沥青路面结构设计计算

沥青路面结构设计计算
沥青路面结构设计计算

路面设计

7.1基本资料

1.设计规范:

《公路沥青路面设计规范》(JTG D50-2006)

《公路水泥混凝土路面设计规范》(JTG D40-2002)

《公路路基设计规范》(JTG D30-2004)

车道系数:二级公路双向两车道在0.6~0.7,取0.6

年平均增长率:6%

3. 自然条件及气象资料

查询相关资料知,该公路地处

II区,年降雨量为1000(mm/年),最高气温

5

15.7℃,最低气温-4℃以上,日照21000多小时,属东部湿润季冻区。

4.地质资料与筑路材料

沿线土质为中液限粘性土,路基一般处于中湿状态。公路沿线有丰富的沙砾,石料,筑路材料丰富。路面所需水泥和沥青均需外购。

5.路面设计方案

本设计采用柔性路面和刚性路面即沥青混凝土路面和水泥混凝土路面两种方案进行设计,通过方案比选最终确定一种路面设计方案。

7.2沥青路面设计

采用沥青路面结构,确定设计年限12年,需进行沥青路面结构施工图设计。

(1)交通资料

据设计任务书得知其交通组成与交通量如表所示,预测其交通量年增长率为6%。不同车型的交通参数见表。

表7-1 设计交通组成、交通量与不同车型的交通参数

(2)计算标准轴载累计计算交通量Ne ,确定交通等级 a.用于弯沉验算和沥青层弯拉应力验算的Ne (A )

35

.41

21∑=?

??

??=K

i i i P P n C C N (7-1)

式中:1C ——轮组系数,双轮组时为1.0,单轮组时为6.4,四轮组时为0.38;

2C ——轴数系数;当轴间距大于3米时,按单独的一个轴载计算,则C 2=1m,

当轴间距小于3m 时,按双轴或多轴计算C 2=1+1.2×(m-1),m 为轴数;

表7-2 用于弯沉验算和沥青层弯拉应力验算的Ne (A )

交通量计算参数

计算得: 122.1538)100

(

c c N 35

.421==i i p n 取车道系数η=0.6,按下式计算

即累计当量轴次:ηN r

r Ne t 365

]1)1[(?-+=

Ne 6.0122.153806.0365

]1)06.01[(12???-+=

Ne 61067.55665645

?≈=次 Ne 在76103~103??中,属中等交通。

b.用于半刚性基层弯拉应力验算的'

e N 标准轴载P 的当量作用次数N '

.821121)

/P P n C C N (?'?'='∑ (7-2) 式中:'

1C ——轮组系数,单轮组为18.5,双轮组为1,四轮组为0.09 ;

'2C ——轴数系数,'

2C =1+2(m-1)

表7-3 用于半刚性基层的交通量计算参数

计算得:0.821121)

/P P n C C N (?'?'=

'∑ =1210.74

验算半刚性基层拉应力中的累计当量轴次:

取车道系数η=0.6,按下式计算

'

e N η'

365]1)1[(N r

r t ?-+=

=

6.074.121006

.0365

]1)06.01[(12???-+ =44730996

105.4?≈次

'

e N 在76103~103??中,属中等交通。

式中 Ne ——设计年限内一个车道的累计当量轴次;

t ——设计年限;

γ——设计年限内的交通量平均增长率;

η ——车道系数;

计算的Ne 61067.55665645

?≈= (轴次); '

e N =44730996105.4?≈ (轴次) 属于中等轻交通。

沥青路面结构组合与材料的选取:

表7-4 沥青路面设计参数

土基回弹模量: 36 MPa

1、设计弯沉值: b s c A A A Ne Ld 2.0600-=

111.1)1067.5(6002.06?????=- 4.29=(0.01mm )

式中:L d ——路面弯沉设计值,0.01mm ;

N e ——设计年限内一个车道上标准轴载的累计当量轴次;

A c ——道路等级系数,高速和一级公路为1.0,二级公路为1.1,三、四级

公路为1.2;

A s ——面层类型系数,沥青混凝土面层为1.0;

A b ——基层类型系数,对半刚性基层Ab=1.0,柔性基层Ab=1.6。 2、计算确定容许弯拉应力

根据公式:σR =σS /K S

式中:σR ——路面结构层的容许拉应力;

σS ——沥青混凝土和半刚性基层的劈裂强度(MPa )。对沥青混凝土指15℃

时的劈裂强度,二灰稳定类材料为龄期为180天的劈裂强度;

K S ——抗拉强度结构系数。

1,、细粒式沥青混凝土面层计算:

K S =0.09N e 0.22/A c

1

.1)1067.5(09.022

.06??=

50.21

.176

.2==

=R σ

s

sp

k σ50

.25

.1=

60.0=MPa 2、中粒式沥青混凝土面层计算:

K S =0.09N e 0.22/A c

1.1)1067.5(09.02

2.06??=

50.2=

=R σ

s

sp

k σ50

.21

.1=

=0.44 MPa 3、粗粒式沥青混凝土面层计算:

K S =0.09N e 0.22/A c

1

.1)1067.5(09.022.06??=

50.2=

=R σ

s

sp

k σ 36.05

.29

.0==

MPa 式中: a A ——沥青混合料级配的系数(细、中粒式沥青混凝土为

1.0粗粒式沥青混凝土为1.1)

4、石灰土稳定碎石计算: K S =0.35Ne

0.11

/A c

1

.1)1067.5(35.011.06??=

76.1=

=R σ

s

sp

k σ76

.14

.0=

23.0=MPa 5、石灰土计算:

K S =0.45Ne

0.11

/A c

1.1)1067.5(45.011.06??=

26.2=

=R σ

s

sp

k σ11.026

.225

.0==

MPa 表7-5 结构层容许弯拉应力σR

2、路面厚度计算

计算路表弯沉s l (采用三层体系计算,通过查诺谟图方法) 令实际弯沉d s l l =,则弯沉综合修正系数

s l F E p c αδ

21000?

