空间向量的应用----求空间角与距离

空间向量的应用----求空间角与距离
空间向量的应用----求空间角与距离

空间向量的应用----求空间角与距离

一、考点梳理

1.自新教材实施以来,近几年高考的立体几何大题,在考查常规解题方法的同时,更多地关注向量法(基向量法、坐标法)在解题中的应用。坐标法(法向量的应用),以其问题(数量关系:空间角、空间距离)处理的简单化,而成为高考热点问题。可以预测到,今后的高考中,还会继续体现法向量的应用价值。

2.利用法向量求空间角和空间距离,其常用技巧与方法总结如下:

1)求直线和直线所成的角

若直线AB、CD所成的角是,cos=|

,

cos

|>

AB

|

||

|

|

CD

AB

CD

AB?

=

2).利用法向量求线面角

设θ为直线l与平面α所成的角,?为直线l的方向向量v与平面α的法向量n之间的

夹角,则有

2

π

=-或

2

π

=+。

特别地0

?=时,

2

π

θ=,lα

⊥;

2

π

?=时,0

θ=,lα

?或lα。计算公式为:

||

sin cos

||||

v n

v n

θ?

==或

||

sin sin()cos(0)

2||||||||

v n v n

v n

v n v n

π

θ??

=-=-=-=<

3).利用法向量求二面角

设1n、2n分别为平面α、β的法向量,二面角l

αβ

--的大小为θ,向量1n、2n的夹角为?,则有θ?π

+=或θ?=。

计算公式为:

12

12

cos cos

||||

n n

n n

θ?

=-=12

12

cos cos

||||

n n

n n

θ?

==

4).利用法向量求点面距离

如图点P为平面外一点,点A为平面的任一点,平面的法向量为n,过点P作平面的垂线PO,记∠OPA=,则点P到平面的距离

θ

cos

|

|

|

|

PA

PO

d

=

=

||

||

||||

||

||

n PA

PA

n PA

n PA

n

?

=?

?

=

5).法向量在距离方面除应用于点到平面的距离外,还能处理异面直线间的距离,线面间的距离,以及平行平面间的距离等。其一,这三类距离都可以转化为点面间的距离;其二,异面直线间的距离可用如下方法操作:在异面直线上各取一点A、B,AB在n上的射影长

n

α

A

P

O

θ

即为所求。n 为异面直线AD 、BC 公共垂直的方向向量,可由0n AD ?=及0n BC ?=求得,其计算公式为:

||||

n AB d n =

。其本质与求点面距离一致。

向量是新课程中引进的一个重要解题工具。而法向量又是向量工具中的一朵厅葩,解题方法新颖,往往能使解题有起死回生的效果,所以在学习中应起足够的重视。

二、例分析

例1 已知

ABCD 是上、下底边长分别为2和6的等腰梯形,将它沿对称轴

1OO 折成直二面角,如图所示,(1)证明:1AC BO ⊥;(2)求二面角1O AC O --的

大小。

分析:题干给出一个直二面角和一条对称轴1OO ,易知1OO OB ⊥,1OO OA ⊥,故有着明显的建系条件;另外给出梯形的边长、高,则各点坐标较易求得。用坐标法求解,可避开二面角的寻找、理推等困挠,只需先求面与面OAC 的法向量,再用公式计算便可。

第(1)问的作用在于证明1O B ⊥面OAC ,也就找到了一个法向量;而面1O AC 的法向量可用由0n AC ?=及10n O C ?=求得,只是解出x 、y 、z 关系后,对z 的取值要慎重,可先观察二面角的大小是锐角、直角,还是钝角。

解:(1)证明:由题设知1OO OA ⊥、1OO OB ⊥,所以AOB ∠是所折成的直二面角的平面角,即OA OB ⊥。故可以O 为原点,OA 、OB 、1OO 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标第,如图,则相关各点的坐标是:(3,0,0)A ,(0,3,0)B

(0,1,3)C ,1O

,从而,(

AC =-1(0,BO =-,

13330AC BO ?=-?=,即1AC BO ⊥。

(2)解:因为1

030C BO ?=-+=,所以1OC BO ⊥。

由(1)1AC BO ⊥,所以1BO ⊥平面OAC ,1BO 是平面OAC 的一个法向量。

设(

,,)n x y z =是平面1O AC 的一个法向量,由103000n AC x y y n O C ???=-++=?????

=?=???

? 取z =(1,0,3)n =。

设二面角1O AC O --的大小为θ,由n 、1BO 的方向可知1,n BO θ=<>, 所以1113

cos cos ,4

||||

n BO n BO n BO θ=<>=

=

,即二面角1O AC O --的大小是

arccos

4

。 感悟:(1)用法向量的方法处理二面角的问题时,将传统求二面角问题时的三步曲:“找——证——求”直接简化成了一步曲:“计算”,这表面似乎淡化了学生的空间想象能力,但实质不然,向量法对学生的空间想象能力要求更高,也更加注重对学生创新能力的培养,体现了教育改革的精神。

(2)利用坐标法求解和距离,关键是有明显或较为明显的建系条件,从而建立适当的空间直角坐标系——尽可能多地使空间的点在坐标轴上或坐标平面,正确表达已知点的坐标。

在立体几何数量关系的解决中,法向量的运用可以使问题简单化,其难点在于掌握和应用法向量解决空间解和距离求法的常用技巧与方法,特别是体会其中的转化和思想方法。

例2.如图,平面ABCD ⊥平面ABEF ,ABCD 是正方形,ABEF 是矩形,

,21

a AD AF ==

G 是EF 的中点,

(Ⅰ)求证平面AGC ⊥平面BGC ; (Ⅱ)求GB 与平面AGC 所成角的正弦值. (Ⅲ)求二面角B —AC —G 的大小. 解析:如图,以A 为原点建立直角坐标系, 则(0,0,0)A ,(0,2,0)B a ,(0,2,2)C a a , (,,0)G a a ,(,0,0)F a

(I )证明:略.

