系统仿真精度与置信度评估方法研究

系统仿真精度与置信度评估方法研究
系统仿真精度与置信度评估方法研究

参数估计与置信区间

参数估计与置信区间 我们总是希望能够从一些样本数据中去探究数据总体的表现特征,在网站数据分析中也是如此,我们试图从最近几天的数据表现来推测目前网站的整体形势是怎么样的,有没有变好或者变差的信号,但当前几天的数据无法完全代表总体,所以这里只能使用“估计”。同时,网站的数据始终存在波动,将最近时间段的数据作为抽样样本很可能数据正好处于较低或者较高水平,所以我们用样本得到的估计值不可能是无偏差的,我们同时需要去评估这个估计值可能的变化区间。 参数估计(Parameter Estimation)是指用样本的统计量去估计总体参数的方法,包括点估计和区间估计。 点估计 点估计(Point Estimation)是用抽样得到的样本统计指标作为总体某个未知参数特征值的估计,是一种统计推断方法。 一般对总体参数的估计会包括两类:一种是用样本均值去估计总体均值,对应到网站数据中的数值型指标,比如网站每天的UV,我们可以用近一周的日均UV去估计目前网站每天唯一访客数量的大体情况;另外一种是用样本概率去估计总体概率,对应到网站数据中的比率型指标,比如网站的目标转化率,我

们可以用近3天的转化率去预估网站当天目标转化的水平;同时我们会计算样本的标准差来说明样本均值或者概率的波动幅度的大小,从而估计总体数据的波动情况。 点估计还包括了使用最小二乘法对线性回归做曲线参数的拟合,以及最大似然估计的方法计算样本集分布的概率密度函数的参数。 区间估计 区间估计(Interval Estimation)是依据抽取的样本,根据一定的正确度与精确度的要求,估算总体的未知参数可能的取值区间。区间估计一般是在一个既定的置信水平下计算得到总体均值或者总体概率的置信区间(Confidence Interval),一般会根据样本的个数和标准差估算得到总体的标准误差,根据点估计中用样本均值或样本概率估计总体均值或总体概率,进而得出一个取值的上下临界点。 我们可以将样本标准差记作S,如果我们抽样获取的有n个样本,那么总体的标准差σ就可以用样本标准差估算得到: 从这个公式中我们可以看到大数定理的作用,当样本个数n越大时,总体指标差σ越小,样本估计值越接近总体的真实值。Excel的图表里面也提供了添加“误差线”的功能:

系统仿真与软件工程

系统仿真与软件工程 2320120921 徐子棋一、软件本身就是现实的仿真 软件可以理解为数据与算法的合集,经过几十年的发展,软件从解决单一问题的一个小程序,发展到适应各个领域的复杂庞大的程序集合。而软件开发的过程就是将现实中的逻辑转换为可以被计算机解读的语言,使用计算机来实现以前需要人工处理的任务,利用计算机的高速以及规范等特性,减少人的工作量,降低管理成本。 例如最常见的行业管理软件,就是包含了行业管理业务共性的程序集合,通过行业管理软件,这个行业中的从业人员可以通过软件的帮助进行业务管理、数据分析,同时受限于软件中设置的限制条件,从而使得从业人员必须遵守一些硬性的规定,从而将管理风险从事后监督转化为事前防范,大幅度降低企业的管理难度,而这个过程本身,就是一种管理逻辑的仿真和抽象。 在理想的情况下,如果不考虑计算机的计算和存储能力的限制,可以说,任何现实的情况都可以通过软件工程的方式来开发仿真系统。 二、系统仿真与软件工程结合的必要性 由于复杂系统在构成、过程和状态等方面具有繁杂、庞大和跨学科等特点,复杂系统仿真软件的开发与软件工程的结合就显得越来越有必要。为了应对复杂仿真系统的特点,能够适应仿真软件的开发方法必须具有如下特点: 1.方法必须覆盖复杂系统仿真软件分析、设计中需要关注的主体,能 有效的指导软件实现。 2.能帮助开发者循序渐进的对复杂系统中的数据和算法进行有效的归 纳,降低开发难度。 3.建立的软件具有直观、简单和易于理解的组织结构。 4.能为仿真软件形成标准化的文档。 5.能服务于大兴仿真软件的开发管理。 三、一种适用于系统仿真软件开发的方法 在前期的学习中,接触到一种复杂系统软件工程化开发过程:SPCSS (Software Process of Complex System Simulation)。SPCSS是基于传统瀑布模型,从时间顺序上将复杂系统仿真软件的开发分为需求阶段、分析阶段、设计阶段和实现阶段;在各个阶段中,根据复杂系统仿真软件开发的内在需要,裁剪和补充了统一过程中的工作流,但不像统一过程对这些工作流进行增量式的迭代。这是因为仿真软件的基础是被仿真的系统的数学模型,数学模型

