10 车辆段资源共享32 11 绿化设计34

车辆基地设计应包括车辆段、综合维修中心、物资总库、培训中心和必要的生活设施等。在《地铁设计规范》(GB50157-2013)的基础上,结合成都地铁车辆基地的建设经验以及运营管理地方规定,提出以下成都地铁车辆基地的设计总体技术要求,以指导成都地铁新线车辆段的设计。本手册适用于成都地铁(含100km/h以上速度市域快线)新建车辆基地,但不包含有轨电车停保基地。 1一般规定 1.1车辆基地的布局要综合考虑场地条件、利于列车运行组织、减少列车空走距离、增加夜间空窗作业时间、救援抢险及资源共享等条件。 1.2车辆基地选址要考虑到整个线网管理的合理性和先进性,大架修车辆基地选址要考虑便于资源共享各条线的合理利用,便于车辆的运送和工程车的转线,并应有便捷的交通条件。车辆基地至终点站的长度大于20km时,宜另外设置停车场。 1.3车辆段的位置宜设在交路折返点附近,以便于列车的出发和进段,减少列车的空车走行距离,有利运营。 1.4车辆基地内的建筑物布置应适当集中,单体应尽量整合,并结合规划条件,对于有开发价值的地块做好预留。 1.5绕城高速以内且沿江河的车辆基地车场线

TOD模式下地铁车辆段上盖综合体设计探索

地铁车辆段上盖TOD模式综合开发利用实践探索 --以深圳市前海湾车辆段上盖综合体为例 摘要以地铁车辆段上盖综合体为代表的复合开发模式在地铁建设过程中占有举足轻重的地位, 其在引领城市土地与空间资源高效利用方面作用独特以深圳地铁一号线前海湾车辆段上盖综合体为例, 从城市设计的视角,强调基于TOD模式在地铁车辆段用地上进行高强度,高密度,混合功能的上盖综合体开发, 对提高地铁沿线地区土地利用效益、优化城市空间结构具有特殊意义通过对实践案例的归纳分析, 探讨其中的设计规律和基本方法, 以期引起同行关注与讨论" 关键词地铁地铁车辆段上盖城市设计综合体公交导向型开发 地铁作为现代化城市的重要标志, 是城市发展到一定阶段的产物, 也是城市物质财富积累的直接表现作为城市轨道交通的一种形式, 地铁的发展速度与质量对城市规划建设影晌深远、然而, 地铁建设耗资巨大、周期长、投资回收难等现实问题,在一定程度上制约了这项公益事业的持续发展"通过对地铁站点、车辆段及其周边土地的综合开发, 为地铁建设筹集资金, 才能使其走上一条持续健康发展的快车道"地铁车辆段大多选址于地铁线路的中间段或始末端, 占地面积大, 对周边地区城市功能和空间环境分割作用明显, 若不善加利用, 易造成城市土地和空间资源的巨大浪费" 因此, 研究如何充分利用地铁车辆段用地进行上盖综合体的开发, 对提高城市土地与

空间资源利用效率, 践行以公交导向型开发为导向低碳城市设计具有积极意义。 一、基本概念 1、T O D模式 T O D (Transit-Orented Deveopment) , 即公交导向型开发, 是由新城市主义代表人物彼得-卡尔索普(Peter Calthorpe) 提出的社区发展模式, 倡导以公交站点为核心, 在400~ 600m (5一10min步行路程) 为半径所划定的范围内,集中布置居住、商业零售、办公等设施、社区中心设置公交站点和商业零售设施, 在相邻地段布置公共空

地铁车辆基地总图及工艺设计要求

车辆基地总图及工艺设计要求

参编单位及人员名单 (车辆基地总图及工艺) 主要参编单位:成都地铁有限责任公司建设分公司 成都地铁运营有限公司 成都地铁有限责任公司总工程师办公室 中铁二院工程集团有限责任公司 主要起草人员:阳丁山梁波李冬竹王明霞李儒英姚雪梅 主要参编人员:(以下按姓氏笔画为序) 万宇王尹马骞付笠刘振丰汤徐张定文李强胡兴宇陈后良陈礼周军峰涂一麟耿成帮 高承敏曾建谢波蔡冬兴谭成中魏玉龙 本标准审核人:陈华银时亚昕周勇义彭宝富蒋岿松凌喜华朱均 本标准审批人:张智

目录: 1 一般规定2 2 车辆基地的功能与规模3 3 车辆基地的总平面设计5 4 车辆运用整备设施9 5 车辆检修设施16 6 综合维修中心23 7 物资库25 8 生产办公28 9 后勤服务设施29 10 车辆段资源共享31 11 绿化设计33 12 库内和库外标志标线42 车辆基地设计应包括车辆段、综合维修中心、物资总库、培训中心和必要的生活设施等。在《地铁设计规范》(GB50157-2013)的基础上,结合成都

地铁车辆基地的建设经验以及运营管理地方规定,提出以下成都地铁车辆基地的设计总体技术要求,以指导成都地铁新线车辆段的设计。本手册适用于成都地铁(含100km/h以上速度市域快线)新建车辆基地,但不包含有轨电车停保基地。 1 一般规定 1.1 车辆基地的布局要综合考虑场地条件、利于列车运行组织、减少列车空走距离、增加夜间空窗作业时间、救援抢险及资源共享等条件。 1.2 车辆基地选址要考虑到整个线网管理的合理性和先进性,大架修车辆基地选址要考虑便于资源共享各条线的合理利用,便于车辆的运送和工程车的转线,并应有便捷的交通条件。车辆基地至终点站的长度大于20km 时,宜另外设置停车场。 1.3 车辆段的位置宜设在交路折返点附近,以便于列车的出发和进段,减少列车的空车走行距离,有利运营。 1.4车辆基地内的建筑物布置应适当集中,单体应尽量整合,并结合规划条件,对于有开发价值的地块做好预留。 1.5绕城高速以内且沿江河的车辆基地车场线路肩设计高程不应小于1/200洪水频率标准的潮水位、波浪爬高值和安全高之和。绕城高速以外车辆基地路肩设计高程不应小于1/100洪水频率标准的潮水位、波浪爬高值和安全高之和。 1.6车辆较大修程应尽量集中,最大限度地实现资

