氮气在油田生产中的应用

氮气在油田生产中的应用
氮气在油田生产中的应用

收稿日期:2004-10-25;改回日期:2005-04-19 作者简介:沈光林(1958-),男,副研究员,硕士研究生,毕业于大连理工大学化学工程专业,现从事气体膜分离的应用研究和技术开发,完成国家级课题3

项,已发表学术论文60余篇、申请专利10多项。

文章编号:1006-6535(2005)04-0100-03

氮气在油田生产中的应用

沈光林

(中国科学院大连化学物理研究所膜技术国家工程研究中心,辽宁 大连 116023)

摘要:膜法富氮在油田中应用广泛,可用于包括稠油和低渗透油藏在内的各种油田提高采收率、钻井、完井等,一般均具有明显的综合效益。特别是移动式制氮系统的诞生,极大地增强了膜法富氮的市场竞争力。

关键词:膜法富氮;移动式制氮系统;采收率;钻井;完井;油田中图分类号:TE357 文献标识码:A

前 言

由于氮气与油、水互不相溶,而且来源广,是气体非混相驱提高采收率的重要气源。所以氮气在油田系统中的应用非常广泛[1~15],可用于二、三次采油,油气井保护,保持压力和储存气体,钻井平台的惰气保护,管路及设备的吹扫,易燃、易爆物品运输时的保护气等。随着膜法制氮技术的日趋成熟,特别是移动式制氮系统的诞生,更加适应灵活多变的应用现场,而且具有投资少、流程简单、膜组件寿命长且免维护、能耗低、体积小、露点低、可靠性强、操作弹性大、能适应各种恶劣环境、开启迅速、浓度和流量可在线监控等特点。同时,所用原料是取之不尽、用之不竭的空气,所以采用膜法可以得到价廉、洁净、质量稳定、易于控制的富氮空气。氮气浓度一般在9310%~9919%范围内,如果和其它技术集成可满足任意所需的浓度,极大地增强了膜法富氮的市场竞争力。

1 提高采收率

随着油田的不断开发,油田利用天然和人工能量开采的阶段完成后,将进入提高油田采收率的三

采阶段。三采的方法主要有热力驱、气驱和化学驱等。就多数油田而言,气驱应用较多,是国内、外采收率研究的发展趋势。气驱提高采收率方法的发展趋势是非烃气替代烃类气,其中应用最多、效果最好的是二氧化碳。但由于二氧化碳来源有限,容易产生腐蚀等问题,故氮气的应用越来越受到重视。

111 稠油蒸汽吞吐井注氮

蒸汽吞吐是增加稠油产量经济而有效的一种方法,然而由于油稠、生产压差小、排液难度大、蒸

汽与稠油之间存在密度差、随周期增加而增加的地层水、系统热损失加大等诸多不利的客观因素,造成注汽效果差,同时采收率相对低。稠油蒸汽吞吐井注氮,即在注汽的同时,往油套环空注入氮,既保护套管,降低井筒热损失,提高井底蒸汽干度,提高油井的回采水率,简化生产程序和管柱,降低费用,又减少作业对地层的污染和注汽量,还增产并延长有效期等。辽河油田[1]做过效益对比,每周期增加10×104m 3氮气,产生费用超过8×104元;可减少井下隔热管、封隔器、伸缩管和一次小修作业费用,合计4×104元;减少注汽量700t ,节约费用5×104多元;平均增油227t ,创效益2113×104元,提高阶段采收率3%~5%,投入产出比高达1∶315。新疆克拉玛依油田[2]现场试验表明,油井生

产时率由注氮前的3213%提高到注氮后的7818%;平均单井产油量比上个周期提高218t ,生产天数延长51d ,油汽比提高0105~0137,回采水率提高12%~141%。此外,与同时注汽的井相比较,注氮气井平均周期产油量达到1026t ,周期生产天数293d ,单井日产油为35t ,油汽比0145,回采水率104%,而只注蒸汽井平均周期产油238t ,周期生产天数81d ,单井日产油29t ,油汽比0111,回采水率只有4714%,各项生产指标远远低于注氮井;油层吸汽剖面得到明显改善;经济效益显著,实施注氮试

第12卷第4期2005年8月 特种油气藏S pecial Oil and G as Reserv oirs

V ol 112N o 14

Aug 12005

验16井次,累计增油4158t,获效益400多万元,而投入不到50×104元,投入产出比高达1∶9。

胜利单家寺油田[3]自1984年开始蒸汽吞吐开采以来,油藏底水已上升了近40m,综合含水为9016%,采出程度为12176%,采油速度为0125%。1998年底向地层注汽的同时注入采用膜技术得到的氮气,4口注氮井有效率为100%。现场试验表明,效果较好的井平均含水降低1019%,日增油517t,累计增油186719t,投入产出比为1∶214,经济效益达13016×104元。

112 氮气泡沫调剖技术

对于稠油注汽油井,油层剖面吸汽不均匀,一些吸汽不好的油层,难以动用,有的层位层间连通,汽窜严重,使注汽开采的效果变差。利用氮气作为磺酸盐发泡剂的充填质,能增加泡沫强度,延长发泡时间,封堵效果好,使油层的吸汽剖面得到改善,从而可以动用吸汽差的油层,改善注气效果,增大驱油面积。对某些注水效果差、成本高又难于汽驱或者汽驱效果差的油藏,采用氮气泡沫调剖技术是最有效、最主要的途径。汽驱初期应尽早采用氮气泡沫调剖技术,越早实施,效益越好。锦州采油厂试验表明,仅水驱时的驱油效率为32%,加氮气后达52%,再加泡沫剂,则可达到70%。共注气7014×104m3,注水4117×104m3,添加泡沫剂360t,增产原油9540t,投入产出比高达1∶315,生产井平均含水率由9116%降至7115%。

美国Miday-Sunset油田[4]的C26区实施了单井网氮气泡沫调剖试验,观测到的储层纵向和横向蒸汽驱效果都有了相当大的改善,这直接归因于深层泡沫的存在,试验期间共增油4293m3。汽驱工艺是稠油蒸汽吞吐后期比较成熟的接替技术,根据汽驱工艺的特点,它的实施必须配套氮气泡沫调剖技术[1]。

113 低渗透油藏注氮技术

对特低渗透油藏,氮驱采油是可行的[5],我国15%以上是低渗透油藏,注氮开发比注水效果好,美国从20世纪80年代初期开始推广低渗透油藏注氮技术,已有30多个油田在应用,年注氮量近2×104m3,使原油产量增加100多万吨。中原油田进行单井注氮试验[6],结果原油增幅达5310%,采收率可提高810%,投入产出比为1∶4184。华北雁翎油田在大量研究基础上认为氮是唯一可用的气源,通过注氮可以提高采收率5%~8%,平均日产油量由注气前的512t增到3015t,含水由注气前的97%下降到54%[7,8]。

氮气气举排液技术最为成熟,它成功解决了低渗油藏排液困难的问题[4],在新井诱喷、测试求产、残酸、压裂液返排等工艺上应用效果显著,与连续油管配合,联合气举可以解决卡封井、复杂井的排液工作,已成为油田排液的主要手段,利用膜技术现场合成氮气进行气举将成为最佳方案[9]。

114 二次采油中的应用

11411 保持压力

氮气用来保持井下压力,以免随时间推移自然压力耗尽后油井会减产。气体冷凝系统的压力必须保持在碳氢化合物露点之上,否则会发生冷凝,以后不可能产出。在油井内气体存量很少时,可以采用氮气注入的方法增加压力。文献[9]研究表明,高压注氮混相驱油法可作为底覆为水层、含轻油、天然裂缝、厚的碳酸盐岩油藏保持油藏压力和提高最终采收率的工艺,注氮是唯一有效的维持油井储层压力的注入方式。