(II )由题意可得(,,0)AG a a =,(0,2,2)AC a a =,

(,,0)

BG a a =-,(0,0,2)BC a =,

设平面AGC 的法向量为)1,,(111y x n =, 由1100AG n AC n ??=???=?

? 1110220ax ay ay a +=???+=? 1

11

1x y =???=-? )1,1,1(1-=?n

11||sin ||||

BG n BG

n θ?=

?36

=

A B C

D

E

F G

x

y

z

(III )因)1,,(111y x n =是平面AGC 的法向量,

又AF ⊥平面ABCD ,平面ABCD 的法向量)0,0,(a AF =,得

11|||cos |||||

n AF n AF θ?=

?33a

=

=

, ∴ 二面角B —AC —G 的大小为3

感悟:因为二面角的大小有时为钝角,有时为锐角、直角,所以在计算之前应先依题意判断一下所求二面解的大小,然后根据计算取“相等角”或“补角”。

例3如图,四面体ABCD 中,O 、E 分别BD 、

BC 的中点,CA =CB =CD =BD =2

(Ⅰ)求证:AO ⊥平面BCD ;

(Ⅱ)求异面直线AB 与CD 所成角的大小; (Ⅲ)求点E 到平面的距离.

本小题主要考查直线与平面的位置关系、异面直线所 成的角以及点到平面的距离基本知识,考查空间想象 能力、逻辑思维能力和运算能力。 (I )证明:连结OC ,,.BO DO AB AD AO BD ==∴⊥

,,.BO DO BC CD CO BD ==∴⊥

在AOC ?中,由已知可得1, 3.AO CO ==

而2,AC = 2

2

2

,AO CO AC ∴+=

90,o AOC ∴∠=即.AO OC ⊥

,BD OC O = AO ∴⊥平面BCD

(II )解:以O 为原点,如图建立空间直角坐标系,则(1,0,0),(1,0,0),B D -

13

3,0),(0,0,1),(,(1,0,1),(1,3,0).22

C A E BA C

D =-=--

.2cos ,4

BA CD BA CD BA CD

∴<>=

=

∴异面直线AB 与CD 所成角的大小为arccos

4

(III

)解:设平面ACD 的法向量为(,,),n x y z =则

.(,,).(1,0,1)0,.(,,1)0,

n AD x y z n AC x y z ?=--=??

=-=?? 0,

0.x z z +=??∴

-= 令1,y =

得(3,1,n =-是平面ACD 的一个法向量。

又1(,,0),22EC =- ∴点E 到平面ACD 的距离

.37EC n h n

=== 例4、如图,已知三棱锥O ABC -的侧棱OA OB OC ,,两两垂直,且1OA =,

2OB OC ==,E 是OC 的中点.

(1)求O 点到面ABC 的距离; (2)求异面直线BE 与AC 所成的角; (3)求二面角E AB C --的大小.

解析:(1)以O 为原点,OB 、OC 、OA 分别为x 、y 、z 轴建立空间直角坐标系. 则有(0,0,1)A 、(2,0,0)B 、(0,2,0)C 、(0,1,0).E 设平面ABC 的法向量为1(,,),n x y z = 则由11:20;n AB n AB x z ⊥?=-=知 由11:20.n AC n AC y z ⊥?=-=知取

1(1,1,2)n

=,则点O 到面ABC 的距离为11

31n OA d n ?=

=

= (2)(2,0,0)(0,1,0)(2,1,0),(0,2,1).

EB AC =-=-=-

cos <,EB AC

>2,5=

=-所以异面直线BE 与AC 所成的角2

arccos 5.

(3)设平面EAB 的法向量为(,,),n x y z =则由n AB ⊥知:20;n AB x z ?=-= 由n EB ⊥知:20.n EB x y ?=-=取(1,2,2).n = 由(1)知平面ABC 的法向量为1(1,1,2).n = 则cos <1,n n

>11

189n n n n ?

=

=

==?. 结合图形可知,二面角E AB C --的大小为:arccos

. 例5、在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 边上的点,满足AE:EB =CF:FA =CP:PB =1:2(如图1)。将△AEF 沿EF 折起到EF A 1?的位置,使二面角A 1-EF -B 成直二面角,连结A 1B 、A 1P (如图2)

(Ⅰ)求证:A 1E ⊥平面BEP ;

(Ⅱ)求直线A

1E

与平面A 1BP

所成角的大小;

(Ⅲ)求二面角B -A 1P -F 的大小(用反三角函数表示)

解法:(1)作AH ⊥面BCD 于H ,连BH 、CH 、DH ,则四边形BHCD 是正方形,且1AH =,以D 为原点,以DB 为

x 轴,DC 为y 轴建立空间直角坐标系如图,

则(1,0,0),(0,1,0),(1,1,1).B C A

(1,1,0),(1,1,1),0,.

