第五章分子结构

第五章分子结构
第五章分子结构

02 原子的结构和性质 【2.1】氢原子光谱可见波段相邻4条谱线的波长分别为656.47、486.27、434.17和410.29nm ,试通过数学处理将谱线的波数归纳成为下式表示,并求出常数R 及整数n 1、n 2的数值。 2212 11 ( )R n n ν=-% 解:将各波长换算成波数: 1656.47nm λ= 1115233v cm - -= 2486.27nm λ= 1220565v cm - -= 3434.17nm λ= 1323032v cm - -= 4410.29nm λ= 1424373v cm - -= 由于这些谱线相邻,可令1n m =,21,2,n m m =++……。列出下列4式: ()2 2152331R R m m = - + ()22205652R R m m =- + ()2 2230323R R m m = - + ()2 2243734R R m m =- + (1)÷(2)得: ()()()2 3212152330.7407252056541m m m ++==+ 用尝试法得m=2(任意两式计算,结果皆同)。将m=2带入上列4式中任意一式,得: 1109678R cm -= 因而,氢原子可见光谱(Balmer 线系)各谱线的波数可归纳为下式: 221211v R n n - ??=- ? ?? 式中, 1 12109678,2,3,4,5,6R cm n n -===。 【2.2】按Bohr 模型计算氢原子处于基态时电子绕核运动的半径(分别用原子的折合质量和电子的质量计算并精确到5位有效数字)和线速度。 解:根据Bohr 提出的氢原子结构模型,当电子稳定地绕核做圆周运动时,其向心力与核和电子间的库仑引力大小相等,即:

第二章分子结构与性质 一.共价键 1.特点:具有性和性(无方向性) 2.分类:(按原子轨道的重叠方式) (1)δ键:(以“”重叠形式) a.特征: b.种类:S-S δ键. S-P δ键. P-Pδ键 (2)π键:(以“”重叠形式),特征: 3.判断共价键类型的一般规律是: 共价单键中共价双键中共价三键中 【练习】1.下列说法正确的是() A. π键是由两个p原子轨道“头碰头”重叠形成 B. δ键是镜面对称,而π键是轴对称 C. 乙烷分子中的键全为δ键而乙烯分子中含δ键和π键 D. H2分子中含δ键而Cl2分子中含π键 2. 下列说法正确的是() A. 共价化合物中可能含有离子键 B. 非金属元素之间不能形成离子键 C. 气体分子单质中一定存在非极性共价键 D. 离子化合物中可能含有共价键 二.键参数 1.键能的定义: 2.键长与共价键的稳定性的关系:键长越短,往往键能,这表明共价键。 3. 决定共价键的稳定性,是决定分子的立体构型的重要参数。 【练习】1.关于键长、键能和键角,下列说法不正确的是() A.键角是描述分子立体结构的重要参数 B.键长的大小与成键原子的半径和成键数目有关 C.键能越大,键长越长,共价化合物越稳定 D.键角的大小与键长、键能的大小无关 2.下列说法正确的是() A.键能越大,表示该分子越容易受热分解 B.共价键都具有方向性 C.在分子中,两个成键的原子间的距离叫键长 D.H-Cl的键能为431.8kJ/mol ,H-Br的键能为366 kJ/mol 这说明HCl比HBr分子稳定 3.已知H-H键能为436 kJ/mol ,H-N键能为391 kJ/mol ,根据化学方程式 高温、高压 N2+3H22NH3,1molN2与足量H2反应放出的热量为92.4 kj/mol ,则N —N的催化剂 键能是() A.431 kJ/mol B.945.6 kJ/mol C.649 kJj/mol D.896 kJ/mol 三.等电子体 相同和相同的粒子具有相似的化学键特征和相同的空间构型 【练习】人们发现等电子体的空间结构相同,则下列有关说法中正确的是() A.CH4和NH4+是等电子体,键角均为60° B.NO3+和CO32-是等电子体,均为平面正三角形结构 C.H2O+和PCl3是等电子体,均为三角锥形结构 D.B3N3H6和苯是等电子体,B3N3H6分子中不存在“肩并肩”式重叠的轨道 四.价层电子对互斥理论 1.价层电子对数= 2.孤对电子数的计算方法: 3.VSEPR模型和分子的立体构形的推测 例:H2O 孤对电子数为,δ键数,价层电子对数为,VSEPR模型,略去VSEPR模型中的中心原子上的孤对电子,因而H2O分子呈形。 【练习】1.下列分子构形为正四面体型的是() ①P4②NH3 ③CCl4④CH4⑤H2S ⑥CO2 A.①③④⑤ B.①③④⑤⑥ C.①③④ D.④⑤