11412 氮气注入

由于氮气不溶于油和水,因此可用它将碳氢化合物注入生产井,使油井继续产油。

11413 气顶

井内压力的衰竭可以用氮气作为气顶来消除静压的改变,当静压减少时,油气生产率就会提高。

115 其它

注氮已成为提高油气采收率经济、成熟的方法[11],在美国有30多个油田利用氮气提高采收率。它不仅适用于常规油藏,也适用于稀油、稠油、海上、丘陵、深油藏、已接近枯竭的油藏或处在开发早期的油藏等,在低压、低渗、粘土胶结等特殊油气藏中也有独到的作用。气举排液诱喷、注水井气举排液、压裂酸化后的气举排液、油气井井底积水或积砂恢复生产、注气井注氮试注、原油罐封顶清罐、扫线试压、气井排水、作业压井、洗井、试油等方面仍有许多应用潜力有待开发,所以膜法富氮技术在

101

第4期 沈光林等:氮气在油田生产中的应用

石化中的应用会越来越广。特别是国内第一台车载移动式制氮装置已在辽河油田投入工业应用[12],并经历了45℃高温和-35℃低温的严峻考验,其工艺目前处于国际领先地位。它将传统的多车式生产变为整体单车式生产,具有成本低、节能、灵活、高效、操作方便等特点。另据用户2000年底的应用结果统计,使用半年注氮150×104m3、150井次,其中隔热用140井次,创效益350×104元;其余用于助排,累计增油4000多吨,创效益250多万元。

2 钻井、完井、修井及固井

211 钻井

用氮气取代空气钻井[4]则可消除火灾和爆炸的危险,同时混气液或泡沫液密度较低,减轻了钻头载荷,提高了钻头的穿透力和钻井速度,完钻的井壁和油层都比较干净,对返出钻屑样品的分析也更快。严重漏失地层多使用气体欠平衡钻井或泡沫钻井,氮气欠平衡钻井中,气体的介入减少或取代了钻井操作中常用的钻井液,使钻井液的压力低于地层压力,能够及时发现油气显示,对油层造成的污染轻,油井可以保持较高的生产能力。20世纪90年代后,水平井、分支井的迅速发展和连续油管钻井的崛起更为氮气在钻井方面的应用提供了广阔的空间。

212 完井

油管传输负压射孔是目前常用的完井方法[1],采用氮气负压射孔较好,气柱调节射孔负压选值范围更宽,射孔后通过调节氮气放空速度来控制诱喷负压。由于氮气的稳定性,避免了与地层流体接触产生的危害。

213 修井

不论新井或旧井,如果产出率太低,要注入表面活性剂和酸来提高油层的渗透率。在高压下氮气是表面活化剂注入地下时的理想载体,高压氮气可以替代钻井液,减少静压,从而使油井开始产出。用氮气来清洁油井对油井的损坏很小或根本没有损坏,还可提高油井产量和延长油井寿命。氮气气举[2]用于修井是一种非常有效的排液手段。

214 固井

固井中的减轻剂为氮气[4],它以细小的、高度分散的稳定气泡存在,使浆体具有可压缩性,水泥套管与地层间的胶结更为紧密,极大地改变了界面胶结质量。美国、前苏联等国对这一技术的应用较为成熟。

3 结束语

从前面的介绍看出,膜法富氮在油田中的应用效果是令人鼓舞的,随着渗透率高、选择性高的膜材料的不断开发和研制成功,膜法富氮的成本会越来越低,所以不久的将来膜法富氮一定会在油田中应用越来越广。

参考文献:

[1]王德有,等1氮气隔热助排提高稠油蒸汽吞吐热采效

果[J]1钻采工艺,2001,24(3):3,25~281

[2]陈荣灿,等1稠油注蒸汽加氮气吞吐试验研究[J]1特

种油气藏,1999,6(3):59~64,701

[3]卢廷辉1膜制氮气装置在石油开发中的应用[J]1石油

机械,2000,28(9):37~38

[4]刘成,等1氮气技术在油气生产中的应用[J]1断块油

气田,2001,8(4):61~641

[5]曾贤辉,等1文188块氮气驱室内试验研究[J]1油气

地质与采收率,2001,8(1):59~611

[6]刘萍,等1卫42块特低渗透油藏氮气驱研究[J]1江汉

石油学院学报,2001,23(2):58~601

[7]徐克彬,徐念平1雁翎油田注氮气提高采收率工艺技

术[J]1石油钻采工艺,1998,20(3):69~75,107,1081 [8]白凤瀚,等1雁翎油田注氮气提高采收率现场试验[J]1

石油学报,1998,19(4):4,61~681

[9]Aguilar M A L,et al1译:朱丽华1现场合成氮气举[J]1

国外油田工程,2001,17(2):11~121

[10]Mungan N1王春颖译1高压注氮气提高收采率[J]1国

外油田工程,2001,17(6):14~151

[11]G ibs on Rin1王勇译1用氮气增储提高采收率[J]1国

外油田工程,1999,15(2):5~61

[12]我国第一台“富氮车”研制成功[P]1北京:中国企业

报,2000-06-01(3)1

[13]高超勇1应用氮气提高稠油热采效果工艺技术在辽河

油区的应用[J]1特种油气藏,2003,10(增刊):88~891 [14]刘东菊1氮气气举采油技术的应用[J]1特种油气藏,

2003,10(增刊):90~911

[15]王国民,高江取,刘孔章,等1复杂断块油藏氮气驱

提高采收率技术研究[J]1特种油气藏,2004,11(3): 46~481

编辑 方 斌

201 特种油气藏 第12卷

制氮机在不同行业中的应用

制氮机在不同行业中的应用

1、制氮机在石油/天然气的应用 石油天然气行业专用制氮机主要用于大陆石油及天然气开采、沿海及深海石油及天然气开采中的氮气保护、输送、覆盖、管网置换、抢险、维修、注氮采油、稀释氮含量、LNG参氮等领域。 2、制氮机在煤矿的应用 煤矿注氮技术是针对井下采煤市场需求而创新研发的系列产品,它们可以有效的抑制井下煤

矿瓦斯爆炸、煤尘爆炸,为井下安全采煤作业提供了有力的保障。为井下采煤作业提供卧式移动注氮产品,尤其超大型注氮产品填补了国内无法向井下提供注氮产品的空白,我们还积极扩大产品和服务范围,在地面固定和移动式系列产品的研发成功,方便了用户对产品的选择。 煤矿制氮机应用于煤炭开采中的防火灭火、瓦斯及煤气稀释等领域,设备具有地面固定式、地面移动式、井下移动式三种规格,充分满足不同工况下的氮气需求。 3、制氮机在橡胶/轮胎的应用 氮气硫化工艺技术取代了传统的过热水硫化工艺,在橡胶/轮胎行业取得了成功,氮气硫化技术优势:

?减少产生蒸汽工艺所必需的公用工程投资,同时降低NOX、COX的排放量,达到节能减排环保的目的 ?氮气硫化工艺稳定,降低轮胎硫化中缺胶、脱层、气泡的现象,提高轮胎质量 ?热损失小,节约能源,降低成本 ?高纯度氮气消除硫化胶囊在氧气作用下过早老化损坏,胶囊寿命延长25-50%,节省设备操作和维修费用 ?提高产品质量,轮胎性能指标在里程数、耐久性、均匀性、压穿能力都有所提高 ?操作方便,在一定范围内压力可调,升压时间短

?氮气可以回收利用,回收率在40%左右 4、制氮机在食品/饮料的应用 食品储存和液体充氮保鲜技术处于行业领先地位,我们的设备覆盖全国各主要粮仓,有效的抑制了粮食仓存过程中病虫害的生存,我们的氮封技术在啤酒和食品包装行业得到了广泛应用,氮封技术的引入大幅度延长了产品保鲜周期,解除了用户产品滞销所带来的后顾之忧。 食品行业专用制氮装置适用于粮食绿色仓储、

