实验五-DFSK调制解调实验分析

实验五-DFSK调制解调实验分析
实验五-DFSK调制解调实验分析

电子科技大学中山学院电子工程系

学生实验报告

课程名称 通信原理实验 实验名称 实验五-DFSK 调制解调实验

班级,分组 实验时间 2016年11月14日 姓名,学号

指导教师 何志红

报 告 内 容

一、实验目的

1. 加深对DPSK 调制原理的理解及其硬件实现方法

2. 进一步了解DPSK 解调原理各种锁相环解调的特性,掌握同相正交环的解调原理及其硬件实现方法

3. 加深对载波提取电路相位模糊度的理解

4. 加深对眼图几个主要参数的认识

二、实验原理和电路说明

M 序列发生器

实际的数字基带信号是随机的,为了实验和测试方便,一般都是用M 序列发生器产生一个伪随机序列来充当数字基带信号源。按照本原多项式1)(35++=X X x f 组成的五级线性移

2DPSK

P 2 P 3 P 6

P 1 P 5 P 4

图5.2 2DPSK 调制部分框图

位寄存器,就可得到31位码长的M 序列。码元定时与载波的关系可以是同步的,以便清晰观察码元变化时对应调制载波的相位变化;也可以是异步的,因为实际的系统都是异步的。本实验的M 序列由IC3、1C4、IC5、IC6产生,码元速率为lMb/s 。

数字调相器的主要指标

在设计与调整一个数字调相器对,主要考虑的性能指标是调相误差和寄生调幅。 (1)调相误差

由于电路不理想,往往引进附加的相移,使调相器输出信号的载波相位取值为00及1800

+ΔΦ,我们把这个偏离的相角ΔΦ称为调相误差。调相器的调相误差相当于损失了有用信号的能量。

(2)寄生调幅

理想的二相相位调制器,当数码取“0”或“1”时,其输出信号的幅度应保持不变,即只有相位调制而没有附加幅度调制。但由于调制器的特性不均匀及脉冲高低电平的影响,使得“0”码和“1”码的输出信号的幅度不等。设“0”码和“1”码所对应的输出信号幅度分别为Uom 及Uim ,则寄生调幅

M 序列发生器 差分编码 调 相 ÷10 晶 振 10MH 2

÷2

为:

)/()(im om im om U U U U m +-=2.解调

2PSK 系统的解调部分框图如图5.6所示,原理电路如图5.7所示。

U d1 P 7 P 16 P 17

P 13

P 11 COS(ω0t+2φ) P 14

U d U d PS K 入 P 9

P 12 Sin(ω0t+1φ) P 15 U d2

P 8

图5.6 2PSK 解调部分框图

同相正交环

本实验采用同相正交环。同相正交环又叫科斯塔斯(Costas )环。实验原理如图5.7所示。在这种环路里,误差信号是由两个鉴相器提供的。压控振荡器(VCO)给出两路相互正交的载波到鉴相器。输入的2PSK 信号经鉴相后在由低通滤波器滤除载波频率以上的高频分量,得到基带信号Ud1、Ud2,这时的基带信号包含着码元信号,无法对压控振荡器(VCO)进行控制。将Ud1和Ud2经过基带模拟相乘器相乘,就可以去掉码元信息,得到反应VCO 输出信号与输入载波间相位差的控制电压。

表1 几种锁相环的性能特点

锁相环 特性 平方环 同相正交环 逆调制环 判决反馈环 环路工作频率 f =2f 0 f =f 0 f =f 0 f =f 0 等效鉴相特性 正弦 正弦 近似距形 近似距形 解调能力 无 有 有 有 电路复杂程度 鉴相器 工作频率高

需用基带 模拟相乘器

需用 二次调制器

需用基带 模拟调制器

单片集成双平衡模拟相乘器MC1496/MC1596(F1496/F1596、XD--5202) (a)电路说明

MC1496/MC1596双平衡模拟相乘器习惯上又称为平衡调制 -- 解调器,它是单片集成双平衡模拟相乘器中有代表性的产品之一。国内同类产品有F1496/F1596、XD--5202等,国外同类产品还有

LM1496/LM1596、SG1496/SG1596等。MC1496是00C 一700C 民用温度范围产品,MCl596是-550C--+1250

C 军用温度范围产品。该产品具有极好的载波抑制能力(0.5MHZ 时为一65dB ;10MHZ 时为-50dB)、高的共模抑制比(-85dB),平衡输入、输出和方便的增益调整与信号处理等优点。其电路如图5-1所示,与改进的双平衡模拟相乘器相比较,电路是相同的,仅恒流源用晶体管Q7和Q8代替,二极管

D 与500Ω电

MC1496 鉴相器 LF356 低 通 过 零 检 测 再生码

判 决 压控振荡器74S124 环路 滤波器 摸拟 相乘器 MC1496

差 分

译 码 MC1496 鉴相器 LF356 低 通

阻构成Q7、Q8的偏置电路。负载电阻接在⑥、⑨两端,反馈电阻RY接在②、③两端,起展宽输入信号的线性动态范围和调整电路增益的作用。

(b)参数选择

1.载波电平Ux选择

因为载波抑制比与载波输入电平密切相关。小的载波电平不能完全打开上面的开关器件,结果信号增益较低,载波抑制亦较低。而高于最佳值的载波电平将产生不必要的器件和电路的载漏,同时也使戴波抑制特性恶化。测试表明,当载频为500KHZ时,用6Omv的正弦载波,可获得

最佳载波抑制。当载频为10MHZ时,最佳载波约为16Omv。

频率较高时,为了使载漏最小,电路的设计要注意。为防止载波输人和输出之间的电容耦合,必须采用屏蔽措施。实际应用时,还可以在①、④之间接人载波调零电位器。当MC1496/MC1596用于同频鉴相时,如图5一12所示。可把两个相同频率的高电平信号分别加到两个输入端,则输出电压是两个输入信号相位差的函数,起到了鉴相作用。