施工测量方法及精度评定

施工测量方法及精度评定 1、设站方法 根据现场情况,主要选择以下两种方式设站。 1.1 全站仪坐标法设站 (1)在施工控制点上架设全站仪并对中整平,初始化后检查仪器的设置:气温、气压、棱镜常、在输入(或调出)测站点的三维坐标,量取并输入仪器高,输入(或调出)后视点坐标,照准后视点进行后视。 (2)如果后视点上有棱镜,输入棱镜高,可以测量后视点的坐标和高程并与已知数据检核。 (3)瞄准另一控制点,检查方位角或坐标;在另一后视点上竖棱镜或尺子检查仪器的视线高。 (4)利用仪器自身的计算功能进行计算时,记录员也应该进行相应的计算,以检查输入数据的正确性。 (5)在各待测站点上架设脚架和棱镜,量取、记录并输入棱镜高,测量、记录待定点的坐标和高程。 1.2 全站仪边角交会法设站 (1)在未知点P上架设、整平全站仪;在已知的基本控制点A上安置棱镜,量测棱镜高;在已知点B、C上安置照准点标志。 (2)量测PA间平距D、高差DH和PA至PB方向间的水平角α、β。 (3)用D、α及A、B点的坐标计算P点的一组坐标;用D、β及A、C点的坐标计算P点的另一组坐标;两组坐标的差值不超过规定限差,取中数即为P点的最后坐标。

(4)根据A点的高程HA和高差DH计算仪器的视线高:H视=HA-DH。 (5)如果需要可以将P点投影到地面上,并作好记录。量取仪器高,求出地面P 点的高程。 2、施工测量方法 2.1 放样方法 (1)用以上方法把测站设置好了后,就可以用测站极坐标法开始放样。 (2)使用全站仪测量测点的三维坐标,用计算器计算测点距设计棱镜的距离,再指挥司镜员移动棱镜,直至到位。 (3)若使用免棱镜全站仪时,可由观测员移动激光斑点再进行测量,直至到位。 (4)在直线较长的边坡、洞室、混凝土工程放样时,建立以边坡平行线、洞室轴线、混凝土边线、为坐标轴的独立坐标系,以便加快测量放样的速度和减少现场测量计算的错误。 2.2 验收断面测量方法 (1)验收断面测量采用免棱镜全站仪。 (2)边坡断面测量时,采用相对坐标设站,任意架设仪器,直接测量符合断面要求的点位,保证断面桩号差小于10cm,数据直接保存在仪器内。 (3)洞室断面测量时也可以用边坡断面测量方法,而现场通常是先把每个断面的中桩放出来,然后将仪器架设于中桩上,将方向置于断面方向上,用独立坐标进行断面测量,数据直接保存在仪器内。 (4)内业资料处理前,把仪器内存储的数据传到计算机内,用专用软件进行数据格式转换,网上也可下载。

第一章系统仿真的基本概念与方法

第一章控制系统及仿真概述 控制系统的计算机仿真是一门涉及到控制理论、计算数学与计算机技术的综合性新型学科。这门学科的产生及发展差不多是与计算机的发明及发展同步进行的。它包含控制系统分析、综合、设计、检验等多方面的计算机处理。计算机仿真基于计算机的高速而精确的运算,以实现各种功能。 第一节控制系统仿真的基本概念 1.系统: 系统是物质世界中相互制约又相互联系着的、以期实现某种目的的一个运动整体,这个整体叫做系统。 “系统”是一个很大的概念,通常研究的系统有工程系统和非工程系统。 工程系统有:电力拖动自动控制系统、机械系统、水力、冶金、化工、热力学系统等。 非工程系统:宇宙、自然界、人类社会、经济系统、交通系统、管理系统、生态系统、人口系统等。 2.模型: 模型是对所要研究的系统在某些特定方面的抽象。通过模型对原型系统进行研究,将具有更深刻、更集中的特点。 模型分为物理模型和数学模型两种。数学模型可分为机理模型、统计模型与混合模型。 3.系统仿真: 系统仿真,就是通过对系统模型的实验,研究一个存在的或设计中的系统。更多的情况是指以系统数学模型为基础,以计算机为工具对系统进行实验研究的一种方法。 要对系统进行研究,首先要建立系统的数学模型。对于一个简单的数学模型,可以采用分析法或数学解析法进行研究,但对于复杂的系统,则需要借助于仿真的方法来研究。 那么,什么是系统仿真呢?顾名思义,系统仿真就是模仿真实的事物,也就是用一个模型(包括物理模型和数学模型)来模仿真实的系统,对其进行实验研究。用物理模型来进行仿真一般称为物理仿真,它主要是应用几何相似及环境条件相似来进行。而由数学模型在计算机上进行实验研究的仿真一般则称为数字仿真。我们这里讲的是后一种仿真。 数字仿真是指把系统的数学模型转化为仿真模型,并编成程序在计算机上投入运行、实验的全过程。通常把在计算机上进行的仿真实验称为数字仿真,又称计算机仿真。