超低温液氮冷冻技术在各行业中的应用

超低温液氮冷冻技术在各行业中的应用 液氮 液氮即液态氮气,分子量28.013,相对密度0.8081(-195.8 ),密度1.2507kg/m3(在0,l大气压时),熔点-209.86,沸点-195.8,临界温度-147.05,临界压力3.39Mpa (33.5大气压),临界密度0.31公斤/公斤,液态密度0.8l公斤/公斤(沸点),蒸发潜热161.19千焦耳/公斤,定压比热1.034千焦耳/公斤·;热传导率2.28×10-4焦耳/厘米·秒·。为无色透明、无味、无毒之低粘度的透明液体,不导热导电,不自燃助燃,化学性质稳定,不与任何物质起化合作用。1单位体积的液氮可产生约650倍体积的氮气,氮气是空气的主要组成部分,在空气中的含量高达78%(体积),液氮作为空气液化分离的最大宗产品、工业制氧的副产品,一般纯度达99.99%。液氮在常温下很容易气化,保存困难,运输携带也较麻烦,在无液氮生产的地区,应用受到限制。 液氮是一个较为方便的冷源,因液氮特有的性质,已逐步受到人们的重视和认可,在畜牧业、医疗事业、食品工业、以及低温研究领域等方面得到越来越普遍的应用。在电子、冶金、航天、机械制造等方面应用不断拓宽和发展。 一、在畜牧业方面的应用 1、广泛用于家畜冻配改良技术 在多种家畜中,牛的精液冷冻制备、保存技术最为成功,自上个世纪五十年代已形成一套完整定型的工艺流程。 牛精液冷冻的冷源普遍应用液氮。颗粒精液在经液氮冷却的氟板(聚四氟乙烯)、铜纱网、铝板上滴冻。要使承接精液的表面与液氮面保持——定的距离(1~2厘米)。在滴冻的过程中,要维持在-80~-120的温度。滴冻前将经过平衡的精液充分混匀,并检查精子的活率。滴要迅速,颗粒要均匀,每毫升经过稀释的精液滴10粒左右为宜。滴冻结束后,要停留2~3分钟,待所有颗粒已冻结立即投入液氮。经抽样检查(一般随机抽取2粒) ,解冻活率在0.3以上者,即可装于纱布袋中,经标记后在液氮中保存。每滴冻完一头公牛的精液后,必须更换氟板等用具。目前,细管的容量分0.25毫升和0.5毫升两种,由无毒塑料(聚氯乙烯)制成。管的一端填有棉塞和聚乙烯粉末,粉末遇水即固化自动封口,输精时又成为推送精液的活塞;另一端在注入精液后,可以聚乙烯粉或钢珠(或塑料珠)封口,要注意在封口处与精液间留有10~13毫米的空间,防止冷冻过程中因膨胀引起细管爆裂。 超低温液氮冷冻技术在各行业中的应用 精液的贮存牛的冷冻精液是以液氮做冷源进行贮存的,需要时可随时取出。为防止温度变化对精液品质的影响,取放动作要迅速,尽量减少在空气中停留的时间。从贮存容器中提取冷冻精液时,精液不应超过液氮容器的颈基部,避免因温度的回升造成精液解冻活率的下降。牛的冷冻精液已有40多年的历史。试验证明,保存至今的冷冻精液仍具有授精能力。但一般认为牛的冷冻精液随保存时间的延长,精子的活力和授精能力逐渐降低。牛冷冻精液长期保存的确切时限,尚需继续研究和观察。 2、家畜及多种动物的胚胎移植中,制备保存胚胎 目前多采用胚胎冷冻仪,属智能型冷冻仪。该仪器采用微机控制技术,专用软件,能较准确地控制液氮的施放量,从而保证被冻存的生物制品以适宜的冷冻速率降温冷冻。 3、液氮超低温保藏微生物技术 将菌种保藏在-196的液氮长期保藏方法,它的原理是利用微生物在-130以下新陈代谢趋于停止而有效地保藏微生物。大型真菌是菌物中的一个重要类群(菌物中形成大型子实体的一类真菌,泛指广义上的蘑菇或蕈菌),很多种类具有较高的营养价值和药用价值,是目前菌物中最有开发应用前景的一类;此外,一些大型真菌能够分解枯死植物,对维持自然界物

氮气在SMT行业的应用

-随着无铅制程已提上日程,如何顺利导入无铅化已成为SMT用户最关心的问题。怎样选择最社和自己生产的氮气源?如何确定氮气气氛的具体参数?成本到底增加多少?(一)氮气源的选择 其实氮气源的供应方式有好几种,你可以有气体分馏塔、向气体公司购买瓶装氮、向气体公司购买液氮和现场制氮(N2 generator)可供选择。 气体公司或者是N2使用量特别大的公司可以配备气体分馏塔(N2Distillation)其工作原理是把空气压缩,使其液化,然后在利用氮气、氧气的沸点不同,将其分馏。这种设备占地面积很大,而且造价昂贵,不适合一般企业。 气量很小的用户可以向气体公司购买钢瓶氮。用高压钢瓶储存氮气,然后直接运送到用气点进行使用。瓶装氮气具有随开随用、灵活方便等优点。但具有危险性高、成本高、运输储存麻烦等缺点。如果瓶装氮已不能满足目前生产,你就应该向气体公司购买液态氮气或者选用现场制氮来获取所需氮气。 用液氮储槽或杜瓦罐来储存液态氮气,在需要使用时将液氮气化成气态氮,经过减压、升温后才可使用。液氮具有方便快捷、随开随用等特点,但存罐中液氮需经常补充,这也给采购和运输带来麻烦与压力。同时长期大量使用液氮,成本高,运输麻烦,且受供给源的影响较大总体投资很大。 现场制氮又有膜分离制氮(Membrane)和变压吸附(Pressure Swing Adsorption)制氮机。 膜分离制氮机是在20世纪80年代兴起的高科技技术。该设备以空气为原料,中空纤维膜为分离利用氧和氮在膜组织里渗透速率不同——水和氧气可以通过而氮气则不能,从而实现氧氮分离。膜分离制氮机制出的氮气纯度较低,一般为95-99.9%。而且膜分离制氮机能耗大,而且其核心部件——中空纤维膜主要依赖进口,价格高,交货周期长,设备后续维护麻烦。 PSA制氮机主要以碳分子筛为吸附剂,压缩空气为主要原料,利用氧气和氮气吸附速率不同,碳分子筛优先吸附氧,而氮大部分富集于不吸附相中,实现氧气和氮气的分离,得到我们所需要的气体。利用这种变压吸附的原理和工艺,采用双吸附塔并联交替进行吸附,一塔工作一塔再生,连续产氮。一次性可能取纯度为98-99.99%的合格产品气(苏州高普公司生产的gaspu品牌制氮机一次性提取纯度可达98-99.995%)。 PSA制氮机制出的氮气若经过氮气纯化装置可进一步深度除氧,可得到99.9999%,即氧含量在1ppm以下的高纯度高品质氮气。 (二)怎样确定氮气氛的具体参数 SMT用户在决定使用氮气之前,先确定炉子中的氮气纯度(几个九,或氧含量的ppm 的值),再确定制氮机出口纯度。氧化反应的充要条件是氧分子的存在,同样条件下氧含量越高,氧化反应越激烈;反之氧含量越低,氧化反应越微弱。当然氮气纯度越高越好,但应考虑投资成本与产品的不良率和返工量的平衡。目前大多数的电子厂尚包括台湾鸿海精密股份(台湾富士康)都选择:99.99%即氧含量小于100ppm,也有选择:99.9%即氧含量小于1000ppm,少数选择:99.999%既氧含量小于10ppm。所以确切的纯度应根据产品的档次、允许的不良率、公司政策、产品对浸润性的要求等因素决定。 确定了炉子中氮气纯度后,再确定制氮机出口纯度,通常制氮机不与SMT生产线一起放在车里,而是放在屋顶,或车间外,通过管道输入炉子,之间有很多个连接口,很有可能造成氮气纯度下降,所以制氮机的出口纯度也要有余。并且单位时间的耗气量(通常以每小时多少立方米计算)不同品牌、不同型号的炉子耗气量也不同,输入PCB的尺寸不同耗气量也不同,链条转动的速度不同耗气量也不一样,所以确切的耗气量要以现场实验为依据。