传输畸变和眼图

数字信号经过非理想的传输系统必定产生畸变,为了衡量这种畸变的严重程序,一般都采用观察眼图的方式。眼图是示波器重复扫描所显示的波形,示波器的输入信号是解调后经低通滤波器恢复的未经再生的基带信号,同步信号是位定时。这种波形示意图如图5--13示。

图5.12

图5.13 眼图

衡量眼图的几个重要参数有:

(1)眼图开启度(U一2 U)/U

即最佳抽样点处眼图幅度的“张开”程度。无畸变眼图的开启度为100%。

(2)“眼皮”厚度2ΔU/U

即最佳抽样点处眼图幅度的闭合部分与最大幅度之比,无畸变眼图的“眼皮”厚度应为0。

(3)交叉点散度ΔT/T S

即眼图波形过零点交叉线的发散程度,无畸变眼图的交叉点发散为0。

(4)正、负极性不对称度|(U1-U2)|/ |(U1+U2)|

即最佳抽样点处眼图正、负幅度不对称的程度。无畸变眼图的极性不对称应为0。

如果传输信道不理想,产生传输畸变,就会很明显地由眼图的这几个参数反映出来。其后果可以看成有效信号的能量损失。可以推导出,等效信号信噪比的损失量ΔEb/N0与眼图开启度(U-2ΔU)/U有如下关系:

ΔEb/N0=20log|(U-2ΔU)/U |(dB)

同样,交叉点发散度对信噪比损失的影响,也可以等效为眼图开启度对信噪比损失的影响,这里不再详述。

三、实验内容和数据记录

准备工作:

1、按实验板上所标的电源电压开机,调准所需电压,然后关机;

2、把实验板电源连接线接好;

3、开机注意观察电流表

正电流+I<280mA

负电流-I<60mA

若与上述电流差距太大,要迅速关机,检查电源线有无接错或其它原因。

A.发送实验

开关位置 K1接1.2

1.测量载波P5振荡频率,观察记录P5波形、频率

2. 测量位同步P1信号频率,观察记录P1波形、频率

3. M 序列发生器

设初始状态为10000,试列表写出

1)(35++=x x x f 多项式,组成一个周期的M 序列。把列表

的结果与实验结果相比较。

示波器用P2触发,观察并记录P2的波形。以Pl 比较,验证M 序列的主要性质。

4.差分编码

示波器MODE (工作方式)置Chop (断续),观察并记录P3的波形,将P2和P3的波形进行比较,验证差分编码的规律。注意P3比P2有一位码时延。

5.数字调相电路

示波器MODE置Chop,以P3为同步信号,观察并记录P6数字调相波形。

以载波信号P5输入双踪同步示波器YB,用YA观察P6的2DPSK信号,利用双踪同步示波器上的刻度,测量P6相位对于P5相位的相位差ΔΦ。

B.接收实验

1.A线接P7,B线接P8,频率计衰减×1,输入线接P11或P12,调整W5,使显示的频率与发端P5一致,即至锁定状态,当锁定时要继续按原方向调整,直至使P7、P8两信号尽可能相等为止,才是锁定的最佳状态。当频率计测量离开P11或P12,还应处于锁定状态,如果调节W5听到“嗒、嗒”响声,则精密电位器已经到了尽头,要反方向调节,若还不能进入到锁定的频率,则可以调W4,使其进入锁定范围,W4是振荡频率的粗调,W5是振荡频率的细调。调整W5仔细体会锁定和失锁的工作状态。

a)锁定时观察P7、P8解调的基带信号。

b) 失锁时观察P7、P8解调的基带信号。

2.锁定时观察P6发端的调制信号和P7解调的基带信号之间关系。

3.锁定时,观察P11、P12两相干载波90o相位差关系,即t c ωsin 和t c ωcos 之关系。

4.眼图实验,A 线接P7,B 线接Pl6,示波器同步触发选B 线,微调示波器水平扫描频率,观察眼图几个指标。

从图中读出:U1=2.4V ,U2=1.6V ,ΔU=0.5V ,T=10us ,ΔT=0.7us ①眼图开启度 (U-2ΔU )/U ,其中 21U U U += (U-2ΔU )/U=0.75 ②“眼皮”厚度2ΔU/U 2ΔU/U=0.25 ③交叉点发散度ΔT/T ΔT/T=0.07

④正负极性不对称度2121/U U U U +-

2121/U U U U +-=0.2

5. A 线接P7、B 线接P13,观察记录过零检测波形。注意:过零检测本身引入约900

相移,这是由于LM339频响不够引起的。

6.示波器方式开关置Chop 位置,比较Pl6时钟和Pl3基带信号的相位关系。

7. A线接P7,B线接Pl4,观察记录判决电路波形。

8. A线接P14,B线接Pl5,观察记录差分译码结果,验证差分译码性质。

9.A线接P2,B线接Pl5,观察发端信码与收端解码应一致,并做记录。

10.同步带和捕捉带实验

频率计接Pl1或Pl2,示波器按4方法观察眼图,调节W5左旋使环路处于失锁状态。此时Pll 或Pl2提取的载波频率与发端有差异,观察P7眼图会变得模糊不清。

①调W5缓馒地向右旋转,一边观察频率计,一边观察眼图,当转到某一定位置时VCO 的频率会突然进入锁定频率,把Kl 接2.3,记下此时的频率为f1。K1接回1.2,环路应立即进入锁定状态。

②继续使W5往右旋转,当转到某一定位置时,环路又会失锁。把K1接2.3,记下此时的频率为f 2,把Kl 接回1.2,环路应仍处于失锁状态。

③使W5往左缓慢旋转,当转到某一定位置时,环路又进入锁定,把K1接2.3,记下此时VCO 的频率为f 3。把Kl 接回1.2,环路应立即进入锁定状态。

④使W5继续缓慢向左旋转,当转到某一位置时,环路又失锁,把Kl 接2.3,频率计显示f 4频率,记下f 4频率,把Kl 接回1.2环路还处于失锁状态。

同步带 421

f f f -=? 捕捉带 3

12

f f f

-=?

