锂电池老化制度对电池性能的影响

锂电池老化制度对电池性能的影响
锂电池老化制度对电池性能的影响

锂电池老化制度对电池性能的影响

锂电池的生产工艺可以分为前道极片制造、中道电芯封装、后道电池活化三个阶段,电池活化阶段的目的是让电池中的活物质和电解液经过充分活化以达到电化学性能稳定。活化阶段包括预充电、化成、老化、定容等阶段。预充电和化成的目的是为了让正负极材料进行最初几次的充放电来

激活材料,使材料处于最佳的使用状态。

老化的目的主要有几个:一是让电解液的浸润更加良好,有利于电池性能的稳定;二是正负极材料中的活性物质经过老化后,可以促使一些副作用的加快进行,例如产气、电解液分解等,让锂电池的电化学性能快速达到稳定;三是通过老化一段时间后进行锂电池一致性筛选。化成之后电芯的电压不稳定,其测量值会偏离实际值,老化后的电芯电压、内阻更为稳定,便于筛选一致性高的电池。

老化制度对锂电池性能的影响因素主要有两个,即老化温度和老化时间。除此之外,还有老化时电池处于封口还是开口的状态也比较重要。

对于开口化成来说,如果厂房可以控制好湿度可以老化后再封口。如果采用高温老化,封口后老化比较好。对于不同的电池体系,三元正极/石墨负极锂电池、磷酸铁锂正极/

石墨负极锂电池抑或是钛酸锂负极电池,需要根据材料特性及锂电池特性进行针对性试验。在试验设计中,可以通过锂电池的容量差别、内阻差别、压降特点来确定最佳的老化制度。

一、三元或磷酸铁锂正极/石墨负极锂电池

对于三元作为正极材料,石墨作为负极材料的锂电池来说,锂离子电池的预充化成阶段会在石墨负极的表面形成一层固态电解质膜(SEI),此种膜的形成电位约在0.8V左右,SEI允许离子穿透而不允许电子通过,由此在形成一定厚度后会抑制电解液的进一步分解,可以起到防止电解液分解引起的电池性能下降。但是化成后形成的SEI膜结构紧密且孔隙小,将电池再进行老化,将有助于SEI结构重组,形成宽松多孔的膜,以此提高锂电池的性能。

三元/石墨锂电池的老化一般选择常温老化7天-28天时间,但是也有的厂采用高温老化制度,老化时间为1-3天,所谓的高温一般是38℃-50℃之间。高温老化只是为了缩短整个生产周期,其目的和常温老化一样,都是让正负极、隔膜、电解液等充分进行化学反应达到平衡,让锂电池达到更稳定的状态。

二、钛酸锂负极锂电池

俗称的钛酸锂电池是负极采用了钛酸锂的电池,正极材料主要还是三元、钴酸锂等材料。钛酸锂电池与石墨负极电池的不同之处是钛酸锂的嵌锂电位是1.55V(相对于锂金属),高于SEI形成的0.8V,所以充放电过程中不会形成固态电解质膜(SEI)也不会形成枝晶锂,从而具有更高的安全性。

这就意味着钛酸锂充电过程中,不断的有电子与电解液发生反应,生成副产物及产生氢气、CO、CH4、C2H4等气体,会导致电池的鼓包。钛酸锂的鼓包问题主要得依靠材料性质的改变来缓解,例如材料表面包覆、改变粒径分布,找到合适的电解液等。

此外,通过优化预充、化成、老化的制度也可以适当减轻钛酸锂鼓包现象。钛酸锂电池的老化制度一般首选高温老化制度,老化温度采用40℃-55℃,老化时间一般是1-3天,老化之后需要进行负压排气。进行多次高温老化,使电池内部水分充分反应,将气体排出后可以有效抑制钛酸锂电池的胀气问题,提高其循环寿命。

无论对于哪种体系的电池,老化是必不可少的一道工序。锂电池的老化虽然理解起来是对锂电池的损耗和破坏,但是事实上却是筛选一致性高的电池,剔除不良品的有效途径。只有通过老化的方式,才能选出适宜进行组包的锂电池,

