结构设计中让人头疼的超筋

结构设计中让人头疼的超筋
结构设计中让人头疼的超筋

3 让人头疼的超筋

超筋是因为结构或构件位移、相对位移大或变形不协调等。位移有水平位移?

,竖向

1

、转角θ。新手刚接触结构设计时,一看到软件计算结果显红颜色往往就不知所措,

位移?

2

下面将从多个方面详细讲解超筋。

3.1 超筋的种类、查看方式及解决方法

3.1.1 超筋的种类

超筋大致可以分为以下七种情况:1.弯矩超(如梁的弯矩设计值大于梁的极限承载弯矩);

2.剪扭超;

3.扭超

4.剪超;

5.配筋超(梁端钢筋配筋率ρ≥ 2.5%);

6.混凝土受压区高

度ζ 不满足;7.在水平风荷载或地震作用时由扭转变形或竖向相对位移引起超筋。

3.1.2 超筋的查看方式

超筋可以点击【SATWE/分析结构图形和文本显示】→【图形文件输出/混凝土构件配筋及

钢构件验算简图】查看,会看到椭圆框内的数字显红色,如图3-1 所示:

图3-1 梁超筋示意图

3.1.3 超筋的解决方法:

1.抗加大构件的截面,于是截面刚度增大。一般在建筑对梁高要求严格的地方只加大梁宽,

其他地方可以加大梁高,也可以提高混凝土强度等级。

2.放点铰,以梁端开裂为代价,不宜多用。点铰把梁端弯矩调幅到跨中,并释放扭矩,

行点铰不符合实际情况,不安全。

3.调通过调整结构布置来改变输入力流的方向,使力流避开超筋处的构件,把部分力流

引到

其他构件。

3.2 对“剪扭超筋”的认识及处理

3.2.1 “剪扭超筋”常出现的位置

当次梁距主梁支座很近或主梁两边次梁错开(距离很小)与主梁相连时容易引起剪扭超筋。

3.2.2 引起“剪扭超筋”的原因

“剪扭超筋”一般是扭矩、剪力比较大。《混凝土结构设计规范》GB50010-2010 第6.4.1 条(以下简称“混规”)做了如下规定:在弯矩、剪力和扭矩共同作用下,h w/b 不大于6的矩形、T 形、I 形截面和h w/t w 不大于6 的箱形截面构件(图6.4.1),其截面应符合下列条件:

当h w/b(或h w/t w)不大于4 时

(3-1)

当h w/b(或h w/t w)等于4 时

(3-2)

当h w/b(或h w/t w)大于4 但小于6 时,按线性内插法确定。式中:T——扭矩设计值;

b——矩形截面的宽度,T 形或I 形截面取腹板宽度,箱形截面取两侧壁总厚度2t w;

W t——受扭构件的截面受扭塑性抵抗矩,按本规范第6.4.3 条的规定计算;h w——截面的腹板高度:对矩形截面,取有效高度h0;对T 形截面,取有效高度减去翼缘高度;对I 形和箱形截面,取腹板净高;t w——箱形截面壁厚,其值不应小于b h/7,此处,b h 为箱形截面的宽度。

注:当h w/b 大于6 或h w/t w 大于6 时,受扭构件的截面尺寸要求及扭曲截面承载力计算应符合专门规定。

3.2.3 “剪扭超筋”的查看方式

“剪扭超筋”可以点击【SATWE/分析结构图形和文本显示】 【图形文件输出/混凝土构件配筋及钢构件验算简图】查看,会看到椭圆框内的数字显红色,且TV 旁的数字比较大,如图3-2 所示:

图3-2 “剪扭超筋”示意图

3.2.4 “剪扭超筋”的解决方法:

1.抗加大主梁的截面,提高其抗扭刚度,也可以提高主梁混凝土强度等级。

2.调

加大次梁截面,提高次梁抗弯刚度,这时主次梁节点更趋近于铰接,次梁梁端弯矩变小,于是传给主梁的扭矩减小。从原理上讲,把主梁截面变小,同时又增加次梁抗弯刚度,会

更接近铰,但是从概念上讲,减小主梁的截面,未必可取,因为减小主梁截面的同时,抗扭能力

也变差了,在实际设计中,往往把这两种思路结合,在增加次梁抗弯刚度的同时,适量增加主梁的抗扭刚度,主梁高度可增加50~100mm,但增加次梁抗弯刚度更有效。

3.点铰

以开裂为代价,尽量少用,且一般不把在同一直线上共用一个节点的2 根次梁都点铰。

但在设计时,有时点铰无法避免,此时次梁面筋要构造设置,支座钢筋不能小于底筋的1/4,

次梁端部要箍筋加密,以抵抗次梁开裂后,斜裂缝间混凝土斜压力在次梁纵筋上的挤压,主梁筋

腰筋可放大20%~50%,并按抗扭设计,主梁箍筋直径放大一级或把主梁箍筋适量加密。

4.PKPM 程序处理考虑楼板约束的有利作用,次梁所引起的弯矩有很大一些部分由楼

板来承受。一般考

虑楼板对主梁的约束作用后,梁的抗扭刚度加大,但程序没有考虑这些有利因素,于是梁扭矩要

乘以一个折减系数,折减系数一般在0.4~1.0 之间,刚性楼板可以填0.4,弹性楼板填1.0。

若有的梁需要折减,有的梁不需要折减时,可以分别设定梁的扭矩折减系数计算两次。雨篷、弧梁等构件由于楼板对其约束作用较弱,一般不考虑梁扭矩折减系数。

5.改变结构布置。当梁两边板荷载差异大时,可加小次梁分隔受荷面积,减小梁受到

的扭矩。也可以用

宽扁梁,比如截面为300×1000mm 的宽扁梁,使得次梁落在宽扁梁上,但尽量不要这样布置,影响建筑美观。

3.2.5 小结

在设计时,先考虑PKPM 中的扭矩折减系数,如果还超筋,采用上面的抗、调两种方法,或者调整结构布置,最后才选择点铰。

当次梁离框架柱比较近时,其他办法有时候很难满足,因为主梁受到的剪力大,扭矩大,此时

点铰接更简单。

无论采用哪种方法,次梁面筋要构造设置,支座钢筋不能小于底筋的1/4,次梁端部要

箍筋加密,以抵抗次梁开裂后斜裂缝间混凝土斜压力在次梁纵筋上的挤压,主梁腰筋可放大

20%~50%,并按抗扭设计,主梁箍筋直径放大一级或把主梁箍筋适量加密。

3.3 对“剪压比超筋”的处理

当剪压比超限时,可以加大截面或提高混凝土强度等级。

3.4 对“配筋超筋、弯矩超筋”的认识及处理

3.4.1“配筋超筋、弯矩超筋”常出现的位置

常出现在两柱之间框架梁上。

3.4.2 “配筋超筋、弯矩超筋”的查看方式

“配筋超筋、弯矩超筋”可以点击【SATWE/分析结构图形和文本显示】→【图形文件输出/混凝土构件配筋及钢构件验算简图】查看,会看到椭圆框内的数字显红色,且跨中或梁端M 显示红色数字1000,如图3-3 所示:

图3-3 “配筋超筋、弯矩超筋”示意图

3.4.3 引起“配筋超筋、弯矩超筋”的原因

荷载大、梁截面小或跨度大。

3.4.4 “配筋超筋、弯矩超筋”的解决方法

1.加大截面,一般加梁高。梁的抗弯刚度EI 中I= bh3 /12,加梁高后端弯矩M 比加梁

宽后梁端弯矩M 更小。有些地方梁高受限时,只能加大梁宽。

2. 把一些梁不搭在超筋的框架梁上,减小梁上的荷载。

3. 加柱,减小梁的跨度,但一般不用。

注:如果有几个标准层同一位置都要采取相同的操作,可以点击【层编辑/层间编辑】来完成操作。

3.5 对“抗剪超筋”的认识及处理

3.5.1 “抗剪超筋”的查看方式

“抗剪超筋”可以点击【SATWE/分析结构图形和文本显示】→【图形文件输出/混凝

土构件配筋及钢构件验算简图】查看,会看到椭圆框内的数字显红色,且G 旁边的数字很大,如图3-4 所示:

图3-4 “抗剪超筋”示意图

3.5.2 “抗剪超筋”的解决方法

一般选择提高混凝土强度等级或加大梁宽。加大梁宽而不加大梁高是因为加梁宽,可增加箍筋肢数,可利用箍筋抗剪。

3.6 对“结构布置引起的超筋”的认识及处理

3.6.1 “结构布置引起的超筋”的原因

1.当结构扭转变形大时,转角θ也大,于是弯矩M 大,导致超筋,如图3-5 所示:

图3-5 结构扭转变形过大引起超筋示意图

2.结构竖向相对位移?2 大,于是剪力墙或连梁弯矩M 大,导致超筋。在水平力作用下,F1.H=F2.D,D 为抗倾覆力臂。如图2-16 所示。

3.6.2 “结构布置引起的超筋”的解决方法

首先找到超筋的位置,再调整结构布置,加大结构外围刚度,减小结构内部刚度,减小结构扭转变形。

3.7 对“剪力墙中连梁超筋”的认识及处理

3.7.1 引起“剪力墙中连梁超筋”的原因

剪力墙在水平力作用下会发生错动,墙稍有变形的情况下,连梁端部会产生转角,连

梁会承担极大的弯矩和剪力,从而引起超筋。

3.7.2 “剪力墙中连梁超筋”的解决方法

1.降低连梁刚度,减少地震作用

(1)减小梁高,以柔克刚。如果仍然超筋,说明该连梁两侧的墙肢过强或者是吸收的地

震力过大,此时,想通过调整截面使计算结果不超筋是困难且没必要的。一般由于门窗高度的

限制,梁高减小的余地已不大,减小梁高,抗剪承载力可能比内力减少得更多。

(2)容许连梁开裂,对连梁进行刚度折减。《建筑抗震设计规范》GB50011-2010 第

6.2.13-2 条(以下简称“抗规”)规定:抗震墙连梁的刚度可折减,折减系数不宜小于0.50。

(3)把洞口加宽,增加梁长,把连梁跨高比控制在2.5 以上,因为跨高比 2.5 时,抗剪

承载能力比跨高比<2.5 时大很多。梁长增加后,刚度变小,地震作用时连梁的内力也减小了。

(4)采用双连梁。假设连梁截面为200×1000mm,可以在梁高中间位置设一道50mm

的缝,设缝能有效降低连梁抗弯刚度,减小地震作用。

2.提高连梁抗剪承载力

(1)提高混凝土强度等级。

(2)增加连梁的截面宽度,增加连梁的截面宽度后抗剪承载力的提高大于地震作用的增加,

而增加梁高后地震作用的增加会大于抗剪承载力的提高。

3.8 对“转换梁及转换层上一层剪力墙、连梁超筋”的认识及处理

3.8.1 转换梁抗剪超筋

1. 超筋原因外部原因:荷载太大,竖向荷载、地震荷载引起梁斜截面抗剪超、结构刚度局部

偏小。内部原因:壳单元与杆单元的位移协调带来应力集中、单元相对很短,造成刚度偏大,内力较大、单元划分不合理。

2.解决方法

用多个不同模型的软件复核,如:PMSAP、FEQ 等。加截面,提高强度等。

3.8.2 转换梁上部的连梁抗剪超

连梁的两端受下部轴向刚度的不均匀性,在竖向荷载作用下,两端产生较大的竖向位移差,从而造成连梁抗剪超筋,在文本文件输出,超配筋信息里,抗剪超筋可以查看到。

3.8.3 转换梁上部的不落地剪力墙抗剪超

恒载作用下,墙两端产生较大的竖向位移差。加大转换梁截面效果不大,主要是调整墙的

布置,减小墙两端产生的竖向相对位移差。如果要加大转换梁截面,最好加宽度,因为加大梁

高后地震作用的增加会大于抗剪承载力的提高。

智能四足机器人结构设计

智能四足机器人结构设计 摘要 对于我们的未来生活,每个人有不同的构想,但大多数人都相信,在将来的社会,机器人将作为家庭的一员进入我们的生活,与我们每天朝夕相处。可现在普遍存在人们心中的疑问是:将来机器人将以何种身份进入我们的生活,是玩伴还是佣人,智能步行机器人的设计就是为了将来机器人能进入我们中国人的家庭生活,为我们的家庭生活带来欢乐。 本设计采用关节型结构,成功地设计了智能步行机器人的本体结构。本机器人具有前后行、平地侧行等基本行走功能。另外机器人头部还装有CD摄影机,胸腔内部可装备内置电源和智能设备。本设计参考了狗的结构组成,使得机器人结构尽量与狗的本体结构相似,尤其在长度配比方面。本设计的结构比较复杂,关节数目众多,为了力求优化设计,设计者兼顾了关键部件的互换性和结构紧凑的原则。所有的关节都用了2036型的直流伺服电机作为驱动源,充分利用伺服电机的特性。伺服电机的驱动都采用了谐波减速器机构,该减速方案减速比大、效率高,是比较理想的减速方案。 关键词:智能四足机器人;结构设计;谐波传动

Intelligent Four-Foot Robot Frame Design Abstract For our future life,everyone had different ideas,but most people believe that,in future society,the robot as a family into our lives,and we can now daily overnight with the common people's hearts Question is: what will be the future status of robot into our lives,playmates or servants,the design of intelligent walking robot is to the future robot can enter our Chinese people's family lives,for our happy family life. The design of a joint structure,the successful design of intelligent walking robot,the body structure. The robot has before and after the trip,the ground adjacent to the basic operating functions. Another robot is also equipped with CD camera head,chest internal equipment can be built-in power supply,and intelligent. The reference design of the structure of the robot,making the structure as the robot dog,the dog's body similar to the structure,particularly in the area ratio of length. The design of the structure is more complicated,the large number of joints,in an effort to optimize the design,designers take into account the interchangeability of key components of the compact structure and principles. All joints are composed of a 2036-type of DC servo motor as a driver and make full use of servo motor characteristics. Servo motor drives are used harmonic reducer,the slowdown in the programme reduction ratio,high efficiency,The ideal slowdown is a good programme. Keywords:intelligent four-foot robot ; structural design; harmonic drive

塑料件结构设计加强筋设计

塑料件结构设计-(5)加强筋设计 浏览发布时间15/05/10基本设计守则 加强筋在塑胶部件上是不可或缺的功能部份。加强筋有效地如『工』字型,增加产品的刚性和强度而无需大幅增加产品切面面积,但没有如『工』字型筋,倒扣结构将难於成型,对一些经常受到压力、扭力、弯曲的塑胶产品尤其适用。此外,加强筋更可充当内部流道,有助模腔充填,对帮助塑料流入部件的支节部份很大的作用。 加强筋一般被放在塑胶产品的非接触面,其伸展方向应跟随产品最大应力和最大偏移量的方向,选择加强筋的位置亦受制於一些生产上的考虑,如模腔充填、缩水及脱模等。加强筋的长度可与产品的长度一致,两端相接产品的外壁,或只占据产品部份的长度,用以局部增加产品某部份的刚性。要是加强筋没有接上产品外壁的话,末端部份亦不应突然终止,应该渐次地将高度减低,直至完结,从而减少出现困气、填充不满及烧焦痕等问题,这些问题经常发生在排气不足或封闭的位置上。 加强筋一般的设计 加强筋最简单的形状是一条长方形的柱体附在产品的表面上,不过为了满足一些生产上或结构上的考虑,加强筋的形状及尺寸须要改变成如以下的图一般。 加强筋的两边必须加上出模角以减低脱模顶出时的摩擦力,底部相接产品的位置必须加上圆角以消除应力过分集中的现象,圆角的设计亦给与流道渐变的形状使模腔充填更为流畅。此外,底部的宽度须较相连外壁的厚度为小,产品厚度与加强筋尺寸的关系图a说明这个要求。图中加强筋尺寸的设计虽然已按合理的比例,但当从加强筋底部与外壁相连的位置作一圆圈R1时,图中可见此部分相对外壁的厚度增加大约50%因此,此部份出现缩水纹的机会相当大。如果将加强筋底部的宽度相对产品厚度减少一半(产品厚度与加强筋尺寸的关系图b),相对位置厚度的增幅即减至大约20%,缩水纹出现的机会亦大为减少。由此引伸出使用两条或多条矮的加强筋比使用单一条高的加强筋较为优胜,但当使用多条加强筋时,加强筋之间的距离必须较相接外壁的厚度大。加强筋的形状一般是细而长,加强筋一般的设计图说明设计加强筋的基本原则。留意过厚的加强筋设计容易产生缩水纹、空穴、变形挠曲及夹水纹等问题,亦会加长生产周期,增加生产成本。(https://www.360docs.net/doc/e86650817.html,)