城市轨道车辆制动系统设计毕业设计(开题报告)

毕业设计(论文) 开题报告 题目跨座式城市单轨交通车辆 制动系统设计 专业城市轨道车辆工程 班级08级城轨1班 学生戴学宇 指导教师赵树恩 重庆交通大学 2012年

1. 选题的目的和意义 随着我国城市化进程的加快,城市交通拥堵、事故频繁、环境污染等交通问题日益成为城市发展的难题。城市轨道交通以其大运量、高速准时、节省空间及能源等特点,已逐渐成为我国城市交通发展的主流。在城市轨道交通系统中,跨坐式单轨交通制式因其路线占地少,可实现大坡度、小曲率线径运行,且线路构造简单、噪声小、乘坐舒适、安全性好等优点而逐渐受到关注。 在我国城市轨道交通迅速发展的同时,其运营安全保障已成为目前面临的重要问题。车辆作为城市轨道交通运输的载体,由于速度快、载客量大、环境复杂,其运行安全状况不容乐观——车辆故障不断出现、事故常有发生,这些故障不但严重的影响到正常运营,一旦引发事故将会带来巨大的人员伤亡和经济损失。制动系统是城市轨道交通车辆的关键系统,直接影响其安全运行,为提高车辆运行的安全性,对制动系统的设计便显得尤为关键。 2.国内外研究现状及分析 基础制动装置是确保城市轨道交通车辆行车安全的措施之一。在分析城市轨道车辆运输特点基础上, 李继山,李和平,严霄蕙(2011)《盘形制动是城市轨道车辆基础制动装置的发展趋势》[1]结合城市轨道车辆基础制动装置具体类型,分析了城市轨道车辆踏面制动与盘形制动的优缺点, 用有限元模拟城轨车辆车轮 踏面温度场及热应力, 表明速度100 km/ h 及以上的城轨列车基础制动不适宜采用踏面制动, 指出盘形制动是城市轨道交通车辆基础制动的发展的必然趋势。丁锋(2004)在《城市轨道交通车辆制动系统的特点及发展趋势》[2]一文中介绍并分析了我国城市轨道交通车辆制动系统的形式、构成、技术特点及发展趋势。吴萌岭,裴玉春,严凯军(2005)在《我国城市轨道车辆制动技术的现状与思考》[3]中较为详细地回顾了我国城市轨道车辆制动系统的发展历程,分析了目前我国新型城市轨道车辆制动系统的特点,并与我国自主研发适用于高速动车组的同类型制动系统作了技术比较。分析了我国自主研发城市轨道车辆制动系统的技术基础,指出国内技术与产品和国外相比存在着系统理念、设计经验和系统可靠性方面的差距,同时指出自主研发城市轨道车辆制动系统存在的问题,并提出了建议。邹金财(2010)《一种轨道车辆空气制动系统优化及仿真》[4]利用Simulationx 仿真软件对工矿窄轨土渣车的空气制动系统的改进前以及改进方案进行仿真,在与试验真实值对比后得到了正确的结论,通过对该空气制动系统优化中仿真手段应用过程的阐述,为机车车辆系统优化方法提供了参考。师蔚,方宇(2010)《城

新城市轨道交通车辆制动系统复习题库

绪论 一、判断: 1、使运动物体减速,停车或阻止其加速称为制动。(×) 2、列车制动系统也称为列车制动装置。(×) 3、地铁车辆的常用制动为电空混合制动,而紧急制动只有空气制动。(√) 4、拖车空气制动滞后补充控制是指优先采用电气制动,不足时再补拖车的气制动(×) 5、拖车动车空气制动均匀补充控制是指优先采用电气制动,不足时拖车和动车同时补充气 制动(√) 6、为了保证行车安全,实行紧急制动时必须由司机按下紧急按钮来执行。(×) 7、轨道涡流制动能把列车动能转化为热能,且不受黏着限制,轮轨间没有磨耗。(√) 8、旋转涡流制动能把列车动能转化为热能,且不受黏着限制,轮轨间没有磨耗。(×) 9、快速制动一般只采用空气制动,并且可以缓解。(×) 10、制动距离和制动减速度都可以反映列车制动装置性能和实际制动效果。(√) 11、从安全的目的出发,一般列车的制动功率要比驱动功率大。(√) 12、均匀制动方法就是各节车各自承担自己需要的制动力,动车不承担拖车的制动力。(√) 13、拖车空气制动优先补足控制是先动车混合制动,不足时再拖车空气制动补充。(×) 14、紧急制动经过EBCU的控制,使BCU的紧急电磁阀得电而实现。(×) 二、选择题: 1、现代城市轨道交通车辆制动系统不包括(C)。 A.动力制动系统 B.空气制动系统 C.气动门系统 D.指令和通信网络系统 2、不属于制动控制策略的是(A)。 A.再生制动 B.均匀制动方式 C.拖车空气制动滞后补足控制 D.拖车空 气制动优先补足控制 3、直通空气制动机作为一种制动控制系统( A )。 A.制动力大小靠司机操纵手柄在制动位放置时间长短决定,因此控制不太精确 B.由于制动缸风源和排气口离制动缸较近,其制动和缓解不再通过制动阀进行, 因此制动和缓解一致性较自动制动机好。 C.直通空气制动机在各车辆都设有制动、缓解电空阀,通过设置于驾驶室的制动 控制器使电空阀得、失电 D.直通空气制动机是依靠制动管中压缩空气的压力变化来传递制动信号,制动管 增压时缓解,减压则制动 4、三通阀由于它和制动管、副风缸及制动缸相通而得名( B ) A.充气缓解时,三通阀内只形成以下一条通路:①制动管→充气沟i→滑阀室→ 副风缸; B.制动时,司机将制动阀操纵手柄放至制动位,制动管内的压力空气经制动阀排 气减压。三通阀活塞左侧压力下降。 C.在制动管减压到一定值后,司机将制动阀操纵手柄移至保压位,制动管停止减 压。三通阀活塞左侧压力继续下降。 D.当司机将制动阀操纵手柄在制动位和保压位来回扳动时,制动管压力反复地减 压——保压,三通阀则反复处于冲压位。 5、城市轨道交通在运行过程中,乘客负载发生较大变化时,一般要求制动系统( B ) A.制动功率不变 B.制动率不变 C.制动力不变 D.制动方式不变.

