压裂工艺技术基本理论

最新压裂技术现状及发展趋势资料

压裂技术现状及发展趋势 (长城钻探工程技术公司) 在近年油气探明储量中,低渗透储量所占比例上升速度在逐年加大。低渗透油气藏渗透率、孔隙度低,非均质性强,绝大多数油气井必须实施压裂增产措施后方见产能,压裂增产技术在低渗透油气藏开发中的作用日益明显。 1、压裂技术发展历程 自1947年美国Kansas的Houghton油田成功进行世界第一口井压裂试验以来,经过60多年的发展,压裂技术从工艺、压裂材料到压裂设备都得到快速的发展,已成为提高单井产量及改善油气田开发效果的重要手段。压裂从开始的单井小型压裂发展到目前的区块体积压裂,其发展经历了以下五个阶段[1]:(1)1947年-1970年:单井小型压裂。压裂设备大多为水泥车,压裂施工规模比较小,压裂以解除近井周围污染为主,在玉门等油田取得了较好的效果。 (2)1970年-1990年:中型压裂。通过引进千型压裂车组,压裂施工规模得到提高,形成长缝增大了储层改造体积,提高了低渗透油层的导流能力,这期间压裂技术推动了大港等油田的开发。 (3)1990年-1999年:整体压裂。压裂技术开始以油藏整体为单元,在低渗透油气藏形成了整体压裂技术,支撑剂和压裂液得到规模化应用,大幅度提高储层的导流能力,整体压裂技术在长庆等油田开发中发挥了巨大作用。 (4)1999年-2005年:开发压裂。考虑井距、井排与裂缝长度的关系,形成最优开发井网,从油藏系统出发,应用开发压裂技术进一步提高区块整体改造体积,在大庆、长庆等油田开始推广应用。 (5)2005年-今:广义的体积压裂。从过去的限流法压裂到现在的直井细分层压裂、水平井分段压裂,增大储层改造体积,提高了低渗透油气藏的开发效果。 2、压裂技术发展现状 经过五个阶段的发展,压裂技术日趋完善,形成了三维压裂设计软件和压裂井动态预测模型,研制出环保的清洁压裂液体系和低密度支撑剂体系,配备高性能、大功率的压裂车组,使压裂技术成为低渗透油气藏开发的重要手段之一。 2.1 压裂工艺和技术

(工艺技术)油田压裂新技术工艺

2012年4月8日星期日 1、黑油模型:指油质较重性质的油藏类型。黑油模型是最完善、最成熟,也是应用最为广 泛的模型。是油藏数值模拟的基础,其它模型大都是黑油模型的扩展。 (1) 黑油模型的基本假设:(1)油藏中的渗流是等温渗流。 (2)油藏中最多只有油、 气、水三相,每一相均遵守达西定律。 (3)油藏烃类只含有油、气两个组分。在油 藏状态下,油气两组分可能形成油气两相,油组分完全存在于油相内,气组分则可 以以自由气的方式存在于气相中,也可以以溶解气的方式存在于油相中,所以地层 内油相为油组分和气组分的某种组合。在常规油田中,一般不考虑油组分向气组分 挥发的现象。(4)油藏中气体的溶解和逸出是瞬间完成的,即认为油藏中油气两相 瞬时达到相平衡状态。(5)油水之间不互溶;天然气也假定不溶于水。 煤层气:赋存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主并部分游离于 煤孔隙中或溶解于煤层水中的烃类气体。 全国煤层气试验区分布图 J3-K1 哈尔滨 28 3、页岩气 页岩气形成的条件 (1) 岩性:形成页岩气的岩石除页岩外,还包括泥岩、粉砂岩、甚至很细的砂岩 (2) 物性:页岩最突出的特点是孔隙度和渗透率极低,典型的气页岩的基质渗透率处于微 达西~纳达西范围,因此气体在储层中的流动主要取决于页岩中天然裂缝的发育情况 (3 )矿物组成:粘土矿物和碳酸盐含量低、粉砂质或硅质(石英)含量较高比较有利。 (4)裂缝: 裂缝发育适中。 2012-4-9 4、压裂工艺成果 压裂工艺推陈出新,分段压裂、裂缝性气藏压裂、火山岩压裂、降滤压裂、重复压裂、转向 压裂、控缝高压裂等压裂技术得到了成功应用, 特别是水平井分段压裂技术的推广应用, 保障油气田增储上产方面发挥了巨大作用。 较好指标: 2、 乌鲁木齐 J1-2 J3-K1 J3-K1 J3-K1 J3-K1 J2 J1-2 J1-P2 J1-2 J1-2 西宁 兰州 J1-2 1-2 西安 P2 成都 2"| C-P 北京1 ? 济南3 9 C-P 长春 E J3-K1 1开滦 15 韩城 2大城 16 蒲县 3济南 17 柳林 4淮北 18 吴堡 5淮南 19 三交 6平顶山 20 临县 7荥巩 21 兴县 8焦作 22 丰城 9安阳 23 冷水江 10晋城 24 涟邵 11屯留 25 沈北 12阳泉 26 红阳 29 阜新 13澄合 27 铁法 30 辽河 14彬长 28 鹤岗 T3 武汉二 长沙 2 : P2 上海 P2 P2 福州 卢台北

水力压裂技术

第四章水力压裂技术 水力压裂是利用地面高压泵组,将高粘液体以大大超过地层吸收能力的排量注入井中, 在井底憋起高压,当此压力大于井壁附近的地应力和地层岩石抗张强度时,在井底附近地层 产生裂缝。继续注入带有支撑剂的携砂液,裂缝向前延伸并填以支撑剂,关井后裂缝闭合在 支撑剂上,从而在井底附近地层内形成具有一定几何尺寸和导流能力的填砂裂缝,使井达到 增产增注的目的。 水力压裂增产增注的原理主要是降低了井底附近地层中流体的渗流阻力和 改变了流体的渗流状态,使原来的径向流动改变为油层流向裂缝近似性的单向流动和裂缝与井筒间的单向流 动,消除了径向节流损失,大大降低了能量消耗。因而油气井产量或注水井注入量就会大幅 度提高。 第一节造缝机理 在水力压裂中,了解裂缝形成条件、裂缝的形态和方位等,对有效地发挥压裂在增产、 增注中的作用都是很重要的。在区块整体压裂改造和单井压裂设计中,了解裂缝的方位对确 定合理的井网方向和裂缝几何参数尤为重要,这是因为有利的裂缝方位和几何参数不仅可以 提高开采速度,而且还可以提高最终采收率。 造缝条件及裂缝的形态、方位等与井底附近地层的地应力及其分布、岩石的力学性质、压 裂液的渗滤性质及注入方式有密切关系。图4一l是压裂施工过程中井底压力随时间的变化曲 线。P是地层破裂压力,P是裂缝延伸压力,P是地层压力。SEF

