硅单晶少数载流子寿命测试规定

硅单晶少数载流子寿命测试规定
硅单晶少数载流子寿命测试规定

洛阳中岳实业有限公司

硅单晶少数载流子寿命测试规定

1.范围和目的

1.1适用范围:

适用于本公司多晶拉制成单晶及磷检后单晶的测定

1.2目的:

1.2.1 通过对少数载流子的测定来断定多晶产品质量的好坏

1.2.2 通过测定对工艺生产进行指导

1.2.3寿命值可灵敏地反映单晶体重金属污染及缺陷存在的情况,是单晶质量的重要检测项目

2.引用标准:

GB/T1553-1997 硅和锗体内少数载流子寿命测定光电导衰法

3.测试原理:

高频源提供高频电流经测试样品,但红外脉冲光照射样品时,单晶体内产生非平衡光生载流子,使样品产生附加光电导,样品电阻下降,由于高频源为恒压输出,因此,流过样品的高频电流幅值,此时增加I,光照消失后,I便逐渐衰退,其衰退速度取决于光生非平衡载流子在晶体内存在的平均时间(寿命值)。I按指数衰减,在取样器上产生的电压变化V,也按同样指数衰减。此信号经经检波器调和和高频滤波,再经宽频放大后输入到脉冲示波器,在示波器上显示出一条指数衰减曲线,对照标准曲线,可读出样品少数载流子寿命。

4.仪器设备及测试指标

4.1 仪器

4.1.1 DSY-Ⅱ型单晶寿命测试仪

4.1.2 GOS-620型双轨迹示波器

4.2 测试指标

4.2.1 测试单晶电阻率下限:硅单晶:3-10欧·厘米

4.2.2 可测单晶寿命:10μS-5000μS

4.2.3 Φ25mm-Φ125mm L2 mm-50 mm

4.2.4 样品切面光滑,无刀痕,且经喷砂处理,表面干燥,无污染、变色。

5 测试步奏

5.1开机:打开寿命仪电源总开关,打开示波器电源开关,仪器预热10分钟

5.2 用棉签沾自来水涂抹测试电极,将测试样品喷砂面放上并使其与电极均匀接触。如样品太轻接触不好,可用重物压上样品。

5.3 打开红外光源开关,调节红外光源输出电压,调节示波器亮度选择合适的亮度,调节聚焦旋钮聚焦。

5.4 调节示波器上扫描时间,垂直衰减电压,波线位置,触发准位,触发模式旋钮,尽量使示波器上衰减曲线与标准曲线对照卡上的一致,

5.5 将标准曲线卡对上示波器上的衰减曲线,示波器上衰减曲线与标准曲线对照上X轴上相交,数出X轴上相交格数,乘上扫描时间旋钮所在档位。即为样品少数载流子寿命值。

5.6 所测寿命值与标准片寿命值的相对误差小于20%时设备正常。

5.7 将样品按上述(5.2-5.6)步奏测定。

5.8 测量完毕,调节红外光源电压至最小,关闭红外光源开关,关闭示波器电源,关闭寿命仪电源。

6 波形偏离的处理

6.1 如波形初始部分衰减较快,则用波形后部分测量,一般取下降到60%以后部分读数。

6.2 如波形头部出现平顶现象,说明信号太强,应减弱光强,消除波形平顶现象,在小信号下测量。

7.注意事项

7.1 在电极上涂自来水时,严禁将水滴入红外光照孔内,如不慎滴入,应关闭电源,用滤纸吸干后在开机。

7.2 红外光源不用时严禁打开

7.3 严禁在红外光源电压超过7V的情况下长时间测试样品。

7.4 测量时,应避免光照对样品的影响。

7.5 试样的光生伏特应小于光导信号的5%

7.6 应保证在小注入的条件下测量。

7.7 红外发光管价格昂贵,应尽快完成样品的测试,不用时,尽量关闭红外光源

电源,延长红外发光管的使用寿命。

8.设备的维护保养

8.1 调节旋钮时要缓慢,用力适当,禁止乱调。

8.2 保持设备表面的干净整洁无尘埃,确保电极接触片的干净。

8.3 安装时要将信号输出线接入示波器Y信号输入端。

8.4 严禁不经讨论随意修改工艺运行参数。

8.5 电源部分的维修,更换应由电器人员完成。

8.6 应防止其他电器对仪器的电磁干扰。

9.测试环境

9.1 环境温度25℃,相对湿度小于70%

9.2 环境干净整洁。

附加说明本规程由分析室起草

本规程适用于本公司多晶拉制成单晶及磷检后单晶的测定

本规程起草于2009年5月28号

少子寿命的测量

表面复合对少子寿命测量影响的定量分析 我们测量硅单晶、铸造多晶以及单晶硅片、多晶硅片的少子寿命,都希望得到与真实体寿命b τ相接近的测量值(表观寿命),而不是一个受表面影响很大的表面复合寿命s τ。因为在寿命测量中只有b τ才能真正反映半导体材料的内在质量,而表面复合寿命只能反映样品的表面状态,是随表面状态变化而变化的变数。 通过仪器测量出的寿命值我们一般称为表观寿命,它与样品体寿命及表面复合寿命有如下关系,公式(1)由SEMI MF28-0707给出的计算公式τ0 =S F R τ--11(τ0或b τ表示体寿命)推演出来: S b F τττ111+= (1) 即仪器测量值F τ,它实际上是少子体寿命b τ和表面复合寿命s τ的并联值。 光注入到硅片表面的光生少子向体内扩散,一方面被体内的复合中心(如铁原子)复合,另一方面扩散到非光照面,被该表面的复合中心复合。 光生少子在体内平均存在的时间由体复合中心的多少而决定,这个时间就称为体寿命。如果表面很完美,则表面复合寿命趋于无穷大,那么表观寿命即等于体寿命。 但实际上的表面复合寿命与样品的厚度及表面复合速度有关。 由MF1535-0707中给出s l D l sp diff s 222+=+=πτττ (2)可知,其中: diff τ=D l 22 π——少子从光照区扩散到表面所需的时间 sp τ= 2l s ——少子扩散到表面后,被表面(复合中心、缺陷能级)复合所需要的时间 l ——样品厚度 D ——少子扩散系数,电子扩散系数Dn=33.5cm 2/s ,空穴扩散系数Dp=12.4 cm 2/s