对地铁车辆段用地情况的分析汇总

对地铁车辆段用地情况的分析 摘要:本文介绍了地铁车辆段的功能、设施与规模,通过近年来车辆检修制度的变化,对我国地铁车辆段与国外车辆段设置与用地情况进行了分析比较,并提出今后车辆段用地的发展动向。 关键词:地铁车辆段用地 地铁车辆段是停放管理地铁车辆的场所,担负着一条或几条线路地铁车辆的停放、检查、维修、清洁整备等工作。除停车库及停车场,车辆检修车间、设备维修车间的厂房以外,根据运营管理模式,有的地铁车辆段还负责乘务人员的组织管理、出乘、换班等业务工作。因此还要有乘务值班室、乘务员公寓等设施。 1 车辆段的功能、设施与规模 1.1 车辆段的类型 按照《地铁设计规范》(GB50157—2003)的规定,地铁车辆段根据功能可分为检修车辆段(简称车辆段)和运用停车场(简称停车场)。 车辆段根据其检修作业范围可分为架(厂)修段和定修段。 独立设置的停车场应隶属于相关车辆段。 1.2 地铁车辆段的主要功能 1)列车的停放、调车编组、日常检查、一般故障处理和清扫洗刷、定期消毒。2)车辆的修理——月修、定修、架修与临修。 3)地铁车辆的技术改造或厂修。 4)段内通用设施及车辆维修设备的维护管理。 5)乘务人员组织管理、出乘计划的编制、备乘换班的业务工作。 根据地铁线路的情况,有时可以另外设置仅用于停车和日常检查维修作业的停车场或检车区,管理上一般附属于主要车辆段,规摸较小,其功能主要为: 1)列车的停放、调车编组、日常检查、一般故障处理和清扫。 2)车辆的修理——月修与临修。 3)可另设工区管理乘务人员出乘、备乘倒班。 所谓定修段的功能介于车辆段和停车场之间。 1.3 车辆段的必备设施 1)车辆段应有足够的停车场地,确保能够停放管辖线路的回段电动车辆,车辆段的位置应保证列车能够安全、便捷地进入正线运行,并应尽量避免车辆段出入线坡度过大、过长。 2)车辆段内需设检修车间,检修车间的工作地点为架、定修库和月修库;列检作业在列检库或停车库(线)进行;架、定修库内要有桥式起重机和架车设备、车轮旋削机床及存轮库,必要时应设不落轮车轮旋床;架、定修库内应有转向架、电机、电器、制动机维修间,应设转向架等设备的清扫装置,单独设立的喷漆库。

车辆段与综合基地的系统特性

车辆段与综合基地 专业:交通工程(城市轨道交通) 学号:201221050235 姓名:李金龙

车辆段与综合基地 班级:2012210502 学号:35 姓名:李金龙 基本概念:车辆段与综合基地(简称“车辆基地”)作为城市轨道交通配套系统,它主要包括车辆段、综合维修中心、物资总库和培训中心四大基本部分,并辅以必要的办公、生活设施。国内有些地铁城市,还将行车调度指挥中心、地铁公安分局或运营公司部分职能处室整合在车辆基地内。 以下从系统的八大特性来分析该系统 整体性:从地铁系统的子系统的角度看,车辆段一个完整的全面的分系统地铁车辆段与综合基地是地铁系统的重要组成部分,铁车辆段与综合基地设计是包括站场、线路、路基、桥梁、轨道、工艺、房建、给排水、牵引供电、环保等多专业的系统工程。 目的性:车辆段与综合基地作为地铁系统的运用、检修、材料/后勤保障和培训基地,功能应体现为整个地铁系统服务 车辆段及综合基地应具备以下的基本功能。 1、车辆停放及日常保养功能——包括地铁车辆的停放和管理;司乘人员每日出、退勤前的技术交接;对运用车辆的日常维修保养及一般性临时故障的处理;车辆内部的清扫、洗刷及定期消毒等。 2、车辆检修功能——依据地铁车辆的检修周期,定期定成对地铁车辆的计划性修理(包括定修,架修和大修)。 3、列车救援功能——列车发生事故(如脱轨、颠覆)或接触网中断供电时、能迅速出动救援设备起复车辆,或将列车牵引至临近车站或地铁车辆段,并排除线路故障,恢复行车秩序。 4、设备维修功能——对地铁各系统,包括供电、环控、通信、信号、防灾报警、自动售检票、给排水、自动扶梯等机电设备和房屋建筑、轨道、隧道、桥梁、车站等建筑物进行维护、保养和检修等。 5、材料供应功能——负责地铁系统在运营过程中,所需各种材料、设备器材、备品备件、劳保用品以及其它非生产性固定资产的采购、储存、保管和供应工作。 6、技术培训功能——负责对地铁系统的工人和技术人员进行技术培训。相关性:从多方面与其他系统产生了密不可分的联系