压裂过程井底压力变化曲线图4一l —微缝高渗岩石致密岩石; ba—在致密地层内,当井底压力达到破裂压力P后,地层发生破裂(图4—1中的a点),F然后在较低的延伸压力P下,裂缝向前延伸。对高渗或微裂缝发育地层,压裂过程中无明E显的破裂显示,破裂压力与延伸压力相近(图4—1中的b点)。 一、油井应力状况 一般情况下,地层中的岩石处于压应力状态,作用在地下岩石某单元体上的应力为垂向 主应力σ和水平主应力σ(σ又可分为两个相互垂直的主应力σ,σ)。YHHxZ (一)地应力 作用在单元体上的垂向应力来自上覆地层的岩石质量,其大小可以根据密度测井资料计 算,一般为: ????gdz?1)(4— s?0式中σ——垂向主应力,Pa;Z H——地层垂深,m; 2);.81 m/s g——重力加速度(93。——上覆层岩石密度,ρkg/m s 1 由于油气层中有一定的孔隙压力Ps,故有效垂向应力可表示为: ??(4—2)P??szz如果岩石处于弹性状态,考虑到构造应力等因素的影响,可以得到最大水平主应力为: ???????P?2EE1??S???124—3)P????(?? SH????11?21???式中σ——最大水平主应力,Pa;H ξ,ξ——水平应力构造系数,可由室内测试试验结果推算,无因次;21?——

苏里格气田压裂及返排工艺分析

苏里格气田压裂及返排工艺分析 第一部分返排工艺 一、放喷返排工艺过程及特点分析 压裂停泵后20-30分钟内开始放喷返排,根据压裂工艺、管柱特点和地层的需要,放喷过程通常需要4个阶段:闭合控制阶段,放大排量阶段,压力上升阶段,间歇放喷阶段。 A、闭合控制阶段: 工作制度:根据压后停泵压力的大小, 2-6mm油嘴控制,排量控制在100-200L/min。 特点分析: 1、由于采用前置液拌注氮气,压裂后井底附近地层空隙基本被液体占据,短时间内液体不易与氮气和天然气混合,液体中溶解的气量较少,所以此阶段排出物以液体为主。 2、因压裂施工的欠量顶替以及压裂液残余粘度的影响,此阶段通常有部分支撑剂被带出地面,一般在0.5m3左右。 3、通常油压降落速度要高于套压降落速度,当套压高于油压1MPa时,封隔器解封,油管内的液体在油套管压差和地层压力及液体的弹性能量作用下排出井筒。 4、当井底压力低于裂缝闭合压力,裂缝完全闭合时,控制排量阶段结束,这个过程一般需要2-4小时。 B、放大排量阶段: 工作制度:通常用8-10mm油嘴控制或畅放,排量控制在500L/min以下,以地层不出砂,放喷管线出口不见砂粒(或检查油嘴的磨损程度)为控制原则。 特点分析: 1、此阶段初期排出物以液体为主是塞状流,后期为气液两相流,气水同喷。在此阶段通常都能见气点火。 2、裂缝完全闭合,支撑剂受岩石应力的挤压作用被夹持在裂缝壁面内部,能够比较稳定的固定在一个位置上。

3、此阶段油套压经历了一个先降落至零后再升高的过程(地质条件好的井油压只降到2-3 MPa,左右),而且油压要先于套压上升。 4、这个过程因井的类别不同,所需时间有较大差别,从几小时到十几个小时不等。 5、由于气体的指进效应,裂缝和地层中的氮气和天然气向井筒运移速度要快于液体,气、液溶解度增大,进入油管内的气量增加,喷式加大,井口油压上升,流体呈气液混合状态、出口见喷势,此阶段结束。 C、压力上升阶段: 工作制度:用6-10mm油嘴进行控制,并随着气量增大、压力上升而逐步减小油嘴。 特点分析: 1、阶段初期呈气液两相流,中期呈段塞流(先是一段含液气体之后是一段含气液体),后期因氮气和天然气的溶解度增大,以致在流动过程中形成不了水柱,而只能在高速气流带动下以雾状形式排出井筒,呈雾状流 2、油压上升到2-3 MPa以上。 3、返排液量在70-80%以上,即可转入后期间放阶段。 D、间歇放喷阶段 工作制度:由于深入地层远处的液体向油管聚集速度小于气体,返排液量减少,出气量增大,排液效率降低,则应关井恢复,采取间开工作制度,选择4-8 mm 油嘴放喷。 特点分析: 1、关井时,由于油套环形空间截面积较油管流通截面积大,进入环形空间内的气量多,气体与液体进行置换后占据液体上部空间,并在液体上部形成一定的压强而将环形空间的液体推向油管,同时,地层内液体也进入井筒。 2、当井口压力上升速率较低时,说明表压加液柱压力已接近地层压力,地层流向井底的液体减少,这时应开井放喷;当开井后见到雾状流就应再次关井恢复。 3、油管内流体的分布(从井口到井底)为纯气段、气液过渡带段、液体段(含溶解气)。开井后的第一段是纯气流,第二段是两相流(气液过渡段,以气为主),第三段是塞状流(液柱段),第四段为气液两相流,气水同喷,第五段为雾状流。