BC DA BC DA BC AD =-=∴?=⊥则

(2)设平面ABC 的法向量为1(,,),n x y z =则由1n BC ⊥知:10n BC x y ?=-+=; 同理由1n CA ⊥知:10.n CA x z ?=+=可取1(1,1,1).n =- 同理,可求得平面ACD 的一个法向量为2(1,0,1).n =- 由图可以看出,三面角B AC D --的大小应等于<12,n n > 则cos <12,n n >1212

6

32

n n n n ?=

=

=

?,即所求二面角的大小是6arccos . (3)设(,,)E x y z 是线段AC 上一点,则0,1,x z y ==> 平面BCD 的一个法向量为(0,0,1),(,1,),n DE x x == 要使ED 与面BCD 成30?角,由图可知DE 与n 的夹角为60?, 所以2

1

cos ,cos 60.212DE n DE n DE n

x ?=

=

=?=+<>

则2212x x =+,解得,2

2

x =

,则2 1.CE x == 故线段AC 上存在E 点,且1CE =,时ED 与面BCD 成30?角.

【解后反思】在立体几何学习中,我们要多培养空间想象能力, 对于图形的翻折问题,关健是利用翻折前后的不变量,二面角的平面角的适当选取是立体几何的核心考点之一.是高考数学必考的知识点之一.作,证,解,是我们求二面角的三步骤.作:作出所要求的二面角,证:证明

这是我们所求二面角,并将这个二面角进行平面化,置于一个三角形中,最好是直角三角形,利用我们解三角形的知识求二面角的平面角.向量的运用也为我们拓宽了解决立体几何问题的角度,不过在向量运用过程中,要首先要建系,建系要建得合理,最好依托题目的图形,坐标才会容易求得.

以上介绍了平面的法向量及其几个引理,以此为工具,解决了立体几何中的部分难题。利用平面法向量解题,方法简便,易于操作,可以避开传统几何中的作图、证明的麻烦,又可

弥补空间想像能力的不足,发挥代数运算的长处。深入开发它的解题功能,平面法向量将在数学解题中起到越来越大的作用。

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

向量法求空间距离教案

A B C D O S x y z 图2 A B C D α n a b 龙文学校——您值得信赖的专业化个性化辅导学校 龙文学校个性化辅导教案提纲 教师:_______ 学生:_______ 年级:______ 授课时间:_____年___月___日_____——_____段 一、授课目的与考点分析:向量法求空间距离 能用向量方法解决空间距离问题,了解向量方法在研究集合问题中的应用. 二、授课内容及过程: 1、点到平面的距离 方法:已知AB 为平面α的一条斜线段,n 为平面α的法向量, 则A 到平面α的距离d =AB n n ? . 2、两条异面直线距离: 方法:a 、b 为异面直线,a 、b 间的距离为:AB n d n ?= . 其中n 与a 、b 均垂直,A 、B 分别为两异面直线上的任意两点 题型1:异面直线间的距离 例1、如图2,正四棱锥S ABCD -的高2SO =,底边长2AB =。求异面直线BD 和SC 之间的距离? 题型2:点面距离 如图,在长方体1111ABCD A BC D -,中,11,2AD AA AB ===,点E 在棱AD 上移动.(1)证明:11D E A D ⊥; (2)当E 为AB 的中点时,求点E 到面1ACD 的距离; (3)AE 等于何值时,二面角1D EC D --的大小为4 π. 解:以D 为坐标原点,直线1,,DA DC DD 分别为,,x y z 轴, 建立空间直角坐标系,设AE x =,则11(1,0,1),(0,0,1),(1,,0),(1,0,0),(0,2,0)A D E x A C (1).,0)1,,1(),1,0,1 (,1111E D DA x E D DA ⊥=-=所以因为

利用空间向量求空间角和距离

利用空间向量求空间角和距离 A 级——夯基保分练 1.如图所示,在正方体ABCD -A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( ) A.30 30 B .3015 C. 3010 D. 1515 解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→ =(-1,-1,-2),D 1N ―→ =(1,0,-2), ∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→ | |B 1M ―→|·|D 1N ―→|= |-1+4|1+1+4×1+4=30 10 . 2.如图,已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =1 3AB ,则DC 1与平面D 1EC 所成角的 正弦值为( ) A.33535 B .277 C.33 D.24 解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0), ∴DC 1―→=(0,3,1),D 1E ―→=(1,1,-1),D 1C ―→ =(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ), 则????? n ·D 1E ―→=0,n · D 1C ―→=0,即????? x +y -z =0,3y -z =0,取y =1,得n =(2,1,3). ∴cos DC 1―→,n =DC 1―→·n |DC 1―→|·|n| =33535, ∴DC 1与平面D 1EC 所成的角的正弦值为335 35 .