制氮机在各行业的应用

阀门切换过程自动控制 变压吸附的一个工作周期包括吸附、均压、脱附、均压四个工作过程,为了保证连续供气,一般采用双塔流程。变压吸附的一个工作周期约为120s,变压吸附氮气设备的控制系统的核心是采用可编程序控制器(PLC),利用已编好并存入PLC中的程序,控制电磁阀按相应的时序进行动作,从而控制氮氧分离系统中的相应的气动阀的启闭。 国家专利产品ZSGP管道式气动阀 瑞气ZSGP系列管道式气动阀属于国家专利产品,是自动化系统的主要管道元件之一,也是我公司在二十年研制变压吸附装置在管道控制介质流通上起主要切断和接通作用。适用于水、蒸汽及弱腐蚀性气体、液体等多种介质。该管道式气动阀是瑞气公司集二十多年变压吸附设备研制经验精心设计而成,结构简单且紧凑,构思巧妙,突破传统设计,执行机构活塞与阀芯一体制造;启闭过程中,密封面的摩擦力小;耐磨性好;启闭行程小,等于活塞的行程;启闭灵活,反映迅速,最适合于PSA设备,能在0.3秒内迅速完成启闭动作;指示直观,有反馈指示件的指示作用;安装维修方便,密封性能好,绝对零泄漏,便于远距离气动控制;阀前后压差波动小,对阀芯不平衡力及启闭速度无任何影响,使用寿命长,最高可达250万次以上。 RICH氮气设备的国家专利RL-VI流程技术 瑞气提供的是节能型碳分子筛制氮机,本装置采用了不等势均压流程,不等势均压对下均压位置作了改进。均压时均压气体从吸附结束的吸附塔中部引出进入脱附结束的吸附塔的底部,按照吸附塔内氮气纯度的倒金字塔型梯度分布特点进行均压,这样将氮气纯度较高的气体从吸附塔压到解吸塔,还原了床层固有的纯度梯度分布,提高了解吸塔的氮气浓度,同时降低了解吸塔内碳分子筛对氧气的预吸附,提高了碳分子筛的利用率,即提高碳分子筛的产氮率。不等势均压流程比等势均压流程更加合理、科学、成熟、其直接效果是氮气回收率提高,产气量上升,间接效果是节约能耗。 碳位报警系统 变压吸附氮气为了保障氮气设备的长期稳定的运行,设置了气缸压紧装置,并同时在控制系统中设置了二次碳位报警。第一次碳位报警是当气缸的行程达到设定值1时,在控制柜的面板上的蜂鸣器会发出刺耳的声音,提醒你在工艺允许的情况下,及早添加分子筛。当气缸的行程到达设定值2时,氮气设备的控制系统会自动停机以保护分子筛。 常温空分(PSA)制氮-- 热处理行业变压吸附制氮设备 镀锌板分为退火及镀锌工艺,对氮气纯度要求为99.9995%,要求配H25~20%,设备组成相当复杂。 山西大同齿轮集团有限责任公司

注二氧化碳与氮气提高石油采收率技术的对比研究与应用

注二氧化碳与氮气提高石油采收率技术的对比研究与应用 本文描述了我国提高采收率的发展现状,以及适合注CO2与N2的筛选标准。讨论了注CO2提高油气藏采收率的机理,并对注CO2与注N2提高采收率两者做了比较。评价了不同注入CO2与N2的驱替效果,结果表明:中轻质油藏适合注CO2驱油,而埋藏较深的,重力驱气顶油藏和凝析气藏适合注N2。 标签:采收率发展现状CO2驱N2驱混相驱非混相驱 1 我国提高采收率的发展现状 针对我国大多数油田是陆相沉积的特点,在石油行业大力发展提高石油采收率技术,特别是目前比较成熟的化学驱取得了飞速发展。如聚合物驱油已形成完整的配套技术,并已在大庆、胜利等大油田工业性推广;复合驱油技术获得重大突破,先导性试验获得成功。同时也暴露出一些生产实际问题,为今后技术的发展提出了新的研究课题。 在微生物采油技术方面,开展了多项工作:微生物地下发酵提高采收率研究,生物表面活性剂的研究,生物聚合物提高采收率的研究。注水油层微生物活动规律及其控制的研究。目前辽河油田、胜利油田、新疆油田等油田均在开展室内研究与应用。 气体混相驱研究相对较晚,与国外相比还有很大差距。随着西部油田的开发,安塞世界级气田的发现,长庆注气混相驱和非混相驱被列入国家重点攻关项目。吐哈油区的葡北油田注烃混相驱矿场试验得以启动,大大推动了我国混相驱提高采收率技术的快速发展。 总体上来看,世界范围内的EOR工程在20世纪80年代处于高峰期,而后略有下降,90年代末又稍有回升。进入21世纪,EOR工程的数量仍大幅度减少。但随着勘探费用上涨、勘探难度加大以及目前高油价的形势, 终将再一次刺激EOR工程数量的增加和技术研究的热潮。 2 适合注CO2与N2的筛选标准 很多文献中已经给出了CO2和N2的筛选标准见表(1)、表(2)。 表1,表2的适用性虽然很广泛,但是仅仅表明了油气藏是否适合注CO2进行驱替,没有考虑适合CO2混相驱的油藏必须尽快达到混相压力。CO2所需最小混相压力要比N2,烟道气,天然气的混相压力小,由于这种压力限制,所以CO2混相驱对浅层有较好的开发效果。混相压力随着油藏深增大而增大,当原油密度大于0.9218g/m3时则不适用于CO2混相驱,从表中还可以看出当原油密度小于0.8251g/m3,埋藏深度小于762m时也不适合CO2混相驱。除此之外

氮气在煤矿防灭火中的应用

安全管理编号:LX-FS-A53269 氮气在煤矿防灭火中的应用 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

氮气在煤矿防灭火中的应用 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 煤矿防灭火对于惰性气体的定义与化学对惰性气体的定义不尽相同。在防灭火的工作实践中,惰气是指不参与燃烧反应的单一或混合的窒息性气体,其中可能含有少量的氧气。最常见的防灭火惰气是燃气、氮气和二氧化碳。 一、氮气的性质 众所周知,氮气的原料是空气。氮气是一种无色无味无毒无腐蚀,不自燃,也不参与燃烧的气体,标准状态下(21℃,101.325kpa),气体密度为 0.461kg/cm3,液体密度为80.8kg/m3,氮气在

江汉油田-注氮气提高采收率研究

江汉油田注氮气提高采收率研究 张书平何建华 摘要本文从氮气性质、氮气注入对原油性质的影响等方面着手,探讨了注氮气提高采收率机 理;总结了氮气非混相驱筛选标准;通过注氮气提高采收率室内实验,进行注氮气影响因素及配套工艺技术研究;最后介绍了黄场油田黄16 井区注氮提高采收率研究及水气交替注氮现场试验情况。 关键词氮气;提高采收率;非混相驱;水气交替 一注氮气提高采收率机理 1氮气性质 在常温常压下,N2 为无色无味的气体。N2 的临界温度为-146.80 ℃,熔点为-209.89 ℃,沸点为-195.78 ℃,临界压力为3.398MPa。当压力为0.1MPa,温度为0℃时,N2的密度为1.25kg/m 3,动力粘度为0.0169mPa.s。N2化学性质极不活泼,在常态下表现出很大的惰性。它不易燃烧、干燥、无爆炸性、无毒、无腐蚀性。 氮气的密度随压力升高而增加,随温度的升高而降低。氮气粘度总的趋势是随压力升高而升高;氮气的粘度受温度的影响较小。 氮气在水中的溶解性很微弱;含盐量越高,溶解度越小;压力增加,氮气的溶解度提高。氮气在原油中的溶解性也较弱,且对轻质原油的溶性比对重质原油好。 氮气与二氧化碳、烟道气等气体相比,具有以下特点:①、在相同压力、温度条件下,氮气的压缩系数比二氧化碳、烟道气大。②、氮气对大多数液体的溶解性差,对原油的降粘作用比二氧化碳效果差。③、氮气是惰性气体,而二氧化碳、烟道气具有腐蚀性;④、氮气气源充足且价廉,且氮气无需特殊处理,注入流程简单,副作用少,易于实施。因此注氮气开采油气技术越来越受到重视并得到迅速发展。 2注氮气对原油性质的影响 当氮气注入油层时,它与地层油接触,产生溶解- 抽提传质过程,氮气被富化,导致气- 油两相间的界面张力则会不断降低;而地层原油性质因溶解氮气或逐渐失去轻烃和中间组分而发生变化。 通过对黄35-1 井潜43原油体系进行注入氮气对原油性质的影响实验研究,得出以下结论:①、随着氮气注入比例的增加,重质组分比例越来越少,原油越来越轻。②、在饱和压力下地层原油粘度、密度明显下降。③、地层原油体积膨胀能