浅谈地铁车辆段与综合基地的设计

浅谈地铁车辆段与综合基地的设计 发表时间:2019-06-26T15:17:20.383Z 来源:《建筑模拟》2019年第18期作者:杨潇辉 [导读] 作为城市轨道交通车辆安全运行的前提和保证,车辆段与综合基地在现代城市轨道交通系统中起着非常重要的作用。 杨潇辉 杭州杭港地铁有限公司浙江杭州 310016 摘要:作为城市轨道交通车辆安全运行的前提和保证,车辆段与综合基地在现代城市轨道交通系统中起着非常重要的作用。因此,车辆基地的设计已经成为当前亟待研究解决的课题。通过对地铁车辆选型以及车辆基地规模、检修工艺流程、平面布局的介绍分析,结合国内实际情况,提出车辆基地设计的要点。 关键词:地铁、车辆段、综合基地 一、地铁车辆段与综合基地的设计原则 1.1车辆段与设计结合 车辆段与综合基地的设计,应初、近、远期结合,统一规划,分期实施。其中站场股道、房屋建筑和机电设备等应按近期需要设计,用地范围应按远期规模控制。车辆段与综合基地的选址、接轨形式及段型应考虑相互联系、相互影响和相互制约的关系。 1.2车辆段与综合基地进行统一安排 车辆段与综合基地的总平面布置按有利生产、方便管理的原则进行统筹安排,并充分考虑远期发展条件。对车辆运用和检修作业工艺应布置顺畅,避免干扰和迂回走行。应以车辆段为主体,根据段址地形、地质、气象及水文条件,充分考虑城市规划、接轨条件、消防、绿化、环保、物业开发等方面的要求进行布置,并宜与地面铁路接通。场地内应有运输道路及消防道路,并应有两个及以上与城市道路相连通的出口。车辆段与综合基地应设通透的围蔽设施。 二、地铁车辆段与综合基地的主要类型 2.1 单战双线接轨 单站双线接轨。出、入段线在一个站的同一端接轨,分别连通两正线,若接轨站为岛式站,则入段线可同时连通左、右两正线。出(入)段线与正线立交。广州地铁2号线赤沙车辆段即为该形式,出、入段线分别在新港东路站东端接轨,入段线下穿左右正线。其优点是工程量较小,缺点是运营作业不够灵活方便。 2.2两站(或一站一区间)贯通式接轨 出、入段线分别在两个站(或一站一区间)接轨,同时连通左、右两正线。有时为节省工程量,辅助出入段线在正线一侧接轨,通过渡线连通另一正线。车辆段顺向布置在两接轨站之间正线外侧。广州地铁1号线芳村车辆段即为该形式,出、入段线分别在西朗站北端、坑口站南端接轨,西朗站为主要出入段端,2条主出入段线在西朗站接轨,1条辅助出入段线在坑口站左正线接轨,通过渡线连通右正线。其优点是运营作业灵活方便,缺点是工程量较大。 2.3两站(或一站一区间)八字接轨 出、入段线分别在两个站(或一站一区间)接轨,接轨站一般设计为岛式站,出(入)段线同时连通左、右两正线。出入段线呈“八”字形式并行入段,车辆段与正线近似于垂直布置。广州地铁5号线鱼珠车辆段即为该形式,出入段线分别在鱼珠站东端、茅岗站西端接轨并行入段。其优点是作业灵活方便,出入段线可实现列车转向作业,缺点是工程量较大。由于两站接轨时作业灵活,若条件许可,应尽量采用两站接轨的方式。 三、深圳地铁3号线横岗车辆段段型方案探讨 3.1 塘坑站单站接轨方案 塘坑站为浅埋岛式车站,出入段线在塘坑站的西端接轨,入段线同时连通左、右两正线。入段线上跨右正线后与出段线并行入段。接轨分为尽端式及贯通式两个方案。尽端式方案的运用库为2列为尽端式布置,运用与检修部分反向纵列式布置。由于场地限制,为避免迁移高压线走廊,运用库部分设计为上下两层车库。贯通式的运用库为3列位贯通式布置,两端咽喉通过走行线连通。运用与检修部分横列式布置,通过尾部牵出线相连。尾部牵出线预留在区间正线接轨的条件。塘坑单站接轨方案的优点是避免迁移高压线走廊;缺点是拆迁房屋较多。贯通式的最大优点是作业通畅。 3.2 育马场站单站接轨方案 育马场站为高架岛式车站,其接轨为尽端式。方案:出入段线在育马场站的西端接轨成灯泡线引入车辆段,入段线同时连通左、右两正线。入段线上跨右正线后与出段线并行入段。方案?:出入段线在育马场站的东端接轨,出段线下穿左右正线后与出段线并行入段顺接车辆段。运用库为2列为尽端式布置,运用与检修部分横列式布置。其优点是避免迁移高压线走廊;缺点是作业不顺畅,拆迁房屋较多。 3.3 育马场、塘坑双站接轨方案 塘坑站的出入段线在西端接轨,同时连通左、右两正线。出入段线上跨右正线后入段。育马场站的出入段线在西端接轨成灯泡线上跨右正线引入车辆段,出入段线同时连通左、右两正线。运用库为3列位贯通式布置,两端咽喉通过走行线连通。运用与检修部分横列式布置,通过尾部牵出线相连。并做了近期迁移高压线走廊、少拆迁房屋和不迁移高压线走廊、多拆迁房屋的两个方案。其优点是运用和检修作业顺畅方便;缺点是近期拆迁房屋较多且对高压线走廊有一定影响。 结束语 车辆段与综合基地属于大型的基建工程,投资十分巨大。我们在设计过程中应根据有关经验和原则,注意近、远期相结合,统一规划。此外,随着我国高速铁路的快速发展,动车组大架修量也随之逐渐增加。由于城轨车辆检修与动车组检修工艺基本相同,部分检修工装入库方可共用。我们可以在动车段检修生产区预留城轨车辆大架修区域。预备试车线位置等。这样以来就充分贯彻了“节能减排、高效生产”的现代化企业生产理念,提高了城市轨道车辆的整备运用效率。 参考文献: [1]刘坤.地铁车辆段与综合基地总平面设计方案研究[J].天津建设科技,2017,27(05):79-80.