提高电动工具的使用寿命。

影响锂离子电池循环性能的几个因素

循环性能对锂离子电池的重要程度无需赘言;另外就宏观来讲,更长的循环寿命意味着更少的资源消耗。因而,影响锂离子电池循环性能的因素,是每一个与锂电行业相关的人员都不得不考虑的问题。以下文武列举几个可能影响到电池循环性能因素,供大家参考。 材料种类:材料的选择是影响锂离子电池性能的第一要素。选择了循环性能较差的材料,工艺再合理、制成再完善,电芯的循环也必然无法保证;选择了较好的材料,即使后续制成有些许问题,循环性能也可能不会差的过于离谱(一次钴酸锂克发挥仅为135.5mAh/g 左右且析锂的电芯,1C虽然百余次跳水但是0.5C、500次90%以上;一次电芯拆开后负极有黑色石墨颗粒的电芯,循环性能正常)。从材料角度来看,一个全电池的循环性能,是由正极与电解液匹配后的循环性能、负极与电解液匹配后的循环性能这两者中,较差的一者来决定的。材料的循环性能较差,一方面可能是在循环过程中晶体结构变化过快从而无法继续完成嵌锂脱锂,一方面可能是由于活性物质与对应电解液无法生成致密均匀的SEI膜造成活性物质与电解液过早发生副反应而使电解液过快消耗进而影响循环。在电芯设计时,若一极确认选用循环性能较差的材料,则另一极无需选择循环性能较好的材料,浪费。 正负极压实:正负极压实过高,虽然可以提高电芯的能量密度,但是也会一定程度上降低材料的循环性能。从理论来分析,压实越大,相当于对材料的结构破坏越大,而材料的结构是保证锂离子电池可以循环使用的基础;此外,正负极压实较高的电芯难以保证较高的保液量,而保液量是电芯完成正常循环或更多次的循环的基础。 水分:过多的水分会与正负极活性物质发生副反应、破坏其结构进而影响循环,同时水分过多也不利于SEI膜的形成。但在痕量的水分难以除去的同时,痕量的水也可以一定程度上保证电芯的性能。可惜文武对这个方面的切身经验几乎为零,说不出太多的东西。大家有兴趣可以搜一搜论坛里面关于这个话题的资料,还是不少的。 涂布膜密度:单一变量的考虑膜密度对循环的影响几乎是一个不可能的任务。膜密度不一致要么带来容量的差异、要么是电芯卷绕或叠片层数的差异。对同型号同容量同材料的电芯而言,降低膜密度相当于增加一层或多层卷绕或叠片层数,对应增加的隔膜可以吸收更多的电解液以保证循环。考虑到更薄的膜密度可以增加电芯的倍率性能、极片及裸电芯的烘烤除水也会容易些,当然太薄的膜密度涂布时的误差可能更难控制,活性物质中的大颗粒也可能会对涂布、滚压造成负面影响,更多的层数意味着更多的箔材和隔膜,进而意味着更高的成本和更低的能量密度。所以,评估时也需要均衡考量。 负极过量:负极过量的原因除了需要考虑首次不可逆容量的影响和涂布膜密度偏差之外,对循环性能的影响也是一个考量。对于钴酸锂加石墨体系而言,负极石墨成为循环过程中的“短板”一方较为常见。若负极过量不充足,电芯可能在循环前并不析锂,但是循环几百次后正极结构变化甚微但是负极结构被破坏严重而无法完全接收正极提供的锂离子从而析锂,造成容量过早下降。 电解液量:电解液量不足对循环产生影响主要有三个原因,一是注液量不足,二是虽然注液量充足但是老化时间不够或者正负极由于压实过高等原因造成的浸液不充分,三是随着循环电芯内部电解液被消耗完毕。注液量不足和保液量不足文武之前写过《电解液缺失对电芯性能的影响》因而不再赘述。对第三点,正负极特别是负极与电解液的匹配性的微观表现为致密且稳定的SEI的形成,而右眼可见的表现,既为循环过程中电解液的消耗速度。不完整的SEI膜一方面无法有效阻止负极与电解液发生副反应从而消耗电解液,一方面在SEI 膜有缺陷的部位会随着循环的进行而重新生成SEI膜从而消耗可逆锂源和电解液。不论是对循环成百甚至上千次的电芯还是对于几十次既跳水的电芯,若循环前电解液充足而循环后电解液已经消耗完毕,则增加电解液保有量很可能就可以一定程度上提高其循环性能。 测试的客观条件:测试过程中的充放电倍率、截止电压、充电截止电流、测试中的过充过放、测试房温度、测试过程中的突然中断、测试点与电芯的接触内阻等外界因素,都会

汽车动力电池实验室安全制度

汽车动力电池实验室安全制度 1、由专人负责实验室设备及人身安全,加强四防(防火、防盗、防水、防事故)。 2、实验前做好安全评估,实验中采取适当安全防范措施。实验进行过程中,实验人员不得离开现场。 3、实验室应配有各类灭火器,按保卫部门要求定期查看,实验室管理人员必须熟悉常用灭火器材的使用。如遇火灾,除立即采取必要的消防措施灭火外,应马上报警(火警电话为119),并及时向学院报告。火警解除后要注意保护现场。 4、如有盗窃和事故发生,立即采取措施,及时处理,不得隐瞒,并及时报告学院和保卫部门,同时保护好现场。 5、实验室安全检查实行月负责制,当月负责人需每天下班前检查实验室,必须确保仪器设备断水、断电,实验室门窗锁好,并在值勤表上签字。如有人继续使用实验室,将其姓名填写在值勤表上,最后一个使用实验室的人离开时,对实验室进行再次检查,并在值勤表上签字。节假日如使用实验室,请在值勤表上签字,离开时检查实验室并签字。假期实验室检查实行轮流制,负责人需每天对实验室进行检查,在值勤表上签字,保持实验室安全、顺利的运行。 动力电池实验室实验人员管理办法 1、实验人员必须了解所使用化学药品的基本性能及有关实验安全技术规程,了解设备性能及操作中可能发生事故的原因,掌握预防和处理事故的方法。 2、实验操作中不得离开岗位,必要离开时要委托能负责者看管。在实验过程中,要全神贯注,不得大声喧哗。测量数据和操作仪器设备时,要认真仔细,力求准确,以免过后因数据错误导致实验失败。 3、电器设备及线路要定期由专业电工检查维修,不得私自拉接临时供电线路。 4、实验室内的化学药品必须登记入册,非本室工作人员不得任意取用化学药品。实验室中设备不得随意移动,以防影响他人实验的正常进行。 5、工作时应穿工作服,进行有危险性的工作要加戴防护面具。 6、使用烘箱和高温炉时,必须确认自动控温装置可靠。同时还需人工定时 1

锂离子电池原理(基础篇)

锂离子电池原理及工艺流程 化学电源在实现能量的转换过程中,必须具有两个必要的条件: 一. 组成化学电源的两个电极上进行的氧化还原过程,必须分别在两个分开的区域进行,这一点区别于一般的氧化还原反应。 二. 两电极的活性物质进行氧化还原反应时所需电子必须由外线路传递,这一点区别于金属腐蚀过程的微电池反应。 为了满足以上的条件,任何一种化学电源均由以下四部分组成: 1、电极电池的核心部分,它是由活性物质和导电骨架所组成。活性物质是指正、负极中参加成流反应的物质,是化学电源产生电能的源泉,是决定化学电源基本特性的重要部分。对活性物质的要求是: 1)组成电池的电动势高; 2)电化学活性高,即自发进行反应的能力强; 3)重量比容量和体积比容量大; 4)在电解液中的化学稳定性高; 5)具有高的电子导电性; 6)资源丰富,价格便宜。 2、电解质电池的主要组成之一,在电池内部担负着传递正负极之间电荷的作用,所以势一些具有高离子导电性的物质。对电解质的要求是: 1)稳定性强,因为电解质长期保存在电池内部,所以必须具有稳定的化学性质,使储藏期间电解质与活性物质界面的电化学反应速率小,从而使电池的自放电容量损失减小;2)比电导高,溶液的欧姆压降小,使电池的放电特性得以改善。对于固体电解质,则要求它只具有离子导电性,而不具有电子导电性。 3、隔膜也叫隔离物。置于电池两极之间。隔膜的形状有薄膜、板材、棒材等。其作用是防止正负极活性物质直接接触,造成电池内部短路。对于隔膜的要求是: 1)在电解液中具有良好的化学稳定性和一定的机械强度,并能承受电极活性物质的氧化还原作用; 2)离子通过隔膜的能力要大,也就是说隔膜对电解质离子运动的阻力要小。这样,电池内阻就相应减小,电池在大电流放电时的能量损耗减小; 3)应是电子的良好绝缘体,并能阻挡从电极上脱落活性物质微粒和枝晶的生长; 4)材料来源丰富,价格低廉。常用的隔膜材料有棉纸、微孔橡胶、微孔塑料、玻璃纤维、水化纤维素、接枝膜、尼龙、石棉等。可根据化学电源不同系列的要求而选取。 一、原理 1.0 正极构造 LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔)正极2.0 负极构造 石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)负极3.0工作原理 3.1 充电过程 一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。 正极上发生的反应为 LiCoO2=充电=Li1-xCoO2+XLi++Xe(电子)

