线性变换习题

线性变换习题
线性变换习题

线性变换练习题

线性变换习题 一、填空题 1. 设σ是3 P 的线性变换,(,,)(2,4,3)a b c b c a b a σ=+-,,,a b c P ?∈,1(1,0,0),ε= 2(0,1,0),ε=3(0,0,1)ε=是3P 的一组基,则σ在基123,,εεε下的矩阵为 _______________,又3123,P αεεε=-+∈则()σα=_________。 2. 设A 为数域P 上秩为r 的n 阶矩阵,定义n 维列向量空间n P 的线性变换σ:()A σξξ=, n P ξ∈,则()1dim (0)σ-= ,()dim ()n P σ= 。 3. 设P 上三维列向量空间V 的线性变换σ在基123,,ααα下的矩阵是11220 1121-?? ? ? ?-?? ,则σ在基213,,ααα下的矩阵是 。 4. 如果矩阵A 的特征值等于1,则行列式||A E -= 。 5. 设A =???? ? ??? ??21 1 12 1112 ,()X AX σ=是P 3上的线性变换,那么σ的零度= 。 6. 若n n A P ?∈,且2 A E =,则A 的特征值为 。 7. 在[]n P x 中,线性变换D (()f x )'()f x =,则D 在基211,,, ,n x x x -下的矩阵 为 。 8. 在22 P ?中,线性变换10:20A A σ??→ ???在基121001,,0000E E ???? == ? ????? 300,10E ??= ??? 40001E ?? = ???下的矩阵是 。 9. 设321502114A ?? ? = ? ??? 的三个特征值为1λ,2λ,3λ,则1λ+2λ+3λ= , 1λ2λ3λ= 。 10. 数域P 上n 维线性空间V 的全体线性变换所成的线性空间()L V 为 维线性空间,

线性变换习题课

七、线性变换习题课 1.复习线性变换的概念 例1 将C看成R上的线性空间,变换是线性的,看成C上的线性空间则不是。 证明:R上:有== 又 故A是R上线性空间C的线性变换。 C上:取及,有,而,故A不是C上线性空间C的线性变换。 由上例,变换A是否为线性变换与所讨论的数域有关。 2.利用运算的意义,运算律推证线性变换的等式,利用线性变换与n阶方阵代数同构解决有关问题。 例2设A,B是线性变换,如果证明: ,(k>0) 证明: 由已知,对k=1结论成立,故考虑用数学归纳法. 对k用归纳法.当k=1时结论成立. K=2时,由已知 =AB=(BA+E)A+A-BA2 =BA2+A+A-BA2=2A 结论成立. 设当k时结论成立,即,也即. 当k+1时, =ABA k+AkA k-1-BA k+1=(BA+E)A k+kA k-BA k+1 =BA k+1+A k+kA k-BA k+1=(k+1)A k 所以结论对k+1也成立,从而对一切k1成立. 例3设V是数域P上n维线性空间,证明:V的与全体线性变换交换的线性变换是数乘变换. 证明: 需要表达出线性变换,联系到某基下的矩阵. 设令A,B在某基下的矩阵分别为A,B. 因为,所以由得AB=BA.由的任意 性,也是任意的,从而存在某个k使得A=kE为数量阵(P.204,,于是为数量变换. 有了变换乘积,进一步可考虑可逆变换. 3. 系统小结可逆线性变换的的等价条件,并举例说明一些基本论证方法. A可逆10存在使=E.

A是双射. A在基下的矩阵A可逆—有限维 例4 设是线性空间V的一组基,A是V上的线性变换,证明:可逆当且仅当线性无关. 证明:证法一: “”,,若=0,有B()=0,即=0,=0,即线性无关. “”线性无关, 因dimV=n,故使得 =A() 令使=() 易见,且,即 又任给设= 有()== 故,从A可逆. 证法二:利用双射 “” A是双射,则0==A() 得0=(0对应0) 故,线性无关. “”由dimV=n,V的任一向量可由唯一表示,即V中任一向量有唯一(要证明)原像(显然).故A是双射. 证法三:利用矩阵 A可逆A在下的矩阵A可逆 ()A也是一组基=n 线性无关 例5设,W1,W2是V的子空间,且,则可逆. 证明:由,有V,可设W1的一组基为, W2的一组