S ——表面复合速度,单位cm/s 硅晶体的表面复合速度随着表面状况在很大范围内变化。如表1所示: 表1 据文献记载,硅抛光面在HF 酸中剥离氧化层后复合速度可低至0.25cm/s ,仔细制备的干氧热氧化表面复合速度可低至1.5-2.5cm/s ,但是要达到这样的表面状态往往不容易,也不稳定,除非表面被钝化液或氧化膜保护。一般良好的抛光面表面复合速度都会达到 104 cm/s ,最容易得到而且比较稳定的是研磨面,因为它的表面复合速度已达到饱和,就像饱和浓度的盐水那样,再加多少盐进去浓度依然不变。 现在很多光伏企业为了方便用切割片直接测量寿命,即切割后的硅片不经清洗、抛光、钝化等减少和稳定表面复合的工艺处理,直接放进寿命测试仪中测量,俗称裸测,这种测量简单、方便、易操作。 为了定量分析表面复合对测量值F τ的影响,我们以最常用厚度为180μm 的P 型硅片为例进行定量分析。因为切割面实质上也是一种研磨面,是金属丝带动浆料研磨的结果,一般切割、研磨面的表面复合速度为S=107cm/s ,但线切割的磨料较细,我们将其表面复合的影响估计的最轻,也应该是S ≥105cm/s 。因为良好的抛光面S ≈104cm/s,我们按照2007版的国际标准MF1535-0707、MF28-0707提供的公式:b τ= S F R τ--1 1 ,其中Rs 是表面复合速率,表面复合寿命S s R 1=τ, 由以上公式即可推演出常用公式:S b F τττ111+= 表面复合寿命s l D l sp diff s 222+=+=πτττ 我们以以下的计算结果来说明,当切割面的表面复合速度为S=105cm/s 时, l =180μm 厚的硅片当它的体寿命由0.1μS 上升到50μS (或更低、更高)时, 我们测出的表观寿命受表面影响的程度,以及真实体寿命b τ与实测值F τ相差多

高频光电导衰减法测量Si中少子寿命

高频光电导衰减法测量Si 中少子寿命 一、概述 半导体中的非平衡少数载流子寿命是与半导体中重金属含量、晶体结构完整性直接有关的物理量。它对半导体太阳电池的换能效率、半导体探测器的探测率和发光二极管的发光效率等都有影响。因此,掌握半导体中少数载流子寿命的测量方法是十分 必要的。 测量非平衡少数载流子寿命的方法有许多种,分别属于瞬态法和稳态法两大类。瞬态法是利用脉冲电或闪光在半导体中激发出非平衡载流子,改变半导体的 体电阻,通过测量体电阻或两端电压的变化规律直接获得半导体材料的寿命。这类方法包括光电导衰减法和双脉冲法。稳态法是利用稳定的光照,使半导体中非平衡少子的分布达到稳定的状态,由测量半导体样品处在稳定的非平衡状态时的某些物理量来求得载流子的寿命。例如:扩散长度法、稳态光电导法等。 光电导衰减法有直流光电导衰减法、高频光电导衰减法和微波光电导衰减法,其差别主要在于是用直流、高频电流还是用微波来提供检测样品中非平衡载流子的衰减过程的手段。直流法是标准方法,高频法在Si 单晶质量检验中使用十分方便,而微波法则可以用于器件工艺线上测试晶片的工艺质量。 本实验采用高频光电导衰减法测量Si 中少子寿命。 二、实验目的 1 ?掌握用高频光电导衰减法测量Si 单晶中少数载流子寿命的原理和方法。 2.加深对少数载流子寿命及其与样品其它物理参数关系的理解。 三、实验原理 当能量大于半导体禁带宽度的光照射样品时,在样品中激发产生非平衡电子和空 穴。若样品中没有明显的陷阱效应,那么非平衡电子( ?n)和空穴(? p)的浓度相 等,它们的寿命也就相同。样品电导率的增加与少子浓度的关系为 _q」pip q 」/n