煤矿井下水力压裂技术的发展现状与前景

龙源期刊网 https://www.360docs.net/doc/e916035859.html, 煤矿井下水力压裂技术的发展现状与前景 作者:郭晨 来源:《科学与财富》2016年第07期 摘要:我国煤炭安全生产形势依然严峻,增加煤层透气性、进行有效瓦斯抽放迫在眉 睫。水力压裂技术是目前增加煤层透气性最有效的方法之一,文章从水力压裂机理、封孔技术、工艺设备发展三方面,综述了我国井下煤层水力压裂技术的发展和应用前景。 关键词:水力压裂;煤层;增透;发展现状 基金项目:重庆科技学院研究生科技创新计划项目,编号:YKJCX2014047 目前我国煤炭行业的安全形势依然严峻,由于煤层透气性低、瓦斯难以有效抽放导致的瓦斯突出、爆炸等事故屡见不鲜,造成了巨大的人员伤亡和经济损失,因此,加强瓦斯抽放、增加煤层透气性势在必行。水力压裂技术已成为增加煤层透气性最有效方法之一,本文通过介绍水力压裂机理、封孔技术及工艺设备的研究现状,指出水力压裂技术研究的必要性与可行性,以期为工程应用提供参考。 1.水力压裂机理研究 水力压裂技术1947年始于美国,起初主要用于低渗透油、气田的开发中,在地面水力压裂方面的研究仅仅局限在石油、油气藏以及地热资源的地面钻井开采过程中[1]。前苏联科学 家在20世纪60年代开始在卡拉甘达和顿巴斯矿区进行井下水力压裂的试验研究[2]。目前针对井下煤层水力压裂增透技术的研究已取得了明显发展,国内学者郭启文、张文勇等经过试验与现场应用研究了煤层的压裂分解机理,指出水力压裂技术只能够在煤层内产生很少的裂缝,并会在裂缝周围产生应力集中区[3],存在一定局限性。李安启等将理论与实践相结合,研究了 煤层性质对水力裂缝的影响,还在煤层压裂裂缝监测基础上提出了煤层水力裂缝的几何模型。 在水力压裂机理方面的研究,国内外学者对水力压裂在油气系统地面钻井压裂、煤炭行业井下增加煤层透气性方面都进行了较为深入的研究,但其压裂机理方面仍存在一定分歧,不能很好的控制水力压裂的效果。随着我国煤炭安全生产逐步发展和穿煤隧道等工程的逐步建设,水力压裂技术将大范围推广应用,因此加强水力压裂技术理论研究势在必行。 2.压裂钻孔封孔技术研究 煤层水力压裂钻孔封孔是有效实施水力压裂技术的关键,而封孔质量的好坏取决于两个主要因素:①封孔材料,需要选择性能良好、价格适中、易于操作的材料;②封孔的长度,封孔长度太短会导致高压水的渗漏,太长会造成人力、材料、时间的浪费。因此,要使水力压裂技术能够有效开展,必须在选取“物美价廉”的封孔材料的同时,研究材料承载能力与封孔长度之

油田压裂返排液处理技术

油田压裂返排液处理技 术 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

油田压裂返排液处理技术 1.压裂返排液的产生及存在的问题 压裂工艺是油井增产的一项主要措施在各油田普遍采用。其中最常用的是水基压裂液它具有高黏度、低摩阻、悬砂性好、对地层伤害小等优点现已成为主要压裂液类型。 油井压裂过程中产生的返排压裂废液具有污染物成分复杂、浓度高、黏度大,精品文档,超值下载 处理难度大,是油田较难处理污水之一。如不处理直接进入集输流程,会严重干扰后续流程,严重影响到油田生产,导致设备堵塞、油田下降,环保不达标等诸多问题。 表1 压裂返排液污水性质 图1 不同压裂返排水样 2.国内常规压裂返排液处理工艺简介 化学氧化-絮凝沉淀-过滤处理工艺 采用双氧水、次氯酸钠等强氧化破胶使返排液中的高分子物质氧化分解成小分子物质,降低废液黏度,提高传质效率,增加水处理药剂的分散与分解;絮凝可以改变水中多分散体系表面电性,破坏废液胶体的稳定性,使胶体物质脱稳、聚集;过滤,去除水中不溶或微溶物,脱色除臭。氧化-絮凝-过滤是油气田污水处理常用工艺。 在实际应用过程中该工艺也存在一些不足,具体如下:

第一、该工艺受温度影响比较大,在低温环境,化学氧化剂反应慢,氧化时间长,需要较长的停留时间,导致氧化反应罐(池)占地大,不易在现场作业,运输困难等。 第二、除油效果不明显,系统对乳化油去除效果不佳,需要添加大量药剂,导致污泥量大,增加污泥处理成本。 第三、过滤器时常堵塞,由于氧化破胶不彻底,污油处理效果不佳,导致过滤器堵塞严重,影响最终出水效果和整套装置处理能力。 化学氧化-絮凝沉淀-电解氧化-过滤联合处理工艺 电解法集氧化还原、絮凝吸附、催化氧化、络合及电沉积等作用于一体,能够使大分子物质分解为小分子物质,降解的物质转变成易降解的物质,是污水深度处理的常用方法。 然而电解技术目前在国内应用情况并不理想,时常存在电极钝化、结垢等问题,时常需要更换电极,处理效果稳定性差,成本高,操作检修频繁。 设备占地大,运输困难,不太适合压裂返排液现场处理要求。 化学氧化-絮凝磁分离-过滤联合处理工艺 该工艺改进了絮凝沉淀工艺,采用高效磁分离机能够减少沉降时间,缩小设备占地面积,相对之前两种工艺有改进之处。然后该工艺化学氧化、除油工艺依然存在,仍然存在处理不达标,设备占地面积大等诸多不足。 臭氧氧化气浮一体装置-旋流溶气气浮-过滤联合处理工艺