Overhang对锂电池性能的影响

Overhang对锂电池性能的影响 外接电源给锂离子电池充电时,正极上的电子e通过外部电路跑到负极上,锂离子Li+从正极活性物质颗粒内部“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小孔隙,“游泳”到达负极,与早就跑过来的电子结合在一起,进入负极活性物质颗粒内部。如果负极没有接受锂离子的位置,锂离子会在负极表面析出,形成锂枝晶,刺穿隔膜,造成电池内短路,引发热失控。因此,在锂电池设计时,负极往往需要过量设计以避免此类情况出现,具体包括两个方面:(1)N/P设计,即单位面积内负极容量与正极容量的比值,NP比一般为1.1-1.5之间,保证负极具备一定的过量以避免锂枝晶析出,NP比具体数值按照不用材料体系的设计考虑。 (2)Overhang设计,Overhang是指负极极片长度和宽度方向多出正负极极片之外的部分。 负极过量以上两个方面的设计都需要考虑电池制造工程能力,比如涂布面密度精度,极片尺寸精度,电芯组装精度等方面,在生产精度范围内务必保证负极过量。从电池能量密度和成本方面考虑,负极过量又应该尽可能低。但是,实际的情况特别复杂,N/P设计和Overhang设计都需要综合

考虑各方面因素。 那,Overhang设计对锂离子电池性能又有什么影响呢?德国明斯特大学Tim Daggera做了专门实验研究这个问题。 图1不同的Overhang设计示意图 图1是不同的Overhang设计,然后按照表1程序对以上几种电池做循环测试,然后对不同阶段的极片做ICP测试,研究负极极片锂浓度的分布。表1中SD表示CCCV充电后静置120h做电池自放电实验,dcv表示恒流放电之后再做 0.05C恒压放电测试。 表1电池循环测试程序

电池循环性能影响

电池循环影响循环性能对锂离子电池的重要程度无需赘言;另外就宏观来讲,更长的循环寿命意味着更少的资源消耗。因而,影响锂离子电池循环性能的因素,是每一个与锂电行业相关的人员都不得不考虑的问题。以下文武列举几个可能影响到电池循环性能因素,供大家参考。 材料种类:材料的选择是影响锂离子电池性能的第一要素。选择了循环性能较差的材料,工艺再合理、制成再完善,电芯的循环也必然无法保证;选择了较好的材料,即使后续制成有些许问题,循环性能也可能不会差的过于离谱(一次钴酸锂克发挥仅为135.5mAh/g 左右且析锂的电芯,1C虽然百余次跳水但是0.5C、500次90%以上;一次电芯拆开后负极有黑色石墨颗粒的电芯,循环性能正常)。从材料角度来看,一个全电池的循环性能,是由正极与电解液匹配后的循环性能、负极与电解液匹配后的循环性能这两者中,较差的一者来决定的。材料的循环性能较差,一方面可能是在循环过程中晶体结构变化过快从而无法继续完成嵌锂脱锂,一方面可能是由于活性物质与对应电解液无法生成致密均匀的SEI膜造成活性物质与电解液过早发生副反应而使电解液过快消耗进而影响循环。在电芯设计时,若一极确认选用循环性能较差的材料,则另一极无需选择循环性能较好的材料,浪费。 正负极压实:正负极压实过高,虽然可以提高电芯的能量密度,但是也会一定程度上降低材料的循环性能。从理论来分析,压实越大,相当于对材料的结构破坏越大,而材料的结构是保证锂离子电池可以循环使用的基础;此外,正负极压实较高的电芯难以保证较高的保液量,而保液量是电芯完成正常循环或更多次的循环的基础。 水分:过多的水分会与正负极活性物质发生副反应、破坏其结构进而影响循环,同时水分过多也不利于SEI膜的形成。但在痕量的水分难以除去的同时,痕量的水也可以一定程度上保证电芯的性能。可惜文武对这个方面的切身经验几乎为零,说不出太多的东西。大家有兴趣可以搜一搜论坛里面关于这个话题的资料,还是不少的。 涂布膜密度:单一变量的考虑膜密度对循环的影响几乎是一个不可能的任务。膜密度不一致要么带来容量的差异、要么是电芯卷绕或叠片层数的差异。对同型号同容量同材料的电芯而言,降低膜密度相当于增加一层或多层卷绕或叠片层数,对应增加的隔膜可以吸收更多的电解液以保证循环。考虑到更薄的膜密度可以增加电芯的倍率性能、极片及裸电芯的烘烤除水也会容易些,当然太薄的膜密度涂布时的误差可能更难控制,活性物质中的大颗粒也可能会对涂布、滚压造成负面影响,更多的层数意味着更多的箔材和隔膜,进而意味着更高的成本和更低的能量密度。所以,评估时也需要均衡考量。 负极过量:负极过量的原因除了需要考虑首次不可逆容量的影响和涂布膜密度偏差之外,对循环性能的影响也是一个考量。对于钴酸锂加石墨体系而言,负极石墨成为循环过程中的“短板”一方较为常见。若负极过量不充足,电芯可能在循环前并不析锂,但是循环几百次后正极结构变化甚微但是负极结构被破坏严重而无法完全接收正极提供的锂离子从而析锂,造成容量过早下降。 电解液量:电解液量不足对循环产生影响主要有三个原因,一是注液量不足,二是虽然注液量充足但是老化时间不够或者正负极由于压实过高等原因造成的浸液不充分,三是随着循环电芯内部电解液被消耗完毕。注液量不足和保液量不足文武之前写过《电解液缺失对电芯性能的影响》因而不再赘述。对第三点,正负极特别是负极与电解液的匹配性的微观表现为致密且稳定的SEI的形成,而右眼可见的表现,既为循环过程中电解液的消耗速度。不完整的SEI膜一方面无法有效阻止负极与电解液发生副反应从而消耗电解液,一方面在SEI 膜有缺陷的部位会随着循环的进行而重新生成SEI膜从而消耗可逆锂源和电解液。不论是对循环成百甚至上千次的电芯还是对于几十次既跳水的电芯,若循环前电解液充足而循环后电解液已经消耗完毕,则增加电解液保有量很可能就可以一定程度上提高其循环性能。

