尼尔森(knelson)选矿机详解

尼尔森(knelson)选矿机详解
尼尔森(knelson)选矿机详解

矿物加工工程专业《选矿学》

尼尔森(Knelson)选矿机详解

化学与化工学院

矿物加工工程0801班

第三组

Knelson选矿机详解

Knelson选矿机是一种高效的离心选矿设备。它适于从矿石及其它固体物料中回收金、银和铂族等贵金属,并已成功地用于其它一些较大比重矿物的选别。

拜伦·尼尔森发明了以其姓氏命名的“Knelson选矿机”,Knelson 选矿机最早的商业产品始于1978年。

一、Knelson选矿机基础理论

——微细粒沉降规律与离心加速度的关系

对微细粒而言,由于沉降速度下降,轻、重矿粒速度差减小,要在重力场进行微细矿粒分选,要么效率较低,要么极为困难甚至根本不可能。分选微细粒所要解决的关键问题是如何增加沉降速度差,加大处理量。在离心力场内回收微细粒颗粒,可强化分选效果,提高分选效能。

微细粒在离心力场中的沉降规律可用斯托克斯公式计算沉降末速:

式中:d —平均粒度,cm;ω—角速度,rad/s;μ—矿浆粘度,Pa;δ—颗粒密度,g/cm3;ρ—介质密度,g/cm3;r —颗粒的回

转半径,cm。

颗粒沿径向进行某段距离所需时间,可按下述关系计算:

式中:t —颗粒由半径r1处运动到r2处所需时间。

当处理微细粒级时,将斯托克斯公式代入上式中,得:

上式表明颗粒向器壁沉降的时间随ω2r的增大而缩短,因此,增大离心加速度可大大加速沉降过程。

一、Knelson选矿机结构及原理

1、基本结构

Knelson选矿机的分选机构是一个内壁带有反冲水孔的双壁锥,可理解为由两个可一同旋转的立式同心锥构成。外锥与内锥之间构成一个密封水腔。内锥的内侧有数圈沟槽,并有按一定设计排列的进水孔,叫流态化水孔;内锥称为富集锥。

设备的其余部分由给矿、排矿、供水(气)装置及驱动、自动控制系统和机架等组成。

2、工作原理

Knelson选矿机是基于离心原理的强化重力选矿设备。在高倍的强化重力场内,比重大和比重小的矿物的重力差别被极大地放大,这

使得轻重矿物之间的分离比自然重力场内更加容易;而特殊设计的物料床层保持结构,在具有专利技术的流态化水和干涉沉降的相互作用下,能够持续地保持松散状态。在上述条件下,重矿物颗粒能够取代轻矿物颗粒在选别床层中占据的位置而保留下来,轻矿物颗粒则作为尾矿排出,从而实现矿物颗粒按比重分选。

加拿大麦吉尔大学的凌竟宏和A. R. Laplante推导出,在斯托克斯定律范围内,矿物颗粒在Knelson选矿机内的瞬时径向沉降速度为:

式中:r ——球形固体颗粒在时刻的径向位置;

D ——球形固体颗粒的直径;

ρs ——固体颗粒的密度;

ρ——液体的密度;

μ——液体的粘度;

μ1 ——流态化水的径向速度;

ω——锥的角速度;

dr/dt——球形固体颗粒瞬时径向沉降速度。

从上式可以看出,当转数给定时,改变流态化水的速度,可改变矿粒离心沉降速度的大小。

该机在生产运行时,富集锥内的离心加速度可达60倍或更高的重力加速度,当矿浆给入富集锥底部时,矿浆在离心力的作用下被甩向富集锥的内侧壁,并沿着内壁向上运动,同时由富集锥的进水孔连

续向锥内注入水流使床层呈流态化。在离心力和反冲水力的共同作用下,单体金等重矿物颗粒能克服水的径向阻力,离心沉降或钻隙沉降在精矿床内。而脉石矿物因受离心力较小,难以克服反冲水力的作用,结果在轴向水流冲力和离心力的轴向分力共同推动下被排出富集锥成为尾矿。

三、Knelson选矿机适用物料及粒级

1、适用物料

Knelson选矿机现有两种类型产品,一种是间断排矿型,另一种是连续可变排矿(CVD)型,根据精矿产率大小不同,两类产品各自适用于不同的情况。一般以精矿产率0.1%为分界线,在分界线以下考虑用间断排矿型,反之则用连续可变排矿型。

间断排矿型选矿机排放周期取决于所处理矿石的性质、给矿量等,脉矿一般为1—4小时,砂矿一般为4—12小时。连续可变排矿型选矿机可连续排矿,并根据需要连续调节精矿产率,可在0—50%任意选择。间断排矿型Knelson选矿机适用于贵金属回收,包括金、银和铂族金属。其中最为广泛的应用是岩(脉)金、砂金及有色金属伴生金的回收;从镍铜硫化矿石中回收铂、钯等是近年来Knelson选矿机应用的又一大进展。连续可变排放型Knelson选矿机主要用来回收较大产率(一般大于0.5%)的有价组份。当目的矿物和脉石比重差大于1.5时,CVD型选矿机能使它们有效的分离。可应用于黑(白)钨矿、锡石、钽铁矿、铬铁矿、钛铁矿、金红石、氧化铁矿物和含金银的硫化物等较大比重矿物的富集,以及工业矿物除铁、粉煤的洗选

等。

除上述矿石之外,Knelson选矿机已在多家选矿厂被用来从含金浮选铜精矿等物料中分选出高品位的金精矿,以此提高金的冶炼厂净返(NSR)系数,增加经济效益。另外它还在非矿物资源回收方面开始得到应用。

2、给矿粒度和回收粒级

Knelson选矿机给矿粒度区间较宽,间断排矿型为0—6mm,连续排矿型为0—3.2mm。其回收粒级很宽,以金回收为例,+ 38μm为极易回收粒级,10—38μm为可回收粒级,- 10μm为较难回收粒级。在生产实践中,单体解离的金粒绝大多数为可回收粒级,因此这部分单体金较易回收。

四、Knelson选矿机优缺点

1、优点

(1)选矿富集比高,通常可达到1000—3000倍,精矿产率小,通常为0.02%—0.10%,精矿品位高,一般为1000—20000g/t,回收率比常规重选设备显著提高。

(2)单台没备处理固体矿量大,KC—XD70和KC—CVD64型设备处理能力可分别达到300—1000t/h和100—300t/h。

(3)是无污染、清洁的无需任何化学药剂的环境友好设备。

(4)设备运转率高,耗电少,易于操作管理,所须操作人员少,自动化程度高,设备日常维护量很低、生产成本低。

(5)设备占地面积小,易于融入改扩建选厂及新建选厂中的磨矿回路配置中。设置在选厂尾矿排矿点同收粒度大于0.02mm的硫化物、铁、锡、钨、铌、金、银、独居石,金虹石等比重大的其它金属或矿物。