8第八章-系统仿真结果分析

第八章 系统仿真结果分析 采用统计方法来估计系统的性能,利用统计分析方法要求样本数据具有统计独立性,但实际上在很多情况下这个条件并不能满足。 解决这一难题的途径无非两条:一是对样本序列进行处理,使之尽量满足统计独立性条件;二是在经典统计方法的基础上进行修正使之适合于处理相关的样本序列。 终态仿真是指仿真实验在某个持续事件段上运行。 稳态仿真则是通过系统的仿真实验,希望的得到一些系统性能测度指标在系统达到稳态时的估计值。 有必要采用方差减小技术,即在相同的仿真运行次数下获得较小方差的仿真输出结果。 §8.1终态仿真的结果分析 8.1.1 重复运行法 所谓重复运行方法是指选用不同的独立随机数序列,采用相同的参数、初始条件以及用相同的采样次数n 对系统重复进行仿真运行。 对于一终态仿真的系统,由于每次运行是相互独立的,因此可以认为每次仿真运行结果()n i X i ,,2,1???=是独立同分布的随机变量,是服从正态分布的随机变量。随机变X 量的期望值E (X )地估计值μ为: n n S t X n j n j n /)(211,112∑=--±=αμ (8.1)

其中, ()[]()1/)(212--=∑=n X n X n S n j j (8.2) ∑==n j j n X X 11 (8.3) α为置信水平。 根据中心极限定理,若产生的样本点X j 越多,即仿真运行的次数越多,则X j 越接近于正态分布,因此在终态仿真中使用仿真方法运行的重复次数n 不能选取得太小。 8.1.2序贯程序法 在终态仿真结果分析得重复运行法中,通过规定次数得仿真 可以得到随机变量取值的置信区间,置信区间的长度与仿真次数的平方根成反比。显然,若要缩小置信区间的长度就必然增加仿真次数n 。这样就产生了另一个方面的问题,即在一定的精度要求下,规定仿真结果的置信区间,无法确定能够达到精度要求的仿真次数。这样就可以对置信区间的长度进行控制,避免得出不适用的结论。 一般说来,在同样精度要求下,采用序贯程序法得出的仿真重复运行次数比利用解析法得到的次数要少。 由式(8.1)可知,样本X 的100(1-α)%置信区间的半长为: ()X t n ))σβα?=-2/,1 (8.4) 式中 ()n S X /=))σ (8.5) S 为样本的标准差,n 为重复运行次数。设给定一准确的临界值ε,即限定 置信区间的长度为[] εε+-X X )),,并给定精度(1-α)。为了达到此精度要求,需要取足够大的仿真运行次数n ,使之满足:

实验准确度及精确度评估方法

Introduction This document is designed to help our clients understand the quality control requirements and limitations of data reporting. There are three sections to this document. The first section will help to determine data usability. The second section will discuss the regulatory and methodology limitations. The final section deals with hold time and preservation requirements. Click on the bookmarks to the left for more information. The following definitions may help you better understand the components of the data report. The Quality Control Section of ESS Laboratory's analytical report is located after the Sample Results. It is used to determine the data usability of the samples. The Method Blank is an analyte free matrix, (reagent water, clean sand, sodium sulfate), which is carried through the complete preparation and analytical procedure. The Method Blank is used to evaluate contamination resulting from the complete preparation and analytical procedure. The Blank Spike (LCS) is an interference free matrix (same used for the Method Blank) spiked with known concentrations of the analytes of interest. It is analyzed to determine, without sample matrix, if the procedure is working within established control limits. Like the Method Blank it is carried through the complete preparation and analytical procedure. It is routinely performed in duplicate as the BSD (LCSD). The recoveries of the spiked analytes are evaluated to determine accuracy. Comparison of the BS to the BSD will yield a precision measurement. The Matrix Spike is a separate aliquot of the sample spiked with known concentrations of the analytes of interest. It is analyzed to determine, including the matrix interferences, if the procedure is working within established control limits. Like the Blank Spike it is carried through the complete preparation and analytical procedure. It is routinely performed in duplicate as the MSD. The recoveries of the spiked analytes are evaluated to determine accuracy in a given matrix. Comparison of the MS to the MSD will yield a precision measurement in a given matrix. The Duplicate is a separate aliquot of the sample carried through the complete preparation and analytical procedure. Comparison of the Sample to the Duplicate will yield a precision measurement in a given matrix. See Blank Spike/Matrix Spike for Blank Spike Duplicate and Matrix Spike Duplicate definitions. The Standard Reference Material is a third party standard with known concentrations in matrix similar to the sample. Surrogate Standards are analytes added to a sample at a known concentration in order to determine extraction efficiency. Surrogate Standards are analytes chemically similar to those being extracted. An Internal Standard is an analyte or group of analytes added to a sample at a constant concentration, for calibration and quantitation. The internal standard is an analyte chemically similar to those being evaluated. It is typically added in GC/MS methods to correct analyte concentrations during analysis. The Continuing Calibration Verification is a check standard used to determine if the sample analysis is within control limits.