= 36.0038.0)()2000(

63.1p

E

l F s δ=

式中: s l ——路面弯沉值,(0.01mm );

P ——标准车型的轮胎接地压强(MPa );P=0.7MPa

δ ——当量圆半径(cm );δ=10.65cm F ——弯沉综合修正系数;

c α ——理论弯沉系数。

0E ——土基回弹模量值

由于上式中弯沉综合修正系数与路面弯沉值本身有关,必须试算。 计算 36.0038.0)()2000(

63.1p E

l F s δ?= 36.038.0)7

.036

()65.1020004.29(

63.1??=

=0.55

c α1000

21

??=

F p E l s δ

1000

55.07.065.1021400

4.29?????=

02.5=

将多层体系照弯沉等效的原则换算为三层,上面层为一层,地基为一层,中部为一层。

第二层层底拉应力计算:

4.22

554.22444

.223322E E h E E

h E E h h H +++= 4

.254.24

.21200

500

120011002012009001210h +?+?+=

5694.093.39h +=

其中:

563.065.1061

==

δ

h 03.01200

36

20==E E 857.01400

120012==E E

由三层体系表面弯沉系数诺谟图:

α=6.1 1k =1.4 由

21k k c αα=

得 59.01

.64.102

.512=?==

k k c αα 查诺谟图得

9.42

H

所以 2H 185.5265.109.4=?= =5h 17.66 取=5h 18cm 转化为三层体系如下:

--------------------------------------------------------------------------------

上层, E 1=1400MPa, h=60mm

-------------------------------------------------------------------------------- 中层, E 2=1200MPa, H=521.85mm --------------------------------------------------------------------------------

土基, E 0=36MPa

底层拉应力验算:

面层为一层,基层为一层,地基为一层。

3

11322

31E E h E E h h H ++= 900

1400

690012001012?

+?

+=

03.31=

9

.04

5

542E E h h H += 9.01100

500

1820?+= 50.27=

转化为三层体系如下:

--------------------------------------------------------------------------------

面层, E 1=1400MPa, h=280mm

-------------------------------------------------------------------------------- 基层, E 2=1100MPa, H=380mm

--------------------------------------------------------------------------------

土基, E 0=36MPa

91.21

H

58.22

H

03.020=E E 79.01

2=E E

由三层连续体系底面拉应力系数诺谟图查得:

=0.04,m 1=0.8, m 2=0.88,

由以上数据可算得三层体系中上层底面拉应力为: б=p σm 1m 2=0.7×0.04×0.8×0.88=0.02<0.60

故层底的实际拉应力小于设计拉应力值,满足要求。 同理,可得其他几层层底拉应力计算结果。 验算防冻层厚度:

查询相关资料知,该公路地处5Ⅱ区,年降雨量为1000(mm/年),最高气温15.7℃,最低气温-4℃以上,日照21000多小时,属东部湿润季冻区。规范规定采用查表法,根据表所列的路面最小防冻厚度(cm )要求与该路状况作对比。5Ⅱ区路面最小防冻厚度为200mm ,路面结构方案总厚度660mm ,大于最小防冻厚

度,验算结果表明,路面总厚度满足防冻要求。

国内外沥青路面设计方法分析

第5期(总第118期) ■综合论述 国内外沥青路面设计方法分析 姚连军1,李丽2 (1.重庆市交通规划勘察设计院,重庆401121;2.重庆交通大学,重庆400074) 摘要基于国内外沥青路面现有设计体系,介绍了经验法、力学-经验法、基于性能设计法三大类别,并针对其代表性的设计方法的特点进行了评析;结合我国沥青路面结构设计体系,指出我国设计体系中存在的设计指标、路面材料设计参数、交通荷载等方面存在缺陷,并提出相应的建议。 关键词道路工程;沥青路面;设计方法;设计指标 Abstract:Based on current design of asphalt pavement both home and abroad,the paper has made introduction to three means of design,namely empirical method,stress empirical method and property-centered method.Moreover,it has made comments on certain representative features of designs.Taking structure design of asphalt pavement in China into account,the paper presents some demerits in design target,parameter of pavement materials,traffic capacity and the like and finally proposes solutions to such problems. Keywords:highway engineering,asphalt pavement,means of design,design target 沥青路面是在柔性基层、半刚性基层上,铺筑一定厚度的沥青混合料作面层的路面结构。沥青路面设计的任务是根据使用要求及气候、水文、土质等自然条件,密切结合当地实践经验,设计经济合理的路面结构使之能起到承受交通荷载和环境因素的作用,在预定的使用期限内满足各级公路相应的承载能力、耐久性、舒适性和安全性的要求。以沥青路面为主的柔性路面设计理论与方法研究已有近百年的历史,其发展历程经历了经验法和力学-经验法、基于性能的设计方法等类型。 1国外沥青路面设计方法 1.1经验法 经验法主要通过对试验路或使用道路的实验观测,建立路面结构(结构层组合、厚度和材料性质)、荷载(轴载大小和作用次数)和路面性能三者间的经验关系。最为著名的经验设计方法有CBR法和AASHTO法。 CBR法[1~2]以CBR值作为路基土和路面材料(主要是粒料)的性质指标。通过对已损坏或使用良好的路面的调查和CBR测定,建立起路基土CBR轮载~路面结构层厚度(以粒料层总厚度表征)三者间的经验关系。利用此关系曲线,可以按设计轮载和路基土CBR值确定所需的路面层总厚度。路面各结构层次的厚度,按各层材料的CBR值进行当量厚度换算。不同轮载的作用按等弯沉的原则换算为设计轮载的当量作用。此方法设计过程简单,概念明确,适用于重载、低等级的路面设计;但CBR值仅是一种经验性的指标,并不是材料承载力的直接度量指标,它与弹性变形量的关系很小。而路基土应工作在弹性范围内的应力状态下,因而,路面结构设计对路基土的抗剪强度并无直接兴趣,更关心的是路基土的回弹性质(回弹模量)及其在重复荷载作用下的塑性应变。 AASHTO法[3~4]是在AASHO试验路的基础上建立的,整理试验路的试验观测数据,得到的路面结构-轴载-使用性能三者间的经验关系式。AASHTO方法提出了现时服务能力指数(PSI)的概念,以反映路面的服务质量。不同轴载的作用,按等效损坏(PSI)的原则进行转换。路面使用性能指标PSI,主要受平整度的影响,与裂缝、车辙、修补等损坏的关系很小。因此,这是一项反映路面功能性能的指标,而不是表征路面结构性损坏的指标。此外,这个方法源于一条试验路的数据,仅反映一种路基土和一种环境条件,推广应用于其它地区或国家时便存在着很大的局限性。但AASHO试验路的测定数据得到了良好的整理和保存,为许多力学-经验法的设计指标和参数验证提供了丰富的依据[5]。AASHO法提出了轴载换算的概念和公式,考虑了结构的可靠度和排水条件的影响,这些思想对后来世界各国的设计思想产生了很大的影响。1.2力学-经验法 力学-经验法利用在力学反应量与路面性能(各种损坏模式)之间建立的性能模型,按设计要求设计路面结构。从20世纪60年代初开始,各国科技人员致力于研制和实施沥青路面的力学-经验设计法,著名的有AI法和Shel1法。 Shell法[6]是由英、荷壳牌石油公司研究所研究、发展和完善起来的。在该设计方法中,混合料的粘弹性性质以其劲度模量体现,其值取决于沥青含量、沥青劲度和沥青混合料的空隙率。路基模量受应力影响,路基动态模量可以通过现场的动态弯沉试验在道路实际湿度条件和荷载条件下测定,也可在室内通过三轴仪测定。此方法中交通荷载以标准双轮轴载次数为代表,设计年限内的累计轴次即为设计寿命。临界荷位的应力应变由计算机程序BISAR计算。Shell设计法考虑了控制疲劳开裂的沥青层底面的容许水平拉应变ε fat 和控 制永久变形的路基顶面的容许竖向压应变ε z 两项主要设计标准和水泥稳定类材料底面的弯拉应力和路表面的永久变 3 ··