第二章 化学键和分子结构 一.选择题 1. 下列分子或离子中,键角最小的是( ) A. HgCl 2 B. H 2O C. NH 3 D. PH 3 2. 关于原子轨道的说法正确的是( ) A.凡中心原子采取sp 3杂化轨道成键的分子其几何构型都是正四面体; B. CH 4分子中的sp 3杂化轨道是由4个H 原子的1s 轨道和C 原子的2p 轨道混 合起来而形成的 ; C. sp 3 杂化轨道是由同一原子中能量相近的s 轨道和p 轨道混合起来形成的一 组能量相等的新轨道; D. 凡AB 3型的共价化合物,其中心原子A 均采用sp 3杂化轨道成键。 3. 下列化合物中氢键最强的是( ) A. CH 3OH B. HF C. H 2O D. NH 3 4. 对羟基苯甲醛比邻羟基苯甲醛的熔沸点高的原因是( ) A. 前者不能形成氢键,后者可以; B. 前者能形成氢键,后者不能; C. 前者形成分子间氢键,后者形成分子内氢键; D. 前者形成分子内氢键,后者形成分子间氢键。 5. 下列各组物质沸点高低顺序中正确的是( ) A. HI>HBr>HCl>HF B. H 2Te>H 2Se>H 2S>H 2O C. NH 3>AsH 3>PH 3 D. CH 4>GeH 4>SiH 4 6. I 2的CCl 4溶液中分子间主要存在的作用力是( ) A. 色散力 B. 取向力 C. 取向力、诱导力、色散力 D. 氢键、诱导力、色散力 7. 下列分子中偶极矩为零的是( ) A. NF 3 B. NO 2 C. PCl 3 D. BCl 3 8. 下列分子是极性分子的是( ) A. BCl 3 B. SiCl 4 C. CHCl 3 D.. BeCl 2 9. 下列离子或分子有顺磁性的是( ) A. O 2 B. O 22- C. N 2 D. CO 10. 下列分子中心原子是sp 2杂化的是( ) A. PBr 3 B. CH 4 C. BF 3 D. H 2O 11. SO 42-离子的空间构型是( ) A. 平面正方形 B. 三角锥形 C. 四面体 D. 八面体 12. 下列各物质分子其中心原子以sp 2杂化的是( )

第二章分子结构与性质单元测试 一、选择题(本题包括18小题,每小题4分,共72分,每小题有一个或两个选项符合题意, 选错不得分,如果有两个正确选项,选对一个得 2分) 1?有关乙炔分子中的化学键描述不正确的是( ) C ?每个碳原子都有两个未杂化的 2p 轨道形成n 键 D.两个碳原子形成两个 n 键 2?膦(PH 3)又称膦化氢,在常温下是一种无色、有大蒜臭味的有毒气体,电石气的杂质中常 含有膦化氢。它的分子构型是三角锥形。以下关于 PH 3的叙述正确的是( ) A. PH 3分子中有未成键的孤对电子 B PH 3是非极性分子 C. PH 3是一种强氧化剂 D. PH 3分子的P — H 键是非极性键 3?实现下列变化时,需要克服相同类型作用力的是( ) A.水晶和干冰的熔化 B.食盐和醋酸钠的熔化 C.液溴和液汞的汽化 D.HCl 和NaCI 溶于水 4. 下列指定粒子的个数比为 2: 1的是( ) A.Be 2+中的质子数 B.I 2H 原子中的中子和质子 C.NaHCQ 晶体中的阳离子和阴离子 D.BaQ (过氧化钡)晶体中的阴离子和阳离子 5. 在有机物分子中,当碳原子连有 4个不同的原子或原子团时,这 种碳原子称为“手性碳原 子”,凡具有一个手性碳原子的化合物一定具有光学活性。例如下图表示的有机物中含有一 个手性碳原子,具有光学活性。当发生下列变化时,生成的有机物无光学活性的是( ) A.与新制的银铵溶液共热 B.与甲酸酯化 C.与金属钠发生置换反应 D.与 H 2加成 6. 关于氢键的下列说 法中正确的是( ) A.每个水分子内含有两个氢键 B.在水蒸气、水、冰中都含有氢键 C 分子间能形成氢键使物质的熔沸点升高 D.HF 的稳定性很强,是因为其分子间能形成氢键 7. 下列说法正确的是( ) A.n 键是由两个p 电子“头碰头”重叠形成的 B y 键是镜像对称,而 n 键是轴对称 C 乙烷分子中的键全是 y 键,而乙烯分子中含 y 键和n 键 D.H 2分子中含y 键,而C 2分子中还含有n 键 8. 在BrCH=CHBr 分子中,C — Br 键采用的成键轨道是( ) 2 2 3 A.sp —p B.sp — s C.sp — p D.sp — p 9. 下列物质的杂化方式不是 sp 3杂化的是( ) A.CO 2 B.CH C.NH 3 D.H 2O O O CHb — C —O -CH -C -H CH2OH

第二章化学键和分子结构 一.选择题 1.下列分子或离子中,键角最小的是( ) A. HgCl2 B. H2O C. NH3 D. PH3 2.关于原子轨道的说法正确的是( ) A.凡中心原子采取sp3杂化轨道成键的分子其几何构型都是正四面体; B. CH4分子中的sp3杂化轨道是由4个H原子的1s轨道和C原子的2p轨道混 合起来而形成的; C. sp3杂化轨道是由同一原子中能量相近的s轨道和p轨道混合起来形成的一 组能量相等的新轨道; D. 凡AB3型的共价化合物,其中心原子A均采用sp3杂化轨道成键。 3.下列化合物中氢键最强的是( ) A. CH3OH B. HF C. H2O D. NH3 4.对羟基苯甲醛比邻羟基苯甲醛的熔沸点高的原因是( ) A. 前者不能形成氢键,后者可以; B. 前者能形成氢键,后者不能; C. 前者形成分子间氢键,后者形成分子内氢键; D. 前者形成分子内氢键,后者形成分子间氢键。 5.下列各组物质沸点高低顺序中正确的是( ) A. HI>HBr>HCl>HF B. H2Te>H2Se>H2S>H2O C. NH3>AsH3>PH3 D. CH4>GeH4>SiH4 6.I2的CCl4溶液中分子间主要存在的作用力是( ) A. 色散力 B. 取向力 C. 取向力、诱导力、色散力 D. 氢键、诱导力、色散力 7.下列分子中偶极矩为零的是( ) A. NF3 B. NO2 C. PCl3 D. BCl3 8.下列分子是极性分子的是( ) A. BCl3 B. SiCl4 C. CHCl3 D.. BeCl2 9.下列离子或分子有顺磁性的是( ) A. O2 B. O22- C. N2 D. CO 10.下列分子中心原子是sp2杂化的是( ) A. PBr3 B. CH4 C. BF3 D. H2O 11.SO42-离子的空间构型是( ) A. 平面正方形 B. 三角锥形 C. 四面体 D. 八面体 12.下列各物质分子其中心原子以sp2杂化的是( ) A. H2O B. NO2 C. SCl2 D. CS2