8第八章-系统仿真结果分析

8第八章-系统仿真结果分析

第八章 系统仿真结果分析 采用统计方法来估计系统的性能,利用统计分析方法要求样本数据具有统计独立性,但实际上在很多情况下这个条件并不能满足。 解决这一难题的途径无非两条:一是对样本序列进行处理,使之尽量满足统计独立性条件;二是在经典统计方法的基础上进行修正使之适合于处理相关的样本序列。 终态仿真是指仿真实验在某个持续事件段上运行。 稳态仿真则是通过系统的仿真实验,希望的得到一些系统性能测度指标在系统达到稳态时的估计值。 有必要采用方差减小技术,即在相同的仿真运行次数下获得较小方差的仿真输出结果。 §8.1终态仿真的结果分析 8.1.1 重复运行法 所谓重复运行方法是指选用不同的独立随机数序列,采用相同的参数、初始条件以及用相同的采样次数n 对系统重复进行仿真运行。 对于一终态仿真的系统,由于每次运行是相互独立的,因此可以认为每次仿真运行结果()n i X i ,,2,1???=是独立同分布的随机变量,是服从正态分布的随机变量。随机变X 量的期望值E (X )地估计值μ为:

n n S t X n j n j n /)(21 1,112 ∑=--±= αμ (8.1) 其中, ()[] ()1/)(2 12--=∑=n X n X n S n j j (8.2) ∑== n j j n X X 1 1 (8.3) α为置信水平。 根据中心极限定理,若产生的样本点X j 越多,即仿真运行的次数越多,则X j 越接近于正态分布,因此在终态仿真中使用仿真方法运行的重复次数n 不能选取得太小。 8.1.2序贯程序法 在终态仿真结果分析得重复运行法中,通过规定次数得仿真 可以得到随机变量取值的置信区间,置信区间的长度与仿真次数的平方根成反比。显然,若要缩小置信区间的长度就必然增加仿真次数n 。这样就产生了另一个方面的问题,即在一定的精度要求下,规定仿真结果的置信区间,无法确定能够达到精度要求的仿真次数。这样就可以对置信区间的长度进行控制,避免得出不适用的结论。 一般说来,在同样精度要求下,采用序贯程序法得出的仿真重复运行次数比利用解析法得到的次数要少。 由式(8.1)可知,样本X 的100(1-α)%置信区间的半长为: () X t n ) )σβα?=-2/,1 (8.4) 式中 ()n S X /=) )σ (8.5)

多产品多阶段制造系统仿真与分析

多产品多阶段制造系统仿真与分析 一.关于问题 1. 系统描述 有一个制造车间由5 组机器组成,第1,2,3,4,5 组机器分别有3,2,4,3,1 台相同的机器。这个车间需要加工三种原料,三种原料分别要求完成4、3 和5 道工序,而每道工序必须在指定的机器组上处理,按照事先规定好的工艺顺序进行。 假定在保持车间逐日连续工作的条件下,对系统进行365 天的仿真运行(每天按8 小时计算),计算每组机器队列中的平均产品数以及平均等待时间。通过仿真运行,找出影响系统的瓶颈因素,并对模型加以改进。 2. 系统数据 三种原料到达车间的间隔时间分别服从均值为50,30,75 分钟的指数分布。 三种原料的工艺路线如表11.1 所示。第1 种原料首先在第3 组机器上加工,然后在第1 组、再在第2 组机器上加工,最后在第5 组机器上完成最后工序。第1 种原料在机器组3、1、2、5 加工,在机器组3、1、2、5 加工的平均时间分别为30、36、51、30;第2 种原料在机器组4、1、3 加工,在机器组4、1、3 加工的平均时间分别为66、48、45;第3 种原料在机器组2、5、1、4、3 加工,在机器组2、5、1、4、3 加工的平均时间分别为72、15、42、54、60。 表4.1原料加工工艺路线与各工序加工时间参数原料类型机器组别相继工序平均服务时间(Minute) 1 3,1,2,5 30,36,51,30 2 4,1, 3 66,48,45 3 2,5,1,4,3 72,15,42,54,60 如果一种原料到达车间时,发现该组机器全都忙着,该原料就在该组机器处的一个服从先进先出FIFO(First In First Out)规则的队列。前一天没有完成的任务,第二天继续加工。在某机器上完成一个工序的时间服从Erlang 分布,其平均值取决于原料的类别以及机器的组别。例如,表11.1 中的第2 类原料,它的第一道工序是在第 4 组机器上加工,加工时间服从均值为66 的Erlang 分布。 3.概念模型

纹理、估计值、置信区间、p值与置信度

纹理、估计值、置信区间、p值与置信度 计算机图形学里的纹理既指物体表面凹凸不平的沟纹,也指光滑表面的彩色图案! 纹理的性质: 1、对比度 2、粗糙度 3、方向度 4、线像度 5、规整度 6、粗略度 p值与置信度是相对的 p值代表:虚无假设(Null Hypothesis)成立之下你却拒绝接受虚无假设所发生的机率值,这在统计上就是所谓的型一错误(Type I Error)。所以p值越小,代表犯这种错误的机会就越不可能发生,也就是虚无假设不成立。一般都会定一个所谓的alpha值,代表显著水平值,就数学上的意义代表p值的最大值。所以如果p值小于alpha值的话,就代表虚无假设不成立。