高速公路沥青路面设计实例

高速公路沥青路面设计实例 一、设计资料: 本公路等级为高速公路,经调查得,近期交通量如下表所示。交通量年平均 区。 增长率为9.5%,设计年限为15年,该路段处于Ⅳ 2 二、交通分析: 轴载分析路面设计以BZZ-100为标准轴载。 1、以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次 (1)累计当量轴次 注:轴载小于25KN的轴载作用不计。 (2)累计当量轴次 根据公路沥青路面设计规范,高速公路沥青路面的设计年限取15年,六车道的车道系数η取0.3~0.4,取0.3。交通量平均增长率为9.5%。

2、验算半刚性基层层底拉应力中的累计当量轴次 (1)轴载换算 车型i P(KN) C1C2i N(次/日) 小客车 前轴16.5 1 18.5 6750 0.0686 后轴23.0 1 1 6750 0.05286 中客车 SH130 前轴25.55 1 18.5 2000 0.67194 后轴45.10 1 1 2000 3.42328 大客车 CA50 前轴28.70 1 18.5 1250 1.06448 后轴68.20 1 1 1250 58.5039 小货车 BJ130 前轴13.40 1 18.5 4250 0.00817 后轴27.40 1 1 4250 0.13502 中货车 CA50 前轴28.70 1 18.5 1500 1.27737 后轴68.20 1 1 1500 70.2047 中货车 EQ140 前轴23.70 1 18.5 2125 0.39131 后轴69.20 1 1 2125 111.74 大货车 JN150 前轴49.00 1 18.5 2125 130.647 后轴101.60 1 1 2125 2412.73 特大车日野 KB222 前轴50.20 1 18.5 1500 111.916 后轴104.30 1 1 1500 2100.71 拖挂车 五十铃 前轴60.00 1 18.5 187.5 58.2617 后轴100(3轴) 3 1 187.5 562.5 5624.304 注:轴载小于50KN的轴载作用不计 (2)累计当量轴次 根据公路沥青路面设计规范,高速公路沥青路面的设计年限取15年,六车道的车道系数η取0.3~0.4,取0.3。交通量平均增长率为9.5%。 三、设计指标的确定 8 2 1 ? ? ? ? ? ' ' P P n C C i i 8 2 1 1 ? ? ? ? ? ' ' ='∑ = P P n C C N i i i i

沥青路面结构设计与计算书

沥青路面结构设计与计算书 1 工程简介 本路段属于安图至汪清段二级公路.K0+000~K3+500,全线设计时速为60km/h的二级公路,路面采用60km/h的二级公路标准。路基宽度为10m,行车道宽度为2×3. 5m,路肩宽度为2×0.75m硬路肩、2×0.75土路肩。路面设计为沥青混凝土路面,设计年限为12年。路面设计以双轮组单轴载100KN为标准轴载,以BZZ-100表示;根据沿线工程地质特征及结合当地筑路材料确定路面结构为:路面的面层采用4cm厚细粒式沥青混凝土和6cm厚中粒式沥青混凝土,基层采用20cm厚水泥稳定碎石,底基层采用石灰粉煤灰土。 2 土基回弹模量的确定 本设计路段自然区划位于Ⅱ3区,当地土质为粘质土,由《公路沥青路面设计规范(JTG D50-2004)》表F.2查得,土基回弹模量在干燥状态取39Mpa,在中湿状态取34.5Mpa. 3 设计资料 (1)交通量年增长率:5% 设计年限:12年