机器人基础考试试题重点

(二)简答题 1.智能机器人的所谓智能的表现形式是什么? 答:推理判断、记忆 2.机器人分为几类? 答:首先,机器人按应用分类可分为工业机器人、极限机器人、娱乐机器人。 1)工业机器人有搬运、焊接、装配、喷漆、检验机器人,主要用于现代化的工厂和柔性加工系统中。 2)极限机器人主要是指用在人们难以进入的核电站、海底、宇宙空间进行作业的机器人,包括建筑、农业机器人。 3)娱乐机器人包括弹奏机器人、舞蹈机器人、玩具机器人等。也有根据环境而改变动作的机器人。 其次,按照控制方式机器人可分为操作机器人、程序机器人、示教机器人、智能机器人和综合机器人。 3. 机器人由哪几部分组成? 机器人由三大部分六个子系统组成。三大部分是机械部分、传感部分和控制部分。六个子系统是驱动系统、机械结构系统、感受系统、机器人一环境交换系统、人机交换系统和控制系统。 4. 什么是自由度? 答:人们把构建相对于参考系具有的独立运动参数的数目称为自由度。 5. 机器人技术参数有哪些?各参数的意义是什么? 答:机器人技术参数有:自由度、精度、工作范围、速度、承载能力 1)自由度:是指机器人所具有的独立坐标轴的数目,不包括手爪(末端操作器)的开合自由度。在三维空间里描述一个物体的位置和姿态需要六个自由度。但是,工业机器人的自由度是根据其用途而设计的,也可能小于六个自由度,也可能大于六个自由度。

2)精度:工业机器人的精度是指定位精度和重复定位精度。定位精度是指机器人手部实际到达位置与目标位置之间的差异。重复定位精度是指机器人重复定位其手部于同一目标位置的能力,可以用标准偏差这个统计量来表示,它是衡量一列误差值的密集度(即重复度)。 3)工作范围:是指机器人手臂末端或手腕中心所能到达的所有点的集合,也叫工作区域。 4)速度;速度和加速度是表明机器人运动特性的主要指标。 5)承载能力:是指机器人在工作范围内的任何位姿上所能承受的最大质量。承载能力不仅取决于负载的质量,而且还与机器人运行的速度和加速度的大小和方向有关。为了安全起见,承载能力这一技术指标是指高速运行时的承载能力。通常,承载能力不仅指负载,而且还包括机器人末端操作器的质量。 6. 机器人手腕有几种?试述每种手腕结构。 答:机器人的手臂按结构形式分可分为单臂式,双臂式及悬挂式按手臂的运动形式区分,手臂有直线运动的。如手臂的伸缩,升降及横向移动,有回转运动的如手臂的左右回转上下摆动有复合运动如直线运动和回转运动的组合。2直线运动的组合2回转运动的组合。手臂回转运动机构,实现机器人手臂回转运动的机构形式是多种多样的,常用的有叶片是回转缸,齿轮转动机构,链轮传动和连杆机构手臂俯仰运动机构,一般采用活塞油(气)缸与连杆机构联用来实现手臂复合运动机构,多数用于动作程度固定不变的专用机器人。 7. 机器人机座有几种?试述每种机座结构。 答:机器人几座有固定式和行走时2种 1)固定式机器人的级左右直接接地地面基础上,也可以固定在机身上 2)移动式机器人有可分为轮车机器人,有3组轮子组成的轮系四轮机器人三角论系统,全方位移动机器人,2足步行式机器人,履带行走机器人 8. 试述机器人视觉的结构及工作原理 答:机器人视觉由视觉传感器摄像机和光源控制计算器和图像处理机组成原理:由视觉传感器讲景物的光信号转换成电信号经过A/D转换成数字信号传递给图像处理器,同时光源控制器和32 摄像机控制器把把光线,距离颜色光源方向等等参数传递给图像处理器,图像处理器对图像数据做一些简单的处理将数据传递给计算机最后由计算器存储和处理。 9. 工业机器人控制方式有几种?

轮式移动机器人结构设计论文

轮式移动机器人的结构设计 摘要:随着机器人技术在外星探索、野外考察、军事、安全等全新的领域得到日益广泛的采用,机器人技术由室内走向室外,由固定、人工的环境走向移动、非人工的环境。本课题是机器人设计的基本环节,能够为后续关于机器人的研究提供有价值的平台参考和有用的思路。 本文介绍了已有的机器人移动平台的发展现状和趋势,分析操作手臂常用 的结构和工作原理,根据选定的方案对带有机械臂的全方位移动机器人进行本 体设计,包括全方位车轮旋转机构的设计、车轮转向机构的设计和机器人操作 臂的设计。要求全方位移动机构转向、移动灵活,可以快速、有效的到达指定 地点;机械臂操作范围广、运动灵活、结构简单紧凑且尺寸小,可以快速、准 确的完成指定工作。设计完成后要分析全方位移动机构的性能,为后续的研究 提供可靠的参考和依据。 关键字:机器人移动平台操作臂简单快速准确

Structure design of wheeled mobile robots Abstract:with the robot technology in an alien exploration, field survey, military and security new areas to be increasingly widely adopted, robot technology by indoor, outdoor by fixed, to move towards artificial environment, the artificial environment. This topic is the basic link, robot design for the follow-up about robots can provide valuable reference and useful ideas platform. This article summarizes the existing robot mobile platform development status and trends of operating the arm structure and principle of common, According to the selected scheme of mechanical arm with ontology omni-directional mobile robots designed, including the design of all-round wheel rotating mechanism, wheel steering mechanism of design and the design of robot manipulator. Request to change direction, move the omni-directional mobile institution, can quickly and effectively flexible the reaches the specified location; Mechanical arm operation scope, sports flexible, simple and compact structure and size is small, can quickly and accurately completed tasks. The design is completed to analyze the performance of the omni-directional mobile institutions for subsequent research, provide reliable reference and basis. Keywords: Robot mobile platform manipulator simple accurate and quick