以前面所提的正态分配(Normal Distribution)检定,虚无假设为"数据是正态分配",所以p值很小很小就表示:你犯这种错误几乎是不可能发生,代表"数据是正态分配"是不成立的。 而置信度=100(1-alpha)%,代表虚无假设成立之下做对判断的机会。 估计值与置信区间 置信区间的表达式 u=x+-tS/n-1/2 我们在工作过程中常常看到这样描叙:u值的90%的置信区间为[θL, θu]、MTBF的95%的置信下限为6753小时。其中一个常用的概念是:置信区间。这个词包含有什么样的物理意义?我们怎么样去求这一个物理量的置信区间[θ1, θ2]?这是本文要阐述的主要内容。 在理解这个概念之前,需要掌握一定的概率与统计知识。 一、概率的基本知识

概率的定义以及概率的基本性质这里不作说明,只用一例题对概率的知识作一个回顾。 例:从6双不同颜色的鞋中任意取4只,取到只有一双成对的鞋的概率是多少? 第一种根据古典定义计算。 P(A)=k/n=(A中所含样本点的个数)/(全体样本点的总数) 按照定义,最主要是要找出样本点的数量,通常要用到排列与组合的公式。这里对“分步完成”、“分类完成”、“排列”及“组合”的定义,不作说明;要强调一点:公式中k与n的计算方式要一致(如果n这个总数是用排列计算出来的,那么k就要用排列的个数)。 解1: n的求法;从12只鞋中任意取4只组合:共有12*11*10*9/4*3*2种取法; k的求法;从12只中取一双和另外2只组合:第一步取1双的取法有6种,第二步在剩下的10只中取两只不同颜色的鞋组合共有10*8/2种;所以k为6*10*8/2 求P(A);运用公式直接求得P(A)= (6*10*8/2)/(12*11*10*9/4*3*2)=16/33

相机标定和精度评估方法的比较和回顾汇总

摄像机标定方法与精度评估的对比回顾摘要 相机标定对于进一步的度量场景测量来说是一个关键性的问题。很多有关标定的技术和研究在过去的几年中相继出现。然而,深入探究一种确定的标定方法的细节,并与其它方法进行精度比较仍是不易的。这种困难主要表现在缺少标准化和各种精度评估方法的选择上。本文给出一个详细的回顾关于一些最常用的标定技术,文中,这些标定方法都采用相同的标准。此外,文中涉及的方法已经过测试,精确度也经过测定。比较结果和后续的讨论也在文中给出。此外,代码和结果在网上也可以找到。2002模式识别学会,发布由Elsevier science,保留所有权利。 关键词:相机标定镜头畸变参数估计优化相机建模精度评估3D 重建计算机视觉 1、介绍 相机标定是计算机视觉计算的第一步。虽然可以通过使用非标定相机获取一些有关测量场景的信息,但是,当需要度量信息时标定是必须的。精确校准相机的使用使从平面投影图像中测量物体在真实世界中的距离成为可能。这种功能的一些应用包括: 1、致密重建:每个像点确定一条光射线通过相机对场景的焦点。这种使用 多个视角观察静止场景(来自一个立体系统,或者单个移动相机, 或者一个结构光发射器)允许两条交叉的光线得到度量的3D点位 置。显然,相应的问题被提前解决了。 2、外观检验:一旦被测目标的致密重建被获得,被重建的目标可以与已存 储的目标比较来检测任何制造缺陷如凸起、凹陷或裂纹。一个潜在 应用是外观检验用来质量控制。计算机处理的外观检查允许自动化 和彻底化检查物体,与缓慢的暗含一种数据统计方法的人工检查截 然相反。

3、目标定位:当考虑来自不同对象的各种图像点时,这些对象的相对位置 可以被轻易确定。这个有许多可能的应用,尤其是工业零件装配和 机器人导航中的障碍回避。 4、相机定位:当相机固定在机械臂或者移动机器人上,相机的位置和相角 可以通过计算场景中已知标志的位置获得。如果这些测量值提前存 储,一个短暂的分析可以帮助处理器计算出机器人的轨迹。相机的 信息可以用在机器人控制或者路线规划上。 相机标定可分为两个步骤。首先,相机建模涉及到使用一系列参数对传感器的物理和视觉行为进行数学逼近。其次,使用直接或迭代的方法估算得到的参数值。在所建模型中有两种参数需要考虑。一方面是本征参数,用来模拟图像传感器的内在结构和光学特征。本质上,本征参数决定光线是如何通过镜头投射在传感器的图像面上的。另一方面的参数是非本征参数。非本征参数测量相机相对于世界坐标系统的位置和相角,也就是说,提供相对于用户固定的坐标系统而不是相机坐标系统的数据。 相机标定可以按以下几种不同的标准划分。(1)线性和非线性相机标定(区别在于相机畸变的建模上)(2)本征和非本征相机标定。本征标定仅在获得相机物理和光学参数时使用。而非本征标定着眼于测量视场中相机的位置和相角。(3)隐式和显式相机标定。隐式标定是指相机标定过程中并不明确计算相机的物理参数。尽管结果可以用于3D测量或生成图像坐标,但是,由于获得的参数与物理参数不一致,测量结果对于相机建模是无用的。(4)使用已知的3D点或简化的3D点作为标定模式,就那些使用如消失线或其它线性特征等几何特征的方法而言。 这些方法还可以按估算相机模型参数的标定方法来划分: 1、非线性最优化技术。当镜头的所有缺陷包含在相机模型中时,标定方法变成非线性。在这种情况下,相机参数通常通过与一个确定的最小化约束条件的函数迭代来获得。最小化指使像点和通过迭代的模型预测值最小。这种迭代技术的好处是几乎所有的模型都可以被校正,精度可以通过增加对收敛域的迭代次数。然而,这种技术需要一个最初有一个好的猜测来保证收敛。一些例子在一些经典的摄影测量法和Salvi中有描述。