油田压裂新技术工艺

2012年4月8日星期日 1、黑油模型:指油质较重性质的油藏类型。黑油模型是最完善、最成熟,也是应用最为广 泛的模型。是油藏数值模拟的基础,其它模型大都是黑油模型的扩展。 (1)黑油模型的基本假设:(1)油藏中的渗流是等温渗流。(2)油藏中最多只有油、气、水三相,每一相均遵守达西定律。(3)油藏烃类只含有油、气两个组分。在油藏状态下,油气两组分可能形成油气两相,油组分完全存在于油相内,气组分则可以以自由气的方式存在于气相中,也可以以溶解气的方式存在于油相中,所以地层内油相为油组分和气组分的某种组合。在常规油田中,一般不考虑油组分向气组分挥发的现象。(4)油藏中气体的溶解和逸出是瞬间完成的,即认为油藏中油气两相瞬时达到相平衡状态。(5)油水之间不互溶;天然气也假定不溶于水。 (2)物性:页岩最突出的特点是孔隙度和渗透率极低,典型的气页岩的基质渗透率处于微达西~纳达西范围,因此气体在储层中的流动主要取决于页岩中天然裂缝的发育情况 (3)矿物组成:粘土矿物和碳酸盐含量低、粉砂质或硅质(石英)含量较高比较有利。(4)裂缝:裂缝发育适中。 2012-4-9 4、压裂工艺成果 压裂工艺推陈出新,分段压裂、裂缝性气藏压裂、火山岩压裂、降滤压裂、重复压裂、转向压裂、控缝高压裂等压裂技术得到了成功应用,特别是水平井分段压裂技术的推广应用,在保障油气田增储上产方面发挥了巨大作用。 较好指标:

水平井压裂分段数:9段 深层气压裂最大支撑剂量: 908.5t (角64-2H井) 最大注入井筒液量: 4261.1m3 最大酸压规模:1603 m3 ?水力喷射分层加砂压裂在四川、长庆地区施工20余井次,平均单井次缩短施工周期20天以上;气井应用不动管柱分层压裂技术307井次,施工成功率99%;平均单井缩短试气周期20天以上;连续混配压裂施工405井次,累计配液88898 m3,累计缩短施工周期425天。 ?裸眼封隔器分段压裂取得突破性进展。全年在苏里格等地区现场应用22井次,并取得良好效果。长城钻探在苏里格气田采用裸眼封隔器进行压裂投产后产量是临近直井的5倍以上。 ?川庆钻探与美国EOG公司合作,在角64-2H井应用水平井泵送电缆桥塞压裂技术,成功完成水平井9段分层加砂压裂施工,注入液体4261.1m3,支撑剂908.5t,刷新此项工艺技术作业时间最短、段数最多(9段)、注入砂量最大、注入液量最多、累计作业时间最长等5项亚洲记录, ?2010年,国产水平井裸眼封隔器及配套工具的成功研发和推广应用,打破了外国公司的垄断,取得了很好的增产效果,产量是临近直井的3倍以上。 ?2010年,川庆钻探在合川 2口井成功进行了连续油管喷砂射孔环空6-7级分段压裂现场施工;西南油气田的威201页岩气井也已进行了2次的页岩气压裂改造施工,为非常规气藏有效开发探索出了新的途径。 5、机械分段压裂技术 机械分段压裂技术包括裸眼封隔器分段压裂技术、动管柱套管内多封隔器卡封分段压裂技术、不动管柱套管内多封隔器卡封分段压裂技术、封隔器+桥塞分段压裂技术等。 1、裸眼封隔器分段压裂 ◆裸眼封隔器分段压裂是苏里格水平井储层改造的主要方式:到目前苏里格共完成裸眼分段压裂36井(167段),占整个水平井改造总井数的81.8%。 ◆应用规模逐年扩大: 09年8井次、10年1~7月28井次。 ◆技术水平逐步提高:分段数从3段到10段(工具已下井,近期压裂施工),最长水平段1512m,最大下入深度5235m。 套管鞋:3698.81

国内水力压裂技术现状

280 水力压裂技术又称水力裂解技术,是开采页岩气时普遍采用的方法,先多用于石油开采和天然气开采之中,其原理时利用水压将岩石层压裂,从而形成人工裂缝,然后让裂缝延伸到储油层或者储气层,从而提高油气层中流体流动能力,然后通过配套技术使石油天然气在采油井中流动,从而被开采出来。这项技术具有非常广泛的应用前景,可以有效的促进油气井增产。 1?水力压裂技术的出现和发展 水力压裂技术是1947年在美国堪萨斯州实验成功的一项技术,其大规模利用是出现在1998年,在美国开采页岩气的时候,作为一项新的技术使用,而这项技术的运用,使美国美国页岩气开发的进程和效率大大加快。 水力压裂技术在中国的研究和开发开始于二十世纪五十年代,而大庆油田于1973年开始大规模使用这项技术,迄今已有30年历史。而随着时代的发展,中国的压裂技术已经有了长足进步,已经非常接近国际先进水平。而在技术方面,由于不断引进和开发相关的裂缝模拟软件等,通过多次的实验研究,在很大程度上实现了裂缝的仿真模拟。而相应的技术也使用在了低渗透油气田的改造工作中,并且在中高渗透性油田也有广泛应用。这项技术在低渗透油田的应用技术已经非常接近国际水平,相比较差距非常小。 2?水力压裂技术的发展现状 随着时代的发展,水力压裂技术也随之不断发展,逐渐成为一项成熟的开采技术。而这项技术具有一定的进步性,主要表现在以下方面: (1)从单井到整体的优化。最开始的时候,由于受技术限制,水力压裂技术只能针对一口井来使用,难以考虑到整体的效益。而随着技术的逐渐成熟,这项技术可以广泛的运用到整个油藏之中,可以对整个油藏进行优化设计,实现油藏的有效合理开发。 (2)在低渗透油藏的开发运用。由于受各种因素的影响,低渗透油藏大都难以有效的开发利用,虽然在各项新技术的使用下得到了一定得好转,但是低渗透油藏的开发依旧是举步维艰。而水力压裂技术的日益成熟,很大程度上改善了这一状况。通过综合考虑水利裂缝的位置和导油能力,使用水力压裂技术使油藏的流体流动能力进一步增强,从而实现低渗透油藏的最大程度的开采利用。 (3)水力裂缝的模型逐渐从二维转变为拟三维。水力裂缝的拟三维模型可以适用于各种不同的地层,可以非常真实的模拟水力压裂的过程,可以更好的更为直观的预测和观测水力压裂的使用进度,更好的对水力压裂过程进行控制,不但提高了效率,还可以在很大程度上节约成本。 (4)水力压裂规模扩大。随着技术的成熟和配套设施的完善,水力压裂的作业规模也随之变大,从最初的几立方米到现在几十甚至上百立方米,在很大程度上提高了效率,也提高了低渗透油藏的采油率,实现了油藏的有效利用,因而成为开采作业中非常重要的技术之一。 3?水力压裂技术的发展方向和前景 水力压裂技术具有广阔的发展前景,因为随着石油资源的逐年开采,低渗透油藏广泛出现,水力压裂技术之外的技术虽然可以一定程度上改善低渗透油藏难以开采的现状,但是随着时代的发展,水力压裂技术逐渐广泛使用在低渗透油藏之中,使低渗透油藏的开采效率大大增加。 (1)在低渗透油藏重复压裂促进采油率。主要的发展研究方向主要是加强对油藏状况的研究,建立科学的压裂模型,还要做到实时监测水力裂缝,对裂缝进度进行模拟和控制,其次利用高排量和大输砂量的泵注设备,进行注入作业,从而实现低渗透油藏的有效开发。 (2)做好拟三维化模型向全三维化模型的转换,全三维化模型可以非常有效的、更为直观的模拟和观测地下裂缝的进度,可以非常有效的控制水力压裂技术的科学使用。还要做好油气藏模拟技术的研发,配合三维化模型,更好的观测和了解油藏状态,从而做出合理的高效的开采计划。 (3)针对传统的水力压裂技术会出现污染地下水的问题,可以在无水压裂液体系做出研究,实现高能气体压裂技术和高速通道压裂技术等新技术的开发和利用,实现提高开采效率和环境保护的双赢。 有水压裂到无水压裂,从直井压裂到水平井分段压裂,从常规的压裂技术到现在的体积改造技术,压裂技术不断进步的同时,为人类带来了丰富的油气资源。而随着油藏开发,大量低渗透油藏的出现,给水力压裂技术的使用带来了广阔的空间,因而水力压裂技术拥有非常好的发展前景。 4?结束语 水力压裂技术是油气开发中所需要的非常重要的配套技术,而水力压裂技术和开采开发之间的结合,很大程度上提高了采油效率,降低了成本,在很大程度上提高了开采水平,使低渗透油藏得以稳定生产。而我国在这一技术上进行了大量投入,从研究人员和设施上,为技术的发展提供了很好的支持。而这一技术的逐步发展,在很大程度上提高了我国油气的开发效率,也很大程度改善了我国的石油供应紧张的现状,为我国的可持续发展做出了重大贡献,而作为油气开发的重要技术,水力压裂技术也会进一步发展,实现更高效率的油气开采。 国内水力压裂技术现状 续震?1,2 卢鹏?1,3? 1.西安石油大学 陕西 西安 710000 2. 延长油田股份有限公司杏子川采油厂 陕西 延安 717400 3.延长油田股份有限公司下寺湾采油厂 陕西 延安 716100 摘要:最早的水力压裂技术出现于1947年,而现代使用的水力压裂技术则是1998年首次使用。这项技术的出现,是油气井增产出现了新的希望,帮助石油开采取得了很好的技术成就和经济效益,从而使这项技术在我国石油开采上广泛应用,并取得了很好的成果。本文针对我国水力压裂技术的现状和发展前景做出研究。 关键词:水力压裂?现状?前景