物料搬运机器人手的系统设计

天津大学 毕业设计 中文题目:物料搬运机器人手部系统的设计 英文题目:Material handling system design robot Hand department 学生姓名 系别机电 专业班级 2 指导教 成绩评定 2010年6月

目录 1 引言 (1) 1.1 机器人概述 (1) 1.2 机器人的研究历史及现状 (1) 1.3 机器人的发展趋势 (2) 2 手部的设计与计算 (3) 2.1 手部的设计 (3) 2.2 驱动方式 (3) 2.3 手部夹紧力的计算 (5) 2.4 弹簧的计算[6] (5) 2.5 手部电机选择原则【7】........................... 错误!未定义书签。 2.5.1 一般执行电机的选择原则...................... 错误!未定义书签。 2.5.2 电机的选用.................................. 错误!未定义书签。 2.6 手部电机参数计算.............................. 错误!未定义书签。 2.7 电机转速与夹紧力速度几何关系的确定............ 错误!未定义书签。 3 手臂的设计与计算............................... 错误!未定义书签。 3.1 手臂结构设计.................................. 错误!未定义书签。 3.2 手部质量计算.................................. 错误!未定义书签。 3.2.1 爪子的质量计算.............................. 错误!未定义书签。 3.2.2 手部外壳质量计算............................ 错误!未定义书签。 3.2.3 手部主轴的质量计算.......................... 错误!未定义书签。 3.2.4 其它部件的质量估算.......................... 错误!未定义书签。 3.3 手臂计算及电机选择............................ 错误!未定义书签。 4 结论.......................................... 错误!未定义书签。【参考文献】................................... 错误!未定义书签。致谢............................................ 错误!未定义书签。附录1:英文文献 .................................. 错误!未定义书签。附录2:英文文献翻译 .............................. 错误!未定义书签。

塑胶产品结构设计准则--加强筋篇

产品结构设计准则--加强筋篇 基本设计守则 加强筋在塑胶部件上是不可或缺的功能部份。加强筋有效地如『工』字铁般增加产品的刚性和强度而无需大幅增加产品切面面积,但没有如『工』字铁般出现倒扣难於成型的形状问题,对一些经常受到压力、扭力、弯曲的塑胶产品尤其适用。此外,加强筋更可充当内部流道,有助模腔充填,对帮助塑料流入部件的支节部份很大的作用。 加强筋一般被放在塑胶产品的非接触面,其伸展方向应跟随产品最大应力和最大偏移量的方向,选择加强筋的位置亦受制於一些生产上的考虑,如模腔充填、缩水及脱模等。加强筋的长度可与产品的长度一致,两端相接产品的外壁,或只占据产品部份的长度,用以局部增加产品某部份的刚性。要是加强筋没有接上产品外壁的话,末端部份亦不应突然终止,应该渐次地将高度减低,直至完结,从而减少出现困气、填充不满及烧焦痕等问题,这些问题经常发生在排气不足或封闭的位置上。 加强筋一般的设计 加强筋最简单的形状是一条长方形的柱体附在产品的表面上,不过为了满足一些生产上或结构上的考虑,加强筋的形状及尺寸须要改变成如以下的图一般。

长方形的加强筋必须改变形状使生产更容易 加强筋的两边必须加上出模角以减低脱模顶出时的摩擦力,底部相接产品的位置必须加上圆角以消除应力集过份中的现象,圆角的设计亦给与流道渐变的形状使模腔充填更为流畅。此外,底部的宽度须较相连外壁的厚度为小,产品厚度与加强筋尺寸的关系图a说明这个要求。图中加强筋尺寸的设计虽然已按合理的比例,但当从加强筋底部与外壁相连的位置作一圆圈R1时,图中可见此部份相对外壁的厚度增加大约50%,因此,此部份出现缩水纹的机会相当大。如果将加强筋底部的宽度相对产品厚度减少一半(产品厚度与加强筋尺寸的关系图b),相对位置厚度的增幅即减至大约20%,缩水纹出现的机会亦大为减少。由此引伸出使用两条或多条矮的加强筋比使用单一条高的加强筋较为优胜,但当使用多条加强筋时,加强筋之间的距离必须较相接外壁的厚度大。加强筋的形状一般是细而长,加强筋一般的设计图说明设计加强筋的基本原则。留意过厚的加强筋设计容易产生缩水纹、空穴、变形挠曲及夹水纹等问题,亦会加长生产周期,增加生产成本。 产品厚度与加强筋尺寸的关系 除了以上的要求,加强筋的设计亦与使用的塑胶材料有关。从生产的角度看,材料的物理特性如熔胶的黏度和缩水率对加强筋设计的影响非常大。此外,塑料的蠕动(creep)特性从结构方面来看亦是一个重要的考虑因数。例如,从生产的角度看,加强筋的高度是受制於熔胶的流动及脱模顶出的特性(缩水率、摩擦系数及稳定性),较深的加强筋要求胶料有较低的熔胶黏度、较低的摩擦系数、较高的缩水率。另外,增加长的加强筋的出模角一般有助产品顶出,不过,当出模角不断增加而底部的阔度维持不变时,产品的刚性、强度,与及可顶出的面积即随着减少。顶出面积减少