关于民航旅客行李中携带锂电池规定的公告

关于民航旅客行李中携带锂电池规定的公告 为了加强旅客行李中锂电池的航空运输安全,民航局、民航华东地区管理局先后下发《关于加强旅客行李中锂电池安全航空运输的通知》,要求民航各相关单位进一步做好旅客行李中锂电池的安全运输管理工作,对于旅客行李中携带锂电池的,按照国际民航组织《危险物品安全航空运输技术细则》以下规定执行: 旅客或机组成员为个人自用内含锂或锂离子电池芯或电池的便携式电子装置(锂电池移动 电源、手表、计算器、照相机、手机、手提电脑、便携式摄像机等)应作为手提行李携带登机,并且锂金属电池的锂含量不得超过2克,锂离子电池的额定能量值不得超过100Wh(瓦特小时)。超过100Wh但不超过160Wh的,经航空公司批准后可以装在交运行李或手提行李中的设备上。超过160Wh的锂电池严禁携带。 便携式电子装置的备用电池必须单个做好保护以防短路(放入原零售包装或以其他方式将电极绝缘,如在暴露的电极上贴胶带,或将每个电池放入单独的塑料袋或保护盒当中),并且仅能在手提行李中携带。经航空公司批准的100 -160Wh的备用锂电池只能携带两个。 飞行过程中装有启动开关的锂电池移动电源(充电宝),应当确保开关处于关闭状态。不得使用移动电源为消费电子设备充电或作为外部电源使用;不得开启移动电源的其他功能。 旅客和机组成员携带锂离子电池驱动的轮椅或其他类似的代步工具和旅客为医疗用途携带的、内含锂金属或锂离子电池芯或电池的便携式医疗电子装置的,必须依照《危险物品安全航空运输技术细则》的运输和包装要求携带并经航空公司批准。 附:锂电池安全运输提示 一、可携带的锂电池 可以作为手提行李携带含不超过100Wh(瓦特小时)锂电池的笔记本电脑、手机、照相机、手表等个人自用便携式电子设备及备用电池登机。 一般来讲,手机的锂电池额定能量多在3~10Wh;单反照相机锂电池的能量多在10~ 20Wh;便携式摄像机的锂电池能量多在20-40Wh;笔记本电脑的锂电池能量为30-100Wh多不等。因此,手机、常用便携式摄像机、单反照相机以及绝大多数手提电脑等电子设备中的锂电池通常不会超过100Wh的限制。 二、限制携带的锂电池 经航空公司批准,可以携带含超过100Wh但不超过160Wh锂电池的电子设备登机。每位旅客携带此类备用电池不能超过两个,且不能托运。 可能含有超过100Wh锂电池的设备如新闻媒体器材、影视摄制组器材、演出道具、医疗器材、电动玩具、电动工具、工具箱等。 三、禁止携带的锂电池 禁止携带或托运超过160Wh的大型锂电池或电子设备。 四、备用锂电池的保护措施 备用电池必须单个做好保护以防短路(放入原零售包装或以其他方式将电极绝缘,如在暴露的电极上贴胶带,或将每个电池放入单独的塑料袋或保护盒当中)。 五、锂电池额定能量的判定方法 若锂电池上没有直接标注额定能量Wh(瓦特小时),则锂电池额定能量可按照以下方式进行换算: 1、如果已知电池的标称电压(V )和标称容量(Ah),可以通过计算得到额定瓦特小时的数值: Wh= V x Ah

电极水分对磷酸铁锂电池性能的影响

电极水分对磷酸铁锂电池性能的影响 发表时间:2019-11-08T15:10:34.197Z 来源:《基层建设》2019年第22期作者:张斌林丹李世丰柳增富 [导读] 摘要:通过库仑法水分测试仪标定不同水分含量的磷酸铁锂正极片,将其制备成软包型锂离子电池。对其电化学循环性能?倍率性能?交流阻抗进行了测试。 力神(青岛)新能源有限公司 266000 摘要:通过库仑法水分测试仪标定不同水分含量的磷酸铁锂正极片,将其制备成软包型锂离子电池。对其电化学循环性能?倍率性能?交流阻抗进行了测试。结果表明不同水分含量极片制备的电池循环性能及倍率性能与电极水分含量有密切关系。 关键词:电极水分;磷酸亚铁锂;软包电池;循环性能 引言:锂离子电池具有工作电压高、容量高、自放电小、循环寿命长、无记忆效应以及无环境污染等显著优点。是目前最具实用价值的移动电子设备电源及电动汽车动力电池。对于应用于电动汽车及大型储能装置中的大容量型动力锂离子电池,限制其推广应用的主要因素是电池的循环性能安全性能和成本。电池制造过程中,电极水分控制对于电池的循环寿命和安全性有着重要影响。 1水分含量对磷酸铁锂材料性能的影响 磷酸铁锂材料颗粒,尺寸较小,比表面积较大,在制备过程中也会加入占比不等的碳,使得其本身对水分含量非常敏感。当暴露在水分含量较高的环境中时,磷酸铁锂材料会出现明显的析锂现象,而金属锂则会与空气中的水分以及二氧化碳发生化学反应,生成LiOH和Li2CO3,降低材料活性,影响电性能。如表1所示,参考一般电池工厂材料存储条件,通过实验的方法,对不同存储时长下的磷酸铁锂材料表面力度,比表面等进行分析后发现,随着存储时间的增加,材料表面碱性明显增强,水以及LiOH含量稳步增长。 表1不同存储时长下的物化指标 2水分对磷酸铁锂电池内阻的影响 根据一般工艺要求,磷酸铁锂电池内部水分必须控制在合理的范围内,过多和过少都会对电池性能造成负面影响,最突出的表现就是电池内阻的增加。 当水分含量过低时(比如:极片过度干燥),极片掉粉现象会更加明显,在组装过程中电池因短路造成的不合格率明显增加。同时,由于极片涂层表面导电剂、活性材料、粘结剂之前缺少足够的连接,在电池进行预充激活时,电池内阻会在短时间内呈现明显的上升趋势,直至超出允许范围。 由图1可知,电池内阻随着含水量的增加而明显增加。电池预充时,由于多余的水分与SEI发生反应,会在SEI膜表面生成POF3和LiF 沉淀,导致电池内阻增加。同时,电池内部水分含量的增加,会导致隔膜水分含量超标,严重影响隔膜的绝缘性和散热性,也会导致电池内阻增大,并且电池后期出现短路、胀气等热失控现象的概率大大增加。 图1水分含量与电池内阻关系 3水分对电池放电容量的影响 由上文结论可以看出,随着磷酸铁锂材料水分的增加,材料表面碱性增加,活性物质占比下降,由此带来的最接影响是使得电池初次放电容量随之而降低。磷酸铁林材料表面金属锂的析出会直接影响SEI膜的构成,而多余的水分则会促使电解液中的LiPF6分化成LiF和PFs。也就是说,水分的增加会导致构造SEI膜最关键的两个因素Li+和电解液有效含量的降低,会直接导致SEI的厚度、均匀性等无法满足要求。而水分不断的与SEI膜发生反应,而SEI膜不断的进行修复,消耗电解液,进而使得电池循环容量急速衰减。 4水分含量对电池厚度的影响 随着水分含量的增加,电池的厚度也在变大。在SEI膜形成过程中会产生CO2、CO等气体。并且当水分过量时,多余的水会继续与电解液中的LiPF6反应产生HF气体。由图2可知,当电池内水分含量达到一定程度后,电池厚度与水分含量几乎成正比。