。 4 设计任务 4.1 沥青路面结构组合设计 4.2 沥青路面结构层厚度计算,并进行结构层层底拉应力验算 4.3 绘制沥青路面结构图 5 沥青路面结构组合设计 5.1 路面设计以双轮组单轴载100KN 为标准轴载,以BZZ -100表示。标准轴载计算参数如表10-1所示。 5.1.1.1 轴载换算 轴载换算采用如下的计算公式: 35 .41 21∑=? ?? ??=k i i i P P n C C N ,()11 1.211c m =+?-=,计算结果如下表所示。

注:轴载小于25KN 的轴载作用不计 5.1.1.2 累计当量轴次 根据设计规范,二级公路沥青路面设计年限取12年,车道系数η=0.7,γ=5.0% 累计当量轴次: ()[][] 329841405 .07 .005.8113651)05.01(3651112 =???-+=??-+= ηγ γN N t e 次 5.1.2 验算半刚性基层层底拉应力的累计当量轴次 5.1.2.1 轴载验算 验算半刚性基层层底拉应力的轴载换算公式为:

路面结构设计计算示例

课程名称: 学生: 学生学号: 专业班级: 指导教师: 年月日

路面结构设计计算 1 试验数据处理 1.1 路基干湿状态和回弹模量 1.1.1 路基干湿状态 路基土为粘性土,地下水位距路床顶面高度0.98m~1.85m。查路基临界高度参考值表可知IV5区H1=1.7~1.9m,H2=1.3~1.4m,H3=0.9~1.0m,本路段路基处于过湿~中湿状态。 1.1.2 土基回弹模量 1) 承载板试验 表1.1 承载板试验数据 承载板压力(MPa) 回弹变形 (0.01mm) 拟合后的回弹变形 (0.01mm) 0.02 20 10 0.04 35 25 0.06 50 41 0.08 65 57 0.10 80 72 0.15 119 剔除 0.20 169 剔除 0.25 220 剔除 计算路基回弹模量时,只采用回弹变形小于1mm的数据,明显偏离拟合直线的点可剔除。拟合过程如图所示:

路基回弹模量: 210101 1000 (1)4 n i i n i i p D E l πμ===-=∑∑ 2)贝克曼梁弯沉试验 表1.2 弯沉试验数据 测点 回弹弯沉(0.01mm ) 1 155 2 182 3 170 4 174 5 157 6 200 7 147 8 173 9 172 10 207 11 209 12 210 13 172 14 170 根据试验数据: l = ∑ll l = 155+?+170 14 =178.43

15.85(0.01mm)S = =s = √∑(ll ?l )2l ?1 =20.56(0.01mm) 式中:l ——回弹弯沉的平均值(0.01mm ); S ——回弹弯沉测定值的标准差(0.01mm ); l i ——各测点的回弹弯沉值(0.01mm ); n ——测点总数。 根据规要求,剔除超出(2~3)l S ±的测试数据,重新计算弯沉有效数据的平均值和标准差。计算代表弯沉值: 1174.79 1.64515.85200.86(0.01mm)a l l Z S - =+=+?=l 1=l +l l l =178.43+ 1.645×20.56=21 2.25 Z a 为保证率系数,高速公路、一级公路取2.0,二、三级公路取1.645,四级公路取1.5。 土基的回弹模量: 220201220.70106.5 (1)(10.35)0.71246.3(MPa)200.860.01 p E l δμα??= -=?-?=? 1.2 二灰土回弹模量和强度 1. 2.1 抗压回弹模量 二灰土抗压回弹模量为:735MPa 。 1.2.2 f50mm×50mm试件劈裂试验 表1.3 二灰土试件劈裂试验数据 f50mm×50mm试件劈裂试验 最大荷载(N ) 2t P Dh σπ= (kPa ) 处理结果 有效数据平均值t σ(kPa ) 250.57 有效数据样本标准差S (kPa ) 12.07 变异系数C v (%) 4.82 变异系数应小于6%,否则可在剔除偏差较大的数据后,重新计算平均值和标准差。设计

沥青路面结构计算书

新建路面设计 1. 项目概况与交通荷载参数 该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取 70.0%。根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表 A.2.6-2得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。 2. 初拟路面结构方案 初拟路面结构如表4所示。 表4. 初拟路面结构 路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。 3. 路面结构验算 3.1 沥青混合料层永久变形验算 根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。可靠度系数为1.04。 根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-8.23,d2=0.77。把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量(Rai)。各计算结果汇总于表5中。 各层永久变形累加得到沥青混合料层总永久变形量Ra=19.2(mm),根据表3.0.6-1,沥青层容许永久变形为20.0(mm),拟定的路面结构满足要求。

沥青路面结构设计

第四章路面结构设计 1.1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24.5米,全长5km,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13.8℃,无霜期178天,最高月均温27.2℃(7月),最低月均温-3.2℃(1月),年平均降水量685毫米。道路沿线土质路基稠度cω=1.3;因此该路基处于干燥状态,根据公路自然区划可知济南绕城高速处于5Ⅱ区,根据【JTG D50-2006】《公路沥青路面设计规范》中表5.1.4-1可确定工程所在地土基回弹模量设计值为46MPa。 (3)交通资料 交通组成及各车型汽车参数表1-1

1.2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 表1-2 ○1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN的各级轴载Pi的作用次数Ni按下式换算成标准轴载P的当量作用次数N的计算公式为:

35 .41 21∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算的车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型的各级轴载(kN ); C1——被换算车型的各级轴载系数,当其间距大于3m 时,按单独的一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1.2(m-1); C2——被换算车型的各级轴载轮组系数,单轮组为6.4,双轮组为1.0,四 轮组为0.38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N =4709.00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2 C '——轮组系数,单轮组为18.5,双轮组为1.0,四轮组为0.09。 注:轴载小于50KN 的特轻轴重对结构的影响可以忽略不计,所以不纳入当量换 算。 沥青路面营运第一年双向日平均当量轴次: 8 121 k i i i P N C C N P =?? '''= ? ??∑=4978.00(次/d )