氮气在焊接中的应用

从隧道式到屏蔽式:氮气在焊接中的应用 尽管七十年代初氮气就已经应用于电子制造,但直到引入了免清洗技术,因其需要在惰性气体环境中进行焊接,氮气的使用才得到广泛的认可。 1968首次进行惰性气体实验时,波峰焊接设备都是开放式的。既没有关于作业者安全和健康的规范,也没有密封(enclosure)的要求。最初,在波峰焊中使用氮气仅仅是为了降低成本: ?减少或消除氧化渣 ?减少机器的保养 ?改进免清洗焊接的性能 氮保护层 九十年代初期开发的设备已采用隧道式结构,以形成氮保护层(envelope)。保护层包围着波峰焊接传送带,阻止空气从入口和出口进出。隧道腔的垂直高度应尽可能低,密封框架上有窗口,便于观察焊接过程。也可以取下窗口,接触机器的内部,对机器进行维护和调整制程流程。 在印制板进出的过程中,注入焊接系统的氮气阻止空气从开口处进入。因此,氮气必须维持正压。一些轻的悬挂活动门铰接在隧道的长度方向,以减少空气的侵入。当电路组件靠近时,这些悬挂门可以向上翻转。 当氮气流出隧道进出口时,所有末端开口的隧道设计都有一些排放氮气的方法。通常需要平衡这种“废气”,以便将房间的空气送到排气管,这样有助于防止废气从隧道中抽吸过量的氮气。注意,此时的关键是要降低温度和减少氮气的损耗。隧道的长度可以很短,仅履盖预热区和焊接槽;也可以是很长,从上料端到下料端。因而,长隧道的设备实际上覆盖了助焊剂发配装置(fluxer)、预热区和波峰焊接区。 短隧道与长隧道之间的区别表现在所需氮气的量上:向系统注入杂质含量为 1ppm至2ppm的低温氮气时,焊接波峰周围的氧气杂质应低于10ppm。与长隧道相比,短隧道消耗更多的氮气,并且对车间的空气气流更加敏感。对空气气流的高敏感度往往会导致在波峰中所测量的纯度不稳定。 不管怎样,这种装置一直都在100ppm至200ppm的杂质含量下使用,而且它为焊接制程带来了明显的好处。你可以对现有设备进行改装,使其可以使用氮气,但这将是一个昂贵、耗时的过程。 屏蔽波峰 惰性气体环境中的波峰焊接还有另外一种方法,即采用屏蔽(shroud)设计制成的护罩,围绕在焊嘴的周围直至焊接波峰回落到焊接槽的位置。“喷雾器”位于护罩底部,供给氮气。 这种方法的主要优点是可以直接接触系统。在密封的系统中,有可能使表面黏着零配件的表面达到回流焊的温度,导致焊料回流。如果印制板翘曲或隧道出口处的“帘”接触了印制板上面的SMD,这种可能性将会增加。另一方面,采用这种“屏蔽”技术,完全消除了波峰焊后周围区域的温度问题。 Electrovert和Soltec公司已经制造出了在开放式波峰中使用氮气的焊接系统,他们发现氧化渣的减少同隧道式焊接系统做得一样好。“屏蔽”的结果可以与采用电镀、热涂或热风整平印制板的焊接组件所获得的结果相比。使用这项新技术的另外一个优点是,其氮气消耗量与最昂贵的封闭式波峰焊接系统相同,甚至更低。

氮气在石油和天然气工业上的应用

氮气在石油和天然气工业上的应用 一.氮气在油田中的应用 随着石油工业的发展,石油储量在逐年下降,石油的开采越来越困难了。然而仍然有近2/3的原油因为一二次未能采出而被封锁在地下,现在人们正为此而全力探索新方法和新技术。向油层注氮以提高原油采收率,就是其中一项新技术。利用氮气自身特性进行油层压力保持、混相与非混相驱及重力泄油等技术,可大大提高采收率,对我国石油工业稳产、高产具有很大意义。 按传统作业方法进行一次采油和二次采油采出的原油只有原始地质原油储量的1/3,仍有2/3左右的原油被封闭在油层中。在美国靠传统的开采技术已采出大约1000亿桶原油,油层中仍还有近70%的原油约3000亿桶残留在地下。要想尽可能多的采出这部分原油,就必须不断采取提高采收率的新方法。一般来说,向油藏中注入流体包括液体和气体,就是这样一种新方法。与注液体相比,注气具有注入质量少与油层不混相等优点。注入气体有空气、天然气、二氧化碳和氮气等。由于注入空气可能会导致空气和地下天然气混合达到爆炸极限,而产生爆炸,历史上曾发生过这种悲剧,因此现在注空气已被禁止或严格控制使用。 本世纪60年代期间,以天然气作为提高采收率的主气源,后因天然气供应不足及价格升高等原因,人们又寻求用二氧化碳做气源。但二氧化碳气源通常在远离井场的地方,因此使用也不方便,而且二氧化碳在原油中有一定的溶解。70年代后期,开始转向资源丰富的氮气,因为空气中就含有大量的氮气(空气中含有78%的氮气,21%的氧气,1%的其它气体)而且与天然气和二氧化碳相比具有无腐蚀、适应性好、经济等优点。三者相比较氮气的价格为每立方米约合人民币0.12-0.24元,天然气的价格为每立方米约合人民币0.46-1.38元,而二氧化碳的价格为每立方米约合人民币0.39-0.92元。目前,美国和加拿大每天向油层中注入高达一千四百多万立方米的氮气,用以提高原油的采收率。在美国实施注气的30个油田中,注氮气的就有25个。 从多油藏的角度看,油层注氮主要有如下几方面作用 1.保持油层压力 将油气层的压力保持或高于其露点压力或泡点压力,或保持在目前压力水平上,以使油气层流体能顺利流出。 2.重力泄油和非混相驱 根据氮气密度小的特点,将其注入构造顶部或允许其运移至构造顶部,增强向下驱替油层流体或重力和稳定混相段塞的作用,提高油气层流体的产量。 3.混相驱 利用氮气的多次接触混相作用驱替油气层中的油气。 4.驱动二氧化碳段塞

氮气切割的应用领域

氮气切割的应用领域 川汇气体 氮气切割在实际生产中解决了许多加工难题,并且将加工范围扩大到了铝、黄铜等氧气切割很难加工的领域。下面介绍一下它在各种材料、领域中的应用。 1.碳钢 碳钢使用氧气切割。表面温度因为碳辅助熔化、氧气助燃而非常高。当切割尖锐角、直径小于料厚的孔时,狭小的区域内集中了过多的热量,使切割质量无法保证。氮气不辅助燃烧,加之具有的冷却作用,适合解决这类加工难题,能够提高产品质量。 2.不锈钢 从成本考虑,切割边氧化不影响使用的不锈钢零件采用氧气切割。但不锈钢中合金元素Ni等的含量较大,熔化物粘度大,流动性差,氧气切割时较低的气压容易导致粘渣等质量缺陷。焊接不锈钢时氧化层严重影响焊接质量,特别是氩弧焊。氮气切割提供的优质无氧化断面,满足了不锈钢焊接对切割断面的高要求。 3.铝、黄铜 铝、黄铜对激光有着高反射率、低吸收率,要求高功率来熔化材料。而且要配备反射吸收装置,使不平线性波不反射回透镜,来保护激光器的安全。要求氮气切割。 铝的熔点较低,3mm厚以下的可用氧气切割,但质量很差,断面而且毛刺坚硬。使用氮气切割断面光滑,4mm厚以下能够获得没有获得毛刺的效果。铝粘性大加上的热传导性,熔化物可能没来得及吹走就已经冷却了,所以容易出现毛刺。通过调整焦点,升高气压,降低速度来降低表面粗糙度值,以保证毛刺可轻易清除。 4.刻蚀 刻蚀是一种特殊切割,能量只有基本功率的5%。它仅对材料表面发生作用,主要用来刻蚀标记。氧气刻蚀温度高度,有时表面出现焊渣。集中刻蚀还会因热量