向量法求空间点到平面的距离教案

学习必备 欢迎下载 向量法求空间点到面距离(教案) 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗? 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点 用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、 空间中如何求点到面距离? 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a · b =a b cos θ(θ为a 与b 的夹角) 二、向量法求点到平面的距离 教材分析 重点: 点面距离的距离公式应用及解决问题的步骤 难点: 找到所需的点坐标跟面的法向量 教学目的 1. 能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2. 能将求线面距离、面面距离问题转化为求点到面的距离问题。 3. 加强坐标运算能力的培养,提高坐标运算的速度和准确性。

学习必备欢迎下载

学习必备 欢迎下载 若AB 是平面α的任一条斜线段,则在BOA Rt ? ABO COS ∠? ? 如果令平面的法向量为n ,考虑到法向量的方向,可以得到点B 到平面的距离为 BO 因此要求一个点到平面的距离,可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量(2)求出该平面的一个法向量(3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量? 例1、在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量. 解:设平面ABC 的一个法向量为(,,)n x y z = 则n AB n AC ⊥⊥,.∵(3,4,0)AB =-,(3,0,2)AC =- ∴(,,)(3,4,0)0(,,)(3,0,2)0x y z x y z ?-=???-=?即340320x y x z -+=??-+=? ∴3432y x z x ?=????=?? 取4x =,则(4,3,6)n = ∴(4,3,6)n =是平面ABC 的一个法向量. 例2、如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系C -xyz . 由题设C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). (2,2,0),(2,4,2),B (2,0,0)EF EG E =-=--=设平面EFG 的一个法向量 为(,,)n x y z = 2202420 11(,,1)33 n EF n EG x y x y n ⊥⊥-=?∴?--+=?∴=,

第43讲 利用空间向量求空间角和距离(讲)(解析版)

第43讲 利用空间向量求空间角和距离 思维导图 知识梳理 1.异面直线所成角 设异面直线a ,b 所成的角为θ,则cos θ=|a ·b | |a ||b |, 其中a ,b 分别是直线a ,b 的方向向量. 2.直线与平面所成角 如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n | |a ||n | 3.二面角 (1)若AB ,CD 分别是二面角α-l -β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→ 的夹角,如图(1). (2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α -l -β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|= |n 1·n 2| |n 1||n 2| ,如图(2)(3). 4.利用空间向量求距离 (1)两点间的距离

设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB ―→ |=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. (2)点到平面的距离 如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO ―→|=|AB ―→ ·n | |n | . 题型归纳 题型1 异面直线所成的角 【例1-1】(2020?济南模拟)已知直角梯形ABCD 中,//AD BC ,AB BC ⊥,1 2 AB AD BC == ,将直角梯形ABCD (及其内部)以AB 所在直线为轴顺时针旋转90?,形成如图所示的几何体,其中M 为CE 的中点. (1)求证:BM DF ⊥; (2)求异面直线BM 与EF 所成角的大小. 【分析】(1)建立空间坐标系,得出BM ,DF 的坐标,根据向量的数量积为0得出直线垂直; (2)计算BM 和EF 的夹角,从而得出异面直线所成角的大小. 【解答】(1)证明: AB BC ⊥,AB BE ⊥,BC BE B =, AB ∴⊥平面BCE , 以B 为原点,以BE ,BC ,BA 为坐标轴建立空间坐标系B xyz -,如图所示: 设1AB AD ==,则(0D ,1,1),(1F ,0,1),(0B ,0,0),M 0), ∴(2BM =,0),(1DF =,1-,0),

用向量法求空间距离

用向量法求空间距离 湖南省冷水江市七中(417500) 李继龙 在高中立体几何中引入空间向量,为解决立体几何问题提供了一种新的解题方法,有时也能降低解题难度.下面通过例题介绍用向量法求空间距离的方法. 一、 求两点之间的距离 用向量求两点间的距离,可以先求出以这两点为始点和终点的向量,然后求出该向量的模,则模就是两点之间的距离. 例1 已知正方体ABCD-A 1B 1C 1D 1的棱长为1,点P 是AD 1的中点,Q 是BD 上一点, DQ=4 1 DB ,求P 、Q 两点间的距离. 解 如图1,以1DD DC DA 、、所在的直线分别为x 轴、y 轴和z 轴建立空间直角坐标系D-xyz ,则 0)4 141(Q )21021(,,、,,P , 所以)21 -4141(-,,=. 46= ,即P 、Q 两点的距离为4 6. 二、 求点到直线之间的距离 已知如图2,P 为直线a 外一点,Q 为a 上任意一点,PO ⊥a 于点O ,所以点P 到直线a 的距离为|PO|=d . 则有>= < 故>

例2 在长方体OABC-O 1A 1B 1C 1中,OA=2,AB=3,AA 1=2.求点O 1到直线AC 的距离. 解 建立如图3所示的空间直角坐标系,连结AO 1,则A(2,0,0),C(0,3,0),O 1(0,0,2). 所以0)32-(AC 2)02-(AO 1,,,,,==. 故 d = 13 286 213168=- = 所以点O 1到直线AC 的距离为13 286 2. 三、 求点到平面的距离 如图4设A 是平面α外一点,AB 是平面α的一条斜线,交平面α于点B ,而是平面α的法向量,那么向量 在方向上的射影长就是点A 到平面α的距离d ,所以 d ==>