系统仿真

系统仿真 1系统仿真概述 1.1定义及实质 所谓系统仿真(system simulation),就是根据系统分析的目的,在分析系统各要素性质及其相互关系的基础上,建立能描述系统结构或行为过程的、且具有一定逻辑关系或数量关系的仿真模型,据此进行试验或定量分析,以获得正确决策所需的各种信息。 系统仿真的实质是 ①它是一种对系统问题求数值解的计算技术。尤其当系统无法通过建立数学模型求解时,仿真技术能有效地来处理。 ②仿真是一种人为的试验手段。它和现实系统实验的差别在于,仿真实验不是依据实际环境,而是作为实际系统映象的系统模型以及相应的“人造”环境下进行的。这是仿真的主要功能。 ③仿真可以比较真实地描述系统的运行、演变及其发展过程。 1.2系统仿真的分类 根据仿真所采用的模型划分,可将仿真分为数学仿真和物理仿真两大类。 物理仿真亦称为实物仿真,它是在系统生产出样机后,将系统实物全部或部分的引入回路,由于物理仿真能将系统的实际参数、数学仿真中难以考虑到的非线性因素和干扰因素引入仿真回路,因此物理仿真更接近系统的实际情况,通过仿真可以检验实物系统工作的可靠性,可以准确地调整系统元部件的参数。 数学仿真就是将数学模型编排成模拟计算机的排题图或数值计算机的程序。这一过程是将原始数学模型转换成仿真模型,通过对计算机模型的运行达到对原始系统研究的目的,数学仿真在系统设计阶段和分析阶段是十分重要的,通过数学仿真可以检验理论设计的正确性。 1.3系统仿真的作用 ①仿真的过程也是实验的过程,而且还是系统地收集和积累信息的过程。尤其是对一些复杂的随机问题,应用仿真技术是提供所需信息的唯一令人满意的方法。 ②对一些难以建立物理模型和数学模型的对象系统,可通过仿真模型来顺利地解决预测、分析和评价等系统问题。 ③通过系统仿真,可以把一个复杂系统降阶成若干子系统以便于分析。 ④通过系统仿真,能启发新的思想或产生新的策略,还能暴露出原系统中隐藏着的一些问题,以便及时解决。 1.4适合于系统仿真的问题 ①难以用数学公式表示的系统,或者没有建立和求解数学模型的有效方法。 ②虽然可以用解析的方法解决问题,但数学的分析与计算过于复杂,这时计算机仿真可能提供简单可行的求解方法。 ③希望能在较短的时间内观察到系统发展的全过程,以估计某些参数对系统行为的影响。 ④难以在实际环境中进行实验和观察时,计算机仿真是唯一可行的方法,例如太空飞行的研究。 ⑤需要对系统或过程进行长期运行比较,从大量方案中寻找最优方案。

分类精度评价

遥感影像分类精度评价 遥感影像分类精度评价 (2009-11-20 14:20:57) 在ENVI中,选择主菜单->Classification->Post Classification->Confusion Matrix->Using Ground Truth ROIs。将分类结果和ROI输入,软件会根据区域自动匹配,如不正确可以手动更改。点击ok后选择报表的表示方法(像素和百分比),就可以得到精度报表。 对分类结果进行评价,确定分类的精度和可靠性。有两种方式用于精度验证:一是混淆矩阵,二是ROC曲线,比较常用的为混淆矩阵,ROC曲线可以用图形的方式表达分类精度,比较形象。 对一帧遥感影像进行专题分类后需要进行分类精度的评价,而进行评价精度的因子有混淆矩阵、总体分类精度、Kappa系数、错分误差、漏分误差、每一类的制图精度和拥护精度。 1、混淆矩阵(Confusion Matrix): 主要用于比较分类结果和地表真实信息,可以把分类结果的精度显示在一个混淆矩阵里面。混淆矩阵是通过将每个地表真实像元的位置和分类与分类图象中的相应位置和分类像比较计算的。混淆矩阵的每一列代表了一个地表真实分类,每一列中的数值等于地表真实像元在分类图象中对应于相应类别的数量,有像元数和百分比表示两种。 2、总体分类精度(Overall Accuracy): 等于被正确分类的像元总和除以总像元数,地表真实图像或地表真实感兴趣区限定了像元的真实分类。被正确分类的像元沿着混淆矩阵的对角线分布,它显示出被分类到正确地表真实分类中的像元数。像元总数等于所有地表真实分类中的像元总和。 3、Kappa系数:是另外一种计算分类精度的方法。它是通过把所有地表真实分类中的像元总数(N)乘以混淆矩阵对角线(Xkk)的和,再减去某一类中地表真实像元总数与该类