集中而损伤零件表面。氮气刻蚀光亮且不损伤表面,可用来刻蚀要求较高的说明文字。 氧气切割厚度大、成本低,主要应用于碳钢。氮气的冷却、保护作用提高了切割质量,并且在不锈钢、铝、黄铜的切割中取得良好效果,解决了许多加工难题。 另外,不辅助燃烧的特点还能用来加工木材、有机玻璃等特殊材料,有着广阔的应用前景。

氮气使用管理规定

文件编号:MYH.03/YK.ZD-02.37-2015(A/0) 神木化学工业 氮气使用安全管理办法

1 目的 为加强公司氮气的规使用,防止缺氧窒息事故的发生,保证岗位员工生命安全和国家财产安全,特制定本管理办法。 2 适用围 本办法适应于承包商、公司员工在生产区使用氮气过程的安全管理。 3 编制依据 3.1 《化学品生产单位受限空间作业安全规》 AQ3028-2008 3.2 《缺氧危险作业安全规程》 GB8958-2006 3.3 《低温液体贮运设备使用安全规则》 JBT6898-1997 3.4 《中国煤制油化工氮气使用安全管理办法》 4 术语定义 4.1 氮气取用连接点 通过一个或多个阀门与氮气源连接和断开来取用氮气的连接点。 4.2 常规氮气(含液氮)作业 通过压力管道连续或间断使用氮气且所用氮气作为工艺装置生产原料(含中间品和气提介质)、作为产品充装、工艺物料输送载体、工艺设备管道试压、气密或隔离气(含设备氮封)、工艺装置升降温和催化剂还原钝化带热载体气、装置事故紧急吹扫气、气体消防灭火系统原料气的作业。 4.3 非常规氮气(含液氮)作业 通过压力管道或橡胶管等临时管道连续或间断使用氮气、使用氮气作为工艺管道置换惰性气、工艺装置封闭保护气等的作业。 5 组织与职责 5.1 安健环部 5.1.1 负责《氮气使用安全管理办法》的制定。 5.1.2 负责监督检查现场氮气使用管理情况。 5.1.3 负责氮气防护用品的配备。 5.1.4 负责中心临时性氮气使用方案的审批。 5.2 生产运营部

5.2.1 负责氮气使用操作规程的编制、监督与考核。 5.2.2 负责全厂氮气管网的运行管理。 5.2.3 负责组织协调非常规状态下氮气的使用。 5.2.4 负责非常规状态下氮气使用方案的审批。 5.2.5 负责组织中心对氮气使用操作规程的编制和修订,并组织员工培训学习。 5.3 各中心 5.3.1 负责编制、上报非常规状态下氮气使用方案,并严格执行经生产运营部、安健环部审批的方案。 5.3.2 负责进行非常规状态下使用氮气的风险评价和现场处置。 5.3.3 负责本中心氮气的投用、使用和停用过程的安全管理。 5.4 作业负责人的职责 5.4.1 对临时氮气使用作业安全负全面责任。 5.4.2 向作业人进行作业程序和安全措施的交底。 5.4.3 在临时氮气使用作业环境、作业方案和防护设施及用品达到安全要求后,可安排作业人员进行作业。 5.4.4 在临时氮气使用作业区域及其附近发生异常情况时,应停止作业。 5.4.5 检查、确认应急准备情况,对临时氮气使用作业情况进行全过程监督。 5.4.6 对未经允许试图进入或已经进入临时氮气使用作业区域者进行劝阻或责令退出。 5.5 作业人的职责 5.5.1 在保障安全的前提下进入临时氮气使用作业区域实施作业任务,作业前应充分了解作业的容、地点(位号)、时间、要求,熟知作业中的危害因素和作业证中的安全措施。 5.5.2 在临时氮气使用作业环境达到安全要求,作业证上的安全防护措施经落实确认,审批人审批同意后,方可进行作业。 5.5.3 确认现场处于安全环境状态,检查和正确使用防护器具、急救器材。发现异常时,立即发出疏散警报,同时立即呼叫紧急救援。 5.5.4 经过专门培训合格后上岗,掌握应急救援和紧急救护的基本知识。 5.5.5 遵守临时氮气使用作业安全管理制度,应服从作业负责人的指挥。 5.6 监护人职责 5.6.1 对作业人的安全负有监督和保护的职责。

氮气在油田生产中的应用

收稿日期:2004-10-25;改回日期:2005-04-19 作者简介:沈光林(1958-),男,副研究员,硕士研究生,毕业于大连理工大学化学工程专业,现从事气体膜分离的应用研究和技术开发,完成国家级课题3 项,已发表学术论文60余篇、申请专利10多项。 文章编号:1006-6535(2005)04-0100-03 氮气在油田生产中的应用 沈光林 (中国科学院大连化学物理研究所膜技术国家工程研究中心,辽宁 大连 116023) 摘要:膜法富氮在油田中应用广泛,可用于包括稠油和低渗透油藏在内的各种油田提高采收率、钻井、完井等,一般均具有明显的综合效益。特别是移动式制氮系统的诞生,极大地增强了膜法富氮的市场竞争力。 关键词:膜法富氮;移动式制氮系统;采收率;钻井;完井;油田中图分类号:TE357 文献标识码:A 前 言 由于氮气与油、水互不相溶,而且来源广,是气体非混相驱提高采收率的重要气源。所以氮气在油田系统中的应用非常广泛[1~15],可用于二、三次采油,油气井保护,保持压力和储存气体,钻井平台的惰气保护,管路及设备的吹扫,易燃、易爆物品运输时的保护气等。随着膜法制氮技术的日趋成熟,特别是移动式制氮系统的诞生,更加适应灵活多变的应用现场,而且具有投资少、流程简单、膜组件寿命长且免维护、能耗低、体积小、露点低、可靠性强、操作弹性大、能适应各种恶劣环境、开启迅速、浓度和流量可在线监控等特点。同时,所用原料是取之不尽、用之不竭的空气,所以采用膜法可以得到价廉、洁净、质量稳定、易于控制的富氮空气。氮气浓度一般在9310%~9919%范围内,如果和其它技术集成可满足任意所需的浓度,极大地增强了膜法富氮的市场竞争力。 1 提高采收率 随着油田的不断开发,油田利用天然和人工能量开采的阶段完成后,将进入提高油田采收率的三 采阶段。三采的方法主要有热力驱、气驱和化学驱等。就多数油田而言,气驱应用较多,是国内、外采收率研究的发展趋势。气驱提高采收率方法的发展趋势是非烃气替代烃类气,其中应用最多、效果最好的是二氧化碳。但由于二氧化碳来源有限,容易产生腐蚀等问题,故氮气的应用越来越受到重视。 111 稠油蒸汽吞吐井注氮 蒸汽吞吐是增加稠油产量经济而有效的一种方法,然而由于油稠、生产压差小、排液难度大、蒸 汽与稠油之间存在密度差、随周期增加而增加的地层水、系统热损失加大等诸多不利的客观因素,造成注汽效果差,同时采收率相对低。稠油蒸汽吞吐井注氮,即在注汽的同时,往油套环空注入氮,既保护套管,降低井筒热损失,提高井底蒸汽干度,提高油井的回采水率,简化生产程序和管柱,降低费用,又减少作业对地层的污染和注汽量,还增产并延长有效期等。辽河油田[1]做过效益对比,每周期增加10×104m 3氮气,产生费用超过8×104元;可减少井下隔热管、封隔器、伸缩管和一次小修作业费用,合计4×104元;减少注汽量700t ,节约费用5×104多元;平均增油227t ,创效益2113×104元,提高阶段采收率3%~5%,投入产出比高达1∶315。新疆克拉玛依油田[2]现场试验表明,油井生 产时率由注氮前的3213%提高到注氮后的7818%;平均单井产油量比上个周期提高218t ,生产天数延长51d ,油汽比提高0105~0137,回采水率提高12%~141%。此外,与同时注汽的井相比较,注氮气井平均周期产油量达到1026t ,周期生产天数293d ,单井日产油为35t ,油汽比0145,回采水率104%,而只注蒸汽井平均周期产油238t ,周期生产天数81d ,单井日产油29t ,油汽比0111,回采水率只有4714%,各项生产指标远远低于注氮井;油层吸汽剖面得到明显改善;经济效益显著,实施注氮试 第12卷第4期2005年8月 特种油气藏S pecial Oil and G as Reserv oirs V ol 112N o 14 Aug 12005