全国高中数学优秀课评选:《9.6空间向量的夹角和距离公式》教学设计教案或说明

1 9.6空间向量的夹角和距离公式 三维目标: 知识与技能: ⒈使学生知道如何建立空间直角坐标系,掌握向量的长度公式、 夹角公式、两点间距离公式、中点坐标公式,并会用这些公式 解决有关问题; ⒉使学生经历对从生活中如何抽象出数学模型的过程,从而提高 分析问题、解决问题的能力. 过程与方法: 通过采用启发探究、讲练结合、分组讨论等教学方法使学生在 积极活跃的思维过程中,从“懂”到“会”到“悟”. 情感、态度和价值观:⒈通过自主探究与合作交流的教学环节的设置,激发学生的学习 热情和求知欲,充分体现学生的主体地位; ⒉通过数形结合的思想和方法的应用,让学生感受和体会数学的 魅力,培养学生“做数学”的习惯和热情. 教学重点:夹角公式、距离公式. 教学难点:数学模型的建立. 关键: 将生活中的问题转化为数学问题,建立恰当的空间直角坐标系,正确写出空 间向量的坐标. 教具准备:多媒体投影,实物投影仪. 教学过程: (一) 创设情境,新课导入 2008年5月16日,南昌可以说是万人空巷,大家都把自己的爱国热情聚集在圣火的传递上,让我们值得骄傲的是火炬传递中的一站就是我们的南昌大学,其中途经我市雄伟而壮观的生米大桥,为记录传递过程,我校派了小记者在船上进行全景拍摄,出现了这么一个问题. 引例:在离江面高30米的大桥上,火炬手由东向西以2 m/s 的速度前进,小船以1 m/s 的速度由南向北匀速行驶,现在火炬手在桥上1D 点以东30米的1C 点处,小船在水平D 点以南方向30米的A 处(其中1D D ⊥水面) 求(1)6s 后火炬手与小船的距离? C 1 A

2 (2)此时的视线与开始时的视线所成角的余弦值? (不考虑火炬手与小船本身的大小). 今天我们从另一个角度来分析这个问题. 分析:建立数学模型 问题(1)转化为:如何求空间中两点间的距离? 问题(2)转化为:如何求空间中两条直线所成角的余弦值? 1、空间两点间的距离公式 111222(,,)(,,),A x y z B x y z 已知:,则 ()212121,,AB x x y y z z =--- (AB AB AB x =?= ,A B d =2、夹角公式 设()()111222,,,,,a x y z b x y z ==, 则,a OA b OB = = cos ,a b a b a b ?<>== (二)例题示范,形成技能 例1: 在离江面高30米的大桥上,火炬手由东向西以2 m/s 的速度前进,小船以1 m/s 的速度由南向北匀速行驶,现在火炬手在桥上1D 点以东30米的1C 点处,小船在水平D 点以南方向30米的A 处(其中1D D ⊥水面) 求(1)6s 后火炬手与小船的距离? (2)此时的视线与开始时的视线所成角的余弦值? (不考虑火炬手与小船本身的大小). 解:建立如图空间直角坐标系, x y z O 111(,,) A x y z 222(,,) B x y z a a b

空间向量的应用----求空间角与距离

空间向量的应用----求空间角与距离 一、考点梳理 1.自新教材实施以来,近几年高考的立体几何大题,在考查常规解题方法的同时,更多地关注向量法(基向量法、坐标法)在解题中的应用。坐标法(法向量的应用),以其问题(数量关系:空间角、空间距离)处理的简单化,而成为高考热点问题。可以预测到,今后的高考中,还会继续体现法向量的应用价值。 2.利用法向量求空间角和空间距离,其常用技巧与方法总结如下: 1)求直线和直线所成的角 若直线AB 、CD 所成的角是α,cos α=|,cos |>

计算公式为: 4).利用法向量求点面距离 如图点P 为平面外一点,点A 为平面内的任一点,平面的法向量为n ,过点P 作平面α的垂线PO ,记∠OPA=θ,则点P 到平面的距离 θcos ||||PA PO d == 5).法向量在距离方面除应用于点到平面的距离外,还能处理异面直线间的距离,线面 间的距离,以及平行平面间的距离等。其一,这三类距离都可以转化为点面间的距离;其二, 异面直线间的距离可用如下方法操作:在异面直线上各取一点A 、B ,AB 在n 上的射影长即 为所求。n 为异面直线AD 、BC 公共垂直的方向向量,可由0n AD ?=及0n BC ?=求得,其计算公式为: || || n AB d n =。其本质与求点面距离一致。 向量是新课程中引进的一个重要解题工具。而法向量又是向量工具中的一朵厅葩,解题方法新颖,往往能使解题有起死回生的效果,所以在学习中应起足够的重视。 二、范例分析 例1 已知ABCD 是上、下底边长分别为2和6,3将它沿对称轴1 OO n α A P O θ

空间向量与空间距离

空间向量与空间距离 1.了解点到直线、平面距离的概念. 2.会用空间向量 求点到直线、平面距离. 空间距离的向量求法 1.判断(正确的打“√”,错误的打“×”) (1)平面α外一点A到平面α的距离,就是点A与平面内一点B →的长度.() 所成向量AB (2)直线l∥平面α,则直线l到平面α的距离就是直线l上的点到平面α的距离.() (3)若平面α∥β,则两平面α,β的距离可转化为平面α内某条

直线到平面β的距离,也可转化为平面α内某点到平面β的距离.( ) 答案:(1)× (2)√ (3)√ 2.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A.534 B.532 C.532 D.132 答案:C 3.已知直线l 过点A (1,-1,2),和l 垂直的一个向量为n =(-3,0,4),则P (3,5,0)到l 的距离为( ) A .5 B .14 C.145 D.45 答案:C 4.已知直线l 与平面α相交于点O ,A ∈l ,B 为线段OA 的中点,若点A 到平面α的距离为10,则点B 到平面α的距离为________. 答案:5 探究点一 点到直线的距离 如图,在空间直角坐标系中有长方体ABCD -A ′B ′C ′D ′,AB =1,BC =2,AA ′=3,求点B 到直线A ′C 的距离.