电池性能及测试

锂电池性能与测试 1. 二次电池性能主要包括哪些方面? 主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等。 2. 手机电池块有哪些电性能指标怎么测量? 电池块的电性能指标很多这里只介绍最主要的几项电特性: A.电池块容量 该指标反映电池块所能储存的电能的多少是以毫安小时计,例如:1600mAH是意昧着电池以1600mA放电可以持续放电一小时. B.电池块寿命 该指标反映电池块反复充放电循环次数 C.电池块内阻 上面已提到电池块的内阻越小越好但不能是零 D.电池块充电上限保护性能 锂电池充电时,其电压上限有一额定值,在任何情况下,锂电池的电压不允许超过此额定值该额定值。由PCB板上所选用的IC来决定和保证。 E.电池块放电下限保护性能 锂电池块放电时,在任何情况下锂电池的电压不允许低于某一额定值该额定值,由PCB板上所选用的IC来决定和保证。 需要说明的是,在手机中一般锂电池块放电时,尚未到达下限保护值,手机就因电池电量不足而关机。 F.电池块短路保护特性 锂电池块外露的正负极片在被短路时,PCB板上的IC应立即加以判断,并作出反应关断MOSFET。当短路故障排除后,电池块又能立即输出电能,这些均有PCB上的IC来识别判断和执行。 3. 电池的可靠性项目有哪些? 1. 循环寿命 2. 不同倍率放电特性 3. 不同温度放电特性 4. 充电特性 5. 自放电特性 6. 不同温度自放电特性 7. 存贮特性 8. 过放电特性 9. 不同温度内阻特性 10. 高温测试 11. 温度循环测试 12. 跌落测试 13. 振动测试 14. 容量分布测试 15. 内阻分布测试 16. 静态放电测试ESD 4. 电池的安全性测试项目有哪些? 1. 内部短路测试 2. 持续充电测试 3. 过充电 4. 大电流充电 5. 强迫放电 6. 坠落测试 7. 从高处坠落测试 8. 穿透实验 9. 平面压碎实验 10. 切割实验 11. 低气压内搁置测试 12. 热虐实验 13. 浸水实验 14. 灼烧实验 15. 高压实验 16. 烘烤实验 17. 电子炉实验 5. 什么是电池的额定容量? 指在一定放电条件下,电池放电至截止电压时放出的电量。IEC标准规定镍镉和镍氢电池在20+ 5。c环境下,以0.1C充电16小时后以0.2C放电至1.0V时所放出的电量为电池的额定容量,以C5表示而对于锂离子电池,则规定在常温,恒流(1C)恒压(4.2V)控制的充电条件下,充电3 h再以0.2C放电至2.75V时,所放出的电量为其额定容量电池容量,电池容量的单位有Ah,mAh(1Ah=1000mAh). 6. 什么是电池的放电残余容量? 对可充电电池用大电流(如1C或以上)放电时,由于电流过大使内部扩散速率存在的“瓶颈效应”,致使电池在容量未能完全放出时已到达终点电压,再用小电流如0.2C还能继续放电,直至1.0V/支时所放出的容量称为残余容量 7. 什么是电池的标称电压;开路电压;中点电压;终止电压? 电池的标称电压指的是在正常工作过程中表现出来的电压,二次镍镉镍氢电池标称电压为1.2V;二次锂电池标称电压为3.6V。 开路电压指在外电路断开时,电池两个极端间的电位差; 终点电压指电池放电实验中,规定的结束放电的截止电压; 中点电压指放到50%容量时,电池的电压主要用来衡量大电流放电系列电池高倍率放电能力,是电池的一个重要指标 8. 电池常见的充电方式有哪几种? 镍镉和镍氢电池的充电方式: 1. 恒流充电:整个充电过程个中充电电流为一定值,这种方法最常见。 2. 恒压充电:充电过程中充电电源两端保持一恒定值,电路中的电流随电池电压升高而逐渐减小。