第七章线性变换习题答案

第七章线性变换3.在P[x]中,Af(x)f(x),Bf(x)xf(x),证明: ABBA=E. 『解题提示』直接根据变换的定义验证即可. 证明任取f(x)P[x],则有 =(A BBA)f(x)ABf(x)BAf(x)A(xf(x))B(f(x)) (xf(x))xf(x)f(x)Ef(x), 于是ABBA=E. 4.设A,B是线性变换,如果ABBA=E,证明: kkk k1,k1ABBAA. 『解题提示』利用数学归纳法进行证明. 证明当k2时,由于ABBA=E,可得 22()()2 ABBAAABBAA B BAAA, 因此结论成立. 假设当ks时结论成立,即ssss1 ABBAA.那么,当ks1时,有 s1s1(s s)()ssss(s1)s ABBAAABBAA B BAAAAA, 即对ks1结论也成立.从而,根据数学归纳法原理,对一切k1结论都成立. 『特别提醒』由 AE可知,结论对k1也成立. 5.证明:可逆映射是双射. 『解题提示』只需要说明可逆映射既是单射又是满射即可. 1证明设A是线性空间V上的一个可逆变换.对于任意的,V,如果AA,那么,用 A 作用左右两边,得到A AAA,因此A是单射;另外,对于任意的V,存在1()1() 1()1() 1V A,使得 1 AA(A),即A是满射.于是A是双射.

-1-

『特别提醒』由此结论可知线性空间V上的可逆映射A是V到自身的同构. 6.设1,2,,n是线性空间V的一组基,A是V上的线性变换,证明A可逆当且仅当 A1,A2,,A n线性无关. 证法1若A是可逆的线性变换,设k AkAkA0 ,即 1122nn A(kkk nn)0. 1122 而根据上一题结论可知A是单射,故必有k kk0,又由于 1,2,,n是线性无关的, 1122nn 因此k 1k2k n0.从而A1,A2,,A n线性无关. 反之,若A 1,A2,,A n是线性无关的,那么A AA也是V的一组基.于是,根据 1,2,,n 教材中的定理1,存在唯一的线性变换B,使得B(A i)i,i1,2,,n.显然 BA(i)i,A B(A i)A i,i1,2,,n. 再根据教材中的定理1知,ABBAE.所以A是可逆的. 证法2设A在基 1,2,,n下的矩阵为A,即 A(,,,n)(A,A,,A n)(,,,n)A. 121212 由教材中的定理2可知,A可逆的充要条件是矩阵A可逆. 因此,如果A是可逆的,那么矩阵A可逆,从而A 1,A2,,A n也是V的一组基,即是线性无 关的.反之,如果A AA是线性无关,从而是V的一组基,且A是从基 1,2,,n到1,2,,n A1,A2,,A n的过渡矩阵,因此A是可逆的.所以A是可逆的线性变换. 『方法技巧』方法1利用了上一题的结论及教材中的定理1构造A的逆变换;方法2借助教材中的定理2,将线性变换A可逆转化成了矩阵A可逆. 9.设三维线性空间V上的线性变换A在基1,2,3下的矩阵为 aaa 111213 A aaa. 212223 aaa 313233 1)求A在基3,2,1下的矩阵;

线性变换例题 (3)

【例9.15】已知系统具有如下形式 u y y y y 66116')2()3(=+++ 试求此系统对角形式的状态方程。 解 令 y x =1,'2y x =,) 2(3y x = 即 21x x =& 32x x =& u x x x x 661163213+---=& 写成矩阵—向量形式 u x x x x x x ?? ?? ??????+????????????????????---=????? ?????6006116100010321321&&& (9.76) []?? ?? ? ?????=321001x x x y 可以看出A 阵为友矩阵,且A 的特征值为 321321-=-=-=λλλ,, 即 321λλλ≠≠ 。 这时我们选转换矩阵P 形式为 ??????? ???? ?????=---11211 2 22 2 121 111 n n n n n n P λλλλλλλλλΛ M ΛM M ΛΛΛ n 为相同的阶数,这里n =3。 本题中 ???? ??????---=921321111 P 令x=Pz 将上式代入(9.42)式,得: Bu APz z P +=& CPz y Bu P APz P z =+=--11& 系统可写为

????????????????????---??????????---??????????---=??????????32132194132111161161000105.05.111435.05.23z z z z z z &&&u ???????????????? ????---+6005.05.111435.05.23 u z z z z z z ???? ??????-+????????????????????---=????? ?????363300020001321321&&& 输出方程为 [][]?? ?? ? ?????=????????????????????---=321321111921321111001z z z z z z y