[解] 因为AB =1,BC =2,AA ′=3,所以A ′(0,0,3),C (1,2,0),B (1,0,0), 所以直线A ′C 的方向向量A ′C →=(1,2,-3). 又BC →=(0,2,0), 所以BC →在A ′C →上的射影长为|BC →·A ′C →||A ′C →|=414. 所以点B 到直线A ′C 的距离 d =|BC →|2-????????BC →·A ′ C →|A ′C →|2= 4-1614 =2357. 用向量法求点到直线的距离的一般步骤 (1)建立空间直角坐标系; (2)求直线的方向向量; (3)计算所求点与直线上某一点所构成的向量在直线的方向向量上的射影长; (4)利用勾股定理求解.另外,要注意平行直线间的距离与点到直线的距离之间的转化.

向量法求空间点到平面的距离教案

向量法求空间点到面距离(教案) 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗? 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点 用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、 空间中如何求点到面距离? 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a · b =a b cos θ(θ为a 与b 的夹角) 二、向量法求点到平面的距离 剖析:如图, BO 平面 ,垂足为O ,则点B 到平面 的距离是线段BO 的长度。 教材分析 重点: 点面距离的距离公式应用及解决问题的步骤 难点: 找到所需的点坐标跟面的法向量 教学目的 1. 能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2. 能将求线面距离、面面距离问题转化为求点到面的距离问题。 3. 加强坐标运算能力的培养,提高坐标运算的速度和准确性。

若AB 是平面 的任一条斜线段,则在BOA Rt ABO COS ? 如果令平面的法向量为n ,考虑到法向量的方向,可以得到点B 到平面的距离为 BO 因此要求一个点到平面的距离,可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量(2)求出该平面的一个法向量(3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量? 例1、在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量. 解:设平面ABC 的一个法向量为(,,)n x y z r 则n AB n AC r u u u r r u u u r ,.∵(3,4,0)AB u u u r ,(3,0,2)AC u u u r ∴(,,)(3,4,0)0(,,)(3,0,2)0x y z x y z 即340320x y x z ∴3432y x z x 取4x ,则(4,3,6)n r ∴(4,3,6)n r 是平面ABC 的一个法向量. 例2、如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系C -xyz . 由题设C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). (2,2,0),(2,4,2),B (2,0,0)EF EG E u u u r u u u r u u u r 设平面EFG 的一个法向量 为(,,)n x y z r 2202420 11(,,1)33 n EF n EG x y x y n r u u u r r u u u r r ,

向量法求空间距离和角

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法 向量, 则斜线l 与平 面 α 所成的角 α=arcsin | ||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角 l αβ--的平面角α=arccos |||| a b a b 法二、设12,,n n 是二面角l αβ--的两

个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角 l αβ--的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 法一、找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别 为异面直线a 、b 的方向向量,求n (n a ⊥,n b ⊥),则异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ==(此方法移植于点面距离的求法).

用向量法求空间距离

A B C D m n 1 图向量法求空间距离 向量融形、数于一体,具有几何形式和代数形式的“双重身份”,向量成为中学数学知识的一个交汇点,空间向量将空间元素的位置关系转化为数量关系,将过去的形式逻辑证明转化为数值计算,化繁难为简易,化复杂为简单,成为解决立体几何问题的重要工具。 1.异面直线n m 、的距离 分别在直线n m 、上取定向量,,b a 求与向量b a 、都垂直的向量,分别在 n m 、上各取一个定点B A 、,则异面直线n m 、的距离 d 等于在上的射影长,即| |n d = 证明:如图1,设CD 为公垂线段,取b a ==, | |||)(?=?∴?++=?∴++= | |||||n n AB d ?= =∴ 2平面外一点P 到平面α的距离 如图2,先求出平面α的法向量,在平面内任取一定 点A ,则点p 到平面α的距离d 等于在上的射影长,即| |n d = 因为空间中任何向量均可由不共面的三个基向量来线性表示,所以在解题时往往根据问题条件首先选择适当的基向量,把相关线段根据向量的加法、数乘运算法则与基向量联系起来。再通过向量的代数运算,达到计算或证明的目的。一般情况下,选择共点且不共面的三个已知向量作为基向量。 [例 1] 如图3,已知正三棱柱111C B A ABC -的侧棱长为2, 底面边长为1,M 是BC 的中点,当1AB MN ⊥时,求点1A 到平面AMN 的距离。 图2 A B C M N 1 A 1 B 1 C 图3

几何体中容易找到共点不共面且互相垂直的三个向量,于是有如下解法: 解:当1AB MN ⊥时,如图4 , 、)0,0,0(A )81 ,1,0()0,43,43()2,21,23(1N M B 、、、)2,0,0(1A ,则 )2,0,0(),0,4 3,43( ),8 1 ,41,43(1==- =AA AM MN , 设向量),,(z y x n =与平面AMN 垂直,则有 )0()1,1,3(8 ),81,83( 8183 0434********>-=-=∴?????? ?-==?=???????=+=++-??????⊥⊥z z z z z n z y z x y x z y x AM n MN n 取)1,1,3(0-=n 向量1AA 在0n 上的射影长即为1A 到平面AMN 的距离,设为d ,于是 5 5 21)1()3(|)1,1,3()2,0,0(||||,cos |||2 2201011011= +-+-?= =>