⑤为提高测量精度,上述过程可反复进行几次,取平均值。

重复以上过程3次测得 f1分别为5.046MHz 、5.799MHz 、5.504MHz ; f2分别为5.055MHz 、5.419MHz 、5.961MHz ; f3分别为5.882MHz 、5.952MHz 、4.464MHz ; f4分别为4.717MHz 、5.014MHz 、4.989MHz 。 所以 同步带 421f f f -=?=0.572 捕捉带 3

12

f f f

-=?=0.017

四、结论与心得

在实验箱接入电源前要看清楚是否需要并联,否则可能烧坏实验器材。 使用数字示波器时要注意波形是不是和理论波形一样,允许存在系统误差。

通过模拟示波器显示眼图时可能不会很明显,由于机器老化引起的,但还是能够看出数据的。 测试数据应该保留有效位和估读位,然后与理论值比较,在误差允许范围内近似相等。

成绩

教师签名 批改时间 年 月 日

BPSK调制及解调实验报告

实验五BPSK调制及解调实验 一、实验目的 1、掌握BPSK调制和解调的基本原理; 2、掌握BPSK数据传输过程,熟悉典型电路; 3、了解数字基带波形时域形成的原理和方法,掌握滚降系数的概念; 4、熟悉BPSK调制载波包络的变化; 5、掌握BPSK载波恢复特点与位定时恢复的基本方法; 二、实验器材 1、主控&信号源、9号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、BPSK调制解调(9号模块)实验原理框 PSK调制及解调实验原理框图 2、BPSK调制解调(9号模块)实验框图说明 基带信号的1电平和0电平信号分别与256KHz载波及256KHz反相载波相乘,叠加后得到BPSK调制输出;已调信号送入到13模块载波提取单元得到同步载波;已调信号与相干载波相乘后,经过低通滤波和门限判决后,解调输出原始基带信号。 四、实验步骤 实验项目一 BPSK调制信号观测(9号模块) 概述:BPSK调制实验中,信号是用相位相差180°的载波变换来表征被传递的信息。本项目通过对比观测基带信号波形与调制输出波形来验证BPSK调制原理。 1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPSK/DBPSK数字调制解调】。将9号模块的S1拨为0000,调节信号源模块W3使256 KHz载波信号峰峰值为3V。 3、此时系统初始状态为:PN序列输出频率32KHz。 4、实验操作及波形观测。 (1)以9号模块“NRZ-I”为触发,观测“I”; (2)以9号模块“NRZ-Q”为触发,观测“Q”。 (3)以9号模块“基带信号”为触发,观测“调制输出”。 思考:分析以上观测的波形,分析与ASK有何关系? 实验项目二 BPSK解调观测(9号模块) 概述:本项目通过对比观测基带信号波形与解调输出波形,观察是否有延时现象,并且验证BPSK解调原理。观测解调中间观测点TP8,深入理解BPSK解调原理。 1、保持实验项目一中的连线。将9号模块的S1拨为“0000”。 2、以9号模块测13号模块的“SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复出载波。 3、以9号模块的“基带信号”为触发观测“BPSK解调输出”,多次单击13号模块的“复位”按键。观测“BPSK解调输出”的变化。 4、以信号源的CLK为触发,测9号模块LPF-BPSK,观测眼图。 思考:“BPSK解调输出”是否存在相位模糊的情况?为什么会有相位模糊的情况? 五、实验报告 1、分析实验电路的工作原理,简述其工作过程; 输入的基带信号由转换开关转接后分成两路,一路经过差分编码控制256KHz的载频,另一路经倒相去控制256KHz的载频。???解调采用锁相解调,只要在设计锁相环时,使它锁定在FSK的一个载频上此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。? 2、分析BPSK调制解调原理。 调制原理是:基带信号先经过差分编码得到相对码,再根据相对码进行绝对调相, 即将相对码的1电平和0电平信号分别与256K载波及256K反相载波相乘,叠加后得到DBPSK 调制输出。?

实验四 2PSK调制与解调实验

实验四 2PSK 调制与解调实验 1、 实验箱中2PSK 调制器用的调制方法是什么? 答:移相键控调制的直接调相法。 2、 2PSK 调制能否用非相干解调方法? 答:不能。 3、 相位模糊产生的原因和解决方法? 答:①原因:在调制过程中采用了分频,而二分频器的输出电压有相差180度的两种可能相位,即其输出电压的相位决定了分频器的初始状态,这就是会导致分频出的载波存在相位模糊(2PSK 采用的是相移方式) ②解决办法:使用2DPSK 二相相对移相键控 4、 绝/相、相/绝变换的框图? 答: 5、 绝/相、相/绝变换电路是怎么实现的。 答:绝/相变换电路是把数据信息源输出的绝对码变相对码,2DPSK 信号由相对码进行绝对调相得到。它由模二加10A U (74LS86)和D 触发器9A U (74LS74)组成,其逻辑关系为:i a ⊕i-1b =i b ,其中i a 是绝对码,i-1b 是延迟一个码元的相对码,i b 是相对码。 相/绝变换电路由14B U (74LS74)和15B U (74LS86)组成,其逻辑关系可表示为i-1b ⊕i b =i a ,其中i b 为相对码,i-1b 为延迟一个码元的相对码,i a 为绝对码。 6、 画出实验板中2PSK 、2DPSK 调制与解调器的原理框图; 答:

7、本实验中,2PSK 信号带宽是多少?用数字示波器如何测量? 答:B=2 f=2/Ts。先按MATH按钮,再选择FFT选项。 s 8、测试接收端的各点波形,需要与什么波形对比,才能比较好的进行观测? 示波器的触发源该选哪一种信号?为什么? 答:绝对码波形。原始信号。触发源信号应该选择频率较低、稳定度高的信号。 9、解调电路各点信号的时延是怎么产生的? 答:由滤波与抽样产生。 10、码再生的目的是什么? 答:①防止噪声干扰的累加,恢复出基带信号。②把码元展宽。 11、用D触发器做时钟判决的最佳判决时间应该如何选择? 答:眼图中眼睛张开最大时刻,即码元能量最大时刻,把各个信号叠加在一起。 12、解调出的信码和调制器的绝对码之间的时延是怎么产生的? 答:由滤波与抽样产生。 13、在接收机带通滤波器之后的波形出现了起伏是什么原因,带通滤波器的 带宽设计多大比较合适? 答:符号切换造成了旁瓣的产生,0、1跳变使得高频成份丰富。π→0→π转换点导致的频谱扩展特别大,通过滤波器会缩小。带宽设计为2/Ts。