少数载流子寿命测试

第三章:少数载流子寿命测试 少数载流子寿命是半导体材料的一个重要参数,它在半导体发展之初就已经存在了。早在20世纪50年代,Shockley 和Hall等人就已经报道过有关少数载流子的复合理论[1-4],之后虽然陆续有人研究半导体中少数载流子的寿命,但由于当时测试设备简陋,样品制备困难,尤其对于测试结果无法进行系统地分析。因此对于少数载流子寿命的研究并没有引起广泛关注。直到商业需求的增加,少数载流子寿命的测试才重新引起人们的注意。晶体生产厂家和IC集成电路公司纷纷采用载流子寿命测试来监控生产过程,如半导体硅单晶生产者用载流子寿命来表征直拉硅单晶的质量,并用于研究可能造成质量下降的缺陷。IC集成电路公司也用载流子寿命来表征工艺过程的洁净度,并用于研究造成器件性能下降的原因。此时就要求相应的测试设备是无破坏,无接触,无污染的,而且样品的制备不能十分复杂,由此推动了测试设备的发展。 然而对载流子寿命测试起重要推动作用的,是铁硼对形成和分解的发现[5,6],起初这只是被当作一种有趣的现象,并没有被应用到半导体测试中来。直到Zoth 和Bergholz发现,在掺B半导体中,只要分别测试铁硼对分解前后的少子寿命,就可以知道样品中铁的浓度[7]。由于在现今的晶体生长工艺中,铁作为不锈钢的组成元素,是一种重要的金属沾污,对微电子器件和太阳能电池的危害很严重。通过少数载流子寿命测试,就可以得到半导体中铁沾污的浓度,这无疑是一次重大突破,也是半导体材料参数测试与器件性能表征的完美结合。之后载流子寿命测试设备迅速发展。 目前,少数载流子寿命作为半导体材料的一个重要参数,已作为表征器件性能,太阳能电池效率的重要参考依据。然而由于不同测试设备在光注入量,测试频率,温度等参数上存在差别,测试值往往相差很大,误差范围可能在100%,甚至以上,因此在寿命值的比较中要特别注意。 概括来说,少数载流子寿命的测试及应用经历了一个漫长的发展阶段,理论上,从简单的载流子复合机制到考虑测试结果的影响因素。应用上,从单纯地用少子寿命值作为半导体材料的一个参数,到把测试结果与半导体生产工艺结合起来考虑。测试设备上,从简陋,操作复杂到精密,操作简单,而且对样品无接触,

少子寿命概念

少子寿命是半导体材料和器件的重要参数。它直接反映了材料的质量和器件特性。能够准确的得到这个参数,对于半导体器件制造具有重要意义。 少子,即少数载流子,是半导体物理的概念。它相对于多子而言。 半导体材料中有电子和空穴两种载流子。如果在半导体材料中某种载流子占少数,导电中起到次要作用,则称它为少子。如,在 N型半导体中,空穴是少数载流子,电子是多数载流子;在P型半导体中,空穴是多数载流子,电子是少数载流子。 多子和少子的形成:五价元素的原子有五个价电子,当它顶替晶格中的四价硅原子时,每个五价元素原子中的四个价电子与周围四个硅原子以共价键形式相结合,而余下的一个就不受共价键束缚,它在室温时所获得的热能足以便它挣脱原子核的吸引而变成自由电子。出于该电子不是共价键中的价电子,因而不会同时产生空穴。而对于每个五价元素原子,尽管它释放出一个自由电子后变成带一个电子电荷量的正离子,但它束缚在晶格中,不能象载流子那样起导电作用。这样,与本征激发浓度相比,N型半导体中自由电子浓度大大增加了,而空穴因与自由电子相遇而复合的机会增大,其浓度反而更小了。 少子浓度主要由本征激发决定,所以受温度影响较大。 香港永先单晶少子寿命测试仪 >> 单晶少子寿命测试仪 编辑本段产品名称 LT-2单晶少子寿命测试仪 编辑本段产品简介 少数载流子寿命(简称少子寿命)是半导体材料的一项重要参数,它对半导体器件的性能、太阳能电池的效率都有重要的影响.我们采用微波反射光电导衰减法研制了一台半导体材料少子寿命测试仪,本文将对测试仪的实验装置、测试原理及程序计算进行了较详细的介绍,并与国外同类产品的测试进行比较,结果表明本测试仪测试结果准确、重复性高,适合少子寿命的实验室研究和工业在线测试. 技术参数: 测试单晶电阻率范围 >2Ω.cm 少子寿命测试范围 10μS~5000μS 配备光源类型 波长:1.09μm;余辉<1 μS; 闪光频率为:20~30次/秒; 闪光频率为:20~30次/秒; 高频振荡源 用石英谐振器,振荡频率:30MHz 前置放大器 放大倍数约25,频宽2 Hz-1 MHz 仪器测量重复误差 <±20%

基于GEM的宇宙射线缪子探测系统

基础和应用基础研究辐射防护与环境保护263为了验证计算模式的正确性,将计算结果与已有的实验结果进行了比较,实验中使用的CR-39探测片几何尺寸同计算模型,蚀刻条件为80℃、25%NaOH 溶液,蚀刻时间5h ,该CR-39的实验数据由中国疾病预防控制中心辐射防护与核安全医学研究所提供。比较结果列于表2。 表2 C R-39模拟计算与实验结果的比较刻度系数K/(cm -2(kBq h cm -3)-1)探测片计算值 实验值CR-39 4.00 5.46影响蒙卡计算正确性的主要因素有以下几个方面:1)探测片材料和密度、内充空气组分及压强的计算误差;2)源项推算方法及刻度系数计算方法的正确性;3)源项描述中222Rn 及其子体RaA (218Po )和RaC ’(214Po )所占径迹贡献份额的不确定性;4)蒙卡方法模拟计算的概率统计误差。 基于G EM 的宇宙射线缪子探测系统 庞洪超1,刘宏邦2,谢一冈2 (1.中国原子能科学研究院辐射安全研究所;2.中国科学院研究生院) 利用气体中电子在微孔内的雪崩效应使电子倍增的新型气体探测器GEM 于1997年在欧洲核子研究中心(CERN )由F.Sauli 发明。与20世纪70、80年代发展的丝室相比它具有信号快、计数率高(可达106mm 2)、抗辐射、极限空间分辨率小至亚毫米级和多路读出方便等优点。本工作采用基于双层GEM 的探测器建立宇宙线 子径迹探测系统。通过本文研究,基于GEM 的探测器 可以实现对子径迹的观测。1宇宙射线子描迹仪系统 该系统主要由3个部分组成:探测器部分、前置放大器部分和数据采集部分,如图1所示。图2为该系统的实物图。 图1宇宙射线子描迹仪系统示意图 该系统采用上下两个GEM 探测器室以确定子的径迹,每个室的密封印制板电路上腐蚀出16个尺寸为9mm ×9mm 的金属片(pad ),其绝缘间隙为1mm ,作为阳极,并与16路电流前置放大器相连,3路输出电压信号(约几十V 量级)经过甄别、成形与移位寄存器后经数据线经由单片机进入。通过L 编写的虚拟仪器进行处理和显示。 2m PC abview