用向量法求空间角与距离

用向量法求空间角与距离 1.1. 向量的数量积和坐标运算 b a ,是两个非零向量,它们的夹角为 ,则数 cos |||| b 叫做与的数量积(或内积),记作b a ,即.cos |||| 其几何意义是a 的长度与b 在a 的方向上的投影的乘积. 其坐标运算是: 若),,(),,,(222111z y x b z y x a ,则 ①212121z z y y x x b a ; ②2 22222212121||,||z y x b z y x a ; ③212121z z y y x x b a ④2 2 2 22 22 12 12 12 12121,cos z y x z y x z z y y x x b a 1.2. 异面直线n m ,所成的角 分别在直线n m ,上取定向量,,b a 则异面直线n m ,所成的角 等于向量b a ,所成的角或其补角(如图1所示),则 .||||| |cos b a b a (例如2004年高考数学广东卷第18题第(2)问) 1.3. 异面直线n m 、的距离 分别在直线n m 、上取定向量,,b a 求与向量b a 、都垂直的 向量,分别在n m 、上各取一个定点B A 、,则异面直线n m 、的距离d 等于在 上的射影长,即| |n d . 图1

证明:设CD 为公垂线段,取b a ,(如图1所示),则 | |||)( | |||n d 设直线n m ,所成的角为 ,显然.||||| |cos b a b a 1.4. 直线L 与平面 所成的角 在L 上取定,求平面 的法向量2所示), 再求 | |||cos n AB 2 为所求的角. 1.5. 二面角 方法一:构造二面角 l 的两个半平面 、的法向量 21n n 、(都取向上的方向,如图3所示),则 ① 若二面角 l 是“钝角型”的如图3甲所示,那么其大小等于两法向量21n n 、的夹角的补角,即| |||cos 2121n n (例如2004年高考数学广 东卷第18题第(1)问). ② 若二面角 l 是“锐角型”的如图3乙所示, 那么其大 小等于两法向量21n n 、的夹角, 即| |||cos 2121n n (例如 2004年高考数学广东卷第18题第(1)问). 方法二:在二面角的棱l 上确定两个点B A 、,过B A 、分别在平面 、内求出与l 垂直的向量21n n 、(如图4所示) ,则二面角 l 的大小等于向量21n n 、的夹角,即 图3乙 图3 图4 图2

用空间向量求空间角和距离

用空间向量求空间角和距离 四川省通江中学 徐荣德 空间中角和距离的计算问题是立体几何的重要内容,也是近几年高考的热点之一。空间向量为求空间角和距离提供了新的方法,可以使几何问题中的逻辑推理转化为向量的代数运算,使问题的解决更简洁、清晰,有较强的规律性,易于掌握。 一、求空间中的角 1、两异面直线所成的角 设异面直线AB 、CD 所成的角为])2 ,0((π αα∈ (如图1),则|| |||||,cos |cos CD AB ?=><=α。 2、直线与平面所成的角 设直线PA 与平面α(),αα?∈P A 所成的角 为])2 , 0[(π θθ∈,平面α的法向量为(如图2), 则|| |||| |,cos |sin n AP ?=><=θ。 3、二面角 设二面角βα--l 的大小为θ(),0(πθ∈), 平面βα,的法向量分别为n m ,(如图3), 则><-=>=<,,πθθ或。 例1、四棱锥P —ABCD 中,底面ABCD 是正方 形,侧面PAD 是边长为2的正三角形,且侧面PAD 与底面ABCD 垂直,E 为DP 的中点。 (1) 求异面直线AE 与PB (2) 求直线BE 与平面PCD 所成的角; (3) 求二面角E —AC —D 的大小。 解:建立如图4所示的空间直角坐标系,则 (1) A(0,0,0),B(2,0,0),P(0,1,3),E(0,23∴23 ,23,0(),3,1,2(=-=AE BP 4 6| |||,cos =?>= <∴AE BP ∴异面直线AE 与PB 所成的角4 6arccos .

(2) C(2,2,0),D(0,2,0),)2 3 , 23,2(),3,1,2(),0,0,2(-=--=-=∴BE CP CD , 设平面PCD 的一个法向量),,,(z y x = 则? ???? ?==∴=+--=-z y x z y x x 30,03202,取1=z ,得)1,3,0(= 设直线BE 与平面PCD 所成的角为θ,则 =θsin 7 21 || |,cos |= =>< ∴直线BE 与平面PCD 所成的角为7 21arcsin 。 (3))0,2,2(),2 3 , 23,0(==AC AE ,设平面ACE 的一个法向量),,(z y x n =, 则???-=-=∴?????=+=+y z y x y x z y 3,0 2202323 ,取1-=y ,得)3,1,1(-=n , 显然)1,0,0(=m 是平面ACD 的一个法向量, 5 15 ,cos = >= <∴n m ∴ 二面角E —AC —D 的大小为5 15arccos 。 二、求空间中的距离 1、两异面直线的距离 设异面直线b a ,间的距离为d ,AB 是b a ,的公垂线 段,D 、C 分别是b a ,上的一点,n 是AB 的方向向量(如图5)。 | |||n d CD n AB n DB CD AC AB = =∴?=?∴++= 2、点到平面的距离 设平面α外一点P 到平面α的距离为d ,点A 是平面α 任一点,是平面α的法向量(如图6)。则