第七章 线性变换练习题参考答案

第七章 线性变换练习题参考答案 一、填空题 1.设123,,εεε是线性空间 V 的一组基,V 的一个线性变换σ在这组基下的矩阵是33112233(),,ij A a x x x V αεεε?==++∈则 σ在基321,,εεε下的矩阵B =1,T AT -而可逆矩阵T =001010100?? ? ? ??? 满足1,B T AT -=σα在基123,,εεε下的坐标为123x A x x ?? ? ? ??? . 2.设A 为数域P 上秩为r 的n 阶矩阵,定义n 维列向量空间n P 的线性变换:(),n A P σσξξξ=∈,则1(0)σ-={}|0,n A P ξξξ=∈,()1dim (0)σ-=n r -,()dim ()n P σ=r . 3.复矩阵()ij n n A a ?=的全体特征值的和等于1n ii i a =∑ ,而全体特征值的积等于 ||A . 4.设σ是n 维线性空间V 的线性变换,且σ在任一基下的矩阵都相同,则σ为__数乘__变换 . 5.数域P 上n 维线性空间V 的全体线性变换所成的线性空间()L V 为2n 维线性空间,它与n n P ?同构. 6.设n 阶矩阵A 的全体特征值为12,,,n λλλ ,()f x 为任一多项式,则()f A 的全体特征值为12(),(),,()n f f f λλλ . 7.设???? ??=2231A ,则向量??? ? ??11是A 的属于特征值 4 的特征向量. 8.若????? ? ?--=100001011A 与1010101k B k ?? ?=-- ? ???相似,则k = -1/2 . 9.设三阶方阵A 的特征多项式为322)(23+--=λλλλf ,则=||A 3 .

第七章 线性变换 习题答案

第七章 线性变换 3.在[]P x 中,()()f x f x '=A ,()()f x xf x =B ,证明: -=A B BA =E . 『解题提示』直接根据变换的定义验证即可. 证明 任取()[]f x P x ∈,则有 ()()()()(())(())f x f x f x xf x f x '-=-=-=A B BA A B BA A B (())()()()xf x xf x f x f x ''=-==E , 于是-=A B BA =E . 4.设,A B 是线性变换,如果-=A B BA =E ,证明: 1 ,1k k k k k --=>A B BA A . 『解题提示』利用数学归纳法进行证明. 证明 当2k =时,由于-=A B BA =E ,可得 22()()2-=-+-=A B BA A A B BA A B BA A A , 因此结论成立. 假设当k s =时结论成立,即1 s s s s --=A B BA A .那么,当1k s =+时,有 1 1 ()()(1)s s s s s s s s s s ++-=-+-=+=+A B BA A A B BA A B BA A A A A , 即对1k s =+结论也成立.从而,根据数学归纳法原理,对一切1>k 结论都成立. 『特别提醒』由0 =A E 可知,结论对1k =也成立. 5.证明:可逆映射是双射. 『解题提示』只需要说明可逆映射既是单射又是满射即可. 证明 设A 是线性空间V 上的一个可逆变换.对于任意的,V ∈αβ,如果=αβA A ,那么,用1 -A 作用左右两边,得到1 1 ()()--===ααββA A A A ,因此A 是单射;另外,对于任意的V ∈β,存在 1V -=∈αβA ,使得1()-==αββA A A ,即A 是满射.于是A 是双射. 『特别提醒』由此结论可知线性空间V 上的可逆映射A 是V 到自身的同构.

线性变换练习题

线性变换习题 一、填空题 1. 设σ就是3P 的线性变换,(,,)(2,4,3)a b c b c a b a σ=+-,,,a b c P ?∈,1(1,0,0),ε= 2(0,1,0),ε=3(0,0,1)ε=就是3P 的一组基,则σ在基123,,εεε下的矩阵为 _______________,又3 123,P αεεε=-+∈则()σα=_________。 2. 设A 为数域P 上秩为r 的n 阶矩阵,定义n 维列向量空间n P 的线性变换 σ:()A σξξ=,n P ξ∈,则()1dim (0)σ-= ,()dim ()n P σ= 。 3. 设P 上三维列向量空间V 的线性变换σ在基123,,ααα下的矩阵就是11220 1121-?? ? ? ?-?? ,则σ在基213,,ααα下的矩阵就是 。 4. 如果矩阵A 的特征值等于1,则行列式||A E -= 。 5. 设A =?? ?? ? ??? ??211121112,()X AX σ=就是P 3上的线性变换,那么σ的零度= 。 6. 若n n A P ?∈,且2 A E =,则A 的特征值为 。 7. 在[]n P x 中,线性变换D (()f x )'()f x =,则D 在基21 1,,,,n x x x -L 下的矩阵 为 。 8. 在22 P ?中,线性变换10:20A A σ??→ ???在基121001,,0000E E ???? == ? ????? 300,10E ??= ??? 40001E ?? = ??? 下的矩阵就是 。 9. 设321502114A ?? ?= ? ??? 的三个特征值为 1 λ, 2 λ, 3 λ,则 1λ+2λ+3λ= ,1λ2λ3λ= 。 10. 数域P 上n 维线性空间V 的全体线性变换所成的线性空间()L V 为 维线性空间, 它与 同构。 11. 已知n 阶方阵A 满足2 A A =,则A 的特征值为 。