关于水力压裂设备及技术的发展及应用

关于水力压裂设备及技术的发展及应用 【摘要】水力压裂技术经过了半个多世纪的发展,在设备和技术应用上都取得了较大的发展,在全球各地的石油开采中也发挥了关键性的作用,是目前仍在广泛应用的评价认识储层的一种重要方法,水力压裂技术也是油田煤矿等产业生产中确保安全、降低危险的重要技术。近年来,水力压裂的几部发展很快,在压裂设备材料上也有了较大突破,压裂技术在油田勘探开发应用中和其他行业的应用中的前景还是十分广阔的。 【关键词】水力压裂;发展现状;趋势 随着技术进步和应用范围的扩大,施工对压裂技术也提出了更高的要求,对压裂设备性能、压裂液等材料的要求也越来越高,不同地理环境下的压裂技术应用也有不同的需求,所以水力压裂设备和技术的研究也在不断进行,笔者在此对水力压裂技术的发展应用现状和今后的发展前景进行了展望,具体内容如下。 一、水力压裂设备技术的发展应用现状 (一)端部脱砂压裂技术 现代油气田勘探开发技术发展应用速度快,各种新技术工艺也都得到了综合运用,过去压裂设备和技术主要应用于低渗透油田,现在应用范围有了明显的扩大,在国内许多大型油田的中高渗透地层中不但应用了压裂设备和技术,且在技术上有了更大的突破。压裂技术应用于中高渗透地层时,实现短宽型的裂缝能够更好的控制油气层的开发,所以端部脱砂压裂技术应运而生,并在应用中取得了非常好的效果,近年来端部脱砂压裂技术在浅层、中深地层、高渗透以及松软地层都得到了应用,该技术的相关设备也在应用中得到了不断的改进。 (二)重复压裂技术 随着油田开发的不断深入,出现越来越多的失效井和产量下降的压裂井,二重复压裂技术正是针对该类油井改造和提高产量的有效技术措施。全球范围内各个国家对重复压裂设备和技术的研究都很重视,经过实践检验其应用效果也十分显著,重复压裂的成功率能够达到75%左右。在美国还有油田企业在应用重复压裂技术的同时还采用了先进的强制闭合技术和端部脱砂技术,取得了很好的经济效益。重复压裂技术设备能够用于改造低渗透和中渗透的油层,在直井、大斜度井以及水平井中都具有很高的应用效果,对提高产能具有很好的作用。 (三)高渗层防砂压裂技术 高渗层防砂压裂技术不但能够实现高渗透油藏的压裂,还能够同时完成充填防砂作业。传统的砾石充填防砂技术很容易造成对高渗透油层的破坏,导致导流能力下降,而高渗透防砂压裂技术是结合的端部脱砂技术,使裂缝中的支撑剂浓