(6)选别流程短,投资少,返本时间短,一般为1月至1年。

2、缺点

Knelson选矿机的主要缺点是只适用于分选贵金属矿,对于钨锡矿的细泥、铅锌矿等精矿产率高的有色金属矿的分选由于受其间断排矿及成本的限制而无法推广应用。

五、Knelson选矿机的应用

1、一次应用——是在浮选厂、炭浸厂及黄金“全重选”厂的一次磨矿回路中的应用。在浮选、炭浸厂,通常处理循环负荷或球磨排矿的15%—40%矿量;“重选”厂则要配合磨矿、分级脱水等作业,尽量加强重选强度。在浮选厂加装Knelson重选.通常回收率提高2%—6%,炭浆/炭浸厂通常提高1%—3%。基于Knelson技术的黄金“全重选”厂金总回收率70%—94%。

2、二次应用——是从浮选精矿、各种再磨回路、黄金焙烧/生物氧化厂、扫选摇床尾矿、浮选尾矿中等重选回收金或其它贵金属。从有色金属/贵金属(典型的是铜/金)选厂的浮选混合(或粗)精矿的再磨回路中重选回收金,国外已有多家大型矿山成功应用。这项技术将成为铜/金等大型有色矿山伴生贵金属选矿工艺发展趋势之一。目

前已有多家生物氧化厂安装Knelson回收氧化渣中的细粒金。常规细磨氰化厂、焙烧/生物氧化氰化厂,有很多情况也适合引入重选技术。

3、堆浸应用——在黄金矿山中,“堆浸”技术与“选厂”技术的联合了艺应用已取得巨大的成功。在堆浸厂中,加入Knelson重选对解决低品位矿石中的“粗颗粒”金问题是一个很好的选择,在国外已有成功的实践。

4、国内外应用情况——从2001年起到目前为止,Knelson选矿机在中国已经被较大规模地采用,应用的矿山规模为100—35000t/d 有色金属伴生贵金属(金、铂族金属)的大型矿山应用已经取得突破。截至2009年底,中国应用Knelson选矿机50多台套,其中有中国黄金集团、紫金集团、金川集团、招金集团、灵宝黄金股份公司、新疆有色集团、河南金渠黄金股份有限公司、内蒙古金陶股份有限公司等。

在国外,Knelson选矿机最早的商业产品始于1978年。到2008年为止,它已在70多个国家使用,据不完全统计,累计总安装台数已达3700多台套。连续排矿型CVDKnelson选矿机已经工业应用到钨锡、铬铁矿及含金硫化物选别、滑石除铁等。

Knelson公司在1998年曾对全球客户进行调查,以CD30为例,金精矿平均金品位为20949g/t,平均金回收率为31.76%,设备运转率96.89%.主要耐磨件使用寿命在13978~40000小时,备件消耗成本0.8美分/t。

六、Knelson选矿机分类

1、实验室Knelson离心选矿机

常用实验室Knelson选矿机的分选器直径为715cm。构造如下图1 所示。

离心选矿机的主要部件为聚氨酯制成的分选器。分选器内壁有五个环形槽沟,顶部槽沟直径为715cm,内壁倾角为15°。在运转时,中间环壁所产生的离心强度为60。其操作过程为:给料由振动给矿器(或手工)给入给料漏斗,适量添加给矿冲洗水。物料沿中空导管进入分选器底部,压力水由分选器外部水腔以与分选器旋转相反的方向切向给入。轻矿物随矿浆流由分选器上部圆周排出成为尾矿,重矿物则进入分选器内壁槽沟中。随着物料的不断给入,新进入槽沟的重矿物颗粒将不断取代原来占据着空间的轻矿物,因而精矿品位随着给入物料的增加将不断增高,在一定范围内不会导致回收率的明显降低。对于一定的物料,影响实验室Knelson离心选矿机操作的主要因素是压力松散水的大小及给矿速度。当物料给完后,关闭压力松散水,停止电机运转。取出分选器,将藏于槽沟中的精矿彻底冲洗出来并收集可能进入压力水腔中的少量物料合并为精矿。

目前,这种离心选矿机在加拿大成为一种可靠的小型设备来对金矿中可用重选回收的金作出评价。L ap lan te 教授研究组研究出了一套标准的方案和试验方法,为加拿大和其他国家提供了大量建厂设计和流程改造的评估数据,其结果在某种程度上可与混汞法相比拟(8~10)。

2、人工排精矿式Knelson离心选矿机

人工排精矿Knelson离心选矿机(如上图2所示) 适用于回收品位很低但密度很高的矿物。这种机子所产生的离心强度也是60。最大给矿粒度不应超过6mm,但目前大部分厂家都设有预先筛分作业,筛除约+ 2mm 粗粒级,筛下部分进入离心选矿机,该机对于给矿浓度没有严格要求,从很低的给矿浓度至70%固体均不会对分选结果造成明显影响。

表1人工排精矿式Knelson选矿机的规格和参数

Knelson离心选矿机可获得很高的富集比,如可高达500,而不对总回收率造成明显影响。人工排精矿式Knelson离心机是一种间断工作的设备,一般2~4h 排出一次精矿。排精矿时,必须先中断给矿(一般有另一台备用) 并停机,然后将分选器底部排矿口塞子拔掉,用高压水冲洗精矿至一个容器或沿管道直接输送至金精选车间。

Knelson离心选矿机一般安置在磨矿回路中,其原则流程如下图3 所示。球磨机排矿给入水力旋流器,旋流器溢流送至浸出或浮选作业。旋流器沉砂缩分出1/5 左右经过2.0mm 筛子预先筛分,筛下物料给入离心选矿机。离心选矿机尾矿返回水力旋流器。离心选矿机精矿送入专门的精选车间,用摇床精选后熔炼成粗金锭,然后集中进一步提纯。Knelson离心选矿机非常结实,很少需要维修。它只有一个转动部件——分选器,用聚氨酯制造,其他与水接触的部件用不锈钢加工而成。

3、中心排矿式Knelson离心选矿机

由于人工排精矿式离心选矿机有时遇到精矿排出困难的问题,一般需平行安装2 台。而且由于操作时间的延长将导致回收率的下降,于是研制了一种中心排矿式Knelson离心选矿机,如上图4所示。中心排矿式Knelson离心机可由计算机全面控制,在人工排矿式离心选矿机基础上有了三点主要改进:分选构形,位于分选器下方双重作用的轮鼓以及一个给矿导流装置,精矿的排放可在2m in 内自动完成。首先,给矿被反向导入水力旋流器,然后降低压力松散水量并降低分选器转速,最后将精矿冲洗出去,沿着精矿排出管道送至金精选车间。