实验一 ASK调制与解调实验

通 信 原 理 实 验 报 告 学院:信息与通信工程学院 专业:光电工程 班级:12051041 学号:12051041 姓名 时间:2014.11.21

实验一 ASK调制与解调实验 一实验目的 1.理解ASK调制的工作原理及电路组成。 2.理解ASK解调的原理及实现方法。 3.了解ASK信号的频谱特性。 二实验内容 1.观察ASK调制与解调信号的波形。 2.观察ASK信号频谱。 三实验器材 1.信号源模块 5.20M双踪示波器一台 2.数字调制模块 6.连接线若干 3.数字解调模块 7.频谱分析仪 4.同步提取模块 四实验原理 1.2ASK 调制原理 ASK 基带信号经过电压比较器(LM339),输出高/低电平驱动模拟开关(74HC4066)导通/关闭,ASK 载波通过电压跟随电路(TL082)提高带负载能力,然后通过模拟开关电路选择通过/截止,最后得到 ASK 调制信号输出。 2.2ASK 解调原理 本实验采用的是包络检波法,ASK 调制信号经过 RC 组成的耦合电路,输出波形可从OUT1观察,然后通过半波整流器(由 1N4148 组成),输出波形可从 OUT2 观察,半波整流后的信号经过低通滤波器(由 TL082 组成),滤波后的波形可从 OUT3 观察,再经过电压比较器(LM339)与参考电位比较后送入抽样判决器(74HC74)进行抽样判决,最后得到解调输出的二进制信号。标号为“ASK 判决电压调节”的电位器用来调节电压比较器的判决电压。判决电压过高,将会导致正确的解调结果的丢失;判决电压过低,将会导致解调结果中含有大量错码,因此,只有合理选择判决电压,才能得到正确的解调结果。抽样判决用的时钟信号就是 ASK 基带信号的位同步信号。

抽样定理和PCM调制解调实验报告

《通信原理》实验报告 实验一:抽样定理和PAM调制解调实验 系别:信息科学与工程学院 专业班级:通信工程1003班 学生姓名:陈威 同组学生:杨鑫 成绩: 指导教师:惠龙飞 (实验时间:2012 年 12 月 7 日——2012 年 12 月28日) 华中科技大学武昌分校

1、实验目的 1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。 2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。 2、实验器材 1、信号源模块 一块 2、①号模块 一块 3、60M 双踪示波器 一台 4、连接线 若干 3、实验原理 3.1基本原理 1、抽样定理 图3-1 抽样与恢复 2、脉冲振幅调制(PAM ) 所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。 自然抽样 平顶抽样 ) (t m ) (t T

图3-3 自然抽样及平顶抽样波形 PAM方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号m s 化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。 四、实验步骤 1、将信号源模块、模块一固定到主机箱上面。双踪示波器,设置CH1通道为同步源。 2、观测PAM自然抽样波形。 (1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。 (2)将模块一上K1选到“自然”。 (3)关闭电源,连接 表3-1 抽样实验接线表 (5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。在PAMCLK处观察被抽样信号。CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。

DBPSK调制解调实验

班级:2016112 学号:20161223 姓名:谢峻漪 实验三DBPSK调制/解调实验 一、实验目的 1、了解BPSK差分解调的基本工作原理; 2、掌握DBPSK数据传输过程; 二、预备知识 1、差分BPSK的解调基本工作原理; 2、软件无线电的基本概念; 三、实验仪器 1、J H5001-4实验箱一台; 2、20MHz示波器一台; 四、实验原理 差分BPSK是相移键控的非相干形式,它不需要在接收机端恢复相干参考信号。非相干接收机容易制造而且便宜,因此在无线通信系统中被广泛使用。在DBPSK系统中,输入的二进制序列先差分编码,然后再用BPSK调制器调制。差分编码后的序列﹛a n﹜是通过对输入b n与a n-1进行模2和运算产生的。如果输入的二进制符号b n为0,则符号a n与其前一个符号保持不变,而如果b n为1,则a n与其前一个符号相反。 差分编码原理为: n ) a⊕ - = n a b ( ( )1 (n ) 其实现框图如图4.3-1所示: 图4.3-1 差分编码示意图 一个典型的差分编码调制过程如4.3-2图所示:

图4.3-2 差分编码与载波相位示意图 在DBPSK 中,其不需要进行载波恢复,但位定时仍是必须的。在DPSK 中如何恢复位定时信号,初看起来比较复杂。我们仍按以前的信号定义,如图4.3-3所示: 图4.3-3 位定时误差信号提取 实际上其与相干BPSK 中的位定时恢复是一样的,由由其存在一个较小的系统剩余频差(发送中频与接收本地载波的频差,其与码元速率相比而言一般较小),结果是在每个剩余频差的周期中,具有很多有码元信号(例如对于64KBPS 的速、剩余频差为1KHZ ,则每个剩频差的周期中可包含64个码元符号)。从这些码元信号中可以根据下面的公式对位定时误差的大小进行计算: )]2()2()[()(+--=n S n S n S n e b 当然在剩余载波发生正负变化时,按上式提取的位定时误差信号可能出现不正确的情况,但只要在位定时误差信号的输出端加一滤波器,就可以克服在DBPSK 中剩余载波的影响(在相对剩余载波不大时)。 对位定时的调整如下:如果0)(>n e b ,则位定时抽样脉冲向前调整;反之应向后调整。 对DBPSK 的解调是通过比较接收相邻码元信号(I ,Q )在星座图上的夹角,如果大于900 则为1,否则为0,如图4.3-4所示:

通信原理实验——2PSK调制与解调

贵州大学实验报告 学院:计信学院专业:网络工程班级:101 姓名学号实验组实验时间2013.06.16 指导教师成绩 实验项目名称实验二2PSK调制与解调 实 验目的1、掌握2PSK调制的原理及实现方法。 2、掌握2PSK解调的原理及实现方法。 实验原理 1、2PSK调制 2PSK信号产生的方法有两种:模拟调制法和数字调制法。 码型变换乘法器 NRZ输入双极性NRZ调制输出 载波输入 图16-1 2PSK调制模拟相乘法原理框图 上图16-1是2PSK调制模拟相乘法原理框图。信号源模块提供码速率96K的NRZ 码和384K正弦载波。在2ASK中数字基带信号是单极性的,而在2PSK中数字基带信号是双极性的。故先将单极性NRZ码经码型变换电路转换为双极性NRZ码,然后与384K正弦载波相乘,便得2PSK调制信号。乘法器的调制深度可由“调制深度调节”旋转电位器调节。 载波1 384K 开关电路2 调制输出 NRZ输入 开关电路1 反相器 图16-2 2PSK调制数字键控法原理框图 上图16-2是2PSK调制数字键控法原理框图。为便于实验观测,由信号源模块提供码速率为96Kbit/s的NRZ码数字基带信号和384KHz正弦载波信号,NRZ码为“1”的一个码元对应0相位起始的正弦载波的4个周期,NRZ码为“0”的一个码元对应π相位起始的正弦载波的4个周期。 实验中采用模拟开关作为正弦载波的输出通/断控制门,数字基带信号NRZ码用来

控制门的通/断。当NRZ 码为高电平时,模拟开关1导通,模拟开关2截止,0相位起始的正弦载波通过门1输出;当NRZ 码为低电平时,模拟开关2导通,模拟开关1截止,π相位起始的正弦载波通过门2输出。门的输出即为2FSK 调制信号,如下图16-3所示。 NRZ输入 调制信号 1 1 00 1 PSK 图16-3 2PSK 调制信号波形 2、2PSK 解调 2PSK 信号的解调通常采用相干解调法,原理框图如下图16-4所示。 LPF 相乘器电压判决 抽样判决 调制输入 BS输入 PSK/DPSK 判决电压调节 载波输入相乘输出 滤波输出 解调输出 判压输出 图16-4 2PSK 解调相干解调法原理框图 设已调信号表达式为1()cos(())s t A t t ω?=?+(A 1为调制信号的幅值), 经过模拟乘法器与载波信号A 2cos t ω(A2为载波的幅值)相乘,得 0121 ()[cos(2())cos ()]2 e t A A t t t ω??= ++ 可知,相乘后包括二倍频分量121 cos(2())2 A A t t ω?+和cos ()t ?分量(()t ?为时 间的函数)。因此,需经低通滤波器除去高频成分cos(2())t t ω?+,得到包含基带信号的低频信号。 然后再进行电压判决和抽样判决。此时,“解调类型选择”拨位开关拨到“PSK ”一端。 解调过程中各测试点波形如下图16-5所示。

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

通信原理实验 QPSK调制解调实验

HUNAN UNIVERSITY 课程实验报告 题目:十QPSK调制解调实验 指导教师: 学生姓名: 学生学号: 专业班级:

实验10 QPSK调制解调实验 一、实验目的 1. 掌握QPSK调制解调的工作原理及性能要求;了解IQ调制解调原理及特性 2. 进行QPSK调制、解调实验,掌握电路调整测试方法了解载波在QPSK相干及非相干时的解调特性 二、实验原理 1、QPSK调制原理 QPSK又叫四相绝对相移调制,它是一种正交相移键控。QPSK利用载波的四种不同相位来表征数字信息。由于每一种载波相位代表两个比特信息,因此,对于输入的二进制数字序列应该先进行分组,将每两个比特编为一组,然后用四种不同的载波相位来表征。 用调相法产生QPSK调制原理框图如图所示,QPSK的调制器可以看作是由两个BPSK调 制器构成,输入的串行二进制信息序列经过串行变换,变成两路速率减半的序列,电平发生器分别产生双极性的二电平信号I(t)和Q(t),然后对Acosωt和Asinωt进行调制,相 加后即可得到QPSK信号。 二进制码经串并变换后的码型如图所示,一路为单数码元,另外一路为偶数码元,这两个支路互为正交,一个称为同相支路,即I支路;另外一路称为正交支路,即Q支路

2、QPSK解调原理 由于QPSK可以看作是两个正交2PSK信号的合成,故它可以采用与2PSK信号类似的解调方法进行解调,即由两个2PSK信号相干解调器构成,其原理框图如图 三、实验步骤 在实验箱上正确安装基带成形模块(以下简称基带模块)、IQ调制解调模块(以下简称IQ模块)、码元再生模块(以下简称再生模块)和PSK载波恢复模块。 1、QPSK调制实验 a、关闭实验箱总电源,用台阶插座线完成连接 * 检查连线是否正确,检查无误后打开电源。 b、按基带成形模块上“选择”键,选择QPSK模式(QPSK指示灯亮)。 c、用示波器观察基带模块上“NRZ-I,I-OUT,NRZ-Q,Q-OUT”的信号;并分别与“NRZ IN”信号进行对比,观察串并转换情况。 NRZ-I 与NRZ IN I-OUT与NRZ IN NRZ-Q 与NRZ IN Q-OUT与NRZ IN d、观测IQ调制信号矢量图。