压裂工艺

第三章压裂施工与设备 第一节压裂施工概述 1、压裂施工的准备工作 ⑴数据资料 压裂施工前需具有有关井数据资料,压前的破裂压力试 验数据和压裂设计指导书。有关井的数据资料应包括管柱和 井口设备的尺寸大小和额定压力值,套管和地层的隔离情 况,地层及其上下遮挡层情况。了解裂缝高度的遮挡层以及 附近水层和漏层的位置,射开的孔眼数和孔眼的大小等。 破裂压裂试验可在正式压裂施工前进行。根据破裂压 裂试验的数据,特别是原先估计的裂缝高度如有变化,或根 据压力压降曲线而得到更准确的液体滤失系数时,可能会修 改压裂施工设计。修改过的最后设计应包括排量施工表、预 期的井口压力、总液量、添加剂和支撑剂浓度等。图2-3-1常规施工泵入装置简图 ⑵施工设备摆放 现场施工设备必须按标准摆放,以利于协调指挥和管理。见图2-3-1。 ⑶施工前检查 施工前要检查施工要求配备的物品,确保其质量和数量和性能。 井场准备情况检查。主要考虑是否有足够大的场地并方便施工车辆进出。它对施工进展、施工质量及安全都很重要。 设备准备情况检查。要求施工设备使用状态良好,能完成现场施工,现场还必须备有足够的易损件。 压裂材料检查。主要是指压裂液和支撑剂的检查。检查压裂液细菌污染情况及胶凝物的水化和交联性能,这些可简单通过检查储罐的清洁程度、配液时间、环境温度、液体颜色、气味等来确定。必要时,可对每一罐压裂液进行小规模交联和混合试验。对支撑剂要确认其型号,检查其杂志含量等。 2、实施压裂施工 ⑴设备运转情况检查 关闭井口阀门,对所有的施工管线进行最高限压试验。在最高限压下,压力

稳定至少一分钟,系统设备没有渗漏,就说明设备和注入系统合格,可以进行施工,否则必须进行紧固或更换相关部件。 ⑵施工监测 注入排量和加砂量是监测的主要内容,排量不仅决定施工用液的总量,也影响施工质量。用涡轮流量计可在压裂监测装置上提供直观的记录,可用一实际排量来进行标定。也可通过计数泵的冲程次数,并已知每一冲次的容量,来校验液体排量,但有一定误差,较精确地确定注入排量的方法是从压裂液罐内计量泵入液体的体积和泵入时间,这三种方法都应使用,将这三种方法分别测得的结果进行互相校核,以便尽可能确切地得出实际排量。 加砂量的测量同样也是较困难的,整个施工过程中测量误差也可能导致施工结论本质上的差别。加砂也可用几种方法进行测量,所有方法应相互配合能使误差最小。监测支撑剂用量的最可靠方法就是测量支撑剂罐,在施工期间,应按预先设计的加砂程序表,确定各个不同施工阶段用完一罐支撑剂的时间。多数搅拌器都装备有螺旋推进器,用以控制向压裂液中添加支撑剂的速率。螺旋推进器每旋转一周,就输送一定量的支撑剂,然而对于不同的搅拌器,螺旋推进器每旋转一周输送量是不同的,因此,要对每一台搅拌器必须进行标定,以确定不同注入排量下,输送正确的支撑剂量时所需要的转速。可用放射性密度计监测支撑剂浓度,而且非常有效,特别是在浓度突然变化时。这种密度计需对照施工期间总的砂量来进行标定,以便更有效地监测整个施工过程。 ⑶压力波动 在压裂施工期间,正确推断引起施工压力波动原因是非常重要的。有四种 引起压力波动的原因,即力学问题、胶体性能变化、支撑剂浓度的改变和地层 响应。 引起施工压力异常的最常见的力学问题是压裂液通过射孔孔眼时受到限制。当某些孔眼不能流过流体时,则其余孔眼上的流量就会增加,因而造成高的压力降落,使地面的施工压力比预料的要高。可能会迫使改变施工程序。如果地面的施工压力比预料的高,可用瞬时停泵压力来检验井底压力,以便确定预计的井底压力是否正确。已知泵入排量和施工管路的摩擦阻力,就可计算出畅通的孔眼数,当某些孔眼被堵塞,或者是孔眼没有同裂缝相连通,或是孔眼直径比预计的要小时,则计算出的畅通孔眼数就可能少于实际射孔数。?在继续进行压裂施工之前,