μ子寿命测量

μ子寿命测量 摘要:利用塑料闪烁体探测μ子,测量μ子的衰变时间分布,利用计算机模拟泊松过程来分析造成测量结果本底的原因,对比多种处理μ子寿命的方法,得到在本实验条件下最合理的实验结果。 关键词:宇宙线μ子;寿命测量;本底;泊松分布 引言:μ 子是大自然最基本的粒子之一,地球上的生物每时每刻都受到μ子的照射。μ子 最早于1937年被J.C.Street 和E.C.Stevenson 发现1),后来物理学家通过各种不同的方法对其进行了探测,得到其基本寿命为:(2197.03±0.04)ns 。 μ子寿命服从指数分布,当时间逐渐增大,单位时间内衰变的μ子数应该趋于0,但实验测得的结果却是趋于一个常数,本文将利用计算机模拟泊松过程来验证该本底是由两个相继到来的μ子产生的偶然符合事件造成的,并在此基础上采取恰当的方式来计算μ子的平均寿命。 实验原理: 一、实验中使用的μ子来源。 地球上的生物每时每刻都受到μ子的照射,μ子产生与大15km 的高空,由原始宇宙射线与大气中的原子核相互作用产生,海平面上μ子的通量近似为221 2min cm --,这就是实 验中用于探测的μ子源。 二、μ子在塑料闪烁体中发生的过程及探测原理 μ子在进入塑料闪烁体后首先主要通过电离能损和库仑散射损失能量,并使闪烁体分子发出荧光,高能μ子能直接从闪烁体中穿出,而能量较低的μ子将静止在闪烁体内,发生衰变:e e v v μμ- - →++,衰变产生的电子具有较高的能量会使闪烁体分子激发,在退激发时发出荧光,v e -与v μ则直接穿出。 图1 μ子探测原理图

上图为μ子探测原理图,μ 子从高层大气穿透下来,进入塑料闪烁体,产生的光脉冲进入PMT ,倍增过后通过一个线性放大器线性放大,随后经过一个甄别器的筛选,输出到FPGA 进行鉴定,最后在PC 上显示出来。其中甄别器的工作原理是筛选高于其阈值的信号输出,而FPGA 的功能是记录满足其时间设定的两个脉冲之间的时间间隔,本实验中只有时间差小于20000ns 的信号才会被当做μ子衰变信号,该时间差才会被当做μ子的衰变时间被记录。 三.μ子的寿命服从指数分布,即有 ()t f t e λλ-= (1) 对确定在t 0时刻前不会衰变的N 0个μ子,在t 0后按以确定时间长度T 划分时间区间,则第k 个时间区间对应的时间是(t 0+(k-1)T ,t 0+kT],设在此区间内衰变的μ子数为N(k),则有 00 000 (t ) 0(1)()(1)e t kT t t kT t T t k T t N k N e dt N e e λλλλλλ+--+-+--==-? (2) 当以区间末对应的时间点作为自变量x ,对应区间内衰减的μ子数作为N(k),两者满足指数函数关系: ()x N k Ae λ-= (3) 其中A 为常数,0 0(1)t T A N e e λλλ=-,对(3)式两边同时取对数,得 ln(())N k C x λ=- (4) 其中ln C A =,为一常数。 故实验中即可以用指数函数拟合N(k)~x 关系,也可以用线性拟合ln(N(k))~x 关系来求得衰变速率λ,从而利用1/τλ=可求得μ子的平均寿命。 实验中对μ子到来的计数过程为一泊松过程,即相邻两个μ子之间的时间t ?服从指数分布, ()n t f t n e μμ-??= (5) 其中n μ为实验中μ子到来的速率。 实验装置: 图2 实 验仪器

实验二 光电导衰退测量少数载流子的寿命

实验二光电导衰退测量少数载流子的寿命 实验项目性质:综合实验 所涉及课程:半导体物理、半导体材料 计划学时:2学时 一、实验目的 1.理解非平衡载流子的注入与复合过程; 2.了解非平衡载流子寿命的测量方法; 2.学会光电导衰退测量少子寿命的实验方法。 二、实验原理 半导体中少数载流子的寿命对双极型器件的电流增益、正向压降和开关速度等起着决定性作用。半导体太阳能电池的换能效率、半导体探测器的探测率和发光二极管的发光效率也和载流子的寿命有关。因此,半导体中少数载流子寿命的测量一直受到广泛的重视。 处于热平衡状态的半导体,在一定的温度下,载流子浓度是一定的,但这种热平衡状态是相对的,有条件的。如果对半导体施加外界作用,破坏了热平衡的条件,这就迫使它处于与热平衡状态相偏离的状态,称为非平衡状态。处于非平衡状态的半导体,其载流子浓度也不再是n0和p0,可以比它们多出一部分。比平衡状态多出来的这部分载流子称为非平衡载流子,有时也称为过剩载流子。要破坏半导体的平衡态,对它施加的外部作用可以是光,也可以是电或是其它的能量传递方式。常用到的方式是电注入,最典型的例子就是PN结。用光照使得半导体内部产生非平衡载流子的方法,称为非平衡载流子的光注入,光注入时,非平衡载流子浓度Δn=Δp。 当外部的光注入撤除以后,注入的非平衡载流子并不能一直存在下去,它们要逐渐消失,也是原来激发到导带的电子又回到价带,电了和空穴又成对的消失了。最后,载流子浓度恢复到平衡时的值,半导体又回到平衡态,过剩载流子逐渐消失,这一过程称为非平衡载流子的复合。实验表明,光照停止后,Δp随时间按指数规律减少。这说明非平衡载流子不是立刻全部消失,而是有一个过程,