第二章分子结构与性质 教材分析 第二章分子结构与性质 第一节共价键 第一课时 教学目标: 1.复习化学键的概念,能用电子式表示常见物质的离子键或共价键的形成过程。 2.知道共价键的主要类型δ键和π键。 3.说出δ键和π键的明显差别和一般规律。 教学重点、难点: 价层电子对互斥模型 教学过程: [复习引入] NaCl、HCl的形成过程 [设问] 前面学习了电子云和轨道理论,对于HCl中H、Cl原子形成共价键时,电子云如何重叠?例:H2的形成 [讲解、小结] [板书] 1.δ键:(以“头碰头”重叠形式) a.特征:以形成化学键的两原子核的连线为轴作旋转操作,共价键的图形不变,轴对称图形。

b.种类:S-Sδ键 S-Pδ键 P-Pδ键 [过渡] P电子和P电子除能形成δ键外,还能形成π键 [板书] 2.π键 [讲解] a.特征:每个π键的电子云有两块组成,分别位于有两原子核构成平面的两侧,如果以它们之间包含原子核的平面镜面,它们互为镜像,这种特征称为镜像对称。 3.δ键和π键比较 ①重叠方式 δ键:头碰头 π键:肩并肩 ②δ键比π键的强度较大 ②成键电子:δ键 S-S S-P P-P π键 P-P δ键成单键 π键成双键、叁键 4.共价键的特征 饱和性、方向性 [科学探究] 讲解 [小结] 生归纳本节重点,老师小结 [补充练习] 1.下列关于化学键的说法不正确的是() A.化学键是一种作用力

B.化学键可以是原子间作用力,也可以是离子间作用力 C.化学键存在于分子内部 D.化学键存在于分子之间 2.对δ键的认识不正确的是() A.δ键不属于共价键,是另一种化学键 B.S-Sδ键与S-Pδ键的对称性相同 C.分子中含有共价键,则至少含有一个δ键 D.含有π键的化合物与只含δ键的化合物的化学性质不同 3.下列物质中,属于共价化合物的是() A.I2 B.BaCl2 C.H2SO4 D.NaOH 4.下列化合物中,属于离子化合物的是() A.KNO3 B.BeCl C.KO2 D.H2O2 5.写出下列物质的电子式。 H2、N2、HCl、H2O 6.用电子式表示下列化合物的形成过程 HCl、NaBr、MgF2、Na2S、CO2 [答案] 1.D 2.A3.C4.AC5.略6.略 第二章分子结构与性质 第一节共价键 第二课时 [教学目标]: 1.认识键能、键长、键角等键参数的概念 2.能用键参数――键能、键长、键角说明简单分子的某些性质 3.知道等电子原理,结合实例说明“等电子原理的应用” [教学难点、重点]: 键参数的概念,等电子原理 [教学过程]: [创设问题情境] N2与H2在常温下很难反应,必须在高温下才能发生反应,而F2与H2在冷暗处就能发生化学反应,为什么? [学生讨论] [小结]引入键能的定义 [板书] 二、键参数 1.键能 ①概念:气态基态原子形成1mol化学键所释放出的最低能量。

人教版-选修3-第二章分子结构与性质全章教案 第二章分子结构与性质 教材分析 本章比较系统的介绍了分子的结构和性质,内容比较丰富。首先,在第一章有关电子云和原子轨道的基础上,介绍了共价键的主要类型σ键和π键,以及键参数——键能、键长、键角;接着,在共价键概念的基础上,介绍了分子的立体结构,并根据价层电子对互斥模型 和杂化轨道理论对简单共价分子结构的多样性和复杂性进行了解释。最后介绍了极性分子和 非极性分子、分子间作用力、氢键等概念,以及它们对物质性质的影响,并从分子结构的角 度说明了“相似相溶”规则、无机含氧酸分子的酸性等。 化学2已介绍了共价键的概念,并用电子式的方式描述了原子间形成共价键的过程。本章第一节“共价键”是在化学2已有知识的基础上,运用的第一章学过的电子云和原子轨道的概 念进一步认识和理解共价键,通过电子云图象的方式很形象、生动的引出了共价键的主要类 型σ键和π键,以及它们的差别,并用一个“科学探究”让学生自主的进一步认识σ键和π键。 在第二节“分子的立体结构”中,首先按分子中所含的原子数直间给出了三原子、四原子和五原子分子的立体结构,并配有立体结构模型图。为什么这些分子具有如此的立体结构呢? 教科书在本节安排了“价层电子对互斥模型”和“杂化轨道理论”来判断简单分子和离子的 立体结构。在介绍这两个理论时要求比较低,文字叙述比较简洁并配有图示。还设计了“思考与交流”、“科学探究”等内容让学生自主去理解和运用这两个理论。 在第三节分子的性质中,介绍了六个问题,即分子的极性、分子间作用力及其对物质性质的 影响、氢键及其对物质性质的影响、溶解性、手性和无机含氧酸分子的酸性。除分子的手性 外,对其它五个问题进行的阐述都运用了前面的已有知识,如根据共价键的概念介绍了键的 极性和分子的极性;根据化学键、分子的极性等概念介绍了范德华力的特点及其对物质性质 的影响;根据电负性的概念介绍了氢键的特点及其对物质性质的影响;根据极性分子与非非 极性分子的概念介绍了“相似相溶”规则;根据分子中电子的偏移解释了无机含氧酸分子的 酸性强弱等;对于手性教科书通过图示简单介绍了手性分子的概念以及手性分子在生命科学 和生产手性药物方面的应用 第二章分子结构与性质 第一节共价键 第一课时