4、连续排矿式Knelson离心选矿机

以上介绍的两种Knelson离心选矿机均为间断式排精矿的分选机,对于分选贵金属矿已能满足要求,这是由于处理贵金属时只产出产率很小的精矿。如果设想将Knelson离心机用于有色金矿和煤的分选,情形就大不相同,精矿产率将会成倍或数倍增加,连续排出精矿就成为一个关键问题。于是,该公司进一步研制了一种连续排矿式离心选矿机(Variable

Dscharge Model),如图5

所示。

连续排精矿式

Knelson选矿机用来进行

从煤中分选细粒硫化矿

物和灰分的半工业试验,

获得了良好结果。预计连续排矿式Knelson离心选矿机对于钨锡矿的细泥、铅锌矿等有色金属矿的选矿将具有潜力。

螺旋起重机设计说明书

1.设计方案确定与材料选择 1.1 结构设计方案 以往复扳动手柄,拔爪即推动棘轮间隙回转,小伞齿轮带动大伞齿轮、使举重螺杆旋转,从而使升降套筒获得起升或下降,而达到起重拉力的功能。 螺旋起重器(千斤顶)是一种人力起重的简单机械,主要用于起升重物。手动螺旋千斤顶主要包括底座、棘轮、圆锥齿轮副、托杯、传动螺纹副等部分。千斤顶最大起重量是其最主要的性能指标之一。千斤顶在工作过程中,传动螺纹副承 受主要的工作载荷,螺纹副工作寿命决定千斤顶使用寿命,故传动螺纹副的设计最为关键,其设计与最大起重量、螺纹副材料、螺纹牙型以及螺纹头数等都有关系。 手动螺旋千斤顶在满足设计性能和要求的前提下,从结构紧凑、减轻重量、节省材料和降低成本考虑。在给出千斤顶最大起重量、传动螺纹副材料及其屈服应力、螺 纹头数等基本设计要求和圆锥齿轮副等已定的情况下,可从螺纹副设计着手考虑,使螺纹副所用材料最少,即在满足设计性能的情况下,传动螺杆、螺母所占体积最少。 1.2 选择主要结构材料 1.螺杆材料要有足够强度和耐磨性,一般用45钢,经调质处理,硬度220~250HBS 2.螺母材料除要有足够强度外,还要求在与螺杆材料配合时摩擦因数小和耐磨,可用103ZCuAl Fe 、1032ZCuAl Fe Mn 等。

2. 滑动螺旋起重器的设计计算 2.1 耐磨性计算 耐磨性条件校核计算式为 []2F F p p A d h πμ =≤= (1) 式中,F ──螺杆所受轴向载荷,/N ; 2d ──螺纹中径,/ mm ; h ──螺纹工作高度,/ mm 。 h =0.5(d -D 1),d 为螺杆大径,D 1为螺母小径; μ──螺纹工作圈数,一般最大不宜超过10圈。 μ=P H ,H 为螺母高度,P 为螺纹螺距。 [ p ] ──螺旋副材料的许用压力,/MPa 。可取 []p =18~25MPa 。 对梯形螺纹,h =0.5P ,式(1)可演化为设计计算式: 8.02≥d ] [p F ? (2) MPa P 25~18][= 取MPa P 20][=

离心重选设备的评述_K_卡斯蒂尔

综述 离心重选设备的评述 K#卡斯蒂尔 摘要介绍了强化的重选设备,其中包括在线压力跳汰机、克尔瑟跳汰机、自动摇床、法尔肯选矿机和尼尔森选矿机。特别介绍了法尔肯选矿机和尼尔森选矿机与在线浸出反应器在金矿选矿中的应用。 关键词跳汰机法尔肯选矿机尼尔森选矿机金矿重选 重选复苏已有25年了,这一方面是由于经济和环境压力所致,另一方面则是技术进步的促使。特别是,加拿大尼尔森(Knelson)公司20世纪70年代末到80年代初成功研制出的强化的重选设备(EGC 设备)起了关键性作用。今天,可以根据矿石的矿物组成,广泛选择各种间断式和连续操作式的EGC重选设备。另一方面,将高倍G(重力加速度)的力用于连续排精矿的跳汰机中,如澳大利亚的杰科(Gekko)公司的在线压力跳汰机(InLing Pressure Jig)和克尔瑟跳汰机(Kelsey Jig)。杰科公司的E#L #格雷说,连续排精矿的跳汰机使以产率-回收率关系表示的可选性曲线最佳化。 正如法尔肯(Falcon)公司C#斯普克等人在最近的加拿大选矿年会上说的,虽然重选工艺已经取得长足进步,但还不能直接生产适合冶炼的精矿。特别是,摇床的效率受操作因素影响很大,操作不好的摇床会使金进入摇床尾矿中,或多次返回磨矿回路中。尼尔森说,在某些情况下,对很多选矿厂中的摇床回路调查结果表明,摇床的回收率低于50%,有时甚至低到20%,因而使重选回路的潜在优势丧失。为了寻求解决办法,EGC设备和跳汰机的制造商设计出带有筛子系统的跳汰机,它的回收率较高,还鼓励冶金工作者寻找更多具有简单、价廉和不用化学药剂等优点的重选技术。 强化的重选工艺不断地在现有选矿厂和新建选矿厂中获得应用。强化重选概念已被人们广泛所接受。供货商一方面扩大强化重选设备在其它矿物处理中的应用范围,另一方面对设计进行按比例放大,供大型选矿厂应用。 自动摇床的应用是改进获得细粒重选金精矿的传统摇床的一个方法。尼尔森销售公司副总裁D#科森认为,他们公司制造的自动摇床基本上把Gemeni型摇床按/价值设计0(Value-eng ineered)法则设计成多功能,不用人操作的全自动选矿设备。它不需要化学药剂,对实现金矿和铜金矿选矿厂的无氰化处理是一个好的解决方案。但是,更有效的方案仍是用氰化物的强化浸出。 获得专利权的ConSep ACACIA反应器在澳大利亚的Ang loGold.s Union Reefs矿山开发成功,用于处理该厂和尼尔森重选机精矿。但是,科森认为,这个反应器只适用于处理小批量的高品位金精矿。该反应器能最大限度地回收重选精矿中的金,目前,金的浸出率已超过98%。在安装了该反应器的几个选矿厂中,金的总回收率提高了。与EGC重选设备研制情况一样,早期制造的处理能力较小的反应器的成功应用促使对大型反应器需求的增加。一台CS2000型反应器于2001年12月进入加拿大纽蒙特的Golden Giantd矿山,2002年12月另一台CS6000型反应器在安大略省Dome-Kinross Gold Porcupine Joint Venture公司投入应用。Dome选矿厂有一个由5台KC-Cd36型的尼尔森选矿机平行配置的重选循环。该反应器投产后两个星期,金的总回收率达到99%。 在澳大利亚,杰科公司在1996年成功研制了在线浸出反应器(ILR)后,又推广应用强化浸出工艺。必要时,将在线浸出器改成转鼓型式,与杰科在线压力跳汰机和在线旋转分选机配套。它是目前唯一能够连续处理重选精矿的强力浸出装置。连续在线浸出反应器在澳大利亚、马来西来、加纳、南非、坦桑尼亚、马里和阿根廷等国成功应用,其处理量介于50 ~10t/h之间。 法尔肯选矿设备公司制造的处理量达到392t/ 4国外金属矿选矿2003.11