水力压裂技术新进展

万方数据

万方数据

万方数据

64江汉石油职工大学学报 8压裂实时监控技术 实时监控和监测技术,是通过在施工现场实时地测定压裂液、支撑剂和施工参数,模拟水力裂缝几何形状的发展,随时修改施工方案,以获得最优的支撑裂缝和最佳的经济效益。 (1)施工参数监控,包括排量、泵压、砂比等由仪表车直接显示和控制。 (2)压裂质量监测:分别监测混砂车出、人口压裂液(携砂液)的流变性、温度、pH值等参数,对压裂液流变性,特别是加人各种添加剂后的性能以及携砂能力进行定量分析,常用的仪器为范氏系列粘度计,并在模拟剪切和地层温度条件下模拟整个施工过程。对于延缓硼交联压裂液和延缓释放破胶剂体系,矿场实时监测更为重要。 (3)实时压力分析:根据测定的施工参数和压裂液参数用三维压裂模拟器预测井口或井底压力,并与实际值进行拟合,预测施工压力变化(泵注和闭合期间)和裂缝几何形状。主要用途如下: ①识别井筒附近的摩阻影响(射孔和井筒附近裂缝的弯曲),并能定性判断其主要影响因素,判断井筒附近脱砂的可能性; ②评价压裂设计可信程度:如果施工压力与矿场实时预测压力相吻合,则设计的裂缝几何形状是可信的; ③预测砂堵的可能性; ④确定产生的水力裂缝几何形状I ⑤提供施工过程的图像和动画信息。 矿场实时分析随着便携式计算机的发展,在矿场上得到了广泛应用,除GRI外,其它石油公司也都相继研制和发展了这套系统。在实际应用中.经常与小型压裂测试分析结合应用。 9FASTFrac压裂管柱 贝克石油工具公司新近开发出一种连续油管压裂系统一FA刚下rac压裂管柱,用于对先前未处理到的层位进行选择性的增产措施,从而获得比常规压裂更高效、更经济的压裂效果。应用该技术能一趟管柱实现多层隔离与措施。从而降低了修井作业成本,节省了完并时间。由于该连续油管传送系统能保证高比重压井液不接触生产层,使完井和增产措施均不造成油井伤害,从而快速实现生产优化。FAsTFrac工具与Auto—J系统组成一个整体,Auto—J系统的作用是保证连续油管将压裂管柱送入或从井筒中起出。措施时,上部封隔元件和下部封隔元件能隔离一个或多个生产层。一旦第一次措施完毕,系统就复位并重新设置,下入另一个生产层。无论是FA跚下rac封隔器和桥塞系统,还是固定跨式双封隔器系统均能对过去遗漏的小型袋状油气藏实施经济高效的增产措施。 10新型CKFRAQ压裂充填系统 贝克石油工具公司新近研制成功新型CKFRAQ系统,该系统由多个高性能井下工具组件组成,尤其适用于极高流速和高砂比条件下。在应用软件的辅助下,CKFRAQ系统可以对压裂充填作业(用陶瓷支撑剂)中的泵的排量和容量进行优化,同时还可以将卡泵和套管腐蚀风险降至最低。经过大量模拟和小规模室内实验,该工具被应用于现场。人们还通过小规模室内试验,对工具转向孔的几何形状进行了评估,目的是找出哪种几何形状的转向孔遭遇的腐蚀最轻。此外,还进行了样机试验,以确保尽可能地延长套管的使用寿命。 贝克石油工具公司称,从毁坏性对比试验中可以看出,CKFRAQ系统的各种性能都胜过其它竞争产品。 今后的发展方向: (1)随着水力压裂施工的要求越来越高,压裂液和支撑剂的性能也需越来越高,因此必须加强高性能压裂液和支撑剂的研究与开发。 (2)开展有效的裂缝检测技术研究。目前压裂后裂缝的检测技术仍然是水力压裂技术的一个薄弱环节,国内外采用的检测方法虽然取得了一定的成效,但还有很大的局限性,还需要进一步的研究。 (3)在中高渗透地层中应用端部脱砂压裂技术,扩大水力压裂技术的应用范围。 (4)发展矿场实时监测和分析技术,提高施工的成功率和有效率。 [参考文献] [1]F.GUEKuru等著.冯敬编译,一种适用于低渗透浅层油藏的压裂方法[J].特种油气藏,2004(6).[2]吴信荣,彭裕生编,压裂液、破胶剂技术及其应用[M].北京:石油工业出版社,2003,9. [3]马新仿,张士诚.水力压裂技术的发展现状[J].河南石油,2002(1). [4]PaulWKte,JohnD.Harkrider,FractureStimulationOpti删功tioninaMatureWaterfloodRedevelopment,《JPlr》,January,2003. [5]shyapoberskyJ,chudnovsky.Areviewofrecentdevel—opmentinfracturemechanics诵thpetroleumengineer—ingapplications,SPE28074。1994.(下转第67页)  万方数据

国内压裂技术进展

中国石油压裂酸化业务的发展综述 近些年,中国石油压裂酸化发展声势夺人,水平井裸眼分段压裂酸化工具等一批技术利器先后登场。从技术工艺来说,历经直井分层压裂、水平井分段压裂和井组整体压裂,由单纯追求裂缝长度发展到最大限度寻求被压开储层体积。 今年,一吨瓜尔胶一度高达每吨2.1万美元,两年前这一价格还仅为1950美元。作为传统压裂液,瓜尔胶身价倍增的推手正是全球如火如荼的压裂酸化业务。且不说压裂酸化在北美页岩气开发中大显身手,仅从中国石油压裂技术的发展就可窥见一斑。 时势造英雄 压裂酸化是一种旨在改善石油在地下流动环境,提高油井产量的储层改造工艺技术,虽应用年头不短,但整体发展速度相对较慢,不仅是工程技术产业链上的一块短板,而且在井下作业业务的庞大队伍中也势单力薄。 然而近些年,中国石油压裂酸化发展声势夺人,水平井裸眼分段压裂酸化工具等一批技术利器先后登场。昔日低调的角色为何成为今日的新秀? 时势造英雄。随着油气资源劣质化加剧,低渗透油气储量成为新增储量和上产主体,越来越多油气井需要储层改造。压裂酸化技术发展,不仅关系到稳定并提高单井产量“牛鼻子”工程的实施,而且影响着油气藏开发动用程度。 据统计,“十二五”期间,中国石油目标市场压裂酸化工作量需求约13.9万井次,年平均2.8万井次,2015年将比2010年增长30.5%,压裂层(段)数及加砂量将增长40%以上。 压裂酸化在建设“西部大庆”大舞台上充分证明了这一点。从“井井有油、口口不流”的“三低”油气藏,到如今“西部大庆”呼之欲出,以压裂为核心的井下技术作业,在长庆油田增储上产中起的作用不言而喻。40多年来,“吃压裂饭,过压裂年,唱压裂歌”的顺口溜无人不晓。 如今,要唱“压裂歌”的何止长庆油田一家。大庆油田薄互层水平井压裂和老井改造,川渝地区和塔里木地区的深井、高温高压储层改造及页岩气等非常规油气资源开发,都在热情地呼唤压裂酸化技术进步与更大规模应用。 在2012年勘探开发年会上,集团公司总经理周吉平把物探、钻完井及储层改造并列为三大核心工程技术。集团公司副总经理廖永远要求油田和工程技术企事业单位要“干优压裂活,吃好储改饭”。 整合出尖兵