路面结构设计计算书

公路路面结构设计计算示例 、刚性路面设计 交通组成表 1 )轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ①轴载换算: 双轴一双轮组时,按式 i 1.07 10 5 p °型;三轴一双轮组时,按式 N s i N i P i 16 100 式中:N s ——100KN 的单轴一双轮组标准轴载的作用次数; R —单轴一单轮、单轴一双轮组、双轴一双轮组或三轴一双轮组轴型 i 级轴载的总重KN ; N i —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i —轴一轮型系数,单轴一双轮组时, i =1 ;单轴一单轮时,按式 3 2.22 10 P 0.43 计算; 8 0.22 2.24 10 R 计算

N i1 NA 注:轴载小于40KN 的轴载作用不计。 ②计算累计当量轴次 根据表设计规范,一级公路的设计基准期为 30年,安全等级为二级,轮迹横向分布系数 g r 0.08,则 , :t 30 N N s (1 g r ) 1 365 834.389 (1 0.08) g r 4 4 量在100 10 ~ 2000 10中,故属重型交通。 2) 初拟路面结构横断面 由表3.0.1,相应于安全等级二级的变异水平为低 ~中。根据一级公路、重交通等级和低级变异水平等 级,查表 初拟普通混凝土面层厚度为 24cm ,基层采用水泥碎石,厚 20cm ;底基层采用石灰土,厚 20cm 。 普通混凝土板的平面尺寸为宽 3.75m ,长5.0m 。横缝为设传力杆的假缝。 式中:E t ――基层顶面的当量回弹模量,; E 0——路床顶面的回弹模量, E x ――基层和底基层或垫层的当量回弹模量, E 1,E 2 ――基层和底基层或垫层的回弹模量, h x ――基层和底基层或垫层的当量厚度, 1 365 0.2 6900125362 其交通 0.08 查表的土基回弹模量 设计弯拉强度:f cm 结构层如下: E 。 35.0MP a ,水泥碎石 E 1 1500MP a ,石灰土 E ? 550 MP a 5.0MP a E c 3.1 104 MP a 水泥混凝土 24cm E = . x .g'-iF 水泥碎石20cm E :=150OMP Q 石灰土 20cm E =53C MPa E x h 2 D x h ; E z h ; h x 12 3 1500 0.2 12 4.700(MN ( 12D ( W E t 12 6.22 0.202 1500 0.202 550 2 2 1025MP a 0.202 0.202 m 0)2 ( 1 4 3 550 0.2 (0.2 12 m) ( 1025 0.380m 1 )1 E 2h 2 0.2) 4 2 ( 1500 0.2 550 0.2 1 )1 1.51(牙) E 。 0.45 6.22 1 1.51 (^) 0.45 35 4.165 E x 、0.55 1 1.44( ) 1 E E 1 ah E ( -) 4.165 0.38635 1.44 (些)0.55 35 0.786 1025 丄 ( )3 212276MP a 35 按式() s tc 计算基层顶面当量回弹模量如下: h 12 E 1 h ;E 2 2 3) 确定基层 E , E

(完整word版)沥青路面结构设计

第四章 路面结构设计 1.1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24.5米,全长5km ,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13.8℃,无霜期178天,最高月均温27.2℃(7月),最低月均温-3.2℃(1月),年平均降水量685毫米。道路沿线土质路基稠度 c ω=1.3;因此该路基 处于干燥状态,根据公路自然区划可知济南绕城高速处于5 Ⅱ区,根据【JTG D50-2006】《公路沥青路面设计规范》中表5.1.4-1可确定工程所在地土基回弹模量设计值为46MPa 。 (3)交通资料

1.2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN 为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 ○ 1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN 的各级轴载Pi 的作用次数Ni 按下式换算成标准轴载P 的当量作用次数N 的计算公式为: 35 .4121∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算的车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型的各级轴载(kN ); C1——被换算车型的各级轴载系数,当其间距大于3m 时,按单独的一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1.2(m-1); C2——被换算车型的各级轴载轮组系数,单轮组为6.4,双轮组为1.0, 四轮组为0.38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N = 4709.00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2C '——轮组系数,单轮组为18.5,双轮组为1.0,四轮组为0.09。 注:轴载小于50KN 的特轻轴重对结构的影响可以忽略不计,所以不纳入当 量换算。 沥青路面营运第一年双向日平均当量轴次:

沥青路面结构设计

第四章 路面结构设计 1、1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24、5米,全长5km ,结合近几年济南经济增长及人口增长得情况,根据近期得交通量预测该路段得年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13、8℃,无霜期178天,最高月均温27、2℃(7月),最低月均温-3、2℃(1月),年平均降水量685毫米。道路沿线土质路基稠度 c ω=1、3;因此该 路基处于干燥状态,根据公路自然区划可知济南绕城高速处于5Ⅱ 区,根据【JTG D50-2006】《公路沥青路面设计规范》中表5、1、4-1可确定工程所在地土基回弹模量设计值为46MPa 。 (3)交通资料

1、2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN 为标准轴载,以BZZ-100表示。标准轴载得计算参数按表1-2确定。 ○ 1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN 得各级轴载Pi 得作用次数Ni 按下式换算成标准轴载P 得当量作用次数N 得计算公式为: 35 .4121∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算得车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型得各级轴载(kN ); C1——被换算车型得各级轴载系数,当其间距大于3m 时,按单独得一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1、2(m-1); C2——被换算车型得各级轴载轮组系数,单轮组为6、4,双轮组为1、0, 四轮组为0、38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N = 4709、00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2C '——轮组系数,单轮组为18、5,双轮组为1、0,四轮组为0、09。 注:轴载小于50KN 得特轻轴重对结构得影响可以忽略不计,所以不纳入当 量换算。 沥青路面营运第一年双向日平均当量轴次:

路面设计原理与方法

路面设计原理与方法 1.柔性路面,刚性路面定义,结构特性,二者在设计理论与方法上有何主要区别 在柔性基层上铺筑沥青面层或用有一定塑性的细粒土稳定各种集料的中、低级路面结构,因具有较大的塑性变形能力而称这类结构为柔性路面。它的总体结构刚度较小,刚性路面采用波特兰水泥混凝土建造,用水泥混凝土作面层或基层的路面结构。它的分析采用板体理论,不用层状理论。板体理论是层状理论的简化模型。它假设混凝土板是中等厚度的平板,其截面在弯曲前和弯曲后均保持平面形状。如果车轮荷载作用在板中,无论是板体理论,还是层状理论均可采用,两者将得到几乎相同的弯拉应力和应变。如果车轮荷载作用在板边,假定离板边距离小于0.61m(2ft),只能用板体理论分析刚性路面。层状理论之所以适用于柔性路面而不适合于刚性路面,是因为水泥混凝土的刚性比HMA大得多,荷载分布的范围很大。而且刚性路面有接缝存在,这也使得层状理论不能适用。 刚性路面和柔性路面不同,刚性路面可以直接铺设在压实的土基上,或者铺设在加铺的粒料或稳定材料层上。 柔性路面设计以层状理论为基础,假设各层在水平方向是无限的,且是连续的。刚性路面由于板的刚度大和存在接缝,设计基础采用板体理论。如果荷载作用在板中,层状理论同样也能用于刚性路面设计中。 2.机场道面、道路路面各有什么特点。二者在功能和构造方面有什么主要区别?各自的设计原理与方法有什么相同点和不同点 机场道面的功能性能包括平整度、抗滑性能(对于跑道和快滑道)、纵横坡和排水性能等。 道面使用要求:具有足够的结构强度 ?表面具有足够的抗滑能力 ?表面具有良好的平整度 ?面层或表层无碎屑 机场道面是指在民用航空运输机场飞行区范围内供飞机运行使用的铺筑在跑道、滑行道、站坪、停机坪上的结构物。由于飞机运行方式对安全使用的要求高、飞机荷载重量和轮胎接地压力大于车辆荷载等原因,机场道面一般采用热拌热铺沥青混凝土。最多采用的热拌沥青混凝土结构是连续式密级配沥青混凝土,也有少数OGFC,SMA的应用也较为广泛。由于机场沥青混凝土道面所要求具备的强度条件、耐久性、抗滑性能等,在道路路面工程中所采用的沥青表处、沥青贯入碎石等面层结构不适用于机场道面。机场沥青混凝土道面中面层和底面层一般采用密级配沥青混凝土。沥青碎石结构可用于机场沥青混凝土道面底面层。 由于飞机的荷载和轮胎压力比公路车辆的荷载和轮胎压力大很多,因此机场道面通常比公路路面厚一些,而且需要较好的面层材料。无论是公路路面,还是机场道面,任何力学设计方法对荷载和轮胎压力的作用均可自动予以考虑。然而,采用力学法应注意以下不同的地方: (1)、机场道面的荷载重复作用次数通常小于公路路面的荷载重复作用次数。对于机场道面,由于飞机的左右偏离,一组机轮通过若干次只认为是重复作用一次;而对于公路路面,一个车轴通过一次即认为是重复作用一次。实际上公路荷载并不是作用在同一位置,这个情况在破坏极限中用增加荷载容许重复次数加以考虑。对柔性路面的疲劳引入一个修正系数,而对刚性路面的疲劳引入一个当量损伤率。 (2)、公路路面设计采用移动荷载,以荷载作用时间作为输入量描述其粘弹性特性,以荷载重复作用下的回弹模量作为输入量描述其弹性特性。机场道面设计在跑道中部采用移动荷载,在跑道端部采用静荷载,因此,跑道端部的道面厚度大于中部的厚度。

路面结构设计计算书有计算过程的样本

公路路面结构设计计算示例 一、 刚性路面设计 交通组成表 1) 轴载分析 路面设计双轮组单轴载100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: 16 1100∑=? ?? ??=n i i i i s P N N δ 式中 : s N ——100KN 的单轴—双轮组标准轴载的作用次数; i P —单轴—单轮、 单轴—双轮组、 双轴—双轮组或三轴—双轮组轴型i 级轴载的总重KN; i N —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i δ—轴—轮型系数, 单轴—双轮组时, i δ=1; 单轴—单轮时, 按 式43.031022.2-?=i i P δ计算; 双轴—双轮组时, 按式22.05 1007.1--?=i i P δ; 三轴—双轮组时, 按式22.08 1024.2--?=i i P δ计算。

轴载换算结果如表所示 车型 i P i δ i N 16)(P P N i i i δ 解放CA10B 后轴 60.85 1 300 0.106 黄河JN150 前轴 49.00 43.03491022.2-?? 540 2.484 后轴 101.6 1 540 696.134 交通SH361 前轴 60.00 43.03601022.2-?? 120 12.923 后轴 2?110.00 22.052201007.1--?? 120 118.031 太脱拉138 前轴 51.40 43.0340.511022.2-?? 150 1.453 后轴 2?80.00 22.051601007.1--?? 150 0.969 吉尔130 后轴 59.50 1 240 0.059 尼桑CK10G 后轴 76.00 1 1800 2.230 16 1 )( P P N N i i i n i δ∑== 834.389 注: 轴载小于40KN 的轴载作用不计。 ② 计算累计当量轴次 根据表设计规范, 一级公路的设计基准期为30年, 安全等级为二级, 轮迹横向分布系数η是0.17~0.22取0.2, 08.0=r g , 则 [][] 362 .69001252.036508 .01 )08.01(389.8343651)1(30=??-+?=?-+=ηr t r s e g g N N 其 交通量在4 4102000~10100??中, 故属重型交通。 2) 初拟路面结构横断面 由表3.0.1, 相应于安全等级二级的变异水平为低~中。根据一级公路、 重交通等级和低级变异水平等级, 查表 4.4.6 初拟普通混凝土面层厚度为24cm, 基层采用水泥碎石, 厚20cm; 底基层采用石灰土, 厚20cm 。普通混凝土板的平面尺寸为宽3.75m, 长5.0m 。横缝为设传力杆的假缝。 3) 确定基层顶面当量回弹模量tc s E E , 查表的土基回弹模量a MP E 0.350=, 水泥碎石a MP E 15001=, 石灰土