按键寿命测试仪操作规程

1.0目的 使得测试人员操作该设备时有一定之规范, 并严格按照此规范执行;并对设备进行保养、点检、维护;并为新进人员之操作训练使用。 2.0范围

适用于工厂实验室按键寿命测试仪操作,本仪器适用于电工电子类产品按键寿命测试。 3.0职责 3.1中试部:负责编制操作规程,设备的使用,并对按键寿命测试仪进行日保养、周保养、月保养,点检; 4.0程序 4.1设备基本规格:工作电源为输入AC220V/50HZ,输出DC31V-2A的开关电源; 4.2设备使用环境:温度:5?C ~+35?C,湿度:25%~75%,供电电源AC220V±10%,50HZ 4.3操作程序 4.3.1接通高压气。 4.3.2 将控制板上的连接线分别连接在按键两端和电磁阀上,并将按键放在测试平台上。 4.3.3调节按键间隙及按键所需测试力度。 4.3.4设置测试所需电压(如需5V或12V,直接将控制板上的拔动开关拔至5V或12V)。 4.3.5设置测试所需阻值:根据上述设置的电压及已知的电流,通过调节工装上的SW旋扭选择所需阻值大小。(如需12VDC 50MA 的测试条件,根据 R=U/I可算出R=240Ω) 4.3.6设置按键击打速度:第一步按下K3按键数码管显示00010000,再调节K3按键至数码管显示00100000,第二步按下K2键至所需数字为止(例 如数码管显示00100010时表示按键击打间隔时间为1秒/次;显示00100015时表示按键击打间隔时间为1.5秒/次;显示00100020时表示按键击打间隔时间为2秒/次…).第三步同时按下K1和K2按键启动上述设置程序,数码管显示00000000,工装上绿色LED会点亮;开始启动测试(数码管显示当前按键累加击打次数),同时按键被按下时工装上红色LED会点亮,按键弹起时红色LED熄灭。 4.3.7测试中及结束后记录按键累加工作次数。 5.0维护及保养(根据实际情况调整) 5.1日保养维护内容 5.1.1机体外部清洁; 5.1.2按键检查; 5.1.3显示状态检查; 5.1.4运行是否正常; 5.1.5检查电源线绝缘皮是否完好; 5.2月保养维护(根据实际情况调整)

气体探测器原理初探

气体探测器原理初探 姓名:黄迁明 单位:北京大学 导师:班勇 专业:粒子物理与原子核物理(高能物理实验方向) Email:huangqianming@https://www.360docs.net/doc/e12133129.html, 听了祝成光老师关于气体探测器的介绍,特别是丝室的原理使我对探测器的兴趣越加浓厚,课后对所学知识进行了总结以及探索,总结为此次暑期学校的结业报告。 说到气体探测器不得不先提一下气体的几个工作状态,复合区、电离室区、正比区、G-M区、连续放电区等,不同种类探测器依据所加高压的不同工作在不同区域,带电粒子在气体中电离成电子离子对,在不同外加电压下进行漂移或放大,然后被电极收集形成信号输出。电离室应该是最早的核辐射探测器了,它工作在正比区,在两块平行的金属板上加上高压,板间充入电离气体,带点粒子进入气体发生初级电离,产生电子离子对,在外加电场作用下向两极漂移,被平行板电极收集,在外电路产生信号。1911-1914年间曾使用电离室发现宇宙线,此后又进行了很多实验,进行粒子计数或测能量等;随着时代的发展,老式的电离室已经不能满足人们对粒子时间信号、空间信号、能量信号的多维度、高精确度测量要求,新的电离室探测器应运而生,譬如圆柱形电子脉冲电离室、屏栅电离室等。 随后的时间里,气体探测器家族中诞生了一个改变核辐射探测器历史的品种,那就是GM管,盖革米勒计数器是H.盖革和P.米勒在1928年发明的,类似于正比计数器,它由一根中心丝和一个圆柱形外壳组成,中心丝一般加上高压作为阳极,电压使得GM管工作在GM区,外壳一般加上零电位作为阴极,在管中充入掺了卤素的惰性气体作为电离介质。GM管具有输出信号大,探测效率高,价格低廉等特点,一直到今天还在许多实验中发光发热。 1970 年以前,物理实验中所有径迹探测器几乎都用照相的方法(例如:核乳胶、云室、气泡室、火花室等),1968 年夏帕克发明了多丝正比室,从此气体探测器的发展进入了位置灵敏的时代,此后在多丝正比室的基础上不断改进,衍生出漂移室、时间投影室、时间扩展室等。 多丝正比室是工作在正比区的气体探测器。在此雪崩倍增过程起着十分重要的作用,其输出信号大小正比于粒子在气体中沉积的能量。这些也是漂移室、时间投影室、时间扩展室等的工作基础。多丝正比室基本结构是由一排等间距的平行阳极丝对称置于两个平行阴极平面或丝层中间,当阳极丝加