锂离子电池容量衰减机理和界面反应研究

Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries Pankaj Arorat and Ralph E. White Center For Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina,Columbia, South Carolina 29208, USA ABSTRACT The capacity of a lithium-ion battery decreases during cycling. This capacity loss or fade occurs due to several different mechanisms which are due to or are associated with unwanted side reactions that occur in these batteries. These reactions occur during overcharge or overdischarge and cause electrolyte decomposition, passive film formation, active material dissolution, and other phenomena. These capacity loss mechanisms are not included in the present lithium-ion battery mathematical models available in the open literature. Consequently, these models cannot be used to predict cell performance during cycling and under abuse conditions. This article presents a review of the current literature on capacity fade mechanisms and attempts to describe the information needed and the directions that may be taken to include these mechanisms in advanced lithium-ion battery models。锂离子电池容量衰减机 理和界面反应研究 作者:Pankaj Arorat and Ralph E. White 美国,南卡罗来纳29208,哥伦比亚,南卡罗来纳州大学,化工学院化工系 摘要 锂电池在循环过程中,其容量会逐渐衰减。而出现容量衰减主要归因于几个不同的机理,这些机理大多与电池内部的界面反应相关,这些反应持续性的发生在电池的充放电环节,并且引起电解液的分解、钝化膜的形成、活性材料的溶解等其它现象。关于容量衰减的机理在目前公开的锂离子电池数学模型的文献中并未加以阐述,因此在锂电池循环过程中和处于苛刻的条件下,我们无法通过模型来对锂电池的性能作出有效的预测。本篇文章将陈述容量衰减的机理,并且试着去解释其本质,为构建先进的锂电池模型指明方向。 lntroduction The typical lithium-ion cell(Fig. 1) is made up of a coke or graphite negative electrode, an electrolyte which serves as an ionic path between electrodes and separates the two materials, and a metal oxide (such as LiCoO2, LiMn2O4, or LiNiO2) positive electrode. This secondary (rechargeable) lithium-ion cell has been commercialized only 概论 传统的锂电池由碳或石墨负极材料、作为电极间的离子传输通道的电解液、金属氧化物(例如LiCoO2、LiMn2O4、LiNiO2)正极材料三部分组成,这种二次(可充电)电池已经商业化。依照这种原理制作的锂电池已

矿用锂离子蓄电池安全标志现场评审准则(暂行)

附件3 矿用锂离子蓄电池安全标志现场评审准则(暂行) ★否决项●考核项■观察项 序号项目名称评审内容及要求 1 机构 1.1 注册资金★法人执照或营业执照的注册资金应不少于2000万元。 1.2 生产合法性★①营业执照应在有效期内; ★②所生产产品应在其营业执照的经营范围内。 1.3 生产场所★应具备产品生产所需要的固定场所,生产场所面积不小于5000m2,有生产场所的合法证明文件。 2 管理体系 2.1 体系文件★①应有健全的质量管理机构以及完整有效的质量管理体系文件。 ●②质量管理体系文件应具有可操作性并与现行操作相符; ●③应有明确的质量方针和目标,并传达至全体员工; ●④应建立质量否决制度。

序号项目名称评审内容及要求 2.2 内部审核与管理评审■①应有内部审核、管理评审制度; ■②应根据实际情况安排内部审核和管理评审; ■③产品质量审核内容至少应包括:《矿用锂离子蓄电池安全技术要求(试行)》规定的试验项目、生产过程和关键工序、用户质量反馈意见等; ■④对审核发现的问题,应及时制定、实施纠正措施,并对实施效果进行跟踪验证。 3 人员 3.1 技术人员★至少应具有20名获得或相当于中级及以上专业技术职称的在册技术人员。 3.2 人员素质●①相关负责人应对锂离子蓄电池安全性能有较深了解; ★②技术负责人应熟悉锂离子蓄电池性能以及其影响因素,主要技术人员应熟悉标准、《矿用锂离子蓄电池安全技术要求(试行)》、图纸、生产工艺、检验等工作; ●③关键工序的人员应该熟悉其生产工艺、设备操作规程等内容,操作熟练; ●④检验人员应该熟悉标准、检验规程等内容,操作熟练。 3.3 培训■①应制定并实施培训管理制度; ■②应有年度培训计划,并明确培训要求; ■③应有人员培训状况记录,并能反映出与产品质量有关的全部人员的培训情况; ●④应对从事特殊工种的人员进行资格培训,并持证上岗; ●⑤应有与产品相关的矿山法规、标准的培训及记录。 4 技术文件管理

影响蓄电池性能的因素

1.影响蓄电池质量的技术问题 1)电池构成 VRLA电池由正极板、负极板、AGM隔膜、正负汇流条、电解液、安全阀、盖和壳组成。其中正极板栅厚度、合金成份、AGM隔膜厚度均匀性、汇流条合金、电解液量、安全阀开闭压力、壳盖材料、电池生产工艺等对电池寿命和容量均匀性具有重要影响。 2)板栅合金 VRLA电池负板栅合金一般为Pb-Ca系列合金,正板栅合金有Pb-Ca系列、Pb-Sb(低)系列和纯Pb等,其中Pb-Ca、Pb-Sb(低)合金正板栅电池浮充寿命相近,但循环寿命相差较大,对于经常停电地区选用低锑合金电池可靠性好。 3)板栅厚度 极板的正板栅厚度决定电池的设计寿命。 4)安全阀 安全阀是电池的一个关键部件,具有滤酸、防爆和单向开放功能,YD/T7991 996规定安全开闭压力范围为1-49kPa,但是,对于长寿命电池,必须考虑单向密封,防止空气进人电池内部,同时防止内部水蒸气在较高温度下跑掉。 5)AGM隔膜 隔膜孔隙率和厚度均匀性,直接影响隔膜吸酸饱和度和装配压缩比,从而影响电池寿命和容量均匀性。 6)壳盖材料 VRLA电池壳盖材料有PP、ABS和PVC,PP材料相对较好。 7)酸量和化成工艺 分为电池化成和槽化成两种,电池化成可以定量注酸并记录每个电池单体化成全过程数据,能准确判断每个出厂电池综合生产质量状况,但化成时间较长。槽化成是对极板化成,化成时间短,极板化成较充分,但对电池组装质量不能通过化成过程数据记录判断。 8)涂板工艺 涂板工艺要保证极板厚度和每片极板活性物质的均匀性。 9)密封技术 VRLA电池密封技术包括极柱密封、壳盖材料透水性、壳盖密封和安全阀密封。 10)氧复合效率 AGM电池具有良好的氧复合效率,贫液状态下按有关标准测试氧复合效率一般大于98%,因此具有良好的免维护性能。 2.影响蓄电池寿命的环境因素 1)环境温度 蓄电池正常运行的温度是20~40℃,最佳运行温度是25℃。当温度每升高5℃,蓄电池的使用寿命降低10%,且容易发生热失控。 2)环境湿度 蓄电池的运行湿度应该在5~95%(不结露)之间,环境湿度过高,会在蓄电池表面结露,容易出现短路;环境湿度过低,容易产生静电。 3)灰尘 灰尘过多,容易使蓄电池短路,安全阀堵塞失效。 3.蓄电池失效模式 1)电池失水