[高等代数(下)课外习题--第七章-线性变换]

第七章 线性变换 一、判断题 1、 在向量空间3R 中, 1231223(,,)(2,,)x x x x x x x σ=-, 则σ是3R 的一个线性变换. ( ). 2、σ是向量空间V 的线性变换, 向量组12,, ,m ααα线性相关, 那么 12(),(), ,() m σασασα也线性相 关 . ( ). 3 在向量空间[]n R x 中, 则微商' (())()f x f x σ=是一个线性变换. ( ). 4、 线性变换在不同基下对应的矩阵是相似的. ( ). 5、 相似矩阵不一定是同一线性变换在不同基下的矩阵. ( ). 6、向量空间V 的线性变换σ的象与核都是σ的不变子空间. ( ). 7、 属于线性变换σ同一特征根0λ的特征向量的线性组合仍是σ的特征向量. ( ). 8、 σ在一个基下可以对角化, 则σ在任何基下可以对角化. ( ). 9、设σ为n 维线性空间V 的一个线性变换,则由σ的秩+σ的零度=n ,有 1()(0).V V σσ-=⊕ ( ) 10、n 阶方阵A 至少有一特征值为零的充分必要条件是0||=A .( ) 11、.最小多项式是特征多项式的因式. ( ) 12、相似的矩阵有相同的特征多项式 ( ) 13、设n n P A ?∈,A 的特征多项式有n 个单根,则存在可逆矩阵n n P T ?∈,使AT T 1 -具 有对角形。( ) 14、若A 是数域P 上n 维线性空间的线性变换,A 的特征值为r λλλ,,,21 ,则A 可对角化?特征子空间的维数之和等于n 。( ) 15、 A 是n 维线性空间V 的一个线性变换,则V V =A +A -)0(1 。(F ) 二、填空题 1、在3V 的基123{,,}εεε下σ的矩阵是11 121321 222331 32 33a a a A a a a a a a ?? ?= ? ???

高等代数与解析几何第七章(1-3习题) 线性变换与相似矩阵答案

第七章线性变换与相似矩阵 习题7.1 习题7.1.1判别下列变换是否线性变换? (1)设是线性空间中的一个固定向量, (Ⅰ),, 解:当时,显然是的线性变换; 当时,有,,则 ,即此时不是的线性变换。 (Ⅱ),; 解:当时,显然是的线性变换; 当时,有,,则 ,即此时不是的线性变换。 (2)在中, (Ⅰ), 解:不是的线性变换。因对于,有, ,所以。 (Ⅱ); 解:是的线性变换。设,其中,, 则有 ,

。 (3)在中, (Ⅰ), 解:是的线性变换:设,则 , ,。 (Ⅱ),其中是中的固定数; 解:是的线性变换:设,则 , ,。 (4)把复数域看作复数域上的线性空间,,其中是的共轭复数; 解:不是线性变换。因为取,时,有, ,即。 (5)在中,设与是其中的两个固定的矩阵,, 。 解:是的线性变换。对,,有 , 。 习题7.1.2在中,取直角坐标系,以表示空间绕轴由 轴向方向旋转900的变换,以表示空间绕轴由轴向方向

旋转900的变换,以表示空间绕轴由轴向方向旋转900的 变换。证明(表示恒等变换), , ; 并说明是否成立。 证明:在中任取一个向量,则根据,及的定义可 知:,,;, ,;,, ,即,故。 因为, ,所以。 因为, ,所以。 因为, ,所以。 习题7.1.3在中,,,证明。证明:在中任取一多项式,有 。所以。 习题7.1.4设,是上的线性变换。若,证明 。 证明:用数学归纳法证明。当时,有