2PSK数字信号的调制与解调

中南民族大学 软件课程设计报告 电信学院级通信工程专业 题目2PSK数字信号的调制与解调学生学号 42 指导教师 2012年4月21日

基于MATLAB数字信号2PSK的调制与解调 摘要:为了使数字信号在信道中有效地传播,必须使用数字基带信号的调制与解调,以使得信号与信道的特性相匹配。基于matlab实验平台实现对数字信号的2psk的调制与解调的模拟。本文详细的介绍了PSK波形的产生和仿真过程加深了我们对数字信号调制与解调的认知程度。 关键字:2PSK;调制与解调;MATLAB 引言 当今社会已经步入信息时代,在各种信息技术中,信息的传输及通信起着支撑作用。而对于信息的传输,数字通信已经成为重要的手段。因此,数字信号的调制就显得非常重要。 调制分为基带调制和带通调制。不过一般狭义的理解调制为带通调制。带通调制通常需要一个正弦波作为载波,把基带信号调制到这个载波上,使这个载波的一个或者几个参量上载有基带数字信号的信息,并且还要使已调信号的频谱倒置适合在给定的带通信道中传输。特别是在无线电通信中,调制是必不可少的,因为要使信号能以电磁波的方式发送出去,信号所占用的频带位置必须足够高,并且信号所占用的频带宽度不能超过天线的的通频带,所以基带信号的频谱必须用一个频率很高的载波调制,使期带信号搬移到足够高的频率上,才能够通过天线发送出去。 主要通过对它们的三个参数进行调制,振幅,角频率,和相位。使这三个参量都按时间变化。所以基带的数字信号调制主要有三种方式:FSK,PSK,ASK。在这三种调制的基础上为了得到更高的效果也出现了很多其它的调制方式,如:DPSK,MASK,MFSK,MPSK,APK。它们其中有的一些是将基本的调制方式用在多进制上或者引入了一些新的方式来解决基本调制的一些问题如相位模糊和无法提取位定时信号,另外一些由是组合多种基本的调制方式来达到更好的效果。 基带信号的调制主要分为线性调制和非线性调制,线性调制是指已调信号的频谱结构与原基带信号的频谱结构基本相同,只是占用的频率位置搬移了。而非线性调制则是指它们的结构完全不同不仅仅是频谱搬移,在接收方会出现很多新的频谱分量。在三种基本的调制中,ASK 属于线性调制,而FSK和PSK属于非线性调制。已调信号会在接收方通过各种方式通过解调得到,但是由于噪声和码间串扰,总会有一定的失真。所以人们总是在寻找不同的接收方式来降低误码率,其中的接收方式主要有相干接收和非相干接收。在接收方通过载波的相位信号去检测信号的方法称为相干检测,反之若不利用就称为非相干检测,而对于一些特别的调制有特别的解调方式,如过零检测法。 系统的性能好坏取决于传输信号的误码率,而误码率不仅仅与信道、接收方法有关还和发送端采用的调制方式有很大的关系。我们研究的ASK,FSK,PSK等就主要是发送方的调制方式。

ASKFSKPSK的调制与解调

2ASK的调制与解调 一、实验目的 1.加深理解2ASK调制与解调原理。 2.学会运用SystemView仿真软件搭建2ASK调制与解调仿真电路。 3.通过仿真结果观察2ASK的波形及其功率谱密度。 二、仿真环境 Windows98/2000/XP SystemView5.0 三、2ASK调制解调原理方框图 1.2ASK调制原理 图1 2ASK键控产生 图2 2ASK相乘法产生 2.2ASK解调原理 图3 2ASK相干解调

四、2ASK调制解调仿真电路

1.仿真参数设置 1)信号源参数设置:基带信号码元速率设为101==T R B 波特,2ASK 信号中心载频设为 Hz f s 20=。(说明:中心载频 s f 设得较低,目的主要是为了降低仿真时系统的抽样 率,加快仿真时间。) 2)系统抽样率设置:为得到准确的仿真结果,通常仿真系统的抽样率应大于等于10倍的载频。本次仿真取10 s f ,即200Hz 3)系统时间设置:通常设系统Start time=0。为能够清晰观察每个码元波形及2ASK 信号的功率谱密度,在仿真时对系统Stop time 必须进行两次设置,第一次设置一般取系统Stop time=6T~8T ,这时可以清楚地观察到每个码元波形;第二次设置一般取系统Stop time=1000T~5000T ,这时可以清楚地观察到2ASK 信号的功率谱密度。 2.2ASK 信号调制与解调的仿真电路图 图4 2ASK 信号调制与相干解调仿真电路 图5 2ASK 信号调制与包络检波仿真电路 五、仿真结果参考

S y s te mV iew 00 500.e -3500.e -3 1 1 1.51.5 2 2 500.e -3 1 1.5 2 m T i m e i n S e c o n d s 调制信号波 图6 输入信号波形 S y s te mV iew 00 500.e -3500.e -3 1 1 1.51.5 2 2 -2 -1.5 -1 -500.e -3 500.e -3 1 1.5 2 m T i m e i n S e c o n d s 已调信号波形 图7 2ASK 信号波形 S y s te mV iew 00 500.e -3500.e -3 1 1 1.51.5 2 2 -1 -500.e -3 500.e -3 1 A m T i m e i n S e c on d s 解调输出波形 图8 解调输出波形 图9 已调信号的频谱(载频为50Hz ) 六、自行搭建调试仿真电路,完成设计任务 2FSK 调制与解调 一、实验目的 1. 掌握2FSK 调制与解调原理; 2. 掌握仿真软件Systemview 的使用方法; 3. 完成对2FSK 调制与解调仿真电路设计,观察2FSK 波形及其功率谱密度。

FSK调制解调实验

实验报告册课程:通信系统原理教程 实验:FSK调制解调实验 班级: 姓名: 学号: 指导老师: 日期:

实验四:FSK 调制解调实验 一、实验目的: 1、了解对FSK 信号调制解调原理; 2、根据其原理设计出2FSK 信号的调制解调电路,在对电路进行仿真,观察 其波形,从而检验设计出的调制解调器是否符合要求。 二、实验原理: 2FSK 信号调制: 又称数字调频,它是用两种不同的载频1ω ,2ω来代表脉冲调制信号1 和0,而载波的振幅和相位不变。如果载波信号采用正弦型波,则FSK 信号可表示为: 2FSK 信号()t S 分解为信号()t S 1与()t S 2之和,则有:()()()t S t S t S 21+= 其中:()()()t U t S m 11cos ω=,代表数字码元“1” ()()()t U t S m 22cos ω=,代表数字码元“0” 2FSK 信号调制器模型如下图: 如上图,两个独立的振荡器产生不同频率的载波信号,当输入基带信号()1=t S 时,调制器输出频率为f1的载波信号,当()0=t S 时,反相器的输出()t S 调制器输出频率为f2的载波信号。f1和f2都取码元速率的整数倍。 2FSK 信号的带宽为:B f f B FSK 221+-= 其中:f 1为对应脉冲调制信号1的载波频率;f 2为对应脉冲调制信号0的载波频率。 2FSK 信号解调: 是调试的相反过程。由于移频键控调制是将脉冲调制信号“1”用FSK 信号()t S 1,而“0”用()t S 2表示,那么在接收端,可从FSK 信号中恢复出其基带信号。本设计采用了普通鉴频法进行解调,将()t S 1恢复成码元1,把()t S 2恢复成码元0 。 2FSK 信号的解调可以采用相干解调,也可以采用包络解调。 实验中采用相干解调,解调器模型如下图: ) 2 2cos(2)(2t f b T t πφ= 号 号调制器