氮气在食品工业中的应用

氮气在食品工业中的应用 (丹东天茂气体有限公司)转载自网络 自古以来,人们就已经开发出一些便利的延缓食物变质的方法。 以低温液态和气态形式存在的氮,在这些过程中起着决定性的作用,它被应用于深度冷冻、贮存,在包装中作为保护性气体,还可用于充罐饮料、保质粉碎和控制水果的成熟度等领域。 氮气,无色、无味、无臭的惰性气体,密度为1.2506kg/m3,熔点-209.86℃,沸点为-195.8℃,稍溶于水和乙醇,化学性质不活跃。在1个大气压下,液氮的温度为-196℃,在0.3Mpa压力下,液氮汽化可吸收热量约181kJ/kg,加热到-20℃,这种冷的氮气又吸收热量181kJ/kg,因此在冷却和冷冻整个过程中,吸收的总能量为382kJ/kg。在同食品的接触过程中呈中性,因此可用于食品防腐。 目前,国内制氮机生产厂不少,如江苏苏州净化气设备有限公司、北京军供气体设备厂、江阴长江气体分离设备有限公司、北京市粉末冶金研究所等企业均有定型设备可供食品饮料工业制氮气用。本文将从液氮冷冻与保质粉碎、非碳酸饮料生产、啤酒生产和食品包装方面综述氮气在食品工业中的应用。 ■液氮冷冻和保质粉碎冷却、冷冻、深度冷冻——当含水食品从常温(大约为20℃)冷却到低于冻结温度(至少低于-15℃)时,这种食品可以长期贮存而不会产生明显的变质。这种冷冻过程包括凝固成水分的结晶。如果食品的温度降低到凝固点之上(对大多数食品在-2~0℃之间)我们称这个过程为冷却。类似的,如果一个产品已经凝固,也就是说它们中的水分大部分已经结冰,还能够冷却到更低的温度。 使用液氮进行冷却、冷冻和深度冷冻有许多优点。许多食物原料在加工前,首先需将其磨碎,期间产生的热量能融化其中敏感的成分并且阻碍碾磨机的碾磨。例如,在碾磨香料和吸水的食品添加剂时,如糖的替代品和卵磷脂等,液氮注入碾磨机中来保护有价值的营养成分,同时也增加了碾磨产量,而且氮气的惰性也防止了火灾和粉尘爆炸的危险的发生。

缝洞型碳酸盐岩油藏注氮气可行性研究

缝洞型碳酸盐岩油藏注氮气可行性研究 李金宜1,姜汉桥1,李俊键1,陈民锋1,涂兴万2,任文博2 (1.中国石油大学石油工程教育部重点实验室,北京 102249;2.中国石化西北石油局采油二厂,乌鲁木齐 830011) 摘 要:塔河油田注水替油吞吐进入高轮次以后,油水界面不断升高,注水替油效果不断变差,剩余油主要分布在构造起伏的高部位,此类剩余油俗称“阁楼油”。国外利用氮气及天然气驱工艺开采“阁楼油”的技术已成熟。为了进一步提高塔河油田的开发效果,开展了对注N 2开采裂缝-溶洞型碳酸盐岩油藏可行性的研究。针对塔河该类油藏的地质及生产特点,分析了注氮气提高采收率的机理及有利地质条件;在井筒多相流及数值模拟的基础上,论证了塔河碳酸盐岩油藏注氮气提高采收率的可行性,对注气量、闷井时间、注气采油方式、注气速度等技术政策界限进行了优化研究。研究结果表明,在塔河碳酸盐岩油藏一定工艺技术保障下,注氮气提高采收率是可行的,预计采收率提高10%左右。 关键词:缝洞型碳酸盐岩油藏;阁楼油;注氮气;可行性;技术界限 与其它地区的碳酸盐岩储层不同,溶洞是塔河 地区奥陶系碳酸盐岩最有效的储集体类型,裂缝是次要的储集空间,基质部分基本不具有储油能力,属于岩溶缝洞型碳酸盐岩油藏,储集体空间形态差异大,油水关系极其复杂。多轮次注水替油后,剩余油主要分布在构造起伏的高部位,形成阁楼油。针对特殊地质情况,分析了注氮气开采阁楼油的机理并通过等效数值模拟方法对注气效果进行影响因素分析,对塔河该类油藏注氮气开采阁楼油的技术政策界限进行了优化研究。 1 注氮气开采阁楼油机理研究 1.1 注N2吞吐开采“阁楼油”主要作用 通过大量的理论研究,结合矿场试验,认为:一般N 2与原油最小混相压力远高于其地层压力,根据室内试验及模拟计算得出的最低混相压力为50~100MPa[1],在油藏条件下注N2驱是以非混相状态下进行的。 非混相条件下注气作用机理主要有: 靠重力驱替上端封闭大缝洞中的剩余油及油藏顶部的“阁楼油”,如图1所示; 注气后,油气间的界面张力远小于油水间的界面张力(约4倍)[2],而油气密度差又大于油水密度差,从而减小了毛管力作用。 1.1.1 油气重力分异作用[3] 油气重力分异作用包含两个因素:一是因为气油密度差一般比油水密度差较大,利用油气密度差所形成的重力分异作用将顶部“阁楼油”聚成新的前缘富集油带,均匀向构造下部移动,最后进入生产井采出;二是因为油水界面张力一般比油气界面张力 较大,N 2更容易克服毛管力和粘滞阻力进入裂缝驱替采油,而且在仅有重力时N 2 可以进入的最小含油裂缝宽度下限比水可进入的最小含油裂缝下限要小很多,因此气驱波及的裂缝体积远大于水驱,同时也可以进一步降低水驱后细小缝洞中的残余油。1.1.2 原油溶气膨胀排油 在地层温度和压力下,注入的N 2与原油接触后一般会部分溶于原油中,使原油体积膨胀,在原油膨胀力作用下,部分剩余油就会从其滞留空间“溢出”并流入裂缝通道成为可流动油。这一驱替作用一般会使岩块中驱替效率提高数个百分点。 1.1.3 改变流体流动方向 水驱过后,裂缝中还会存在少量残余油。当由底部水驱改为顶部注气后,改变了地层内的流体流动方向,从而改变了储渗空间的压力分布,可能会驱替出部分剩余油或“死油”,降低裂缝系统中的剩余油量。 1.1.4 提高水驱波及体积 N2注入到地层后,可在油层中形成束缚气饱和度,从而使含水饱和度及水相相对渗透率降低,可在 一定程度上提高水驱波及体积。 图1 注氮气驱替阁楼油示意图 在国内大多数注N 2 驱油的试验中都取得了比 水驱高的采收率,注N 2 驱对于开采“阁楼油”更是有着广阔的前景。 收稿日期:2008-04-14 作者简介:李金宜,男,2007级硕士。现从事油气藏工程及数值模拟等方面研究工作。