双梁桥式起重机设计说明书

摘要 本文首先介绍了起重机的概念和分类,以及在国外的发展概况。接着对桥式起重机的特点、分类以及构造进行了详细的叙述。并且对所设计的起升机构进行了三维建模和有限元分析。其中,本次设计的起重机为50t/20t双梁桥式起重机,主要用于各车间分段生产线和钢材堆场等处。桥式起重机本身作横向移动,车架上的绞车作纵向移动,吊在绞车上的吊钩作垂向移动,三个方向的运动的合成才能使起重机起作用。 本课题主要对50t/20t双梁桥式起重机的主起升机构、副起升机构、主起升机构卷筒组及滑轮组、副起升机构卷筒组及滑轮组、卷筒、滑轮、轴等进行设计。 设计过程中查阅了大量的国外的相关资料,所做的设计运用了大量的专业课程知识。通过确定传动方案,选择滑轮组和吊钩组,选择合适的钢丝绳,计算滑轮的主要尺寸,确定卷筒尺寸并验算其强度,选择合适的电动机、减速器、制动器和连轴器,使得起重设备运行平稳,定位准确,安全可靠,性能稳定。 关键字:桥式起重机;减速器;制动器;联轴器;卷筒

Abstract This paper firstly introduces the concept and classification of the crane, as well as the developments at home and abroad. Then the crane’s characteristics, classification and structure are analyzed in detail. And the design of the hoisting mechanism has 3D modeling and finite element analysis. Among them, the design of the crane is the 50t / 20t double beam bridge crane, mainly used in the workshop section production line and steel yard. Bridge crane itself is used to do lateral movement; winch frame is used to do longitudinal movement, the hook which hanging in the winch is used to do vertical movement, the movement in three directions makes the crane function well. The main topic of the 50t / 20t double girder overhead traveling crane is the main lifting mechanism, auxiliary lifting mechanism, the main lifting mechanism for drum group and a pulley block, auxiliary lifting mechanism of reel group and pulley, pulley shaft, drum, and other design. The process of the design was accessed to a large number of domestic and international relevant information; the design used a large number of professional courses. Firstly, by determining the transmission scheme, selecting the pulley and hook group, choosing the right wire rope pulley, calculating the main dimensions, determining the reel size and checking its strength, choosing the appropriate motor, reducer, brake and shaft

金矿的选矿方法

金矿选矿 根据矿物中金的结构状态和含金量,可将金矿床矿物分为金矿物、含金矿物和载金矿物三大类。所谓金的独立矿物,系指以金矿物和含金矿物形式产出的金,它是自然界中金最重要的赋存形式,也是工业开发利用的主要对象。 目前主流的选金工艺 一般都通过破碎机破碎-再进球磨机-粉碎,通过重选、浮选 提取出来精矿和尾矿,再通过化学方法,最后经过冶炼,其产品最终成为成品金。 该选矿工艺可理解为: 原矿进行第一段破碎后进入双层振动筛筛分 上层产品通过再破碎后与中层产品一同进行第二段破碎 第二段破碎产品返回合并第一段破碎产品又进行筛分。 筛分后的最终产品通过第一段球磨机进行磨矿并与分级机构构成闭路磨矿 其分级溢流经旋流器分级后进入第二段球磨机再磨 然后与旋流器构成闭路磨矿。 旋流器溢流首先进行优先浮选 其泡沫产品进行二次精选、三次精选最终成为精矿产品 经优先浮选后的尾矿经过一次粗选、一次精选、二次精选、三次精选、一次扫选的选别流程 一次精选的尾矿与一次扫选的泡沫产品一并进入旋流器进行再分级、再选别 二次精选与一次精选构成闭路选别 三次精选与二次精选构成闭路选别。 破碎及研磨 2 多采用颚式破碎机进行粗碎 采用标准型圆锥破碎机中碎 而细碎则采用短头型圆锥破碎机以及对辊破碎机。中、小型选金厂大多采用两段一闭路破碎 大型选金厂采用三段一闭路破碎流程。为提高产量及设备利用系数 选矿厂一般遵循多碎少磨原则 降低入磨矿石粒度。 重选 重力选矿是按矿物密度差分选矿石的方法 在当代选矿方法中占有重要地位。采用的主要设备有溜槽、摇床、跳汰机和短锥旋流器等。 浮选 我国80%的选金厂采用浮选法选金 产出的精矿多送往有色冶炼厂处理。由于氰化法提金的日益发展和企业为提高经济效益 减少精矿运输损失 近年来产品结构发生了较大的变化 多采取就地处理 当然也由于选冶之间的矛盾和计价等问题 迫使矿山就地自行处理 促使浮选工艺有较大发展 在选金生产中占有相当的重要地位。 化选

双梁桥式起重机课程设计说明书

目录 第1章绪论 (2) 第2章载荷计算 (6) 2.1 尺寸设计 (6) 2.1.1.桥架尺寸的确定 (6) 2.1.2.主梁尺寸 (6) 2.1.3.端梁尺寸 (6) 2.2 固定载荷 (7) 2.3 小车轮压 (8) 2.4 动力效应系数 (9) 2.5 惯性载荷 (9) 2.6 偏斜运行侧向力 (10) 2.6.1满载小车在主梁跨中央 (10) 2.6.2 满载小车在主梁左端极限位置 (11) 2.7扭转载荷 (11) 第3章主梁计算 (13) 3.1 内力 (13) 3.1.1垂直载荷 (13) 3.1.2水平载荷 (15) 3.2强度 (17) 3.3 主梁稳定性 (21) 3.3.1 整体稳定性 (21) 3.3.2 局部稳定性 (21) 第4章端梁计算 (22) 4.1 载荷与内力 (22) 4.1.1垂直载荷 (22) 4.1.2水平载荷 (24) 4.2疲劳强度 (27) 4.2.1 弯板翼缘焊缝 (27) 4.2.2 端梁中央拼接截面 (28) 4.3 稳定性 (29) 4.4 端梁拼接 (30) 4.4.1 内力及分配 (30) 4.4.2翼缘拼接计算 (32) 4.4.3腹板拼接计算 (33) 4.4.4端梁拼接接截面1-1的强度 (35) 第5章主梁和端梁的连接 (37) 第6章总结 (38) 参考文献 (40)