PSK(DPSK)调制与解调

实验题目——PSK(DPSK)调制与解调 一、实验目的 1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。 2、掌握产生PSK(DPSK)信号的方法。 3、掌握PSK(DPSK)信号的频谱特性。 二、实验内容 1、观察绝对码和相对码的波形。 2、观察PSK(DPSK)信号波形。 3、观察PSK(DPSK)信号频谱。 4、观察PSK(DPSK)相干解调器各点波形。 三、实验仪器 1、信号源模块 2、数字调制模块 3、数字解调模块 4、20M双踪示波器 5、导线若干 四、实验原理 1、2PSK(2DPSK)调制原理 2PSK信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形示意图如图所示。 2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。如果这个参考相位发生变化,则恢复的数字信息就会与发送的数字信息完全相反,从而造成错误的恢复。这种现象常称为2PSK的“倒π”现象,因此,实际中一般

不采用2PSK 方式,而采用差分移相(2DPSK )方式。 2DPSK 方式即是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。如图为对同一组二进制信号调制后的2PSK 与2DPSK 波形。 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1数字信息(绝对码)PSK 波形 DPSK 波形 相对码 从图中可以看出,2DPSK 信号波形与2PSK 的不同。2DPSK 波形的同一相位并不对应相同的数字信息符号,而前后码元相对相位的差才唯一决定信息符号。这说明,解调2DPSK 信号时并不依赖于某一固定的载波相位参考值。只要前后码元的相对相位关系不破坏,则鉴别这个关系就可以正确恢复数字信息,这就避免了2PSK 方式中的“倒π”现象发生。同时我们也可以看到,单纯从波形上看,2PSK 与2DPSK 信号是无法分辨的。这说明,一方面,只有已知移相键控方式是绝对的还是相对的,才能正确判定原信息;另一方面,相对移相信号可以看成是把数字信息序列(绝对码)变换成相对码,然后再根据相对码进行绝对移相而形成。 2DPSK 的调制原理与2FSK 的调制原理类似,也是用二进制基带信号作为模拟开关的控制信号轮流选通不同相位的载波,完成2DPSK 调制,其调制的基带信号和载波信号分别从“PSK 基带输入”和“PSK 载波输入”输入,差分变换的时钟信号从“PSK-BS 输入”点输入,其原理框图如图所示: 2DPSK 调制原理框图 2、2PSK (2DPSK )解调原理

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告 一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,

Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。

图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 3. 2DPSK信号的解调原理 2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 (1) 2DPSK信号解调的极性比较法 它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。它的原理框图如图1.3.1所示。 码变换相乘 载波 s(t)e o(t) 相乘器低通滤波器抽样判决器2DPSK 带通滤波器 延迟T

PSK(DPSK)及QPSK-调制解调实验报告

实验4 PSK(DPSK)及QPSK 调制解调实验 配置一:PSK(DPSK)模块 一、实验目的 1. 掌握二相绝对码与相对码的码变换方法; 2. 掌握二相相位键控调制解调的工作原理及性能测试; 3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.PSK 调制模块,位号A 3.PSK 解调模块,位号C 4.噪声模块,位号B 5.复接/解复接、同步技术模块,位号I 6.20M 双踪示波器1 台 7.小平口螺丝刀1 只 8.频率计1 台(选用) 9.信号连接线4 根 三、实验原理 相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。 (一) PSK 调制电路工作原理 二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s 伪随机码、及其相对码、32KHz 方波、外加数字信号等。相位键控调制解调电原理框图,如图6-1 所示。 1.载波倒相器 模拟信号的倒相通常采用运放来实现。来自1.024MHz 载波信号输入到运放的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。为了使0 相载波与π相载波的幅度相等,在电路中加了电位器37W01 和37W02 调节。 2.模拟开关相乘器 对载波的相移键控是用模拟开关电路实现的。0 相载波与π相载波分别加到模拟开关A:CD4066 的输入端(1 脚)、模拟开关B:CD4066 的输入端(11 脚),在数字基带信号的信码中,它的正极性加到模拟开关A 的输入控制端(13 脚),它反极性加到模拟开关B 的输入控制端(12 脚)。用来控制两个同频反相载波的通断。当信码为“1”码时,模拟开关A 的输入控制端为高电平,模拟开关A 导通,输出0 相载波,而模拟开关B 的输入控制端为低电平,模拟开关B 截止。反之,当信码为“0”码时,模拟开关A 的输入控制端为低电平,模拟开关A 截止。而模拟开关B 的输入控制端却为高电平,模拟开关B 导通。输出π相载波,两个模拟开关输出通过载波输出开关37K02 合路叠加后输出为二相PSK 调制信号。另外,DPSK 调制是采用码型变换加绝对调相来实现,即把数据信息源(伪随机码序列)作为绝对码序列{a n},通过码型变换器变成相对码序列{b n},然后再用相对码序列{b n},进行绝

PSK调制和解调的基本原理回顾

目录 1.实验要求及开发环境 (3) 2. 二、课程设计软件说明 (7) 三、基本原理 (2) 3.1调制方式简介 (2) 3.2OQPSK的含义 (3) 3.3同相正交环法(科斯塔斯环) (5) 四、实验框图原理说明 (12) 4.1实验总框图介绍 (12) 4.2五个子部分的介绍 (7) 4.2.1串并转换 (7) 4.2.2载波调制 (9) 4.2.3 科斯塔斯环解调 (15) 4.2.4 抽样判决 (17) 4.2.5 并串转换 (17) 五、实验结论 (18) 六、调试报告 (19) 6.1频率调制器F M参数设置 (19) 6.2低通滤波器参数设置 (19) 6.3脉冲串的参数设置 (20) 七、实验心得 (21) 八、参考文献 (22)