沥青路面结构设计之1

第三章沥青路面结构设计 路面结构由路基(顶部)、垫层、基层和面层组成,是道路工程中最直接承受荷载和环境作用的部分。对路面的最基本要求是耐久、平整和抗滑。耐久是指路面具有足够长的使用寿命,这要求整个路面结构具有足够的强度和抗变形能力;事实上,迄今为止所有的设计方法都是围绕着耐久性这个核心而提出的。平整性是为了保证行驶舒适性;对高等级公路,由于行车速度快,保证平整度尤为必要。要做到路面长期平整,就必须有正确的厚度设计、正确的材料设计和正确的施工方法。抗滑是为了保证行驶安全性的要求,传统上不属于路面结构设计的内容,主要通过表层材料的选择和材料的设计予以保证。路面设计应遵守下列原则: 1)路面设计应认真做好现场的资料收集、掌握沿线路基特点,在查明不良地质路段的基础上,密切结合当地实践经验,采取必要的路基处理措施,进行路基路面综合设计。 2)在满足交通量和使用要求的前提下,应遵循因地制宜、合理选材、节约投资的原则,进行路面设计方案的技术经济比较,选择技术先进、经济合理、安全可靠、方便施工的路面结构方案。 3)结合当地条件,在路面设计方案中应积极地、慎重地推广新材料、新工艺、新技术,并认真铺筑试验段,总结经验,不断完善,逐步推广。 4)路面设计方案应符合国家环境保护的有关规定,注意施工中废弃料的处理,积极推动旧沥青面层、破碎水泥砼板和旧基层材料的再生利用,以及保护施工人员的健康和安全。 沥青路面是在柔性基层、半刚性基层上,铺筑一定厚度的沥青混合料作面层的路面结构。沥青路面设计的任务是根据使用要求及气候、水文、土质等自然条件,密切结合当地实践经验,设计确定经济合理的路面结构,使之能承受交通荷载和环境因素的作用,在预定的使用期限满足各级公路相应的承载能力、耐久性、舒适性、安全性的要求。路面设计应包括原材料的选择、混合料配合比设计和设计参数的测试与确定,路面结构层组合与厚度计算,以及路面结构的方案比选等内容。路面设计除行车道部分的路面外,对高速公路、一级公路还应包括路缘带、硬路肩、加减速车道、紧急停车带、收费站和服务区的场面设计以及路面排水系统的设计,对其它各级公路应包括路肩加固、路缘石和路面排水设计。 §3.1 路面结构的破坏状态和设计标准 3.1.1 路面结构的损坏模式 路面破坏的形式是多种多样的,常见的有沉陷、弹软、横裂(收缩破裂)、纵裂、龟裂、车辙、隆起、推移、波浪、老化开裂、磨耗、松散、泛油以及目前出现的一些新的损坏类型,过多的路面损坏意味着路面寿命的终结;限制、延迟这些损坏的发生和发展是路面设计的主要任务。路面破坏原因也是多方面的。从外因来说,有行车因素和自然因素两方面,前者包括车辆荷载及其重复性;后者包括水分、气温、冰冻等。从内因来说,主要是路面材料的物理力学性质。 就路面的破坏类型来看,大致可分为两类。第一类是早期破坏,这是指路面在尚未达到使用年限之前发生的破坏,这类破坏往往在车辆荷载作用次数很少情况下就出现,它与荷载的重复性几乎无关。破坏的原因一是在荷载作用下,路面或土基中产生的应力超过了材料的强度;二是与荷载无关的,环境变化引起的路面应力大于材料的强度。第二类是晚期破坏,属于此类的有疲劳破坏和车辙等。这类破坏是在应力不超过材料极限强度(指一次荷载下的强度)的情况下发生的,因此与荷载的重复性有关;因路面基本达到了设计寿命,应该说是属于正常破坏。而第一类破坏,是路面设计时应主要考虑的因素,必须采用相应的控制指标,采取必要的技术措施加以预防。 分析路面的破坏现象必须全面地综合考虑各项因素,透过外观现象查明破坏的主要原因及发生的部位,从而找出防止的措施。实践证明,在形式多样的路面破坏现象中,有几种是基本的,它们各自的形成原因有性质上的区别,其他一些破坏现象则是这些基本形式的复合形态或发展了的形态。