水力压裂综述

文献综述 前言 水力压裂是油田增产一项重要技术措施。由地面以超过地层吸收能力的排量高压泵组将液体注入井中,此时,在井底附近便会蹩起压力,当蹩气的压力超过井壁附近地层的最小地应力和岩石抗张强度时,在地层中便会形成裂缝。随之带有支撑剂的液体泵入缝中,裂缝不断向前延伸,这样,在地层中形成了具有一定长度、宽度及高度的填砂裂缝。由于压裂形成的裂缝提高了产油层导流能力,使油气能够畅流入井内,从而起到了增产增注的作用。 为了完成水力压裂设计,在地层中造成增产效果的裂缝,需要了解与造缝有关的地应力、井筒压力、破裂压力等分布与大小。这些因素控制着裂缝的几何尺寸,同时对与地面与井下设备的选择有关。同时,用于水力压裂的压裂液的性能、数量,支撑剂的排布情况关系到裂缝的几何尺寸,压裂技术-端部脱砂技术,对提高压裂效果起到很大作用,这些因素关系到能否达到油田增产的目的,需要进行详细研究。在建立适当的裂缝扩展模型的基础上,实现现场实际生产情况的模拟研究,对进一步优化水力压裂参数,提高压裂经济实用性起到很大作用。 这项油田增产措施自发展以来,得到国内外广泛采用,并且经不断的开发试验,已取得很大成效。 水力压裂技术的发展过程 水力压裂技术自 1947 年美国堪萨斯州进行的的第一次试验成功以来,至今近已有60余年历史。它作为油井的主要增产措施,正日益受到世界各国石油单位的重视及采用 ,其发展过程大致可分以下几个阶段: 60 年代中期以前 ,各国石油公司的工作者们的研究工作已适应浅层的水平裂缝为主,此时的我国主要致力于油井解堵工作并开展了小型压裂试验。 60 年代中期以后 ,随着产层加深 ,从事此项事业的工作者以研究垂直裂缝为主。已达成解堵和增产的目的。这一时期 ,我国发展了滑套式分层压裂配套技术。 70 年代 ,工作进入到改造致密气层的大型水力压裂阶段。我国在分层压裂技术的基础上 ,发展了蜡球选择性压裂工艺 ,以及化学堵水与压裂配套的综合

压裂工艺原理介绍)

水力压裂 水力压裂水力压裂水力压裂在油田开发中,人们发现,在对油层进行高压注水时,油层的吸水量开始随注水压力的上升而按一定比例增加。开始当压力值突破某一限度时,就会出现吸水量成几倍或几十倍的增加,远远超出了原来的比例,而且当突破某一限度后即使压力降低一些,其吸水量仍然很大。实践中的这一偶然发现,给人们以认识油的新启示:既然油层通过高压作用能提高注入量,那么通过高压作用能否提高油层的产量呢?经过多次证明:油层通过高压作用后,不但可以提高产量,而且能较大幅度的提高产量。最早进行压裂工作的是1947年在美国的湖果顿气田克列帕1号井进行的,苏联是1954年开始的,而我国是1952年在延长油矿开始的。40年代末水力压裂常作为一口井的增产措施来对待,但发展至今在油气田开发中的意义,已远远超过了一口井的增产增注作用。在一定条件下能起到改善采油或注水剖面,提高注水效果,加快油田开发速度和经济效果的作用。近些年来,国外在开发极低渗透率(以微达西计)的气田中,水力压裂起到了关键性的作用。本来没有开采价值的气田,经大型压裂后成为有相当储量及开发规模很大的气田。从这个意义上讲,水力压裂在油气资源的勘探上起者巨大的作用。由于上述原因,水力压裂无论在理论上、设备上、工艺上,在短短的几十年来发展的很快。现今的压裂设备能力,一次施工可用液量3000~4000米3,加砂300米3,可压开6000米的井深,裂缝长达1000米。从实践中,我们认识到压裂是油气井增产、注水井增注的一项重要措施。其优点是:施工简单、成本较低、增产(注)显著。适用于岩性微密、低渗透地层。§§§§4.1 压裂的增产原理压裂的增产原理压裂的增产原理压裂的增产原理一一一一. 压裂的过程压裂的过程压裂的过程压裂的过程压裂是靠水(液体)传导压力的,故也叫水力压裂。其过程是:在地面采用高压大排量的泵,利用液体传压的原理,将具有一定粘度的液体以大于油层吸收能力的排量向井内注入,使井筒内的压力逐渐提高。当压力增高到大于油层破裂所需要的压力时,油层就会形成一条或几条水平或垂直裂缝。当继续注入液体时,裂缝也会向油层深处延伸与扩展,直到液体注入速度等于油层渗透速度时,裂缝才会停止延伸与扩展。如果地面停止注入夜体,油层由于外来压力消失,又会使裂缝闭合,为了防止停泵后裂缝闭合,在挤入的液体中加入支撑剂(如石英砂、核桃壳等),使油层中形成导流能力很强的添砂裂缝。 导流能力导流能力导流能力导流能力=添砂裂缝渗透率添砂裂缝渗透率添砂裂缝渗透率添砂裂缝渗透率Kf××××裂缝宽度裂缝宽度裂缝宽度裂缝宽度W 二二二二. 增产

压裂工艺设计样本

山西省阳城CMM项目LSWJ-3井压裂作业施工设计 中国联盛投资集团有限公司二○一一年六月

山西省阳城CMM项目 LSWJ-3井压裂作业施工设计 编写人: 审核人: 甲方审核: 甲方审批: 项目单位: 中国联盛投资集团有限公司 设计单位: 汇金石油技术服务有限责任公司 二〇一一年六月二十日

目录 一、基本数据 (1) 二、施工目的及依据 (2) 三、压裂层段 (2) 四、施工参数 (2) 五、压裂液配方及各种原料、添加剂用量 (3) 六、压裂施工泵注程序 (3) 七、施工准备 (5) 八、施工步骤 (6) 九、质量保证要求 (10) 十、 HSE要求................................. 错误!未定义书签。十一、完井资料的整理与提交 .. (12) 十二、压裂管柱示意图 (14) 十三、完井管柱结构示意图 (15) 附件 (16)

一、基本数据

二、施工目的及依据 ( 1) 经过压裂改造煤层, 增强煤层近井地带的渗透能力, 有效地将煤层天然裂隙系统与 井孔连通起来。 (2)解除井眼附近因钻井、固井可能造成的储层污染, 增加产气能力, 为减少施工泵压 的摩阻采用光套管泵入的方式。 ( 3) 经过压裂后排采, 进一步认识煤层气储层特征。 (3)本设计依据中国石油行业标准《SY/T5836中深井压裂设计施工作法》及《煤层气 压裂技术规范》。 三、压裂层段 四、施工参数

五、压裂液配方及各种原料、添加剂用量 ( 1) 压裂液配方 清水: 清水 ( 2) 原料、添加剂用量 3#煤层: 设计清水量: 460.60m3 配置清水: 500m3 15#煤层: 设计清水量: 188.50m3 配置清水: 200m3配液说明: ①配液水质PH为6.5-7.5, 机械杂质小于0.2%。 ②技术要求: 配液用水需精细过滤。 六、压裂施工泵注程序 下层( 15#煤层) 泵注程序

相关文档
最新文档