第二章《分子结构与性质》单元测试题一、单选题(每小题只有一个正确答案) 1.下列叙述正确的是() 32- 中硫原子的杂化方式为sp 2 B 2 2 分子中含有 3个σ键和 2 个π键 A. SO.C H C. H2O分子中氧原子的杂化方式为sp2D. BF3分子空间构型呈三角锥形 2.氯的含氧酸根离子有ClO ---- 等,关于它们的说法不正确的是、 ClO 2、 ClO 3、 ClO 4 () A. ClO4-是 sp3 杂化B. ClO3-的空间构型为三角锥形 C. ClO2-的空间构型为直线形D. ClO-中 Cl 显 +1价 3.下列描述中正确的是() 2 V 形的极性分子 A. CS 为空间构型为 B.双原子或多原子形成的气体单质中,一定有σ 键,可能有π 键 C.氢原子电子云的一个小黑点表示一个电子 2﹣3 杂化 D. HCN、SiF 4和 SO3的中心原子均为 sp 4.水是生命之源,下列关于水的说法正确的是() A.水是弱电解质B.可燃冰是可以燃烧的水 C.氢氧两种元素只能组成水D.0℃时冰的密度比液态水的密度大 5.电子数相等的微粒叫做等电子体,下列各组微粒属于等电子体是()A. CO和 CO2B. NO和 CO C . CH4和 NH3D. OH-和 S2- 6.下列分子或离子中, VSEPR模型为四面体且空间构型为V 形的是 A. H2S B . SO2 2-C . CO2 D . SO4 7.下列分子中只存在σ键的是 () A. CO2B.CH4C.C2H4D.C2H2 8. HBr 气体的热分解温度比HI 热分解温度高的原因是() A. HBr 分子中的键长比HI 分子中的键长短,键能大 B. HBr 分子中的键长比HI 分子中的键长长,键能小 C. HBr 的相对分子质量比HI 的相对分子质量小 D. HBr 分子间作用力比HI 分子间作用力大 9.表述 1 正确,且能用表述 2 加以正确解释的选项是() 表述1表述2 A在水中,NaCl 的溶解度比I 2的溶解度大NaCl晶体中Cl ﹣与Na+间的作用力

原子结构分子结构 一、是非题 1.所谓原子轨道就是指一定的电子云。 2.价电子层排布为ns1的元素都是碱金属元素。 3.当主量子数为4时,共有4s、4p、4d、4f四个轨道。 4.第一过渡系(即第四周期)元素的原子填充电子时是先填充3d轨道后填充4s 轨道,所以失去电子时也是按这个次序先失去3d电子。 5.原子在基态时没有未成对电子,就肯定不能形成共价键。 6.由于CO2、H2O、H2S、CH4分子中都含有极性键,因此都是极性分子。 7.形成离子晶体的化合物中不可能有共价键。 8.全由共价键结合形成的化合物只能形成分子晶体。 9.在CCl4、CHCl3和CH2Cl2分子中,碳原子都是采用sp3杂化,因此这些分子都呈正四面体。 10.色散力只存在于非极性分子之间。 二、选择题 1. 在氢原子中,对r=53pm处的正确描述是() A.该处1s电子云最大B.r是1s径向分布函数的平均值 C.该处的H原子Bohr半径D.该处是1s电子云介面 2. 3s电子的径向分布图有()。 A.3个峰B.2个峰C.4个峰D.1个峰 3. 在电子云示意图中,小黑点是( ) A.其疏密表示电子出现的几率密度的大小B.表示电子在该处出现 C.其疏密表示电子出现的几率的大小D.表示电子 4. N,O,P,S原子中,第一电子亲合能最大的是( ) A.N B.O C.P D.S 5. O、S、As三种元素比较,正确的是() A.电负性O>S>As , 原子半径O<S<As B.电负性O<S<As , 原子半径O<S<As C.电负性O<S<As , 原子半径O>S>As D.电负性O>S>As , 原子半径O>S>As

1. S F4分子具有( )[ID: 881] A B C D 2. 下列哪种分子的偶极矩不等于零?( )[ID: 909] A B C D 3. 下列化合物中哪种分子偶极矩为零?( )[ID: 910] A B C D 4. 下列哪一种分子或原子在固态时是范德华力所维持的?( )[ID: 911] A