锂离子电池充放电机理的探索

锂离子电池充放电机理的探索 及“锂亚原子”模型的建立 贵州航天电源科技有限公司张忠林杨玉光 摘要:锂离子电池的研究和发展一直都是以“摇椅理论”为指导,由于受该理论的影响,很多现象很难用传统的电化学理论进行解释。作者在生产实践中通过对一些现象的观察,并做了大量的试验和研究,提出“锂亚原子”的模型,并在此模型的基础上,对锂离子电池的充放电反应机理和一些现象用电化学理论进行了解释。 主题词:锂离子电池、反应机理、锂亚原子 一、前言 锂离子电池是在锂金属电池基础上发展起来的。由于锂金属电池在充放电时出现锂枝晶,刺破隔膜造成短路,出现爆炸等现象,这一问题长期困扰锂金属电池的发展,目前仍很难投入到民用市场。锂离子电池研究始于20世纪80年代,1991年首先由日本索尼公司推出了批量民用产品,由于其具有比能量高、体积小、重量轻、工作电压高、无记忆效应、无污染、自放电小等优点,受到市场欢迎,并迅速占领市场,广泛用于移动通讯、笔记本电脑、移动DVD、摄像机、数码相机、蓝牙耳机等便携式电子产品。目前主要产地集中在日本、中国和韩国,预计2004年全球需求量将达到10亿只。 由于锂离子电池从开始研究到现在才20多年时间,真正投入应用也只有十多年的时间,基础理论的研究还不是十分成熟,对锂离子电池的生产和发展很难起到全面指导作用,特别是对电池充放电反应机理的认识还存在很大分歧,有些现象用目前的理论和机理还很难解释。本文对锂离子电池充放电反应机理提出了一些看法,并对生产中存在的现象进行了解释,希望与锂电池同行共同探讨。二、基本原理 目前锂离子电池公认的基本原理为“摇椅理论”,该理论认为锂离子电池充放电反应机理不是通过传统氧化还原反应来实现电子转移,而是通过锂离子在层状物质的晶格中嵌入和脱出,发生能量变化。

三元锂电池-化成-老化工艺的分析与总结

关于锂电池化成-老化工艺的分析与总结锂离子电池的生产制造,是由一个个工艺步骤严密联络起来的过程。整体来说,锂电池的生产包括极片制造工艺、电池组装工艺以及最后的注液、封口、化成、老化工艺。在这三个阶段的工艺中,每道工序又可分为数道关键工艺,每一步都会对电池最后的性能形成很大的影响。 在极片制造工艺阶段,可细分为浆料制备、浆料涂覆、极片辊压、极片分切、极片干燥五道工艺。在电池组装工艺,又根据电池规格型号的不同,大致分为卷绕、入壳、焊接等工艺。组装完成后的注液工艺又包括注液、封口。最后是电池的化成、老化、分容三步工艺。在电池制作完成后,需要对电池进行初次预激活和稳定化,也就是最后的化成-老化-分容工序。一、化成 关于化成(Pre-formation)的概念,就是对制造出来的锂离子电池进行一次小电流的充放电。在锂电池制作完成后,需要对电池进行小电流的充放电。关于预充电的目的,主要是两个: 1、电池制作完成后,电极材料并不是处在最佳适用状态,或者物理性质不合适(例如颗粒太大,接触不紧密等),或者物相本身不对(例如一些合金机理的金属氧化物负极),需要进行首次充放电对其激活。 2、在锂电池进行第一次充电过程中,Li+从正极活物质中脱出,经过电解液-隔膜-电解液后,嵌入负极石墨材料层间。在此过程中,电子沿着外围电路从正极迁移到负极。此时,由于锂离子嵌入石墨负极电位较低电子会先与电解液反应生成SEI膜和部分气体。

在此过程中会产生部分气体产生同时伴随少量电解液的消耗,有些电池厂家会在此过程后进行电池排气和补液的操作,尤其是对于 LTO电池来说,会产生大量的气体造成电池鼓包厚度超过10%。对于石墨负极来说,产气量较少,不必要进行排气的操作,这是因为在第一次充电过程中产生的SEI 膜阻碍了电子与电解液的进一步反应,不再产生气体。这也就是石墨体系电池不可逆容量的来源,虽然造成了不可逆容量损失,但是也成就了电池的稳定。 二、老化 老化一般就是指电池装配注液完成后第一次充电化成后的放置,可以有常温老化也可有高温老化,两者作用都是使初次充电化成后形成的SEI 膜性质和组成更加稳定,保证电池电化学性能的稳定性。老化的目的主要有三个: 1、电池经过预化成工序后,电池内部石墨负极会形成一定的量的SEI膜,但是这个膜结构紧密且孔隙小,将电池在高温下进行老化,将有助于SEI结构重组,形成宽松多孔的膜。 2、化成后电池的电压处于不稳定的阶段,其电压略高于真实电压,老化的目的就是让其电压更准确稳定。 3、将电池置于高温或常温下一段时间,可以保证电解液能够对极片进行充分的浸润,有利于电池性能的稳定。 电池的化成-老化工艺是必不可少的,在实际生产中根据电池的材料体系和结构体系选择电池充放电工艺,但是电池的化成必须在小电流的条件