2017机电动力系统仿真与分析

华中科技大学研究生课程考试答题本 考生姓名 考生学号 系、年级 类别 考试科目机电动力系统仿真分析 考试日期 2017 年 6 月

华中科技大学电气学院博士研究生课程 《机电动力系统仿真分析》试题 1.双馈感应发电机,定子接∞电网( U、f保持恒定),转子由理想正弦波VVVF s 电源供电。设电机参数及控制方式同【例4.2】,试仿真分析: 输出功率 P由1.5kw→1.8kw→1.5kw的动态调节过程(cos?、s保持为额定值); 1 功率因数cos?由0.9→1.0→0.9的动态调节过程( P、s保持为额定值); 1 转差率s由0.05→0.10→0.05的动态调节过程( P、cos?保持为额定值); 1 结果讨论(建议结合一组具有不同控制精度或P参数的仿真结果进行)。 解: 1.仿真模型建立 根据书P228页数学模型编写S-function,建立仿真模型如下,改变Power、PF、wr的模块即可仿真三个动态调节过程。 图1-1(a) 2. 仿真结果 (1)改变Power及Power2模块,在2s时功率由1500W跳变至1800W,在4s时重新变为1500W。仿真结果如下,数据分别为Udr,Uqr,ids,iqs,idr,iqr,wr 以及Te:

图1-2 P由1.5kw→1.8kw→1.5kw的动态调节过程 1 (cos 、s保持为额定值) (2)改变PF及PF2模块,在2s时功率因数由0.9跳变至1.0,在4s时重新变为0.9。仿真结果如下,数据分别为Udr,Uqr,ids,iqs,idr,iqr,wr以及Te:

图1-4 cos 由0.9→1.0→0.9的动态调节过程 (1P 、s 保持为额定值) (3)改变wr 及wr2模块,在2s 时转差率由0.05跳变至0.1,在4s 时重新变为0.05。仿真结果如下,数据分别为Udr,Uqr,ids,iqs,idr,iqr,wr 以及Te :

置信度度量的缺陷和改进

数据挖掘导论论文 置信度度量的缺陷和改进 摘要:置信度通过确定Y在包含X的事务中出现的频繁度,从而确定Y和X是否相关联。可是这种度量方式也存在着局限性,我们可以通过引入兴趣度/提升度来消除置信度存在的不足。但单独引入提升度也会对某些模型做出错误的评估,这就需要我们通过不断的对比,找出该模型对应的最好度量。 关键词:置信度提升度兴趣因子 IS度量 置信度度量的作用:置信度度量通过规则进行推行具有可靠性。对于给定的规则X→Y,置信度越高,Y在包含X的事务中出现的可能性就越大。置信度也可以估计Y在给定X下的条件概率。 如: 网球拍网球 1 1 1 2 1 1 3 1 0 4 1 0 5 0 1 6 1 1 事务1,2,3,4,6包含网球拍,事务1,2,6同时包含网球拍和网球,支持度(X^Y)/D=0.5,置信度(X^Y)/X=0.6。若给定最小支持度α = 0.5,最小置信度β = 0.6,认为购买网球拍和购买网球之间存在关联。 (支持度揭示了A和B同时出现的频率,如果A和B一起出现的频率非常小,那么就说明了A和B之间的联系并不大;但若一起出现的频率非常频繁,那么A和B总是相关联的知识也许已经成为常识而存在了) 置信度度量存在的缺陷:虽然通过置信度可以知晓事务之间是否存在

关联,但是置信度度量也存在着一些无可避免的缺陷,和自相矛盾。 咖啡咖啡 茶15 5 20 茶75 5 80 90 10 100 其中,关联规则:茶→咖啡 置信度=P(咖啡|茶)=0.75 但P(咖啡)=0.9 ?虽然置信度高, 但规则存在误导 ?p(咖啡|茶)=0.9375 我们对100人做度量,发现有20人会买茶叶,其中有15人会买喝咖啡,5人不买咖啡,那么我们通过置信度计算发现(买茶→买咖啡)这个的置信度非常高,我们于是可以推算出买茶的人都会买咖啡。但是其实我们看接下来的调查,另外不买茶叶的80人中,有75人买咖啡。不管他是否买茶,买咖啡的人的比例是90%,而买咖啡的买茶者却只占75%,也就是说,一个人如果买了茶,则他买咖啡的可能性从80%降到75%。综上所述,我们可以发现,其实喝茶和喝咖啡其实是两个相对独立事件。所以我们可以概括一下,置信度的缺点,就是置信度度量忽略了规则后件中项集的支持度。 改进置信度度量——引进兴趣度/提升度 从买茶和买咖啡的例子来看,如果考虑买咖啡者的支持度,我们可以发现许多买茶的人也买咖啡,但是,既买咖啡又买茶的人所占的