B C D 5. 下列化合物中哪个不具有孤对电子?( )[ID: 912] A B C D 6. O F2分子的电子结构是哪种杂化?( )[ID: 913] A B C D 7. 下列化合物中哪一个氢键表现最强?( )[ID: 914] A B C D 8. 用价电子对互斥理论推测下列分子构型:PCl5、HOCl 、XeF2、ICl4-、IF5分别属于( )[ID: 915]

A B C D 9. 指出下列化合物中,哪一个化合物的化学键极性最小?( )[ID: 916] A B C D 10. 要组成有效分子轨道需满足成键哪三原则?( )[ID: 917] A B C D 11. 由分子轨道理论可知( )[ID: 918] A B C D

12. 指出下列化合物中,哪个化合物的化学键极性最大?( )[ID: 919] A B C D 13. 下列分子中,两个相邻共价键间夹角最小的是( )[ID: 920] A B C D 14. 下列说法中正确的是( )[ID: 921] A B C D 15. 下列化学键中,极性最弱的是( )[ID: 922] A B C

D 16. 下列说法中不正确的是 ( )[ID: 923] A B C D 17. 下列原子轨道中各有一个自旋方向相反的不成对电子,则沿x 轴方向可形成 σ键的是 ( )[ID: 924] A B C D 18. 下列分子或离子中,键角最大的是 ( )[ID: 925] A B C D 19. 下列说法中,正确的是 ( )[ID: 926] A

第二章分子结构与性质 课标要求 1.了解共价键的主要类型键和键,能用键长、键能和键角等说明简单分子的某些性质 2.了解杂化轨道理论及常见的杂化轨道类型(s p、sp2、sp3),能用价层电子对互斥理论或者杂化轨道理论推测常见的简单分子或离子的空间结构。 3.了解简单配合物的成键情况。 4.了解化学键合分子间作用力的区别。 5.了解氢键的存在对物质性质的影响,能列举含氢键的物质。 要点精讲 一.共价键 1.共价键的本质及特征共价键的本质是在原子之间形成共用电子对,其特征是具 有饱和性和方向性。 2.共价键的类型 ①按成键原子间共用电子对的数目分为单键、双键、三键。 ②按共用电子对是否偏移分为极性键、非极性键。 σ键和π键,前者的电子云具有轴对称性,后者的电子云 ③按原子轨道的重叠方式分为 具有镜像对称性。 3.键参数 ①键能:气态基态原子形成 1 mol 化学键释放的最低能量,键能越大,化学键越稳定。 ②键长:形成共价键的两个原子之间的核间距,键长越短,共价键越稳定。 ③键角:在原子数超过 2 的分子中,两个共价键之间的夹角。 ④键参数对分子性质的影响 键长越短,键能越大,分子越稳定. 4.等电子原理[来源:学§科§网] 原子总数相同、价电子总数相同的分子具有相似的化学键特征,它们的许多性质相近。 二.分子的立体构型 1.分子构型与杂化轨道理论 杂化轨道的要点 当原子成键时,原子的价电子轨道相互混杂,形成与原轨道数相等且能量相同的杂化轨道。 杂化轨道数不同,轨道间的夹角不同,形成分子的空间形状不同。

2 分子构型与价层电子对互斥模型 价层电子对互斥模型说明的是价层电子对的空间构型, 而分子的空间构型指的是成键电子对空间构型,不包括孤对电子。 (1) 当中心原子无孤对电子时,两者的构型一致; (2) 当中心原子有孤对电子时,两者的构型不一致。 3.配位化合物 (1)配位键与极性键、非极性键的比较

第五章 多原子分子的化学键 1. (东北师大98)离域π键有几种类型? (三种) 正常离域π键,多电子离域π键,缺电子离域π键 2. 用HMO 法计算环丙烯基π体系能量。 1 1 1 10 1 1 x x x =展开x 3-3x+2=0 (x-1)2(x+2)=0 解得 x 1=-2,x 2=x 3=1 E 1=α+2β E 2= E 3=α-β E D π=2E 1+E 2=3α+3β 3. NO 2+为直线型, NO 3-为平面三角型,指出它们中心原子杂化类型,成键情况和所属分子点群。 ..4.3O-N-O : 2 D h O N N SP π+ ??∞??.杂化 2643h N SP D O O π?????? ???????????? : 4. (东北师大99)推出y 轴的等性sp 2杂化轨道波函数 解: 等性杂化:c 112=c 212=c 312=1/3, Ψ1中只有p y 成分:c 112+c 12 2=1 1s py ψ 123k k s k px k py c c c ψφφφ=+ +11c =12c

2s py px 3s py px ψψ 5. (东北师大2000)乙烯中∠HCH=11 6.6。 ,其中含-C-H 键指向x 轴的正向,试求形成该键的杂化轨道波函数和杂化指数。 解: x 两个C -H 键夹角为116.6。 cos 0.3091kl αθαα==-=- p 成分/s 成分=(1- α)/α=2.236 所以在C-H 方向上的杂化轨道为:sp 2.236 1111222122233313233=c =c =c s px s px py s px py c c c c c ψφφψφφφψφφφ+++++ 22 213123y 232 22223 33 23 33 2333222221222322220.309 , p , =1 +=1 0.191 c c c c c c c c c c c c c αψψψψ====++==等价,轨道对有相同的贡献