第1章绪论 桥式起重机是桥架在高架轨道上运行的一种桥架型起重机,又称天车。桥式起重机的桥架沿铺设在两侧高架上的轨道纵向运行,起重小车沿铺设在桥架上的轨道横向运行,构成一矩形的工作范围,就可以充分利用桥架下面的空间吊运物料,不受地面设备的阻碍。 桥式起重机广泛地应用在室内外仓库、厂房、码头和露天贮料场等处。桥式起重机可分为普通桥式起重机、简易梁桥式起重机和冶金专用桥式起重机三种。 普通桥式起重机一般由起重小车、桥架运行机构、桥架金属结构组成。起重小车又由起升机构、小车运行机构和小车架三部分组成。 起升机构包括电动机、制动器、减速器、卷筒和滑轮组。电动机通过减速器,带动卷筒转动,使钢丝绳绕上卷筒或从卷筒放下,以升降重物。小车架是支托和安装起升机构和小车运行机构等部件的机架,通常为焊接结构。 起重机运行机构的驱动方式可分为两大类:一类为集中驱动,即用一台电动机带动长传动轴驱动两边的主动车轮;另一类为分别驱动、即两边的主动车轮各用一台电动机驱动。中、小型桥式起重机较多采用制动器、减速器和电动机组合成一体的“三合一”驱动方式,大起重量的普通桥式起重机为便于安装和调整,驱动装置常采用制动器、减速器和电动机分散安装的驱动方式。 起重机运行机构一般只用两个主动和两个从动车轮,如果起重量很大,常用增加车轮的办法来降低轮压。当车轮超过四个时,必须采用铰接均衡车架装置,使起重机的载荷均匀地分布在各车轮上。 桥架的金属结构由主梁和端梁组成,分为单主梁桥架和双梁桥架两类。单主梁桥架由单根主梁和位于跨度两边的端梁组成,双梁桥架由两根主梁和两根端梁组成。主梁与端梁刚性连接,端梁两端装有车轮,用以支承桥架在高架上运行。主梁上焊有轨道,供起重小车运行。桥架主梁的结构类型较多比较典型的有箱形结构、四桁架结构和空腹桁架结构。 箱形结构又可分为正轨箱形双梁、偏轨箱形双梁、偏轨箱形单主梁等几种。正轨箱形双梁是广泛采用的一种基本形式,主梁由上、下翼缘板和两侧的垂直腹

20吨起重机单梁设计说明书

20吨起重机单梁设计说明书 1.设计规范及参考文献 中华人民共和国国务院令(373)号《特种设备安全监察条例》 GB3811—2008 《起重机设计规范》 GB6067—2009 《起重机械安全规程》 GB5905-86 《起重机试验规范和程序》 GB/T14405—93 《通用桥式起重机》 GB50256—96 《电气装置安装施工及验收规范》 JB4315-1997 《起重机电控设备》 GB10183—88 《桥式和门式起重机制造和轨道安装公差》 JB/T1306-2008 《电动单梁起重机》 GB164—88 《起重机缓冲器》 GB5905—86 《低压电器基本标准》 GB50278-98 《起重设备安装工程及验收规范》 GB5905—86 《控制电器设备的操作件标准运动方向》 ZBK26008—89 《YZR系列起重机及冶金用绕线转子三相异步电动机技术条件》2.设计指标 2.1设计工作条件 ⑴气温:最高气温40℃;最低气温-20℃ ⑵湿度:最大相对湿度90% (3)地震:地震基本烈度为6度 2.2设计寿命 ⑴起重机寿命30年 ⑵电气控制系统15年 ⑶油漆寿命10年 2.3设计要求 2.3.1 安全系数 2.3.1.1钢丝绳安全系数n≥5 2.3.1.2结构强度安全系数

载荷组合Ⅰ n≥1.5 载荷组合Ⅱ n≥1.33 2.3.1.3抗倾覆安全系数n≥1.5 2.3.1.4 机构传动零件安全系数 n≥1.5 2.3.2钢材的许用应力值(N/mm2) 表1

[σs]-钢材的屈服点; [σ]-钢材的基本许用应力; [τ]-钢材的剪切许用应力; [σc]-端面承压许用应力; 2.3.3螺栓连接的许用应力值(N/mm2) 10.9级高强度螺栓抗剪[τ]=350 2.3.4焊缝的许用应力值(N/mm2) 对接焊缝: [σw] = [σ] (压缩焊缝) [σw] = [σ] (拉伸1、2级焊缝) [σw] = 0.8[σ] (拉伸3级焊缝) [τw]= [σ]/21/2(剪切焊缝) 角焊缝: (拉、压、剪焊缝) [τw]= 160(Q235钢)200(Q345钢)2.3.5起重机工作级别: 利用等级 U5 工作级别 A4 机构工作级别为 M5 3.设计载荷 3.1竖直载荷

尼尔森选金机

[导读]随着矿业的迅猛发展,世界各国对资源利用率和环境污染问题倍加关切,这就向选矿专家提出了一个新的课题-研制效率高、无污染的选矿工艺及其设备。文章通过“前言,尼尔森选矿机构造、分选原理和过程、工艺参数”等文字内容,以及“尼尔森选矿机构造、分选锥环沟断面”插图,“半连续排矿工业型尼尔森选矿机的工艺参数”插表,介绍了“尼尔森选矿机”。本文可作为与“尼尔森选矿机”有关从业人员的技术指导,亦可为矿业企业行政、技术管理人员提供参考。 一、前言 随着矿业的迅猛发展,世界各国对资源利用率和环境污染问题倍加关切,这就向选矿专家提出了一个新的课题-研制效率高、无污染的选矿工艺及其设备。 重力选矿法是一种传统的选矿方法,它无需添加任何化学试剂,具有无污染的优点。其缺点或者是富集比不高,精矿质量满足不了冶炼的需求(例如跳汰、溜槽、重介质选矿等);或者是生产能力小(例如摇床),这些缺点制约了重选的发展和应用领域的扩大。 在这一新形势下,加拿大拜伦·尼尔森(Byron Knelson)先生把用离心方法产生的“强化重力”(目的是扩大轻重矿物之间的比重差)和添加反冲水松散重矿物床层的方法有机结合起来,研制成功以其姓氏命名的“尼尔森选矿机”。他成功解决了多种离心选矿机存在的重矿物床层迅速压死,没有足够的分选空间和分选时间的问题,金的富集比由常规重选设备的20~100提高到1000~5000;而且处理能力也很大,最新的70英寸尼尔森选矿机达到650t/h·台。由于它吸取了常规重选设备的精华,消除了其缺点,并融入了许多独特的专利构思,理所当然地受到世界各国的青睐。自1978年投入工业应用后,至今已有加拿大、澳大利亚、南非、俄罗斯等70多个国家使用,累计安装2700多台套。我国山东尹格庄金矿、河南金渠金矿、山西繁峙金矿等也已得到成功应用。 二、尼尔森选矿机构造、分选原理和过程、工艺参数 (一)尼尔森选矿机构造 该机由分选锥、给矿管、排矿管、驱动装置、供水装置、自动控制系统等部件组成,把它们组合固定在一个机架上,构成一台完整的选矿设备(图1)。该机的核心部件是分选旋锥,它由高耐磨的聚氨酯铸成,里面有从锥的底部到顶部直径逐渐增大的环沟,环沟里布有流态化水孔,其数量、尺寸、位置是根据大量的研究成果设计出来的。分选锥外还有一个同心的外壳,外壳与锥之间的空间构成水腔。 图1 尼尔森选矿机构造图 1-分选锥;2-矿浆分配盘;3-给矿管; 4-排矿锥;5-水腔;6-精矿排出管 (二)分选原理