浅议地铁车辆段施工管理

浅议地铁车辆段施工管理 摘要:随着我国经济持续高速发展,经济实力不断增强,城市建设规模迅速扩张。作为解决城市交通的手段—轨道交通建设,在许多大中城市日益受到高度重视和快速发展。据统计,我国目前已开通轨道交通的城市已超过10个,正在或已启动轨道交通建设的城市达20多个,轨道交通建设的规模和速度是史无前例的。而作为一个城市的地铁系统,车辆段及综合基地的功能是全面的、完备的。一般具备以下的基本功能: 1、车辆停放及日常保养功能—包括地铁车辆的停放和管理;司乘人员每日出、退勤前的技术交接;对运用车辆的日常维修保养及一般性临时故障的处理;车辆内部的清扫、洗刷及定期消毒等。 2、车辆检修功能—依据地铁车辆的检修周期,定期定成对地铁车辆的计划性修理(包括定修,架修和大修)。 3、列车救援功能—列车发生事故(如脱轨、颠覆)或接触网中断供电时、能迅速出动救援设备起复车辆,或将列车牵引至临近车站或地铁车辆段,并排除线路故障,恢复行车秩序。 4、设备维修功能—对地铁各系统,包括供电、环控、通信、信号、防灾报警、自动售检票、给排水、自动扶梯等机电设备和房屋建筑、轨道、隧道、桥梁、车站等建筑物进行维护、保养和检修等。 5、材料供应功能—负责地铁系统在运营过程中,所需各种材料、设备器材、备品备件、劳保用品以及其它非生产性固定资产的采购、储存、保管和供应工作。 一、安全管理

车辆段功能的全面性、完备性决定了其施工专业的多样性以及施工队伍的多元化。在车辆段安全管理工程中,协调施工责任主体的总包单位一定要将其他施工单位纳入自己的管理范畴,签订安全生产责任书。 1、安全管理必须坚持“安全第一、预防为主、综合治理”的方针 把“综合治理”充实到安全生产方针当中,坚持安全第一,必须以预防为主,实施综合治理;只有认真治理隐患,有效防范事故,才能把“安全第一”落到实处。 2、完善项目安全管理体系、建立各项安全生产责任制 安全管理体系是针对现场安全实施的一套管理系统,建立健全安全生产保证体系,实行安全生产责任制,有组织地开展安全管理活动。建立各级安全岗位责任制,形成上下齐抓共管的安全管理网络,做到安全工作层层有人抓。 3、立足以人为本的安全管理理念,发挥管理层高效 安全管理“人是关键,人最重要”,“以人为本”的安全管理理念,无时无刻不贯穿着现代安全管理的始终,尤其地铁施工是一个高风险的作业,施工过程都在地面以下进行,不只有深基坑作业、还有竖井、暗挖、隧道区间等作业,加之地质条件复杂多变,施工时存在如基坑坍塌、突水涌砂、异常声音、地下管线破坏等重大安全隐患,稍有不慎就会发生重大安全事故。必须立足以人为本,关爱生命、安全发展。 4、加强施工技术、施工安全交底,危险性较大的需编制专项方案并组织专家论证 安全技术交底内容应包括工作场所的安全防护设施,安全操作规程,安全注意事项等,既要有针对性,又要简单明了。根据地铁施工的特殊性,对危险性较大的分部分项工程,在施工前必须单独编制安全专项施工方案,其中部分方案必须经过专家的论证审核后才能实施。

城市轨道交通车辆制动技术题库

1. 防滑控制系统主要由、和防滑动作机械部件组成。 2. 上海地铁基础制动装置采用制动机厂生产的。 3. BCU和BECU分别是和系统的缩写。 4. 上海地铁和广州地铁使用的电气指令制动控制系统为式电气指令式制动控制系统。 5. 模拟转换阀是上海地铁车辆KNORR制动系统中使用的一个电磁阀,它由三部分组成:电磁进气阀、和组成。 6. EP阀又称阀,是SD数字式制动控制单元中的一个转换阀。 7. 空压机的驱动电机一般有电机和电机。 8. 经空气压缩机压缩输出的空气压力单位,一般用bar来表示,1bar等于MPa。 9. 空气干燥塔可以将从空气压缩机输出的高压压缩空气中的和分离出去,以达到各用气系统对压缩空气的要求。 10. 空气压缩机组一般由、、、等装置组成。 11. 上海地铁knorr公司的空气压缩机,在进行压缩空气时一般经过两级冷却,分别为冷却和冷却。 12. 除空气制动系统用气外,城市轨道列车还有以下部件需要用到压缩空气:、、、等。 13. 空气压缩机组一般采用方式进行润滑。 14. 空气干燥器一般做成塔式的,有和两种。 15. 电阻制动所采用的制动电阻,材料一般采用合金带钢条,这种合金带钢条不仅具有稳定的,而且具有相当大的。 16. 再生制动失败,列车主电路会自动切断反馈电路转入制动电路。 17. 直流斩波器按列车控制单元及制动控制单元的指令,不断调节斩波器的,无级、均匀地控制,使制动力和再生制动电压持续保持恒定。 18. 电动车组中既有动车又有拖车,拖车没有电动机,只能使用制动,动车带有电动机,可以进行制动。 19. 一般列车在高速时,常用制动都先从制动开始,最后在列车10km/h以下低速时,由制动将车停止。 20. 动轮与钢轨间切向作用力的最大值与物理学上的最大静摩擦力相比要(大or 小)一些,情况要更复杂一点,其主要原因是由于的存在所导致。 21. 伴随着蠕滑产生静摩擦力,轮轨之间才能传递。 22. 一般城市轨道车辆的制动方式主要有三类:、和电磁制动。 23. 电磁制动有两种形式:和。 24. 轮对在钢轨上运行,一般承受载荷、载荷和载荷。 25. 城市轨道交通系统都有明确的车辆运行规程,对于列车制动能力,上海地铁规定,列车在满载乘客的条件下,任何运行速度时,其紧急制动距离不得超过米。 26. 现代城市轨道车辆的制动系统一般都应该具有以下组成部分:、和。 27. 城市轨道车辆制动技术正朝着、、和的目标不断前进。 28. 最近几十年来,制动技术取得了很大进展,出现使电气再生制动成为可能,使制动防滑系统更加精确完善。 29. 20世纪初早期的城市轨道交通车辆制动系统一般采取和等安全性和舒适性均较差的方式来进行制动。