人教版数学高二数学选修2-1 3.2空间向量的应用----求空间角与距离

空间向量的应用----求空间角与距离 湖南高明生 一、考点梳理 1.自新教材实施以来,近几年高考的立体几何大题,在考查常规解题方法的同时,更多地关注向量法(基向量法、坐标法)在解题中的应用。坐标法(法向量的应用),以其问题(数量关系:空间角、空间距离)处理的简单化,而成为高考热点问题。可以预测到,今后的高考中,还会继续体现法向量的应用价值。 2.利用法向量求空间角和空间距离,其常用技巧与方法总结如下: 1)求直线和直线所成的角 若直线AB、CD所成的角是α,cosα=| , cos |>

计算公式为: 1212cos cos |||| n n n n θ?=-= 1212cos cos |||| n n n n θ?== 4).利用法向量求点面距离 如图点P 为平面外一点,点A 为平面内的任一点,平面的法向量为n ,过点P 作平面α的垂线PO ,记∠OPA=θ,则点P 到平面的距离 θ cos ||||PA PO d == || |||||||||| n PA PA n PA n PA n ?=? ?= 5).法向量在距离方面除应用于点到平面的距离外,还能处理异面直线间的距离,线面间的距离,以及平行平面间的距离等。其一,这三类距离都可以转化为点面间的距离;其二,异面直线间的距离可用如下方法操作:在异面直线上各取一点A 、B ,AB 在n 上的射影长即为所求。n 为异面直线AD 、BC 公共垂直的方向向量,可由0n AD ?=及0n BC ?=求 得,其计算公式为: n α A P O θ

向量法求空间距离n

向量法求空间距离 广州市第78中学数学科 黄涛 教学重点难点 重点:掌握由向量数量积推导距离公式 难点:空间向量的投影的理解,灵活运用数形结合的思想,空间直角坐标系的 建立,求法向量,向量的选取。 教学方法、教学手段 采用启发诱导式教学,并结合实践探索,互动教学。 因为要充分体现数形结合思想,有大量的图形对比引导,以多媒体展示作为黑板板书补充。 教学目标: (1) 知识目标:理解向量数量积与射影的关系,基本掌握用数量积公式的变形求空间距离的方法和步骤 (2) 能力训练目标:培养动手能力,计算表达能力,空间想象能力 (3) 创新素质目标:通过立体几何向量方法解题体会知识之间的内在联系,事物内在的本质联系,懂得通过思维的拓展从事物的广泛联系中寻找解决问题的方法 (4) 情感目标:化繁为简,化难为易,在师生共同探索中建立学生学习数学的信心和热情 教学过程: 一.复习引入 1.如右图中正方体ABCD-A 1B 1C 1D 1的棱长为1,则点D 1到平面BB 1C 1C 的距离是_______,直线B 1C 1与B 1C 的距离是_________. 2.点C 1到平面AB 1C 的距离又是______,体对角线BD 1与面对角线B 1C 的距离是__________. 分析:以第一题找具体线段方法求距离很困难,提出能否避开“作图”这一难点,不通过找具体的线段求解,而用“数”来求解? 3.我们已经学习了向量的数量积为0可证垂直,| |||,cos b a b a b a ??>=<可求夹角, 221221221)()()(||z z y y x x a a a -+-+-==? 可以求两点间的距离,射影公式>

空间向量计算距离与角度

【例1】 在正方体1111ABCD A B C D -中,1111111 44 A B B E D F == =,求1BE 与1DF 所成角的余弦值. 【例2】 直三棱柱111ABC A B C -中,1111BC AC BC AB ⊥⊥,.求证:11 AB AC =. 【例3】 如图所示,在底面是直角梯形的四棱锥S ABCD -中,90ABC ∠=°,SA ⊥平面 ABCD ,1 12 SA AB BC AD ==== ,.求面SCD 与面SBA 所成的二面角的正切值. C 1 B 1 A 1 C B A D C B A S 典例分析 板块四.用空间向量计算距离 与角度

【例4】 已知(023)A ,,,(216)B -,,,(115)C -,,,求方向向量为(001)j =,,直线与平 面ABC 所成角的余弦值. 【例5】 已知平行六面体ABCD A B C D ''''-中,4AB =,3AD =,5AA '=, 60BAA DAA ''∠=∠=°,90BAD ∠=°,求AC '的长 【例6】 如图直角梯形OABC 中,π 2 COA OAB ∠=∠= ,2OC =,1OA AB ==,SO ⊥平面OABC ,1SO =,以OC 、OA 、OS 分别为x 轴、y 轴、z 轴建立直角坐标系O xyz -. ⑴求SC 与OB 的夹角α的大小(用反三角函数表示); ⑵设(1)n p q =,,,满足n ⊥平面SBC ,求 ①n 的坐标; ②OA 与平面SBC 的夹角β(用反三角函数表示); ③O 到平面SBC 的距离. 【例7】 如图四棱锥P ABCD -中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G , G 在AD 上,且4PG =,1 3 AG GD =,BG GC ⊥,2GB GC ==,E 是BC 的中点. ⑴求异面直线GE 与PC 所成的角的余弦值; ⑵求点D 到平面PBG 的距离; ⑶若F 点是棱PC 上一点,且DF GC ⊥,求 PF FC 的值. D ' C ' B 'A 'D C B A C B A O S

相关文档
最新文档