桥梁式集装箱起重机设计

优秀设计 XXXX大学 毕业设计说明书 学生姓名:学号: 学院: 专业: 题目:桥梁式集装箱起重机设计 指导教师:职称: 职称: 20**年12月5日

目录 前言 (2) 一主要设计内容及参数 (4) 二主梁结构设计 (5) 三小车设计 (7) 四起吊机构设计 (12) 五支架设计 (14) 设计小结 (15) 参考文献 (16)

前言 起重机被喻为“巨人之臂”,是广泛用于国民经济各部门进行物质生产和装卸搬运的重要设备。起重机的设计制造,从一个侧面反映了国家的工业现代化水平。我国起重机制造业奠基于20世纪50年代。70年代以来,起重机的类型、规格、性能和技术水平获得很大的发展。近年来在物流和工业企业发展的带动下,起重机行业进入飞速发展时期。 起重机主要分为桥梁式、悬臂式、塔式、龙门式、拉索式、液压伸缩臂式等形式。本设计以桥式双梁单小车集装箱起重机为例,介绍起重机的设计思路、设计内容以及设计方法。 起重机设计主要根据客户要求,在符合国家标准及机械工业标准中对起重机的要求下进行设计。设计方案的选择主要通过与客户沟通取得一致意见后确定,设计内容主要包括在起重机的实际工作环境下确定起重机的最大额定载荷、非正常载荷(如冲击载荷,风力载荷、震动载荷等)、操纵形式、使用寿命、检修方式以及安全等级等;确定起重机主要零部件的选材以及机加工和材料处理的方法;确定起重机的工作级别;确定其主要受力梁的截面形式、截面大小以及梁的材料选择和加工方法。由于桥梁式起重机体积和质量都比较大,所以在设计过程中还应考虑起重机的运输方案和安装方法。

一主要设计内容及参数 1、起重机首先要确定的是工作级别 本设计的起重机用于集装箱生产制造或物流行业。 起吊件为生产下线的集装箱,或物流行业待装货的集装箱,所以都是空箱。起吊重量为5T 根据起重机行业标准,不管是集装箱生产行业还是物流行业都是生产节奏比较快的,因此该起重机的工作级别定为A5级,起吊机构工作级别为M5。 2、根据以上所规定级别设置设计内容及参数 a.主梁结构 主梁涉及到的主要设计内容或参数主要有:主梁的截面形式、截面大小、所用材料、制作方法、主梁上平面的平面度、侧面的平面度和垂直度、主梁应该具有的上拱度,还有主梁上的轨道安装等等。 b.支架结构 支架需要设计的主要内容和参数包括:截面形式、截面大小、使用材料、制作方法、支腿的垂直度误差、支腿与地面的连接方式等等。 c.小车机构 小车机构要设计的主要内容和参数包括:小车架设计;起吊机构设计; 小车行走机构设计。根据起吊重量设计小车架截面;根据所需要元件的安装位置设计小车架的结构;根据工作级别设计行走机构中电机的功率和类型; 根据起吊高度确定卷筒的直径和长度;根据工作级别确定主电机的功率以及减速机的型号。确定其他一些元件的型号。 d.控制机构 控制机构主要设计其控制室的制作和安装、控制电路的安装、进出控制室的方法。控制室的制作和安装应符合起重机行业标准中的相关内容;控制电路属于电气范畴在此不予讨论。 f.安装调试 根据起重机行业标准规定,起重机在生产完备后需要在本厂安装调试,合格后方能出厂。调试的主要内容有小车的运行情况;司机室的视野状况和温度;在1.25倍额定起重量下把小车开到中跨,持续30分钟,卸载后主梁不得有永久变形,主梁和其它部件上的油漆不得有剥落现象,小车架不能有永久变形。

起重机小车设计说明书

机械课程设计说明书 题目:50/10吨通用桥式起重机小车设计 班级:机自041218 姓名: 学号:200422060

目录 设计任务书-----------------------------------------------------------------------------------------------1 概述------------------------------------------------------------------------------2第1章小车主起升机构计算-------------------------------------------------------------7 1.1 确定传动方案,选择滑轮组和吊钩组---------------------------------7 1.2选择钢丝绳-------------------------------------------7 1.3确定卷筒尺寸并验算强度--------------------------------8 1.4初选电动机-------------------------------------------10 1.5选用标准减速器---------------------------------------11 1.6 校核减速器输出轴强度--------------------------------------------------11 1.7 电动机过载验算和发热验算--------------------------------------------11 1.8选择制动器--------------------------------------------12 1.9选择联轴器-------------------------------------------13 1.10验算起动时间-----------------------------------------13 1.11验算制动时间-----------------------------------------14 1.12高速轴计算------------------------------------------15 第2章小车副起升机构计算------------------------------------------------------------17 2.1 确定传动方案,选择滑轮组和吊钩组--------------------------------17 2.2钢丝绳的选择------------------------------------------17 2.3确定卷筒尺寸并验算强度--------------------------------18 2.4初选电动机-------------------------------------------21 2.5选用标准减速器---------------------------------------21 2.6校核减速器输出轴强度----------------------------------22 2.7 电动机过载验算和发热验算-------------------------------------------22 2.8选择制动器--------------------------------------------23 2.9选择联轴器-------------------------------------------23 2.10验算起动时间-----------------------------------------24 2.11验算制动时间-----------------------------------------25 2.12高速轴计算------------------------------------------25 第3章小车运行机构计算-----------------------------------------------------------------------27