轮式移动机器人结构设计开题报告

毕业设计(论文)开题报告 题目轮式移动机器人的结构设计 专业名称机械设计制造及其自动化 班级学号 学生姓名 指导教师 填表日期2011 年 3 月 1 日

一、毕业设计(论文)依据及研究意义: 随着机器人技术在外星探索、野外考察、军事、安全等全新的领域得到日益广泛的采用,机器人技术由室内走向室外,由固定、人工的环境走向移动、非人工的环境。移动机器人已经成为机器人研究领域的一个重要分支。在军事、危险操作和服务业等许多场合得到应用,需要机器人以无线方式实时接受控制命令,以期望的速度、方向和轨迹灵活自如地移动。其中轮式机器人由于具有机构简单、活动灵活等特点尤为受到青睐。按照移动特性又可将移动机器人分为非全方位和全方位两种。而轮式移动机构的类型也很多,对于一般的轮式移动机构,都不能进行任意的定位和定向,而全方位移动机构则可以利用车轮所具有的定位和定向功能,实现可在二维平面上从当前位置向任意方向运动而不需要车体改变姿态,在某些场合有明显的优越性;如在较狭窄或拥挤的场所工作时,全方位移动机构因其回转半径为零而可以灵活自由地穿行。另外,在许多需要精确定位和高精度轨迹跟踪的时候,全方位移动机构可以对自己的位置进行细微的调整。由于全方位轮移动机构具有一般轮式移动机构无法取代的独特特性,对于研究移动机器人的自由行走具有重要意义,成为机器人移动机构的发展趋势。基于以上所述,本文从普遍应用出发,设计一种带有机械手臂的全方位运动机器人平台,该平台能够沿任何方向运动,运动灵活,机械手臂使之能够执行预定的操作。本文是机器人设计的基本环节,能够为后续关于机器人的研究提供有价值的平台参考和有用的思路。 二、国内外研究概况及发展趋势 2.1 国外全方位移动机器人的研究现状 国外很多研究机构开展了全方位移动机器人的研制工作,在车轮设计制造,机器人上轮子的配置方案,以及机器人的运动学分析等方面,进行了广泛的研究,形成了许多具有不同特色的移动机器人产品。这方面日本、美国和德国处于领先地位。八十年代初期,美国在DARPA的支持下,卡内基·梅隆大学(Carnegie Mellon university,CUM)、斯坦福(Stanford)和麻省理工(Massachusetts Institute of Technology,MIT)等院校开展了自主移动车辆的研究,NASA下属的Jet Propulsion Laboratery(JPL)也开展了这方面的研究。CMU机器人研究所研制的Navlab-1和Navlab-5系列机器人代表了室外移动机器人的发展方向。德国联邦国防大学和奔驰公司于二十世纪九十年代研制成VaMoRs-P移动机器人。其车体采用奔驰500轿车。传感器系统包括:4个小型彩色CCD摄像机,构成两 组主动式双目视觉系统;3个惯性线性加速度计和角度变化传感器。SONY公司1999年推

工业机器人结构设计

1绪论 1.1工业机器人概述 工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工业自动化水平的重要标志。机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力。从某种意义上说它也是机器进化过程的产物,它是工业以及非工业领域的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。机械手是模仿人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。在工业生产中应用的机械手被称为“工业机械手”。工业机械手可以提高生产的自动化水平和劳动生产率;可以减轻劳动强度、保证产品质量、实现安全

生产,尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,由它代替人进行正常的工作,意义更为重大。因此,工业机械手在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等方面得到越来越广泛的应用。工业机械手的结构形式开始比较简单专用性较强,仅为某台机床的上下料装置,是附属于该机床的专用机械手。随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的应用。 1.2工业机器人的组成和分类 1.2.1工业机器人的组成 机械手主要由执行机构、驱动系统、控制系统以及位置检测装置等组成。各系统相互之间的关系如方框图1.1所示。 图1.1机器人组成系统

关节型搬运机器人设计..

关节型搬运机器人设计 摘要 随着现代工业机器人技术的发展,工业机器人的使用迅速增长。本文通过对国内外工业机器人的分析,并结合搬运所需要的条件,设计出了工厂自动化生产和生产线使用的搬运机器人。 本文着重对搬运机器人的总体设计方案、机构及控制系统从理论上进行了详细的分析和设计。在搬运机器人总体设计中,采用了应用最为广泛的平面关节型;在机构设计中,主要设计了搬运机器人末端执行器、手腕、手臂和腰的机械结构;在末端执行器设计上采用了一种具有接近觉、接触觉及滑动觉的初级智能机械手;在控制系统的设计中,采用可编程控制器(PLC)进行控制,并对控制系统的硬件原理做了分析,对PLC 的程序也进行了编译;在驱动系统设计中,采用了气动和电机两种驱动方式,主要动作采用电机驱动。 关键词:搬运机器人,三感觉机械手,可编程序控制器 Design of the joint transporting robot Abstract Under the development of the modern industrial robot’s technology , the use of industrial robot increases rapidly. Through analyzing the domestic and foreign industrial robots, combing the conditions of the transportation, the transporting robot for the factory automation produce and the production line is designed in this article. The emphasis on this article is to analyze and design the transporting robot in theory. The analytical objects include the total scheme, the mechanism design, and the control system design. In the total scheme design, the most wildly applied plane joint type is chosen. In the mechanism, the transporting robot’s end-effector, the wrist, the arm and the waist are mainly designed. A kind of the approaching sense, the contact sense and the skidding sense primary intelligence manipulator is adopted in the end-effector; In the control system, the programmable controller (PLC) is used, the principle of hardware is analyzed and the programs in PLC are compiled. In the actuating system, two driving types are used which include the pneumatic operation and the motor. The main movement is driven by the motor. Key words: Transporting robot, three feelings manipulators, programmable controller (PLC)