多数载流子与少数载流子的特性比较

多数载流子与少数载流子的特性比较 2009-11-02 20:09:52| 分类:微电子物理| 标签:|字号大中小订阅 作者:Xie M. X. (UESTC,成都市) l 载流子浓度: 对于n型半导体,如果掺杂浓度为ND,则在杂质全电离情况下,其中多数载流子浓度为:n0 ≈ ND,即多数载流子浓度基本上决定于掺杂浓度。假若杂质未全电离,则多数载流子浓度决定于杂质的电离程度,随着杂质的不断电离,多数载流子浓度也不断增大(与温度有指数函数关系)。 而少数载流子浓度,在杂质全电离情况下,可根据热平衡关系n0 p0 = ni2,得到为p0 = ni2 / n0 ≈ ni2 / ND。这就是说,少数载流子浓度基本上决定于本征激发过程,并且与掺杂浓度有关。掺杂浓度越高,少数载流子浓度就越低;掺杂浓度越低,少数载流子浓度就越高。 总之,对于Si器件,在室温附近,一般杂质是全电离的,这时多数载流子浓度基本上与温度无关,可近似等于掺杂浓度;而少数载流子浓度则与温度有指数函数的关系(决定于本征激发)。这种不同的多数载流子浓度与少数载流子浓度的温度关系,也就决定了多数载流子器件(场效应器件)与少数载流子器件(双极型器件)在性能上的不同温度关系。 l 载流子的运动: 载流子的运动形式基本上有两种,即漂移运动和扩散运动。这两种运动所产生的电流大小分别决定于不同的因素:漂移电流主要决定于多数载流子浓度和电场的大小;扩散电流主要决定于载流子的浓度梯度,而与浓度本身的大小无关。 半导体与金属一样,其内部都需要保持电中性(表面不需要保持电中性,可以带有电荷)。对于多数载流子而言,由于电中性的要求,在半导体中很难形成明显的浓度梯度,所以扩散电流往往可以忽略;但是少数载流子则恰恰相反,能够在出现很大浓度梯度的情况下保持电中性,所以数量很少的少数载流子可以产生很大的扩散电流。 总之,多数载流子电流主要以漂移电流为主,少数载流子电流则主要以扩散电流为主。 l 载流子的注入和抽出: 在外界作用下,半导体即偏离平衡状态,成为了一个非平衡体系。偏离平衡的程度即由多数载流子的准Fermi能级与少数载流子的准Fermi能级的分开大小来衡量(如果外加电压为V,则两条准Fermi能级的分开大小=qV)。 在非平衡半导体中,载流子浓度将比平衡载流子浓度增多了(即注入了非平衡载流子)或者减少了(即抽出了非平衡载流子)。由于要满足电中性的要求,则一般只能注入或抽出少数载流子,而不能注入或抽出多数载流子。也正因为如此,多数载流子在半导体中较难以积累或减小而产生浓度梯度;相反,少数载流子则可在半导体中的局部区域积累、或把局部区域的少数载流子抽掉,而可在局部区域形成较大的浓度梯度。 l 载流子的寿命: 在非平衡半导体,其中的载流子浓度将偏离于平衡载流子浓度(在注入情况下是多出了载流子,在抽取情况下是缺少了载流子)。 当去掉外加在非平衡半导体上的作用后,半导体体系将要恢复到平衡状态,即其中多出的载流子将要复合掉,缺少的载流子将要产生出来。这种载流子的复合或者产生,都需要时间,这就是所谓复合寿命或者产生寿命。对于Si、Ge半导体,由于载流子的复合与产生主要是通过复合中心或者产生中心来实现的,所以载流子的复合寿命或者产生寿命的长短也主要决定于复合中心或者产生中心的性质和数量。 由于注入或抽出的载流子一般是少数载流子,所以载流子的复合寿命或者产生寿命通常

少子寿命测量

高频光电导衰减法测量Si 中少子寿命 预习报告: 一,什么是少子寿命? 少子,即少数载流子。少子寿命指少子的平均生存时间,寿命标志少子浓度减少到原值的1/e 所经历的时间。少数载流子寿命是与半导体中重金属含量、晶体结构完整性直接有关的物理量。它对半导体太阳电池的换能效率、半导体探测器的探测率和发光二极管的发光效率等都有影响。 二,如何测量少子寿命? 测量非平衡少数载流子寿命的方法有许多种,分别属于瞬态法和稳态法两大类。本实验采用高频光电导衰减法测量Si 中少子寿命。 三,实验原理: 当能量大于半导体禁带宽度的光照射样品时,在样品中激发产生非平衡电子和空穴。若样品中没有明显的陷阱效应,那么非平衡电子(?n )和空穴(?p)的浓度相等,它们的寿命也就相同。样品电导率的增加与少子浓度的关系为n q p q n p ?+?=?μμσ当去掉光照,少子密度将按指数衰减,即τ t e p -∝?,因此导致电导率为τ σt e - ∝?。 高频源提供的高频电流流经被测样品,当红外光源的脉冲光照射样品时,单晶体内产生的非平衡光生载流子使样品产生附加光电导,从而导致样品电阻减小。由于高频源为恒压输出,因此流经样品的高频电流幅值增加?I ,光照消失后,?I 逐渐衰减,其衰减速度取决于光生载流子在晶体内存在的平均时间,即寿命。在小注入条件下,当光照区复合为主要因素时,?I 将按指数规律衰减,此时取样器上产生的电压变化?V 也按同样的规律变化,即 τt e V V - ?=?0 图2指数衰减曲线 一, Si. t