一、选择题 1、CO分子中存在的化学键是(C ) A、Π键、?键 B、Π键、配位健 C、?键、Π键、配位健 D、?键、配位健 2、N 2 分子中存在的化学键是( D) A、一个Π键、一个?键 B、一个?键 C、一个Π键、两个?键 D、两个Π键、一个?键 3、下列分子中,两个相邻共价键的夹角最小的是 ( D ) A、BF 3 B、H 2 S C、NH 3 D、H 2 O 4、BF 3 分子的空间构型为(B ) A、直线型 B、平面正三角形 C、三角锥型 D、正四面体型 5、下列分子和离子中,中心原子成键轨道不是sp2杂化的是( D ) A、NO 3-B、HCHO C、BF 3 D、NH 3 6、NCl 3 分子中,N原子与三个氯原子成键所采用的轨道是( B ) A、两个sp轨道,一个p轨道成键 B、三个sp3轨道成键 C、P X、P y 、P z 轨道成键 D、三个sp2轨道成键 7、下列化合物中,极性最大的是( B ) A、CS 2 B、H 2 S C、SO 3 D、SnCl 4 8、下列分子中,偶极矩不等于零的是( C ) A、BeCl 2 B、BF 3 C、NF 3 D、CO 2 9、下列分子为极性分子的是(A ) A、H 2O B、CH 4 C、CO 2 D、BF 3 10、下列液态物质中只需克服色散力就能使之沸腾的是( D ) A、H 2 O B、CO C、HF D、Xe 11、极化能力最强的离子应具有的特性是(B ) A、离子电荷高、离子半径大 B、离子电荷高、离子半径小 C、离子电荷低、离子半径小 D、离子电荷低、离子半径大 12、下列各组离子中,离子的极化力最强的是( C ) A、K+、Li+ B、Ca2+、Mg2+ C、Fe3+、Ti4+ D、Sc3+、Y3+

第二章《分子结构与性质》测试题 、单选题(每小题只有一个正确答案) N2 B .HBr C .NH3 D .H2S 列物质中,既含有极性键又含有非极性键的非极性分子是 HF H2O NH3 CH4 B .CH4 NH3 H2O HF H2O HF CH4 NH3 D .HF H2O CH4 NH3 5.下列叙述中错误的是() A.由于氢键的存在,冰能浮在水面上;由于乙醇与水间有氢键的存在,水与乙醇能互溶。 B.甲烷和氯气反应生成一氯甲烷的反应,与苯和硝酸反应生成硝基苯的反应类型相同,都属于取代反应。 C.H2O是一种非常稳定的化合物,这是由于氢键所致。 D.苯不能使溴的四氯化碳溶液褪色,说明苯分子中没有与乙烯分子中类似的碳碳双键,难和溴的四氯化碳溶液发生加成反应。 6.下列化合物中含有 2 个手性碳原子的是 A. B A.丙烯分子中有 6 个σ 键, 1 个π 键 B.丙烯分子中 3 个碳原子都是sp 3杂化 C.丙烯分子属于极性分子 C. D . 7.下列关于丙烯(CH3﹣CH═CH2)的说法中正确的() 1.列化学键中,键的极性最强的是( A.C—F B.C—O C.C—N D.C—C 2.列物质中分子间能形成氢键的是 A. A.N a2O2 B.HCHO C.C2 H4 D.H2O2 4.列各组分子中,按共价键极性由强到弱排序正确的是 3. A. C.

D.丙烯分子中 3 个碳原子在同一直线上 8.下列过程中,共价键被破坏的是 A.碘升华 B .溴溶于CCl4 C .蔗糖溶于水 D .HCl 溶于水 9.阿司匹林是一种常见的解热镇痛药,其结构如图,下列说法不正确的是() B.阿司匹林属于分子晶体 3 C.阿司匹林中C原子只能形成sp3杂化D.可以发生取代.加成.氧化反应 10 .下列叙述不正确的是() A.卤化氢分子中,卤素的非金属性越强,共价键的极性越强,稳定性也越强B.以极性键结合的分子,不一定是极性分子 C.判断A2B 或AB2型分子是极性分子的依据是:具有极性键且分子构型不对称,键角小于180°,为非直线形结构 D.非极性分子中,各原子间都应以非极性键结合 11.下列分子的中心原子是sp 2杂化的是() A.PBr3 B .CH4 C .H2O D .BF3 12 .用VSEPR理论预测下列粒子的立体结构,其中正确的() A.NO3-为平面三角形B.SO2为直线形 C.BeCl 2为V形D.BF3为三角锥形 13.已知A、B 元素同周期,且电负性A

第四章原子结构和分子结构 第一节原子结构 自然界的物质种类繁多,性质各异。不同物质在性质上的差异是由于物质内部结构不同而引起的。在化学反应中,原子核不变,起变化的只是核外电子。要了解物质的性质及其变化规律,有必要先了解原子结构,特别是核外电子的运动状态。 一、核外电子运动的特征 我们知道,地球沿着固定轨道围绕太阳运动,地球的卫星(月球或人造卫星)也以固定的轨道绕地球运转。这些宏观物体运动的共同规律是有固定的轨道,人们可以在任何时间内同时准确地测出它们的运动速度和所在位置。电子是一种极微小的粒子,质量为9.1×10-31 kg,在核外的运动速度快(接近光速)。因此电子的运动和宏观物体的运动不同。和光一样,电子的运动具有微粒性和波动性的双重性质。对于质量为m,运动速度为v的电子,其动量为:P=mv 其相应的波长为: λ=h/P=h/mv (4-1) 式(4-1)中,左边是电子的波长λ,它表明电子波动性的特征,右边是电子的动量P (或mv),它表明电子的微粒性特征,两者通过普朗克常数h联系起来。 实验证明,对于具有波动性的微粒来说,不能同时准确地确定它在空间的位置和动量(运动速度)。也就是说电子的位置测得愈准时,它的动量(运动速度)就愈测不准,反之亦然。但是用统计的方法,可以知道电子在原子中某一区域内出现的几率。 图4-1氢原子五次瞬间照像