浅谈地铁车辆基础制动装置

浅谈地铁车辆基础制动装置 摘要:从地铁电客车诞生的那一刻起,制动系统就对地铁电客车的安全起到至关重要的作用。目前对于地铁电客车制动系统的研究侧重于制动控制,包括制动控制的理论和方法,以及对制动控制新技术的应用。介绍了地铁车辆基础制动装置的特点,分析了踏面制动和盘形制动的不同,得出盘形制动的优势。 关键词:地铁车辆制动盘形制动 引言: 随着我国城市化进程的发展,城市吸引力不断扩大,人口集聚力不断增强,大、中城市人口数量屡创新高。为了更好的缓解城市交通拥堵的问题,许多城市选择了建设轨道交通来改善交通状况。地铁车辆的运行速度也由最初的60km/h,逐渐提高到80 km/h、100 km/h,甚至更高。车辆在高速运行中必须依赖制动系统调节列车运行速度和及时准确地在预定地在预定地点停车,保证列车安全正点地运行。 1、制动系统的发展历史 最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,这时的车 辆的质量比较小,速度比较低,机械制动虽已满足车辆制动的需要,但随着汽车自质量的增加,助力装置对机械制动器来说已显得十分必要。这时,开始出现真空助力装置。1932年生产的凯迪拉克采用鼓式制动器,并有制动踏板控制的真空助力装置。1936年,博世公司申请一项电液控制的装置专利促进了防抱制动系统在汽车上的应用。1969年的福特使用了真空助力的制动器。1971年,克莱斯勒车采用了四轮电子控制的装置。这些早期的装置性能有限,可靠性不够理想,且成本高。1979年,默本茨推出了一种性能可靠、带有独立液压助力器的全数字电子系统控制的制动装置。随着大规模集成电路和超大规模集成电路技术的出现,以及电子信息处理技术的高速发展,制动装置已经成为性能可靠、成本日趋下降的具有广泛应用前景的成熟产品。 2、地铁车辆制动的特点 地铁与铁路虽都属于轨道交通,但地铁车辆主要在城市内运营与铁路运输还是存在一些区别,在车辆制动方面主要有以下特点。 2.1 制动类型。 制动系统作为城轨车辆的重要系统,直接涉及到车辆的运行性能和安全,影响乘客的乘坐舒适度。因此,车辆制动系统类型的选择、性能尤为重要。为了适应城市快速轨道车辆运行速度高、站间距离短、启动制动频繁等特点,现代

第六章基础制动装置习题及答案_城市轨道交通车辆制动技术

1、上海地铁基础制动装置采用制动机厂生产的。 答案:德国克诺尔,单元制动机 2、简述轨道车辆使用的闸瓦分类。 答:轨道车辆上使用的闸瓦基本上为两大类:铸铁闸瓦和合成闸瓦。在铸铁闸瓦中,又可分为中磷铸铁闸瓦和高磷铸铁闸瓦。在合成闸瓦中,按其基本成分,可分为合成树脂闸瓦和石棉橡胶闸瓦。按其摩擦系数高低,又可分为高摩擦系数合成闸瓦和低摩擦系数合成闸瓦(简称高摩合成闸瓦和低摩合成闸瓦)。中磷铸铁闸瓦、高磷铸铁闸瓦和低摩合成闸瓦,称为通用闸瓦,可互换使用(不用改变基础制动装置的结构)。 3、合成闸瓦对车轮有哪些影响? 答:1) 热龟裂——由于闸瓦与车轮的接触不良,因而在车轮踏面上产生局部过热,形成热斑点,在个别情况下会发生热龟裂。 2) 车轮的沟状磨耗——在制动频繁的区段上使用合成闸瓦会使车轮温度升高。车轮踏面呈现有沟状磨耗,这是由于合成摩擦材料局部摩擦热膨胀引起的。温度越高时,这种磨耗在车轮踏面的外侧越容易发展。沟状磨耗是闸瓦横向摩擦造成的。研究制动时的踏面温度分布,便可以判断车轮踏面容易发生沟状磨耗的位置。 3) 车轮的凹形磨耗——在冬季积雪地区使用合成闸瓦时,会发生这种磨耗。这是由于水介入到闸瓦摩擦表面所引起的。除了上述现象外,合成闸瓦对车轮踏面的影响还经常见到的有:毛细裂纹、热裂纹、滑行裂纹和踏面剥离等。 4、为什么单元制动机必须带有闸瓦自动间隙调整器? 答:由于闸瓦是一个磨耗件,所以经过一定时间的运行,闸瓦与车轮踏面之间会出现间隙,这对摩擦制动效率影响极大。对于闸瓦与踏面之间产生的间隙,不可能采用人工的方式去检测或调整。因此,单元制动机都带有一个闸瓦自动间隙调整器。