?V~t 曲线: (一) (二) (三) 计算少子寿命: 电压满足τ t e V V -?=?0,在测量数据中,由于时间原点的不同选择,t 的绝对值不同, 但是相对值相同。任选两个点(t 1,?V 1),(t 2,?V 2),有?V 1=?V 0e ? t 1+?t τ ,?V 2=?V 0e ? t 2+?t τ ,

少子寿命测试的讨论_02概要

施美乐博公司上海代表处 上海浦东新区商城路738号胜康廖氏大厦906A (邮编:200120 Rm.906A,Suncome Liauw's Plaza, No.738, Shangcheng Road, Pudong,Shanghai 200120, China Tel: +86-21-58362889 Fax: +86-21-58362887 To : Semilab 产品用户 FROM : 黄黎 / Semilab Shanghai Office Pages : 5 Pages (included this page Refer : 1、Semilab 公司上海办事处联系方法 2、关于少子寿命测试若干问题的讨论 尊敬的Semilab 产品用户: 感谢您和贵公司一直以来对我们的支持! 为了更好地服务于中国客户,Semilab 公司现已在上海成立办事处。 具体的联系方法为: 施美乐博公司上海办事处 上海浦东新区商城路738号胜康廖氏大厦906A (邮编:200120 Tel: +86-21-58362889 Fax: +86-21-58362887 联系人:黄黎先生

手机: +86-138******** (Shanghai +86-135******** (Beijing E-mail: leon.huang@https://www.360docs.net/doc/e12133129.html, Website: https://www.360docs.net/doc/e12133129.html, 现提供关于少子寿命测试若干问题的讨论,供您参考,并烦请填写客户意见反馈表,传真给我们,以便我们改进工作,谢谢!如您还有任何问题或需要,请随时与我们联系。 此致 敬礼! 施美乐博公司上海办事处 2006年4月7日 施美乐博公司上海代表处 上海浦东新区商城路738号胜康廖氏大厦906A (邮编:200120 Rm.906A,Suncome Liauw's Plaza, No.738, Shangcheng Road, Pudong,Shanghai 200120, China Tel: +86-21-58362889 Fax: +86-21-58362887 关于少子寿命测试若干问题的讨论 鉴于目前Semilab 少子寿命测试已在中国拥有众多的用户,并得到广大用户的一致认可。现就少子寿命测试中,用户反映的一些问题做出如下说明,供您在工作中参考: 1、Semilab μ-PCD 微波光电导少子寿命的原理

按键寿命测试机作业指导书

-机械按键测试寿命机 1.0目的: 使实验员正确规范的使用机械按键寿命机,通过实验机模拟人敲击按键,验证产品按键,薄膜,硅胶按键,硅胶面板等材料的使用寿命。 2.0适用范围: 适用与公司所有来料,新品开发,修改产品规格需做敲击寿命实验的产品等。 3.0职责: 适用与品质部指定的操作人员和设备维护人员。 4.0工作程序: 4.1使用前检查试验机各按键敲击头的力度,标准力度为180g±30g,并检查记录显示器1*1/1*10/1*100显示数据是否正确。速度频率调节旋钮是否正常。 4.2放置键盘的敲击按键数量:同类按键数量为2-4pcs,除特殊外。 4.3安装实验键盘,调节标准:敲击头将键帽压到底,键帽及硅胶同时承受180g±30g力度,敲击频率为3-4次/秒 4.4按下计数器复位开关,将数据归零。再打开调频器电源开关启动机器,并调整敲击速度机检查敲击效果。 4.5在敲击过程中,设备每敲击50万次停休30-60分钟进行保养

4.6每天不定时检查敲击情况,并将敲击状况记录与实验检查记录表。 4.7完成实验后将实验设备开关关闭,并对实验数据进行汇总,并录人电子文件拟成实验报告。 4.8实验完成品或实验未达到要求的而停止实验后,将破坏的实验材料及实验检查记录表整理保存。 4.9在实验过程中检查机器是否运行正常,定期对机器进行日常保养。 5.0实验标准:实验标准按公司产品例行实验标准执行。 产品例行实验标准寿命敲击

日常保养: 1.每天检查寿命实验机外壳是否干净无灰尘。 2.每天检查按键寿命实验机导轨需保持干净。 3.每天检查电源开关通电是否正常。 4.每天检查计数器和计时器工作是否正常。 5.每天按键寿命测试机工作是否正常。 6.每周定期给按键寿命测试机打润滑油。 7.每月定期校验按键速度。 8.每月定期更换耐磨头。 注意事项: 1.待测产品水平放在按键寿命测试机上,调整好位置,使耐磨头垂直敲击在键帽上,然后固定好。 2.调整好按键测试机的力度180g±30g和频率3-4次/秒 3.控制环境温度10-35摄氏度范围内。

少子寿命测试判断是否有外延

Abruptness of a-Si:H/c-Si interface revealed by carrier lifetime measurements Stefaan De Wolf and Michio Kondo Citation: Appl. Phys. Lett. 90, 042111 (2007); doi: 10.1063/1.2432297 View online: https://www.360docs.net/doc/e12133129.html,/10.1063/1.2432297 View Table of Contents: https://www.360docs.net/doc/e12133129.html,/resource/1/APPLAB/v90/i4 Published by the AIP Publishing LLC. Additional information on Appl. Phys. Lett. Journal Homepage: https://www.360docs.net/doc/e12133129.html,/ Journal Information: https://www.360docs.net/doc/e12133129.html,/about/about_the_journal Top downloads: https://www.360docs.net/doc/e12133129.html,/features/most_downloaded Information for Authors: https://www.360docs.net/doc/e12133129.html,/authors