命题成立。假设等式对成立,即。下面证明等式对 也成立。因有 ,即等式对也成立,从而对任意自然数都成立。习题7.1.5证明(1)若是上的可逆线性变换,则的逆变换唯一;(2)若,是上的可逆线性变换,则也是可逆线性变换,且 。 证明:(1)设都是的逆变换,则有,。进而。即的逆变换唯一。 (2)因,都是上的可逆线性变换,则有 ,同理有 由定义知是可逆线性变换,为逆变换,有唯一性得 。 习题7.1.6设是上的线性变换,向量,且,,, 都不是零向量,但。证明,,, 线性无关。 证明:设,依次用可得 ,得,而, 故;同理有:,得, 即得;依次类推可得,即得,进而得 。

[高等代数(下)课外习题 第七章 线性变换]资料

[高等代数(下)课外习题第七章线性 变换]

第七章 线性变换 一、判断题 1、 在向量空间3R 中, 1231223(,,)(2,,)x x x x x x x σ=-, 则σ是3R 的一个线性变换. ( ). 2、σ是向量空间V 的线性变换, 向量组12,, ,m ααα线性相关, 那么 12(),(),,()m σασασα也线性相关. ( ). 3 在向量空间[]n R x 中, 则微商'(())()f x f x σ=是一个线性变换. ( ). 4、 线性变换在不同基下对应的矩阵是相似的. ( ). 5、 相似矩阵不一定是同一线性变换在不同基下的矩阵. ( ). 6、向量空间V 的线性变换σ的象与核都是σ的不变子空间. ( ). 7、 属于线性变换σ同一特征根0λ的特征向量的线性组合仍是σ的特征向量. ( ). 8、 σ在一个基下可以对角化, 则σ在任何基下可以对角化. ( ). 9、设σ为n 维线性空间V 的一个线性变换,则由σ的秩+σ的零度=n ,有 1()(0).V V σσ-=⊕ ( ) 10、n 阶方阵A 至少有一特征值为零的充分必要条件是0||=A .( ) 11、.最小多项式是特征多项式的因式. ( ) 12、相似的矩阵有相同的特征多项式 ( ) 13、设n n P A ?∈,A 的特征多项式有n 个单根,则存在可逆矩阵n n P T ?∈,使 AT T 1-具有对角形。( ) 14、若A 是数域P 上n 维线性空间的线性变换,A 的特征值为r λλλ,,,21 ,则A 可对角化?特征子空间的维数之和等于n 。( ) 15、 A 是n 维线性空间V 的一个线性变换,则V V =A +A -)0(1 。(F ) 二、填空题

第七章线性变换练习题

线性变换练习题 一、填空题 1.设123,,εεε是线性空间 V 的一组基,V 的一个线性变换σ在这组基下的矩阵是33112233(),,ij A a x x x V αεεε?==++∈则 σ在基321,,εεε下的矩阵B =_________,而可逆矩阵T =_________满足1,B T AT -=σα在基123,,εεε下的坐标为_________ . 2.设A 为数域P 上秩为r 的n 阶矩阵,定义n 维列向量空间n P 的线性变换σ: (),n A P σξξξ=∈,则1(0)σ-=_______,()1dim (0)σ-=______,()dim ()n P σ=_____ . 3.复矩阵()ij n n A a ?=的全体特征值的和等于________ ,而全体特征值的积 等于_______ . 4.设σ是n 维线性空间V 的线性变换,且σ在任一基下的矩阵都相同,则σ为________变换 . 5.数域P 上n 维线性空间V 的全体线性变换所成的线性空间()L V 为_______维线性空间,它与________同构. 6.设n 阶矩阵A 的全体特征值为12,, ,n λλλ,()f x 为任一多项式,则() f A 的全体特征值为________ . 7.设???? ??=2231A ,则向量???? ??11是A 的属于特征值 的特征向量. 8.若????? ??--=100001011A 与???? ? ??--1010101k k B 相似,则k = . 9.设三阶方阵A 的特征多项式为322)(23+--=λλλλf ,则=||A . 10.n 阶方阵A 满足A A =2,则A 的特征值为 . 11.线性空间3R 上的线性变换为A =),,(321x x x 132321(2,33,2)x x x x x x ++-,变换A 在基)1,0,0(),0,1,0(),0,0,1(321===εεε下的矩阵为.

相关主题
相关文档
最新文档