地铁车辆段总体施工部署

地铁车辆段总体施工部署 【摘要】结合地铁八通线土桥车辆段工程实践,论述地铁车辆段的工程特点及车辆段总体施工部署。 【关键词】地铁车辆段工程特点施工部署 地铁车辆段是集停车、列检、维修及人员办公等使用功能于一体的综合基地,涉及到地铁运营的各个方面,工程规模大,建设项目多,多栋建筑在一个场区同时施工,对施工组织、协调管理要求较高,必须做好施工总体部署工作,使各项工作有序进行,确保按工期、高质量地完成工程任务。 1 工程概况 地铁八通线土桥车辆段共有20 栋建筑物,分别为停车列检库、轨道车库、牵引降压变电所、信号楼、水泵房、污水处理站、单身宿舍及乘务员公寓、机电维修综合楼、机电备品配件库、材料备品库、易燃品库、汽车库、段办公楼、公务建筑综合楼、通号及AFC 维修楼、食堂及浴室、锅炉房、降压变电所、试车线用房、门卫用房等。整个车辆段建筑物按照使用功能进行布置,停车列检库和轨道车库作为停车、列检、维修的场所布置在车辆段的西南端,信号楼、单身宿舍及乘务员公寓、机电维修综合楼、段办公楼等公务用房位于站场东北侧。正线线路从场区西北侧进入站场,沿站场西侧进入停车列检库、轨道车库。车辆段用地范围内地势较低,场区内需大面积回填土, 平均回填厚度约1.5 m 。场区配套市政管线包括给排水外线、电力外线、采暖外线、雨水外线等,场区道路分主干路和支路。 2 总体施工部署 2.1 施工难点 根据土桥车辆段的总体设计及甲方的工程安排, 土桥车辆段施工具有以下特点及难点: (1) 车辆段内建筑较多且比较分散,临水、临电、临时道路及临时设施布置需统一考虑。 (2) 车辆段用地范围内地势较低,为达到设计标高需回填土方36.37 万立方 米。开工时适逢冬季,土方作业不易保证质量,需在冬末才能开始,以致工期较紧。另外,考虑雨季填土困难,工程须在雨季前完成,并给路基留有足够的沉降时间,导致工期更加紧张。因此,必须采取特殊措施来组织施工,才能保证工期和施工质量。 (3) 车辆段占地面积23.89 公顷,用地面积较大, 有多栋建筑及多条线路需定位,线路曲线多,地铁限界要求严格,决不允许侵线,必须保证每个建筑物位置和每条线路中心线位置的准确,因此必须采取特殊措施加强测量及复测工作,以保证行车限界。

车辆段及综合基地的功能与选址

最大的地下车辆段——北京焦化厂车辆段 北京市东南部垡头地区的焦化厂旧址将进行工业遗址保护,建设中的地铁7号线终点站也位于此。施工方为保护焦化厂地面风貌,7号线建起首座“全地下”地铁车辆段,总面积达17万平方米的地下空间轨道密布,将成为地铁列车停放、清洗和检修的大本营。 中国最古老的车辆段——北京古城车辆段 古城车辆段是北京地铁1号线的一座车辆段,位于北京石景山区,原为沙石荒地。在1号线上的道岔位于古城站和苹果园站之间。古城车辆段是北京地铁最早的车辆段,建于1969年,占地约23公顷。古城车辆段主要用于1号线列车的修理保养,以及1号线列车的停放。除此之外古城车辆段还拥有与国铁京门铁路的联络线,便于调换车辆等。 车辆段是铁路行车系统的重要单位之一,主要负责列车车辆(不包含机头)的运营、整备、检修等工作。车辆段同时也是城市轨道交通系统(地铁、城市轻轨)中对车辆进行运营管理、停放及维修、保养的场所。 车辆段的工作范围与内容 日常维护:收车后对车辆按养护规定进行日常检查保养对车辆内外部清洗打扫列检:对各主要部件进行外观检查对危及行车安全的故障及时进行重点修理 月检:对车辆外观和主要部件技术状态进行检查对危及行车安全的故障进行全面修理 定修:预防性的对各大部件技术状态进行仔细的检查对车上仪器和仪表进行校验对发现的故障进行针对性修理 架修:检查和修理大部件对车辆各部件进行解题和全面检查、修理、实验、校验大修:全面恢复性修理对车辆全面解体、检查、修理、整形、实验、校验、调试、油漆 车辆段检修设备 运输设备:轨道平地两用电动牵引车、移车台、轨道车、转轨设备 升降设备:架车机、落轮升降台 清洗设备:洗车机、转向架冲洗机、各种高压冲洗机、超声波洗涤剂 修理加工设备:不落轮镟床、绝对压装机、整流子下刻焊接机、轨道打磨机 检测设备:超声波轮对探伤仪、轮缘轮距测量仪、车门驱动空气压力测量装置试验设备:列车静调试验台转向架试验台等各种试验台 车辆段与综合基地(简称“车辆基地”)作为城市轨道交通配套系统,它主要包括车辆段、综合维修中心、物资总库和培训中心四大基本部分,并辅以重要的办公、生活设施。国内有些地铁城市,还将行车调度中心、地铁公安分局或运营公司部分职能处室整合在车辆基地内。 根据车辆段出入段线与正线的接轨形式,按照车辆运用库的库型,可分为贯通式车辆段和尽端式车辆段两种。 车辆段运用库线贯通式布置时,运用库线一般设计为贯通2或3列位,两段咽喉通过走形线相联通。广州地铁一号线芳村车辆段、2号线赤沙车辆段即为该形式。优点:①运用和检修作业顺畅方便;②调车作业与出入段作业可平行进行;③车辆走形距离较短。 缺点:①是占地较多;②工作量较大。 运用库线尽端式布置时,运用与检修部分宜横列布置,有时由于规划用地的限制,运用与检修部分只能纵列式反向布置,运用与检修之间需“之”字形折返调车,