Abruptness of a-Si:H/c-Si interface revealed by carrier lifetime measurements Stefaan De Wolf a?and Michio Kondo National Institute of Advanced Industrial Science and Technology(AIST),Central2,1-1-1Umezono, Tsukuba,Ibaraki305-8568,Japan ?Received27September2006;accepted15December2006;published online26January2007? Intrinsic hydrogenated amorphous silicon?lms can yield outstanding electronic surface passivation of crystalline silicon wafers.In this letter the authors con?rm that this is strongly determined by the abruptness of the interface.For completely amorphous?lms the passivation quality improves by annealing at temperatures up to260°C,most likely by?lm relaxation.This is different when an epitaxial layer has been grown at the interface during?lm deposition.Annealing is in such a case detrimental for the passivation.Consequently,the authors argue that annealing followed by carrier lifetime measurements allows determining whether the interface is abrupt.?2007American Institute of Physics.?DOI:10.1063/1.2432297? Hydrogenated amorphous silicon?a-Si:H??lms depos-ited on crystalline silicon?c-Si?surfaces have increasingly attracted attention over the past20years.Initially,it was discovered that abrupt electronic heterojunctions can be cre-ated with such structures.1Soon afterwards applications fol-lowed,including bipolar transistors,2imaging devices,3and solar cells.4For the latter it was recognized that the output parameters bene?t substantially from inserting a few nano-meter thin intrinsic a-Si:H?i??lm between the doped amor-phous emitter and c-Si substrate.For solar cells that feature a similar heterostructure back surface?eld,impressive energy conversion ef?ciencies exceeding21%have been reported.5 The role of the a-Si:H?i?buffer layer has been discussed in literature?see,e.g.,Refs.6–12?:It is known that such?lms can yield outstanding surface passivation for c-Si surfaces,13 but also that growth of an epitaxial interface during a-Si:H?i?deposition is detrimental for heterojunction device performance.12For hot wire chemical vapor deposited ?CVD?a-Si:H,where no ion bombardment takes place, abrupt interfaces have been obtained either by limiting the deposition temperature T depo?Ref.14?or by terminating the c-Si surface with a SiN x monolayer prior to a-Si:H deposition.15The abruptness of the interface,i.e.,whether instant a-Si:H deposition on c-Si occurred without initial epitaxial growth,was in these studies determined either by transmission electron microscopy?TEM??Refs.12,14,and 15?or by?in situ?spectroscopic ellipsometry?SE?,16for which mirror polished surfaces are desirable.To gain know- ledge about the electronic surface passivation properties of these interfaces,the most straightforward technique is by measuring the effective carrier lifetime?eff of the samples. Such measurements are known to be extremely sensitive, allowing for detection of bulk defect densities as low as 109–1011cm?3in a simple,contactless technique at room temperature.17 In this letter,we show that by low temperature?up to 260°C?postdeposition annealing,the surface passivation quality of direct plasma enhanced?PE?CVD a-Si:H?i??lms improves when the a-Si:H/c-Si interface is abrupt.This contrasts with the case when an epitaxial?lm has been grown at the interface,where the surface passivation quality is seen to degrade signi?cantly by a similar annealing treat-ment.Consequently,we argue that annealing followed by carrier lifetime measurements allows accurate determination of the onset of epitaxial growth in an easy-to-use way which is not restricted to polished c-Si surfaces. For the experiments,300?m thick relatively low resistivity??3.0?cm?boron-doped?oat zone?100??FZ?-Si?p?wafers have been used.Both surfaces of the sub-strates were mirror polished to eliminate the in?uence of substrate surface roughness on the passivation properties18 and to allow for SE measurements.For predeposition surface cleaning,the samples were?rst immersed in a ?H2SO4:H2O2??4:1?solution for10min to grow a chemical oxide,which was followed by a rinse in de-ionized water. The oxide was then stripped off in a dilute HF solution?5%?for30s.After this the samples were immediately transferred to the load lock of the deposition system.For?lm deposi-tion,a parallel plate direct PECVD reactor operated at radio frequency?rf??13.56MHz?power was used,in which the samples were mounted at the top electrode.The electrode distance and diameter were respectively20and230mm.An undiluted SiH4?ow of20SCCM?SCCM denotes cubic cen-timeter per minute at STP?was used and the chamber was maintained at low pressure?0.5Torr?.The value for T depo was varied from105to255°C.The rf power absorbed by the plasma was5W.This is the minimal power required to maintain a stable plasma at the given deposition conditions. To evaluate the surface passivation quality,identical?lms of about50nm thick were deposited on both wafer surfaces. After deposition,the samples were consecutively annealed in a vacuum furnace?30min,with annealing temperatures T ann ranging from120to260°C?.In between the annealing steps,the value for?eff of the samples was measured with a Sinton Consulting WCT-100quasi-steady-state photocon-ductance system,19operated in the so-called generalized mode.Since high quality FZ-Si wafers have been used throughout the experiments,the contribution of the bulk to the total recombination expressed by?eff can be neglected.In such a case,the effective surface recombination velocity S eff, which value can be regarded as a direct measure for the passivation quality of the?lms present at the surfaces,may a?Electronic mail:stefaan.dewolf@aist.go.jp APPLIED PHYSICS LETTERS90,042111?2007? 0003-6951/2007/90?4?/042111/3/$23.00?2007American Institute of Physics 90,042111-1

相关文档
最新文档