一、实验要求及开发环境 实验要求:1. 数字相关器子系统 2. 仿真结果分析 实验目的:1.了解PSK直序扩频通信系统的基本原理 2.掌握Systemview的使用 开发环境:PC机开发软件:Systemview Systemview简介 Systemview是一个用于现代工程与科学系统设计及仿的动态系统分析平台。从滤波器设计、信号处理、完整通信系统的设计与仿真。直到一般系统的数学模型建立等各个领域,systemview在友好且功能齐全的窗口环境下,为用户提供了一个精密的嵌入式分析工具。 利用systemview,可以构造各种复杂的模拟、数字、数模混合系统和各种多速率系统.可用于各种线性或非线性控制系统的设计和仿真。其特色是,利用它可以从各种不同角度、以不同方式,拉要求设计多种滤波器,并可自动完成滤波器的各种指标一如幅频待件(波特图)、传递函数、根轨迹图等之间的转换。它还

PSK调制解调实验报告标准范本

报告编号:LX-FS-A22577 PSK调制解调实验报告标准范本 The Stage T asks Completed According T o The Plan Reflect The Basic Situation In The Work And The Lessons Learned In The Work, So As T o Obtain Further Guidance From The Superior. 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

PSK调制解调实验报告标准范本 使用说明:本报告资料适用于按计划完成的阶段任务而进行的,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想的汇报,以取得上级的进一步指导作用。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 一、实验目的 1. 掌握二相绝对码与相对码的码变换方法; 2. 掌握二相相位键控调制解调的工作原理及性能测试; 3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.PSK 调制模块,位号A 3.PSK 解调模块,位号C 4.噪声模块,位号B

5.复接/解复接、同步技术模块,位号I 6.20M 双踪示波器1 台 7.小平口螺丝刀1 只 8.频率计1 台(选用) 9.信号连接线4 根 三、实验原理 相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控

PSK(DPSK)调制与解调资料讲解

P S K(D P S K)调制与解 调

实验题目——PSK(DPSK)调制与解调 一、实验目的 1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。 2、掌握产生PSK(DPSK)信号的方法。 3、掌握PSK(DPSK)信号的频谱特性。 二、实验内容 1、观察绝对码和相对码的波形。 2、观察PSK(DPSK)信号波形。 3、观察PSK(DPSK)信号频谱。 4、观察PSK(DPSK)相干解调器各点波形。 三、实验仪器 1、信号源模块 2、数字调制模块 3、数字解调模块 4、20M双踪示波器 5、导线若干 四、实验原理 1、2PSK(2DPSK)调制原理 2PSK信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形示意图如图所示。

2PSK 信号是用载波的不同相位直接去表示相应的数字信号而得出的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。如果这个参考相位发生变化,则恢复的数字信息就会与发送的数字信息完全相反,从而造成错误的恢复。这种现象常称为2PSK 的“倒π”现象,因此,实际中一般不采用2PSK 方式,而采用差分移相(2DPSK )方式。 2DPSK 方式即是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。如图为对同一组二进制信号调制后的2PSK 与2DPSK 波形。 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 数字信息(绝对码)PSK 波形 DPSK 波形 相对码 从图中可以看出,2DPSK 信号波形与2PSK 的不同。2DPSK 波形的同一相位并不对应相同的数字信息符号,而前后码元相对相位的差才唯一决定信息符号。这说明,解调2DPSK 信号时并不依赖于某一固定的载波相位参考值。只要前后码元的相对相位关系不破坏,则鉴别这个关系就可以正确恢复数字信息,这就避免了2PSK 方式中的“倒π”现象发生。同时我们也可以看到,单纯从波形上看,2PSK 与2DPSK 信号是无法分辨的。这说明,一方面,只有已知移相键控方式是绝对的还是相对的,才能正确判定原信息;另一方面,相对移相信号可以看成是把数字信息序列(绝对码)变换成相对码,然后再根据相对码进行绝对移相而形成。

PSK调制解调实验报告范文

PSK调制解调实验报告范文 一、实验目的 1. 掌握二相绝对码与相对码的码变换方法; 2. 掌握二相相位键控调制解调的工作原理及性能测试; 3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.PSK 调制模块,位号A 3.PSK 解调模块,位号C 4.噪声模块,位号B 5.复接/解复接、同步技术模块,位号I 6.20M 双踪示波器1 台 7.小平口螺丝刀1 只 8.频率计1 台(选用) 9.信号连接线4 根 三、实验原理 相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。相对移相键控

(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。 (一)PSK 调制电路工作原理 二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s 伪随机码、及其相对码、32KHz 方波、外加数字信号等。相位键控调制解调电原理框图,如图6-1 所示。 1.载波倒相器 模拟信号的倒相通常采用运放来实现。来自1.024MHz 载波信号输入到运放的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。为了使0 相载波与π相载波的幅度相等,在电路中加了电位器37W01 和37W02 调节。 2.模拟开关相乘器 对载波的相移键控是用模拟开关电路实现的。0 相载波与π相载波分别加到模拟开关A:CD4066 的输入端(1 脚)、模拟开关B:CD4066 的输入端(11 脚),在数字基带信号的信码中,它的正极性加到模拟开关A 的输入控制端(13 脚),它反极性加到模拟开关B 的输入控制端(12 脚)。用来控制两个同频反相载波的通断。当信码为“1”码时,模拟开关 A 的输入控制端为高电平,模拟开关A 导通,输出0 相载波,而模拟开关 B 的输入控制端为低电平,模拟开关B 截止。反之,当信码为“0”码时,模拟开关A 的输入控制端为低电平,模拟开关A 截止。而模拟开关B 的输入控制端却为高电平,模拟开关B 导通。输

相关文档
最新文档