图4-2若干张氢原子瞬间照片叠印 电子在原子核外空间各区域出现的几率是不同的。在一定时间内,在某些地方电子出现的几率较大。而在另一些地方出现的几率较小。对于氢原子来说,核外只有一个电子。为了在一瞬间找到电子在氢原子核外的确切位置,假定我们用高速照相机先给某个氢原子拍五张照片,得到图4-1所示的五种图象,⊕代表原子核,小黑点表示电子。如果给这个氢原子照几万张照片,叠加这些照片(图4-2)进行分析,发现原子核外的一个电子在核外空间各处都有出现的可能,但在各处出现的几率不同。如果用小黑点的疏密来表示电子在核外各处的几率密度(单位体积中出现的几率)大小,黑点密的地方,是电子出现几率密度大的地方;疏的地方,是电子出现几率密度小的地方,如图4-3所示。像这样用小黑点的疏密形象地描述电子在原子核外空间的几率密度分布图象叫做电子云。所以电子云是电子在核外运动具有统计性的一种形象表示法。 图4-3氢原子的电子云图4-4氢原子电子云界面图 从图4-3中可见,氢原子的电子云是球形的,离核越近的地方其电子云密度越大。但是由于离原子核越近,球壳的总体积越小,因此在这一区域内黑点的总数并不多。而是在半径为53pm 附近的球壳中电子出现的几率最大,这是氢原子最稳定状态。为了方便,通常用电子云的界面表示原子中电子云的分布情况。所谓界面,是指电子在这个界面内出现的几率很大(95%以上),而在界面外出现的几率很小(5%以下)。 二、核外电子的运动状态 电子在原子中的运动状态,可n,l,m,ms四个量子数来描述。 (一)主量子数n

习 题 1. 用VSEPR 理论简要说明下列分子和离子中价电子空间分布情况以及分子和离子的几何构型。 (1) AsH 3; (2)ClF 3; (3) SO 3; (4) SO 32-; (5) CH 3+ ; (6) CH 3- 2. 用VSEPR 理论推测下列分子或离子的形状。 (1) AlF 63-; (2) TaI 4-; (3) CaBr 4; (4) NO 3-; (5) NCO -; (6) ClNO 3. 指出下列每种分子的中心原子价轨道的杂化类型和分子构型。 (1) CS 2; (2) NO 2+ ; (3) SO 3; (4) BF 3; (5) CBr 4; (6) SiH 4; (7) MnO 4-; (8) SeF 6; (9) AlF 63-; (10) PF 4+ ; (11) IF 6+ ; (12) (CH 3)2SnF 2 4. 根据图示的各轨道的位向关系,遵循杂化原则求出dsp 2 等性杂化轨道的表达式。 5. 写出下列分子的休克尔行列式: CH CH 2 123 4 56781 2 34 6. 某富烯的久期行列式如下,试画出分子骨架,并给碳原子编号。 0100001100101100001100 001101001 x x x x x x 7. 用HMO 法计算烯丙基自由基的正离子和负离子的π能级和π分子轨道,讨论它们的稳定性,并与烯丙基自由基相比较。 8. 用HMO 法讨论环丙烯基自由基C 3H 3·的离域π分子轨道并画出图形,观察轨道节面数目和分布特点;计算各碳原子的π电荷密度,键级和自由价,画出分子图。 9. 判断下列分子中的离域π键类型: (1) CO 2 (2) BF 3 (3) C 6H 6 (4) CH 2=CH-CH=O (5) NO 3 - (6) C 6H 5COO - (7) O 3 (8) C 6H 5NO 2 (9) CH 2=CH -O -CH =CH 2 (10) CH 2=C =CH 2 10. 比较CO 2, CO 和丙酮中C —O 键的相对长度,并说明理由。 11. 试分析下列分子中的成键情况,比较氯的活泼性并说明理由: CH 3CH 2Cl, CH 2=CHCl, CH 2=CH-CH 2Cl, C 6H 5Cl, C 6H 5CH 2Cl, (C 6H 5)2CHCl, (C 6H 5)3CCl 12. 苯胺的紫外可见光谱和苯差别很大,但其盐酸盐的光谱却和苯很接近,试解释此现象。