起重机小车设计说明书[参考样本]2008汇总

机械课程设计说明书 题目:32/5吨通用桥式起重机小车设计 班级:机自0 218 姓名: 学号:200 060

目录 设计任务书-----------------------------------------------------------------------------------------------1 第1章概述------------------------------------------------------------------------------2 第2章总体设计------------------------------------------------------------------------------2 2.1 总体设计方案---------------------------------------------------------7 2.2 四连杆变幅臂架系统运动学设计---------------------------------7 2.3 总体尺寸规划----------------------------------------------------7第1章主起升机构计算-------------------------------------------------------------7 1.1 确定传动方案,选择滑轮组和吊钩组---------------------------------7 1.2选择钢丝绳-------------------------------------------7 1.3确定卷筒尺寸并验算强度--------------------------------8 1.4初选电动机-------------------------------------------10 1.5选用标准减速器---------------------------------------11 1.6 校核减速器输出轴强度--------------------------------------------------11 1.7 电动机过载验算和发热验算--------------------------------------------11 1.8选择制动器--------------------------------------------12 1.9选择联轴器-------------------------------------------13 1.10验算起动时间-----------------------------------------13 1.11验算制动时间-----------------------------------------14 1.12高速轴计算------------------------------------------15 第2章副起升机构计算------------------------------------------------------------17 2.1 确定传动方案,选择滑轮组和吊钩组--------------------------------17 2.2钢丝绳的选择------------------------------------------17 2.3确定卷筒尺寸并验算强度--------------------------------18 2.4初选电动机-------------------------------------------21 2.5选用标准减速器---------------------------------------21 2.6校核减速器输出轴强度----------------------------------22 2.7 电动机过载验算和发热验算-------------------------------------------22 2.8选择制动器--------------------------------------------23 2.9选择联轴器-------------------------------------------23 2.10验算起动时间-----------------------------------------24 2.11验算制动时间-----------------------------------------25 2.12高速轴计算------------------------------------------25 第3章小车运行机构计算-----------------------------------------------------------------------27 3.1 确定机构传动方案----------------------------------------------------------27 3.2 选择车轮与轨道并验算其强度------------------------------------------28 3.3 运行阻力计算--------------------------------------------------------------29 3.4 选电动机--------------------------------------------------------------------30 3.5 验算电动机发热条件-----------------------------------------------------30 3.6 选择减速器------------------------------------------------------------------31 3.7 验算运行速度和实际所需功率----------------------------------------31

-贵金属金的选矿、提取及浸出工艺的研究-

贵金属金的选矿、提取及浸出工艺的研究 摘要:主要介绍了国内贵金属黄金选矿工艺(包括破碎、磨矿、重选、浮选等)的最新进展、强化氰化浸出(包括氧化剂、氨氰和加温加压、新型设备强化浸出等)和堆浸工艺、非氰化提取金、难处理矿石的预处理技术。 一、黄金现代选矿技术(破碎、磨矿、重选、浮选等)的最新进展 黄金选冶技术的研究和发展方向主要包括:对成熟的技术工艺进行深入研究与改进,研究开发新工艺、新技术、新设备和新药剂等。国内外黄金选冶行业在理论研究、工艺技术、新设备、新药剂的使用等方面近十几年来取得了令人瞩目的进展。 破碎磨矿费用约占选冶厂总成本的40%一60%。因此,如何提高破磨效率,降低能耗,减少成本,是促进破碎磨矿技术向前发展的关键。“多碎少磨”是粉碎工程领域普遍公认的节能降耗的重要途径,国内外黄金矿山破碎设备都朝着大破碎比、超细碎等方向发展,大多数选矿厂均降低了入磨粒度,不同程度地提高了球磨机的处理能力和磨矿效率。西澳大利亚研制出的Wescone破碎机破碎比更大,能取替典型的两段磨矿回路中的第一段磨矿。德国Krupp—polysius和KHD Humboldt公司研制的高压辊磨机,不仅破碎比高,所需功率比旋转磨机低,能达到更好的解离效果。近几年,振动磨矿机(有效冲击能达到磨机容积的50—60%)。、Krupp Polysius双向旋转球磨机(工作效率可达99.5%)、中心驱动智能节能磨机、立式磨机、塔式磨机旧1等相继研制成功,获得了很好的效果。 重选是砂金矿石的传统选矿方法,也是目前含有游离金、品位极低的物料进行粗选的唯一方法。例如,赖切特多层圆锥选矿机和螺旋选矿机,前者已在南非和澳大利亚的一些选厂成功应用,最具代表性的是加拿大Lee Mar工业公司研制开发的尼尔森选矿机(Knelson),与其它设备相比,对几微米的粒级来说,能够获得更高的金回收率,生产能力为40t/h,寓集比可达1 000。津巴布韦一矿山使用该设备后,氰化尾渣中可溶金的含量从o.25 g/t降至0.12 g/t。 浮选新药剂主要研究高效、低用量、低成本、无毒或者少毒混合药剂”。例如,俄罗斯采用N-N一二乙基氰乙基二硫代氨基甲酸盐新药剂代替黄药浮选辉铜矿和金,大幅度减少了黄铁矿抑制剂的用量。法国采用钾黄药和巯基苯并噻唑浮

尼尔森(knelson)选矿机详解

矿物加工工程专业《选矿学》 尼尔森(Knelson)选矿机详解 化学与化工学院 矿物加工工程0801班 第三组

Knelson选矿机详解 Knelson选矿机是一种高效的离心选矿设备。它适于从矿石及其它固体物料中回收金、银和铂族等贵金属,并已成功地用于其它一些较大比重矿物的选别。 拜伦·尼尔森发明了以其姓氏命名的“Knelson选矿机”,Knelson 选矿机最早的商业产品始于1978年。 一、Knelson选矿机基础理论 ——微细粒沉降规律与离心加速度的关系 对微细粒而言,由于沉降速度下降,轻、重矿粒速度差减小,要在重力场进行微细矿粒分选,要么效率较低,要么极为困难甚至根本不可能。分选微细粒所要解决的关键问题是如何增加沉降速度差,加大处理量。在离心力场内回收微细粒颗粒,可强化分选效果,提高分选效能。 微细粒在离心力场中的沉降规律可用斯托克斯公式计算沉降末速: 式中:d —平均粒度,cm;ω—角速度,rad/s;μ—矿浆粘度,Pa;δ—颗粒密度,g/cm3;ρ—介质密度,g/cm3;r —颗粒的回