四足机器人方案设计书

浙江大学“海特杯”第十届大学生机械设计竞赛“四足机器人”设计方案书

“四足机器人”设计理论方案 自从人类发明机器人以来,各种各样的机器人日渐走入我们的生活。仿照生物的各种功能而发明的各种机器人越来越多。作为移动机器平台,步行机器人与轮式机器人相比较最大的优点就是步行机器人对行走路面的要求很低,它可以跨越障碍物,走过沙地、沼泽等特殊路面,用于工程探险勘测或军事侦察等人类无法完成的或危险的工作;也可开发成娱乐机器人玩具或家用服务机器人。四足机器人在整个步行机器中占有很大大比重,因此对仿生四足步行机器人的研究具有很重要的意义。 所以,我们在选择设计题目时,我们选择了“四足机器人”,作为我们这次比赛的参赛作品。 一.装置的原理方案构思和拟定: 随着社会的发展,现代的机器人趋于自动化、高效化、和人性化发展,具有高性能的机器人已经被人们运用在多种领域里。特别是它可以替代人类完成在一些危险领域里完成工作。 科技来源于生活,生活可以为科技注入强大的生命力,基于此,我们在构思机器人的时候想到了动物,在仔细观察了猫.狗等之后我们找到了制作我们机器人的灵感,为什么我们不可以学习小动物的走路呢,于是我们有了我们机器人行走原理的灵感。 为了使我们所设计的机器人在运动过程中体现出特种机器人的性能及其运动机构的全面性,我们在构思机器人的同时也为它设计了一些任务: 1. 自动寻找地上的目标物。 2. 用机械手拾起地上的目标物。 3.把目标物放入回收箱中。 4. 能爬斜坡。 图一 如图一中虚线所示的机器人的行走路线,机器人爬过斜坡后就开始搜寻目

标物体,当它发现目标出现在它的感应范围时,它将自动走向目标,同时由于相关的感应器帮助,它将自动走进障碍物中取出物体。 二.原理方案的实现和传动方案的设计: 机器人初步整体构思如上的图二和图三,四只腿分别各有一个电机控制它的转动,用一个电机驱动两条腿的抬伸。根据每只腿的迈步先后实现机器人的前进,后退,左转和右转,在机器人腿迈出的同时,它也会相应地进行抬伸,具体实现情况会在下文详细说明。 图二 图三 机器人初步整体构思如上的图二和图三,四只腿分别各有一个电机控制它的转动,用一个电机驱动两条腿的抬伸。根据每只腿的迈步先后实现机器人的前进,后退,左转和右转,在机器人腿迈出的同时,它也会相应地进行抬伸,具体实现情况会在下文详细说明。 任务的实现主要是利用单片机来控制机器人的四条腿以及几个传感器的共同工作,并通过它们的协调工作来完成的。如图一中所示,让机器人爬过了斜坡之后,就先进行扫描,如果发现有目标出现在它的视野之内,它就会寻着目标前进。如果没有发现目标,机器人会原地转弯并搜寻在它视野之外的目标。由于目标物有可能正好被障碍物遮住,此时我们会设计相应的程序告诉机器人现在先向右行走一定的距离再进行扫描。又由于尽管已经扫描到了目标物,当机器人走向

加强筋的设计

为了克服壁厚大可能引起的问题,使用是一种可减少壁厚并能增加刚性的有效方法。 一般来说,部件的刚性可用以下方法增强 ?增加壁厚; ?增大弹性模量(如加大增强纤维的含量); ?设计中考虑。 如果设计用的材料不能满足所需刚性,则应选择具有更大弹性模量的材料。简单的方法是增加塑料中增强纤维的含量。但是,在特定壁厚下,这种方法仅能使刚性呈线性增长。更有效的方法是使用经过优化设计的。由于惯性力矩增大,部件的刚性便会增大。在优化的尺寸时,不但要考虑工程设计应当考虑的问题,还应考虑与生产和外观有关的技术问题。 优化的尺寸 大的惯性力矩可很容易地通过设置又厚又高的来实现。但是对热塑性工程塑料,这种方法常会产生制品表面凹痕、内部空洞和翘曲等问题。而且,如果的高度过高,在负荷下结构将有可能膨胀。出于这种考虑,必须在合理比例内保持的尺寸(见图1)。 图1 为确保带的制品容易顶出,必须设计一个适当的脱模锥度(见图2)。

图2 防止材料堆积 对于表面要求非常高的组件,如汽车轮盖,的尺寸是非常重要的。正确的设计可以减少组件形成表面凹痕的可能,以提高组件的质量。的底部的材料积聚在图1所示的圆中。这个圆的大小与的尺寸相关,应该越小越好,这样才能减小或避免凹痕。如果圆太大,可能会形成内部空洞,制品的机械性能将会非常差。 减少底部的应力 如果给一个有的组件以负载,则的底部可能会产生应力。在这一部位如果没有圆弧,可能会产生非常高的应力集中(见图3),通常会导致组件的断裂和报废。补救措施是建立一个半径足够大的圆弧(图1),使肋底部建立更好的应力分布。 图3 但如果圆弧半径太大,也会增大上文提及的圆的直径,而导致上文已经提及的问题。

六自由度工业机器人设计

六自由度工业机器人 对于工业机器人的设计与大多数机械设计过程相同;首先要知道为什么要设计机器人?机器人能实现哪些功能?活动空间(有效工作范围)有多大?了解基本的要求后,接下来的工作就好作了。 首先是根据基本要求确定机器人的种类,是行走的提升(举升)机械臂、还是三轴的坐标机器人、还是六轴的机器人等。选定了机器人的种类也就确定了控制方式,也就有了在有限的空间内进行设计的指导方向。 接下来的要做的就是设计任务的确定。这是一个相对复杂的过程,在实现这一复杂过程的第一步是将设计要求明确的规定下来;第二步是按照设计要求制作机械传动简图,分析简图,制定动作流程表(图),初步确定传动功率、控制流程和方式;第三步是明确设计内容,设计步骤、攻克点、设计计算书、草图绘制,材料、加工工艺、控制程序、电路图绘制;第四步是综合审核各方面的内容,确认生产。 下面我将以六轴工业机器人作为设计对象来阐明这一设计过程: 在介绍机器人设计之前我先说一下机器人的应用领域。机器人的应用领域可以说是非常广泛的,在自动化生产线上的就有很多例子,如垛码机器人、包装机器人、转线机器人;在焊接方面也有很例子,如汽车生产线上的焊接机器人等等;现在机器人的发展是非常的迅速,机器人的应用也在民用企业的各个行业得以延伸。机器人的设计人才需求也越来越大。