地铁车辆段与综合基地总平面设计方案研究

第27卷第5期2017 年10 天津建设科技 Tianjin Construction Science and Technology 规划与设计 Plan and Design 地铁车辆段与综合基地总平面 设计方案研究 □文/刘坤 【摘要】:地铁车辆段是列车停放、检修、维护及段内综合行政办公的重要基地。在满足功能及工艺要求的前提下,优化建筑总平面布置、空间组合,把建筑功能作为 总平面设计的重要依据,使建筑功能与地形得以有机结合,做到减小规模、减少 投资、优化布局。文章结合南宁地铁2号线安吉车辆段与综合基地总平面方 案,阐述其布置特点及优点。 【关键词】:地铁;车辆段;综合基地;总平面 1工程概况 南宁市轨道交通2号线一期工程及安吉车辆段与 综合基地位于南宁绕城高速以南、安吉大道以东、规划 纬五路以北的规划地块内,呈东西走向,占地面积约 31.4 hm2〇 选址地形较为复杂,中部丘陵最高处为119 m,西 侧安吉大道路边最低处为81 m,东侧耕地最低处为84 ),北侧绕城高速路面标高91?96 m。该用地范围限制 条件为绕城高速红线南侧50 m绿线、安吉大道红线东 侧20 m绿线以及安吉大道东侧的河道。 2车辆段与综合基地功能及组成 承担1、2、3、6号线车辆的架修,4条线总长度约 138.7 km。承担2号线车辆定临修及部分列车周月检 用、综合修基地、总。车辆段及综合 修 、术管理及后勤保障。内职工 、保 、 3总平面布置基本思路及设计方案 及工 的 ,总 面 、合,为总 面 的4与地形以合。总面基 路 工 、定 合 、 , 总面中,以车辆段为 ,充 的用,、、、。 车辆段与综合基地总 面 为 ,呈南北向 ,段线 ,西北向 东南 为车、楼、综合修中心、废水处理站、混合变电所、总库、轨道车库及内燃车、杂品存放间、停车 、合修、辅助 生产车。预留停车 紧邻北侧规划道路,南侧跨由西向东别为信号楼、用车 跟随所;其南侧 合修。工程车 车辆段股道咽喉处,方工程车辆车辆段,见图1。 图1车辆段与综合基地总平面布置 3.1工艺优先,确定边界 车辆段与综合基地用地边界以既有道路和规划道 路为参照线,靠近道路红线 ,其他 线按工需定。 车辆段与综合基地北侧是绕城高速公路,为曲线。总图 北侧试车线用地线按直线方案,车辆段边界与绕城高速公路红线最大间距80 m,比50 m 绿线宽30 m。 3.2整合并栋,减少单体数量 车辆段与综合基地 繁杂,生产、生活、房屋众多。定 合的 路,研究生产、生活、房屋 ,调 工艺流程,采取必的措施、合 ,。 车辆段与综合基地内房屋主要有停车列检库、周 79

地铁车辆停放与维修基地

地铁车辆停放与维修基地 《地下铁道设计规范》 CB 50157--92 13.2.12在列检库和内燃机车库的检查坑内两侧或地下作业处,应设安全电压照明及其插座以及220V插座。固定照明不应凸出检查坑内壁。 13.2.13在停车库、列检库每条线路上停放的列车前,均应设有与库外隔离的牵引供电开关柜,并应设有送电时的信号显示或音响。 13.3.13车辆段内应单独设车辆油漆库。库内应设通风、给排水设施和压缩空气设备。库内的电气设备均应采取防爆措施。 13.3.19碱性蓄电池及酸性蓄电池的检修间和充电间应分开设置,室内均应设通风、给排水和防腐设施。酸性蓄电池充电间应采取防爆措施。 13.3.26车辆段内应按需要设置各类仓库。易燃、易爆仓库应单独设置。根据需要段内可设置材料线。 13.3.27当牵引供电采用接触轨时,车场线路的外侧应设置安全防护栅栏。 1.15 地铁电腐蚀防护和其他 《地铁杂散电流腐蚀防护技术规程》 CJJ 49—92 3.0.3电腐蚀危险性的直接定量指标漏泄电流密度,其允许值应符合表3.0.3的规定。

4.2.1兼用作回流的地铁走行轨与隧洞主体结构(或大地)之间的过渡电阻值(按闭塞区间分段进行测量并换算为lkm长度的电阻值),对于新建线路不应小于15Ω·km。 4.2.2木质轨枕必须先用绝缘防腐剂进行防腐处理。枕木的端面和螺纹道钉孔,必须经过绝缘处理,或设置专门的绝缘层。螺纹道钉孔不应贯通。轨底部与道床之间的间隙值不得小于30mm。 4.2.4走行轨回路中的扼流变压器、道岔等与线路的路基,路面混凝土及主体结构之间,应具有良好的绝缘。道岔转撤装置控制电缆的金属外铠装与道岔本体之间亦应具有良好绝缘。扼流变压器的塑料连接电缆、股道间均流线用塑料电缆的绝缘要求,应与负回流电缆相同。

相关文档
最新文档