【CN109767348A】一种油田用超高压注氮气设备匹配方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910251271.7 (22)申请日 2019.03.29 (71)申请人 中国石油化工股份有限公司 地址 100728 北京市朝阳区朝阳门北大街2 号 (72)发明人 赵海洋 刘中云 刘宝增 周福建  王世洁 李婷婷 王建海 焦保雷  何龙 冯一波 秦飞 杨利萍  魏芳 马清杰 甄恩龙  (74)专利代理机构 北京海虹嘉诚知识产权代理 有限公司 11129 代理人 巩固 (51)Int.Cl. G06Q 50/02(2012.01) G06F 16/21(2019.01) G06F 17/12(2006.01)E21B 43/16(2006.01) (54)发明名称一种油田用超高压注氮气设备匹配方法(57)摘要一种油田用超高压注氮气设备匹配方法,包括以下步骤:(1)对注氮气设备进行归纳,建立匹配库,所述匹配库包括设备对象、设备对象的特征属性、需求特征参数,所述设备对象包括空气压缩机、制氮设备和氮气增压机;(2)建立所述设备对象的特征属性与需求特征参数的关系式方程,其中某个需求特征参数也可以是其它设备对象的特征属性;(3)根据代入油田的需求特征参数后满足关系式方程的结果,建立所述设备对象的特征属性之间的匹配关系。本发明涉及一种油田用超高压注氮气设备匹配方法,能够快速指导各种油田环境的高压注气井特别是35MPa以上高压注气井的注气设备匹配,满足高压安全注气要 求。权利要求书1页 说明书3页 附图1页CN 109767348 A 2019.05.17 C N 109767348 A

氮气在各行业中的应用

氮气在各行业中的应用 通用变压吸附制氮设备 氮气是空气的主要成分,在室温和大气压力下是无色、无味、无毒和不可燃的气体,沸点为-195.8℃,其化学性质不活泼。除合成氨外,氮气通常被作为保护气广泛用于冶金、化工、煤炭、食品、医药、电子、磁材、运输、热处理、轮胎、热电、航空等行业。 石油石化行业专用变压吸附氮气设备 化工乃氮气设备应用最大最多的行业,目前运用较多的为:聚氯乙烯(PVC),纯度99.5%,流量较大。聚丙烯(PE),纯度99.9%,流量较大,该产品氮气应用分为两部分,一是活化剂、催化剂在装填和排空时需要99.9%的氮气(量小),反应釜用氮气99.5%量大,习惯性取纯度99.9%。 聚乙烯、苯胺,纯度99.95%,石化产品苯胺在催化剂再生时用氮气是平常的4倍左右,但使用周期短。 顺酐及乙醇,一般纯度为99.9%,石化产品聚甲醛(目前国内厂家不多,需求强劲),纯度99.9%。 石油:可应用于系统中管道容器等的氮气吹扫,储罐充氮、置换、检漏,可燃性气体保护,也应用于柴油加氢和催化重整,纯度一般为99.9%。 苯酐:纯度为99%。 聚酯:上游原料PTA(精对苯二甲醇),实际使用纯度为95%,一般取99%。 PTA生产工艺中利用高纯氮气吹泡,测量高温和低温反应釜中乙二醇原料的液位,测取高压端和低压端的压差后输送4~20mA标准信号,然后转化为液位高度。并利用高纯氮气来测量真空系统的压力,以及在PTA生产工艺中利用高纯氮气对过滤器进行反吹冲洗。聚酯切片一般根据实际工艺不同为99%~99.999%,切片下游产品长丝、短丝,99.9~99.999%。 浮法玻璃:纯度为99.9995%,无氢。 热处理:镀锌板分为退火及镀锌工艺,对氮气纯度要求为99.9995%,要求配H25~20%,设备组成相当复杂。 铝材:一般为99.9995%,要求无氢,否则会有“氢胞”现象。 汽车空调:基本采用液氮,根据实际情况,采用99.999%,结合碳燃烧法完全可以满足要求。 轮胎充氮变压吸附氮气设备 21世纪轮胎竞争的关键在于技术和价格,而轮胎的价格又与制造工艺和技术息息相关,瑞气PSA制氮设备可以协助您在竞争中赢得先机,并已在上海双钱载重轮胎公司实现了有效的价值提升。

氮气在焊接中的应用

从隧道式到屏蔽式:氮气在焊接中的应用尽管七十年代初氮气就已经应用于电子制造,但直到引入了免清洗技术,因其需要在惰性气体环境中进行焊接,氮气的使用才得到广泛的认可。 1968首次进行惰性气体实验时,波峰焊接设备都是开放式的。既没有关于作业者安全和健康的规范,也没有密封(enclosure)的要求。最初,在波峰焊中使用氮气仅仅是为了降低成本: ?减少或消除氧化渣 ?减少机器的保养 ?改进免清洗焊接的性能 氮保护层 九十年代初期开发的设备已采用隧道式结构,以形成氮保护层(envelope)。保护层包围着波峰焊接传送带,阻止空气从入口和出口进出。隧道腔的垂直高度应尽可能低,密封框架上有窗口,便于观察焊接过程。也可以取下窗口,接触机器的内部,对机器进行维护和调整制程流程。 在印制板进出的过程中,注入焊接系统的氮气阻止空气从开口处进入。因此,氮气必须维持正压。一些轻的悬挂活动门铰接在隧道的长度方向,以减少空气的侵入。当电路组件靠近时,这些悬挂门可以向上翻转。 当氮气流出隧道进出口时,所有末端开口的隧道设计都有一些排放氮气的方法。 通常需要平衡这种“废气”,以便将房间的空气送到排气管,这样有助于防止废气从隧道中抽吸过量的氮气。注意,此时的关键是要降低温度和减少氮气的损耗。 隧道的长度可以很短,仅履盖预热区和焊接槽;也可以是很长,从上料端到下料端。因而,长隧道的设备实际上覆盖了助焊剂发配装置(fluxer)、预热区和波峰焊接区。

短隧道与长隧道之间的区别表现在所需氮气的量上:向系统注入杂质含量为1ppm至2ppm的低温氮气时,焊接波峰周围的氧气杂质应低于10ppm。与长隧道相比,短隧道消耗更多的氮气,并且对车间的空气气流更加敏感。对空气气流的高敏感度往往会导致在波峰中所测量的纯度不稳定。 不管怎样,这种装置一直都在100ppm至200ppm的杂质含量下使用,而且它为焊接制程带来了明显的好处。你可以对现有设备进行改装,使其可以使用氮气,但这将是一个昂贵、耗时的过程。 屏蔽波峰 惰性气体环境中的波峰焊接还有另外一种方法,即采用屏蔽(shroud)设计制成的护罩,围绕在焊嘴的周围直至焊接波峰回落到焊接槽的位置。“喷雾器”位于护罩底部,供给氮气。 这种方法的主要优点是可以直接接触系统。在密封的系统中,有可能使表面黏着零配件的表面达到回流焊的温度,导致焊料回流。如果印制板翘曲或隧道出口处的“帘”接触了印制板上面的SMD,这种可能性将会增加。另一方面,采用这种“屏蔽”技术,完全消除了波峰焊后周围区域的温度问题。 Electrovert和Soltec公司已经制造出了在开放式波峰中使用氮气的焊接系统,他们发现氧化渣的减少同隧道式焊接系统做得一样好。“屏蔽”的结果可以与采用电镀、热涂或热风整平印制板的焊接组件所获得的结果相比。使用这项新技术的另外一个优点是,其氮气消耗量与最昂贵的封闭式波峰焊接系统相同,甚至更低。在用于表面黏着焊接的双波峰系统中,可以对每一个波峰使用独立的屏蔽罩和氮气供给控制。系统中没有焊接组件时,系统可进入等待模式,将焊接波峰设置在较低的高度以减少氧化渣的生成,并停止或降低氮气的流速。当系统探测到印制板时,它能够重新激活正常作业控制设置。这种控制机理进一步降低了氮气消耗量。如果能够只用一个波峰进行焊接,便可节省更多的氮气。 在隧道系统中,要求喷嘴扩展到焊料槽的边缘上方到达隧道内。而在屏蔽系统中,喷嘴黏着在系统的下部,对于不需要氮气也能进行良好焊接的组件允

相关文档
最新文档