MATLAB仿真之_连续时间LTI系统仿真和时域分析

郑州航空工业管理学院 《电子信息系统仿真》课程设计 级电子信息工程专业班级 题目连续时间LTI系统仿真和时域分析 姓名学号 指导教师 二О一年月日

MATLAB软件简介 MATLAB 是MathWork 公司于1984 年推出的一套面向工程和科学运算的高性能软件,它具有强大的图形处理功能及符号运算功能,为我们实现信号的可视化及系统分析提供了强有力的工具。MATLAB 强大的工具箱函数可以分析连续信号、连续系统,同样也可以分析离散信号、离散系统,并可以对信号进行各种分析域计算,如相加、相乘、移位、反折、傅里叶变换、拉氏变换、Z 变换等等多种计算MATLAB 用于算法开发、数据可视化、数据分析以数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。MATLAB 可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连Matlab开发工作界面接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。Simulink是MATLAB 最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。

设计目的 掌握信号经过LTI 系统的时域分析方法。根据连续时不变信号处理的基本概念、理论和方法对信号进行分析和处理,实现卷积积分或卷积和,零输入响应和零状态响应,学会应用MATLAB 对实际问题进行仿真,并对仿真结果进行分析。 在本次课程设计中,利用MATLAB 软件对LTI 连续系统时域进行仿真与分析。根据连续时不变信号处理的基本概念、理论和方法对信号进行分析和处理,实现卷积积分或卷积和,零输入响应和零状态响应,熟悉卷积和conv 函数,并会利用卷积求零状态响应,并对输出的波形和仿真结果进行分析。 理论分析 连续时间系统卷积分原理 连续时间信号1()f t 和2()f t 的卷积运算可用信号的分段求和来实现,即: 1212120 ()()*()()()lim ()()k f t f t f t f t f t d f k f t k ττ∞ ∞ -∞ ?→=-∞ ==-=?-???∑ ? 如果只求当t (n )(n 为整数)时f (t )的值f (n ) ,则上式可得: 1212()()()()[()]k k f n f k f t k f k f n k ∞ ∞ =-∞ =-∞ ?= ?-???=??-?∑ ∑ 式中的12()[()]k f k f n k ∞ =-∞ ??-?∑ 实际上就是连续时间信号1()f t 和2()f t 经等 时间间隔均匀抽样的离散序列1()f k ?和2()f k ?的-。当 足够小时, ()f n ?就是卷积积分的结果——连续时间信号f (t )的较好数值近似。

多元过程能力指数及其置信区间的估计(精)

服务热线的“热度”及其测评分析 田志友 (上海质量管理科学研究院,上海,200050) 摘要:从社会公众和顾客角度,用“热度”来形象描述服务热线的质量水平,将服务热线的“热度”界定为:服务组织通过电话热线向顾客和社会公众提供及时、准确、有效信息的服务质量水平。然后,分别从拨通率、响应速度和服务效率三方面,设计“热度”测评指标体系,并从顾客和第三方角度进行“热度”指标的拨测和调查。在进行“热度”值测评时,提出要综合考虑话务量大小、峰谷时段、服务方式、关注程度、主客观评价数据等五方面因素的影响,进行“热度”指标取值的转化和测评。最后,对上海地区51条公众最为常用的服务热线进行了实证分析。 关键词:服务热线;热度;服务质量;测评;优化 1.引言 服务热线是组织与顾客和公众“第一次接触”的平台,集中展现了组织形象,直接反映出组织的质量意识和管理水平。随着网络通信技术的日益发达、信息化的高度发展,服务热线已经成为社会交流沟通的主渠道,它所发挥的作用和影响越来越重要。不过,与发达国家热线服务水平相比,国内的热线服务虽然在硬件设施和软件系统建设方面已经取得显著成效,积累了一定的管理经验,但是,在热线服务质量方面,热线不“热”已经成为公众反应强烈的问题,特别是在政府和公用事业服务领域的服务热线,还没有真正做到“以公众利益为关注焦点”,远远不能满足社会公众日益增长的服务需求。 本文拟从顾客和公众角度出发,用“热度”一词来形象地描述服务热线的服务质量水平,通过对服务热线的“热度”进行科学地界定、测评和改进,建立服务热线质量管理的理论体系和服务标准。 2.服务热线及其“热度” 服务热线是指组织利用电话等通讯手段和计算机技术为广大客户和社会公众不间断地提供信息服务的平台和媒介。这种服务方式起源于二十世纪三十年代,最初仅限于简单的电话接听业务。1956年泛美航空公司建成世界上第一个具有一定规模、可提供“7×24”(每周7天、每天24小时)服务的热线系统,可以让客户通过热线进行机票预定。随后,AT&T又推出了第一个用于电话营销的呼 资助项目:国家自然科学基金项目(No.70572106) 作者简介:田志友(1974-),男,河北石家庄人,上海质量管理科学研究院助理研究员,管理学博士,主要方向为:

相关文档
最新文档