锂电池存放安全规范

锂电池储存保养及安全防护规范 1.短期储存: 锂电池短期不使用(如6个月以内),电池带电量状态下,将电池储存在干燥、无腐蚀性气体、温湿度在-20°C~35℃65±20%之间的地方,高于或低于此温湿度会使电池金属部件生锈或电池出现泄漏。 2.长期储存: 1、锂电池长期不用应(如6个月以上)充入50%~70%的电量,并从仪器中取出存放在干燥阴凉的环境中,并每隔3个月充一次电池,以免存放时间过长,电池因自放电导致电量过低,造成不可逆的容量损失。 2、锂电池的自放电受环境温度及湿度的影响,高温及湿温会加速电池的自放电,建议将电池存放在10 ℃~25 ℃,65±20%的干燥环境。 3.充电及带电量控制: 3.1、充电方法:①由电池供应的原厂商使用专用的电池设备;②由客户或使用者将电池装在仪器设备中充电。 通常锂电池有比较完备的保护功能(带有保护板),对电池充电时没有太多的其它要求,但为防止保护板过充保护功能失效造成的安全问题,也不建议长时间的充电,电池充饱后即取出,另外充电时必须使用原装或电池所附带的充电器,并按说明进行操作和使用,否则可能损坏电池甚至发生危险; 3.2、带电量识别及检测方法:带电量50%~70%,通常相对应的电压范围:3.6~3.9V(不同材料体系的锂电池有区别); 客户或使用者可以使用万用表测量正负极端的电压,如装在仪器或设备中可直接读取仪器上显示的电量。 4.储存仓库的要求: 4.1、仓库能对温湿度进行控制,如有空调或除湿设备,能避免长时间处于高湿环境。 4.2、仓库有自动灭火系统,应急喷淋系统,干粉灭火器和消防沙(建筑用的沙子即可)。 4.3、不能与易燃的物料(如包装材料纸盒、纸箱等)放在同一仓库,建议用独立的仓库。 4.4、二级防火门。 4.5、按锂电池包装上的指示标识及堆码要求摆放,严禁堆层超过限度。5.应急处理方法: 锂电池长期存放可能会发生漏液,生锈,鼓胀现象;如操作不当可能发生发热,燃烧或爆炸等现象,相关的处理方法如下: 生锈的处理方法:通常见如圆柱类的锂电池(聚合物锂电池不存在此现象),初期、轻微的生锈不会影响锂电池的性能,可以正常使用。如生锈严重(如盖帽部位)将影响电池密封性能而漏液,必须报废处理。 漏液或鼓胀的处理方法:漏液是指电池中的电解液泄漏出来,通常会有刺鼻的气味,电解液有很强的腐蚀性将导致电池保护板元器件损坏,如是聚合物锂电池将会发生鼓胀。漏液和鼓胀的电池必须挑选出来,报废处理。 正常温湿度环境条件下,电池不会产生发霉,变色现象,如果发生漏液将会产生此类不良现象。

影响锂电池循环的几个因素

影响锂离子电池循环性能的几个因素 (锂电技术水太深,文武的东西别当真) 循环性能对锂离子电池的重要程度无需赘言;另外就宏观来讲,更长的循环寿命意味着更少的资源消耗。因而,影响锂离子电池循环性能的因素,是每一个与锂电行业相关的人员都不得不考虑的问题。以下文武列举几个可能影响到电池循环性能因素,供大家参考。 材料种类:材料的选择是影响锂离子电池性能的第一要素。选择了循环性能较差的材料,工艺再合理、制成再完善,电芯的循环也必然无法保证;选择了较好的材料,即使后续制成有些许问题,循环性能也可能不会差的过于离谱(一次钴酸锂克发挥仅为135.5mAh/g左右且析锂的电芯,1C虽然百余次跳水但是0.5C、500次90%以上;一次电芯拆开后负极有黑色石墨颗粒的电芯,循环性能正常)。从材料角度来看,一个全电池的循环性能,是由正极与电解液匹配后的循环性能、负极与电解液匹配后的循环性能这两者中,较差的一者来决定的。材料的循环性能较差,一方面可能是在循环过程中晶体结构变化过快从而无法继续完成嵌锂脱锂,一方面可能是由于活性物质与对应电解液无法生成致密均匀的SEI膜造成活性物质与电解液过早发生副反应而使电解液过快消耗进而影响循环。在电芯设计时,若一极确认选用循环性能较差的材料,则另一极无需选择循环性能较好的材料,浪费。 正负极压实:正负极压实过高,虽然可以提高电芯的能量密度,但是也会一定程度上降低材料的循环性能。从理论来分析,压实越大,相当于对材料的结构破坏越大,而材料的结构是保证锂离子电池可以循环使用的基础;此外,正负极压实较高的电芯难以保证较高的保液量,而保液量是电芯完成正常循环或更多次的循环的基础。 水分:过多的水分会与正负极活性物质发生副反应、破坏其结构进而影响循环,同时水分过多也不利于SEI膜的形成。但在痕量的水分难以除去的同时,痕量的水也可以一定程度上保证电芯的性能。可惜文武对这个方面的切身经验几乎为零,说不出太多的东西。大家有兴趣可以搜一搜论坛里面关于这个话题的资料,还是不少的。 涂布膜密度:单一变量的考虑膜密度对循环的影响几乎是一个不可能的任务。膜密度不一致要么带来容量的差异、要么是电芯卷绕或叠片层数的差异。对同型号同容量同材料的电芯而言,降低膜密度相当于增加一层或多层卷绕或叠片层数,对应增加的隔膜可以吸收更多的电解液以保证循环。考虑到更薄的膜密度可以增加电芯的倍率性能、极片及裸电芯的烘烤除水也会容易些,当然太薄的膜密度涂布时的误差可能更难控制,活性物质中的大颗粒也可能会对涂布、滚压造成负面影响,更多的层数意味着更多的箔材和隔膜,进而意味着更高的成本和更低的能量密度。所以,评估时也需要均衡考量。 负极过量:负极过量的原因除了需要考虑首次不可逆容量的影响和涂布膜密度偏差之外,对循环性能的影响也是一个考量。对于钴酸锂加石墨体系而言,负极石墨成为循环过程中的“短板”一方较为常见。若负极过量不充足,电芯可能在循环前并不析锂,但是循环几百次后正极结构变化甚微但是负极结构被破坏严重而无法完全接收正极提供的锂离子从而析锂,造成容量过早下降。 电解液量:电解液量不足对循环产生影响主要有三个原因,一是注液量不足,二是虽然注液量充足但是老化时间不够或者正负极由于压实过高等原因造成的浸液不充分,三是随着循环电芯内部电解液被消耗完毕。注液量不足和保液量不足文武之前写过《电解液缺失对电芯性能的影响》因而不再赘述。对第三点,正负极特别是负极与电解液的匹配性的微观表现为致密且稳定的SEI的形成,而右眼可见的表现,既为循环过程中电解液的消耗速度。不完整的SEI膜一方面无法有效阻止负极与电解液发生副反应从而消耗电解液,一方面在SEI膜有缺陷的部位会随着循环的进行而重新生成SEI膜从而消耗可逆锂源和电解液。不论是对循环成百甚至上千次的电芯还是对于几十次既跳水的电芯,若循环前电解液充足而循环后电解液已

相关文档
最新文档