转半径,cm。 颗粒沿径向进行某段距离所需时间,可按下述关系计算: 式中:t —颗粒由半径r1处运动到r2处所需时间。 当处理微细粒级时,将斯托克斯公式代入上式中,得: 上式表明颗粒向器壁沉降的时间随ω2r的增大而缩短,因此,增大离心加速度可大大加速沉降过程。 一、Knelson选矿机结构及原理 1、基本结构 Knelson选矿机的分选机构是一个内壁带有反冲水孔的双壁锥,可理解为由两个可一同旋转的立式同心锥构成。外锥与内锥之间构成一个密封水腔。内锥的内侧有数圈沟槽,并有按一定设计排列的进水孔,叫流态化水孔;内锥称为富集锥。 设备的其余部分由给矿、排矿、供水(气)装置及驱动、自动控制系统和机架等组成。 2、工作原理 Knelson选矿机是基于离心原理的强化重力选矿设备。在高倍的强化重力场内,比重大和比重小的矿物的重力差别被极大地放大,这

桥式起重机主梁设计说明书99082

桥式箱型起重机主梁设计 说明书 姓名:X X 学院:冶金与材料工程学院 专业班级:XX 指导教师:XX 日期:2012年1月 前言

桥式起重机是横架于车间、仓库和料场上空进行物料吊运的起重设备。由于它的两端坐落在高大的水泥柱或者金属支架上,形状似桥。桥式起重机的桥架沿铺设在两侧高架上的轨道纵向运行,可以充分利用桥架下面的空间吊运物料,不受地面设备的阻碍。在室内外工矿企业、钢铁化工、铁路交通、港口码头以及物流周转等部门和场所均得到广泛的运用,是使用范围最广、数量最多的一种起重机械。 本书主要介绍了跨度28m,起重量50t的通用桥式起重机箱型梁的设计生产过程,同时对车间的布置情况作了较为粗略的参考设计。设计过程较为详细地考虑了实际生产与工作中的情况。 本书编写过程中得到XXX教授、XXX教授等老师和同学的指导和帮助,在此一并表示衷心的感谢。由于作者实际经验不足,理论知识有限,书中错误在所难免,敬请读者多多指正! 作者2012年1月于XX学院 目录 第一章箱型梁式桥架结构的构造及尺寸 (1)

一、桥架的总体构造 (1) 二、主梁的几何尺寸 (2) 1、梁的截面选择和验算 (2) 2、箱形主梁截面的主要几何尺寸 (3) 三、主梁的受力分析 (4) 1、载荷计算 (4) 2、强度验算 (5) 3、主梁刚度的验算 (8) 4、焊缝的设计和验算 (10) 第二章主梁的制造工艺过程 (12) 一、备料 (12) 二、下料 (13) 三、焊接 (13) 四、检验与修整 (18) 第三章主梁焊接车间设计 (21) 一、焊接生产的过程及特点 (21) 二、焊接生产组成部分的确定 (22) 三、车间平面布置 (23) 结束语 (25) 参考文献 (26)

塔式起重机设计说明书讲解

设计题目:QTZ40塔式起重机总体及塔身的优化设计设计人: 设计项目计算与说明结果 前言 塔式起重机概述 塔式起重机发展情况 第1章前言 1.1 塔式起重机概述 塔式起重机是一种塔身竖立起重臂回转的起重机械。在工业与民用建筑施工中塔式起重机是完成预制构件及其他建筑材料与工具等吊装工作的主要设备。在高层建筑施工中其幅度利用率比其他类型起重机高。由于塔式起重机能靠近建筑物,其幅度利用率可达全幅度的80%,普通履带式、轮胎式起重机幅度利用率不超过50%,而且随着建筑物高度的增加还会急剧地减小。因此,塔式起重机在高层工业和民用建筑施工的使用中一直处于领先地位。应用塔式起重机对于加快施工进度、缩短工期、降低工程造价起着重要的作用。同时,为了适应建筑物结构件的预制装配化、工厂化等新工艺、新技术应用的不断扩大,现在的塔式起重机必须具备下列特点: 1.起升高度和工作幅度较大,起重力矩大。 2.工作速度高,具有安装微动性能及良好的调速性能。 3.要求装拆、运输方便迅速,以适应频繁转移工地的需要。 QTZ40型自升式塔式起重机,其吊臂长40米,最大起重量4吨,额定起重力矩40吨米。是一种结构合理、性能比较优异的产品,比较目前国内外同规格同类型的塔机具有更多的优点,能满足高层建筑施工的需要,可用于建筑材料和构件的调运和安装,并能在市内狭窄地区和丘陵地带建筑施工。整机结构不算太大,可满足中小型施工的要求。 本机以基本高度(独立式)30米。用户需高层附着施工,只需提出另行订货要求,即可增加某些部件实现本机的最大设计高度100米,也就是附着高层施工可建高楼32层以上。 1.2 塔式起重机发展情况 塔式起重机是在二次世界大战后才真正获得发展的。战后各国面临着重建家园的艰巨任务,浩大的建筑工程量迫切需要大量性能良好的塔式起重机。欧洲率先成功,1923年成

门式起重机毕业设计说明书

西南交通大学峨眉校区 毕业设计说明书 论文题目:门式起重机设计 —起升机构与小车运行机构设计 系部:机械工程系 专业:工程机械 . 班级:工机二班 学生姓名:毛明明 学号:20106991 指导教师:冯鉴

目录 毕业设计说明书 (1) 3.2钢丝绳的计算 (5)

第一章门式起重机发展现状 门式起重机是指桥梁通过支腿支承在轨道上的起重机。它一般在码头、堆场、造船台等露天作业场地上。当门式起重机的小车运行速度大、运行距离长、生产效率高时,常改称为装卸桥。港口上常用的机型有:轨道式龙门起重机、轮胎式龙门起重机、岸边集装箱起重机、桥式抓斗卸船机等。 当桥架型起重机的跨度特别大时,为了减轻桥架和整机的自身质量,常改用缆索来代替桥架,供起重小车支承和运行之用。 起重机械是用来升降物品或人员的,有的还能使这些物品或人员在其工作范围内作水平或空间移动的机械。取物装置悬挂在可沿门架运行的起重小车或运行式葫芦上的起重机,称为“门架型起重机”。 进入21世纪以来,我国的造船工业进入了快速发展的轨道,各大主力船厂承接的船舶吨位从几万吨发展到十几万吨,年造船能力也普遍跃上百万吨水平,造船模式也相继从船台造船转向船坞造船,大型造船门式起重机的需求也大幅度增加。 随关中船长兴、中船龙穴、青岛海西湾、舟山金海湾、靖江新时代、太平洋集团扬州大洋等大型国营和民营造船基地的建设,大型造船门式起重机也进入了一个大型集中建造的黄金时期,起重机的提升能力从600t上升到900t,跨度从170米增加到239米,已经建成的和在建的大型造船门式起重机有几十台。门式起重机作为一种重要的物料搬运设备,在造船领域中的重要作用日益显现。随着经济的发展,它不仅在国民经济中占有重要的位置,而且在社会生产和生活的领域也不断扩大。从20纪后期开始,国际上门式起重机的生产向大型化、多功能化、专用化和自动化的方向发展。

相关文档
最新文档