六轴机器人的应用范筹不同,设计形式也各不相同。现在世界上生产机器人的公司也很多,结构各有特色。在中国应用最多的如:ABB、Panasonic、FANUK、莫托曼等国外进口的机器人。 既然机器人的应用那么广泛,在我国却没有知名的生产公司。对于作为中国机械工程技术人员来说是一个值得思考的问题!有关机器人技术方面探讨太少了?从业人员还不能成群体?虽然在很多地方可以看到机器的论术,可是却没有真正形成普及的东西。 即然是要说设计,那我就从头一点一点的说起。力求讲的通俗简明一些,讲得不对的地方还请各位指正! 六轴机器人是多关节、多自由度的机器人,动作多,变化灵活;是一种柔性技术较高的工业机器人,应用面也最广泛。那么怎样去从头开始的设计它呢?工作范围又怎样去确定?动作怎样去编排呢?位姿怎样去控制呢?各部位的关节又是有怎么样的要求呢?等等。。。。。。让我们带着众多的疑问慢慢的往下走吧! 首先我们设定:机器人是六轴多自由度的机器人,手爪夹持二氧气体保护焊标准焊枪;完成点焊、连续焊等不同要求的焊接部件,工艺要求、工艺路线变化快的自动生线上。最大伸长量:1700mm;转动270度;底座与地平线水平固定;全电机驱动。 好了,有了这样的基本要求我们就可以做初步的方案的思考了。 首先是全电机驱动的,那么我们在考虑方案的时候就不要去考虑液压和气压的各种结构了,也就是传动机构只能用齿轮齿条、连杆机构等机械机构了。 机器人是用于焊接方面的,那么我们就去考察有人工行为下的各种焊接手法和方法。这里就有一个很复杂的东西在里面,那就是焊接工艺;即然焊艺定不下来,我们就给它区分一下,在常用焊接里有单点点焊、连续断点点焊、连续平缝焊接、填角焊接、立缝焊接、仰焊、环缝焊等等。。。。。。 搞清了各种焊方法,也就明白了要实现这些复杂的动作就要有一套可行的控制方式才行;在机械没有完全设计出来之前可以不做太多的控制方案思考,有一个大概的轮廓概念就行了,待机械结构做完,各方面的驱动功率确定下来之后再做详细的程序。 焊枪是用常用的标准的焊枪,也就是说焊枪是随时可以更换下来的,也就要求我们要做到对焊枪的夹持部分进行快速锁定与松开。 焊枪在焊接过程中要进行各种焊接姿态调整,那么机械手腕就要很灵活,在各个方位角度上都可调节。

4-DOF搬运机器人的结构设计

4-DOF搬运机器人的结构设计

摘要:在当今大规模制造业中,企业为提高生产效率,保障产品质量,工业机器人作为自动化生产线上的重要成员,逐渐被企业所认同并采用。工业机器人的技术水平和应用程度在一定程度上反映了一个国家工业自动化的水平。目前,工业机器人主要承担着焊接、喷涂、搬运以及堆垛等重复性并且劳动强度极大的工作。 本文研究了国内外机械手发展的现状,通过学习机械手的工作原理,熟悉了搬运机器人的运动机理。在此基础上,确定了四自由度搬运机器人的基本系统结构,对搬运机器人的结构进行了简单的强度计算,完成了搬运机器人机械方面的设计(包括传动部分、执行部分、驱动部分)和简单的三维实体造型工作。本设计为四自由度圆柱坐标型工业机器人,其工作方向为两个直线方向、一个旋转方向和一个气爪运动。机器人的机械结构主要包括由三个电磁阀控制的气缸来实现机器人的上升下降运动及夹紧工件的动作,一个步进电机控制机器人的正反转。 在控制器的作用下,搬运机器人执行将工件从一条流水线拿到另一条流水线这一简单的动作。设计的搬运机器人运用于自动化生产线,实现自动化生产,减轻产业工人大量的重复性劳动,同时又可以提高劳动生产率,本文是对整个设计工作较全面的介绍和总结。 关键词:搬运机器人,强度计算,结构设计 指导老师签名: Structure designing of 4-DOF handling robot Student name: Class: Supervisor:

Abstract:In the modern large-scale manufacturing industry,enterprises to improve productivity, and,guarantee product quality, as an important part of the automation production line, industrial robots are gradually approved and adopted by enterprises. Industrial robot technology standards and application level, to a certain extent, reflect a level of national industrial automation. Currently, Industrial robot mainly tasked with welding, spraying, handling and stacking, repetitive and intensity of significant work. This paper studies the current situation of the development of mechanical hand, by studying the working principle of the robot, familiar with handling robot locomotion mechanism .On this basis, identified 4-DOF of handling robot 's basic system architecture , simple strength calculation was made on handling robot structure ,finish handling robot mechanical design ( including transmission part, operative, driving part ) and simple 3D solid modeling work.This scheme introduced a cylindrical robot for four degree of freedom. It is composed of two linear axes ,one rotary axis and a pneumatic claw movement.The manipulator mechanical structure includes three solenoid valves controlled by air cylinder to achieve the increased decline in sports and workpiece clamping action,a stepper motor control manipulator positive inversion. Controller only allows these devices move from one assembly line to other assembly line in space, perform relatively simple taskes. Designed of the handling robot used in automatic production line, realizing the automatic production, reduce industrial workers much repetitive work, also can improve labor productivity.This paper is more comprehensive introduction and summing-up for the for the whole design work. Keywords:Transfer robot, Strength calculation,Structure design Signature of Supervisor:

相关文档
最新文档