第二章分子结构与性质 单元测试(1) 一.选择题(每题有1~2个正确答案) 1.对δ键的认识不正确的是 A.σ键不属于共价键,是另一种化学键 B.s-s σ键与s-p σ键的对称性相同 C.分子中含有共价键,则至少含有一个σ键 D.含有π键的化合物与只含σ键的化合物的化学性质不同 2.σ键可由两个原子的s轨道、一个原子的s轨道和另一个原子的p轨道以及一个原子的p轨道和另一个原子的p轨道以“头碰头”方式重叠而成。则下列分子中的σ键是由一个原子的s轨道和另一个原子的p轨道以“头碰头”方式重叠构建而成的是 A.H2 B.HCl C.Cl2 D.F2 3.下列分子中存在π键的是 A.H2 B.Cl2 C.N2 D.HCl 4.下列说法中,错误的是 A.键长越长,化学键越牢固 B.成键原子间原子轨道重叠越多,共价键越牢固 C.对双原子分子来讲,键能越大,含有该键的分子越稳定 D.原子间通过共用电子对所形成的化学键叫共价键 5.能用键能知识加以解释的是 A.稀有气体的化学性质很不活泼B.HCl气体比HI气体稳定 C.干冰易升华D.氮气的化学性质很稳定 6.化学反应可视为旧键断裂和新键形成的过程。化学键的键能是形成(或拆开)1 mol化学键时释放(或吸收)的能量。已知白磷(P4)和P4O6的分子结构如下图所示;现提供以下化学键的键能:P—P 198KJ·mol—1、P—O 360kJ·mol—1、O=O 498kJ·mol—1。则关于1mol P4和3mol O2完全反应(P4 + 3O2 = P4O6)的热效应说法正确的是 A.吸热1638 kJ B.放热1638 kJ C.放热126 kJ D.吸热126 kJ 7.下列物质属于等电子体一组的是 A.CH4和NH4+ B.B3H6N3和C6H6 C.CO2、NO2D.H2O和CH4 8.下列物质中,分子的立体结构与水分子相似的是 A.CO2 B.H2S C.PCl3 D.SiCl4 9.下列分子中,各原子均处于同一平面上的是 A.NH3 B.CCl4 C.H2O D.CH2O 10.下列分子中心原子是sp2杂化的是 A.PBr3 B.CH4 C.BF3 D.H2O 11.在乙烯分子中有5个σ键、一个π键,它们分别是 A.sp2杂化轨道形成σ键、未杂化的2p轨道形成π键 B.sp2杂化轨道形成π键、未杂化的2p轨道形成σ键 C.C—H之间是sp2形成的σ键,C—C之间是未参加杂化的2p轨道形成的π键 D.C—C之间是sp2形成的σ键,C—H之间是未参加杂化的2p轨道形成的π键12.有关苯分子中的化学键描述正确的是 A.每个碳原子的sp2杂化轨道中的其中一个形成大π键 B.每个碳原子的未参加杂化的2p轨道形成大π键

第一章原子结构与性质 课标要求 1.了解原子核外电子的能级分布,能用电子排布式表示常见元素的(1~36号)原子核外电子的排布。了解原子核外电子的运动状态。 2.了解元素电离能的含义,并能用以说明元素的某种性质 3.了解原子核外电子在一定条件下会发生跃迁,了解其简单应用。 4.了解电负性的概念,知道元素的性质与电负性的关系。 要点精讲 一.原子结构 1.能级与能层 2.原子轨道 3.原子核外电子排布规律 ⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。

能级交错:由构造原理可知,电子先进入4s 轨道,后进入3d 轨道,这种现象叫能级交错。 说明:构造原理并不是说4s 能级比3d 能级能量低(实际上4s 能级比3d 能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。 (2)能量最低原理 现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。 构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。 (3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli )原理。 (4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund )规则。比如,p3的轨道式为 或,而不是。 洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。 前36号元素中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。 4. 基态原子核外电子排布的表示方法 (1)电子排布式 ①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K :1s22s22p63s23p64s1。 ②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以↑↓ ↑ ↓ ↓ ↓ ↑ ↑ ↑

第五章 多原子分子结构 5001 NF 3和NH 3分子中, 键角∠FNF 比∠HNH 要 (a ) , 这是因为(b )。 5002 写出下列分子的结构式(标明单键和多重键等键型)和立体构型: (1) Al 2Cl 6 ,(2) HN 3 ,(3) Fe(CO)3(η4- C 4H 4) ,(4) XeOF 4 ,(5) XeF 4 5003 NH 3和PH 3分子键角值大者为___________________分子。 5004 用价电子对互斥理论推断: PF 4+的构型为_________________, 中心原子采用的杂化 轨道为_____________________: XeF 4的构型为___________________,中心原子采用的杂 化轨道为________________________。 5005 写出下述分子中中心原子的杂化方式及分子的几何构型: HgCl 2_________________: Co(CO)4-__________________: BF 3___________________: Ni(CN)42-__________________。 5006 sp 2(s ,p x ,p y )等性杂化轨道中,若1ψ和x 轴平行,2ψ和y 轴成30°,1ψ,2ψ,3 ψ互成120°。请写出满足正交归一化条件的三个杂化轨道表达式: 1ψ______________________________: 2ψ______________________________: 3ψ______________________________。 5007 O 3的键角为116.8°,若用杂化轨道ψ=c 1s 2ψ+c 2p 2ψ描述中心O 原子的成键轨道,试 按键角与轨道成分关系式cos θ=-c 12/c 22,计算: (1) 成键杂化轨道中c 1和c 2值; (2) ψ2s 和ψ2p 轨道在杂化轨道ψ中所占的比重。 5008 已知 H 2O 的键角为104.5°,O 原子进行了不等性sp 3杂化,其中两个与氢原子成键的 杂化轨道中,O 原子的p 成分的贡献为:------------------------------ ( ) (A) 0.21 (B) 0.80 (C) 0.5 (D) 0.75 ( 已知键角和轨道成分的关系式为 cos θ= -c 12/c 22 ) 5009 实验测得乙烯(C 2H 4)分子∠CCH=121.7°,∠HCH=116.6°,分子处在xy 平面,C ═C 轴和x 轴平行。 试计算C 原子 sp 2杂化轨道的系数。 ( 已知键角和轨道成分的关系式为 cos θ=-c 12/c 22 ) 5011

相关文档
最新文档