沥青路面结构设计方法的简介

沥青路面结构设计方法的简介 摘要:针对沥青路面结构设计方法进行调研,重点对AASHTO沥青路面设计法、壳牌( SHELL)设计法和我国沥青路面结构设计法进行深入分析.对沥青路面结构设计方法的形成及发展、各沥青路面设计方法 的特点进行评述、 关键词:沥青路面:结构设计:AASHTO:路面力学模型 1 引言 沥青路而设计方法随着路而技术、交通状况及人们对路而破坏状态认识的变化而不断发展,经历了古典理论法、经验设计法和理论分析法三个阶段。 2沥青路面设计方法的形成及发展 从1901年美国麻省道路委员会第八次年会上提出的第一个路而设计方法的公式,至1940年的Goldbeck公式,沥青路而设计法均属于古典理论法,其特点是以土基顶而的应力大小为依据设计路而厚度。随着路而结构形式、施工技术水平、以及路而力学理论和计算手段的发展,古典理论法逐渐被淘汰。经验法和理论分析法是目前常用的路而设计方法。 经验法是建立在大量实际道路和试验路调查基础上的设计方法,典型的有AASHTO沥青路而设计法、CBR设计法等。经验法通过路而调查提出路而破坏标准、设计指标以及交通作用与设计指标的关系,以此为基础进行厚度计算。经验法建立在实践的基础上,因此在路而设计因素变化不大的情况下,经验法的设计结果比较容易接近实际要求。但是,由于经验法设计曲线或设计公式是由一定时期的路而调查得到的,随着路而结构、材料、施工养护以及交通情况的变化,其对以后路而设计的适用性往往受到限制,需要根据各种影响因素的变化不断修订,但由于其参数、指标有很大的主观性,理论基础模糊,修订工作比较困难。 随着路而力学和计算技术的发展逐渐产生了理论分析法。理论分析法典型的有壳牌(SHELL)法、美国地沥青协会(TAI)法等,我国沥青路而设计法也属于理论法的范畴。当然,沥青路而设计中任何理论分析法都不是纯理论的,都必须与路而调查、室内试验结论相结合,包含有经验法的部分成果。理论分析法的特征是通过路而力学模型计算结构层厚度,其优点是理论基础清晰,便于修订更新,缺点是路而模型对实际路而的大量简化会引起一些误差,而误差的修正系数与经验法的指标一样,是比较模糊的,带有一定的经验性。同经验法一样,理论分析法也要随着路而实践的发展而修订。 近年来,随着人们对路而破坏特性认识的深入,逐渐产生了长寿命路而的设计思想。长寿命路而的设计思路是:保证路而足够的整体强度,把病害限制在路而表层,通过定期(10 -20年)的表而修复,防比表而病害影响路而结构安全,保证路而在相当长的设计年限内不发生结构性损坏(40年以上)。以下针对国内外主流的沥青路而设计方法做介绍。 3美国AASHT093沥青路面设 计方法

低温地区沥青路面结构设计分析

低温地区沥青路面结构设计分析 发表时间:2019-05-23T11:01:43.723Z 来源:《防护工程》2019年第1期作者:潘攀 [导读] 因此对沥青路面进行结构设计具有非常重要的意义,特别是针对低温地区的沥青路面,合理的结构设计有助于提高道路使用寿命与质量。 中铁四局集团有限公司设计研究院 230000 摘要:本文就低温地区沥青路面结构破坏类型及低温影响效果进行简单分析,并从沥青混合料、基层结构、联结层结构及表面层结构四个方面展开设计研究,旨在为低温地区沥青路面结构设计提供参考建议。 关键词:低温地区;沥青路面;结构设计 沥青路面具有平坦整洁、环保美观、舒适安全、维修养护简单等特点,因此逐渐成为世界道路桥梁建设工程首要选择,调查发现沥青路面在我国道路建设项目所占比重也呈现逐渐增加的趋势。因此对沥青路面进行结构设计具有非常重要的意义,特别是针对低温地区的沥青路面,合理的结构设计有助于提高道路使用寿命与质量。 一、低温地区沥青路面结构破坏研究 1、沥青路面结构破坏类型 通过对部分沥青道路调研发现,虽然道路结构、材料配比及使用年限存在较大差异,但道路路面呈现的结构破坏类型及特点却大致相同,具体表现在于:低温地区大多存在周期性冻土现象,道路基层在冻胀融缩的物理作用下容易出现结构变异,破坏道路结构引起不同程度的路面开裂问题。图1展示的就是低温地区常见的沥青路面结构破坏类型。 (a)路面剪裂(b)温缩开裂(c)反射开裂 图1 沥青论结构破坏类型 2、低温对沥青路面结构影响 道路建设需要应用到多种建筑材料,这些材料若长期处于低温状态会出现不同程度的收缩现象,由此产生较大拉应力,若拉应力超过材料拉伸强度将会导致材料结构被破坏进而出现开裂问题。道路路面纵向长度远大于横向长度,因此低温收缩引起的裂缝往往呈现为横向间隔,严重时才会出现纵向裂缝。种类各异的沥青基层对应特定的温度拉应力,因此结合实际情况选择合适的沥青材料显得尤为重要。 二、低温地区沥青路面结构设计研究 对低温地区沥青路面进行结构设计研究的时候需要针对基层耐受性、面层抗车辙、表面层抗裂性进行综合考量,因此需要对沥青混合料配比、基层温差、联结层荷载、表面层开裂等内容进行重点分析,以便确保结构设计的科学合理。 图2 沥青路面基本结构图 1、基于感温性能的沥青混合料设计 进行沥青混合料配比设计时需要综合考虑混合料所在位置及耐受特点,进而实现最优设计。图2展示的是沥青路面基本结构,分析可知表面层及联结层处于主要压力承载的高压应力区域,在进行建筑设计时需要选择抗磨损、高模量的沥青混合料,联结层处于表面层与基层的过度位置,最好选择传导效果优异的沥青材料,以便做好路面压力疏导工作。基层结构承受较大的拉应变,就整个路面而言担负着路面压力的重任,因此就沥青道路基层而言结构设计需要围绕荷载疲劳展开,研究发现沥青占比高的混合基层能够承受更大的荷载压力,有效避免了疲劳裂缝的出现。对于处于低温地区的沥青路面设计还需要着重考虑混合料感温性能,不同类型的沥青混合料其感温性能存在差异,在此基础上计算获得代表其粘弹性的劲度抗压指标,进而明确沥青混合料在特定温度时的物理特性。 2、基于大温差作用的沥青基层设计 沥青路面各结构在低温大温差的作用下会沿着路面横向出现不均衡温度场,此时的沥青路面这一受约整体在温度场作用下将产生温度

相关文档
最新文档