数形结合思想方法(讲解+例题+巩固+测试)

数形结合思想方法(讲解+例题+巩固+测试)
数形结合思想方法(讲解+例题+巩固+测试)

数形结合的思想方法(1)---讲解篇

一、知识要点概述

数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。

数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。

数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。

二、解题方法指导

1.转换数与形的三条途径:

①通过坐标系的建立,引入数量化静为动,以动求解。

②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点

间的距离等。

③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。

2.运用数形结合思想解题的三种类型及思维方法:

①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在

的属性。

②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示

出数与式的本质特征。

③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,

引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。

三、数形结合的思想方法的应用

(一)解析几何中的数形结合

解析几何问题往往综合许多知识点,在知识网络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的.

1. 与斜率有关的问题

【例1】已知:有向线段PQ的起点P与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0与有向线段PQ延长相交,求实数m的取值范围.

解:直线l的方程x+my+m=0可化为点斜式:y+1=-(x-0),易知直线l过定点M(0,-1),且斜率为-. ∵l与PQ的延长线相交,由数形结合可得:当过M且与PQ平行时,直线l的斜率趋近于最小;当过点M、Q时,直线l的斜率趋近于最大.

【点评】含有一个变量的直线方程可化为点斜式或化为经过两直线交点的直线系方程.本题是化为点斜式方程

后,可看出交点M(0,-1)和斜率-.此类题目一般结合图形可判断出斜率的取值范围.

2. 与距离有关的问题

【例2】求:y=(cosθ-cosα+3)2+(sinθ-sinα-2)2的最大(小)值.

【分析】可看成求两动点P(cosθ,sinθ)与Q(cosα-3,sinα+2)之间距离的最值问题.

解:两动点的轨迹方程为:x2+y2=1和(x+3)2+(y-2)2=1,转化为求两曲线上两点之间距离的最值问题.如图:

3. 与截距有关的问题【例

3】若直线y=x+k与曲线x=恰有一个公共点,求k的取值范围. 解:曲线x=是单位圆x2+y2=1的右半圆(x≥0),k是直线y=x+k在y轴上的截距.

由数形结合知:直线与曲线相切时,k=-,由图形:可得k=-,或-1

4. 与定义有关的问题

【例4】求抛物线y2=4x上到焦点F的距离与到点A(3,2)的距离之和为

最小的点P的坐标,并求这个最小值.

【分析】要求PA+PF的最小值,可利用抛物线的定义,把PF转化为点P到

准线的距离,化曲为直从而借助数形结合解决相关问题.

解:P′是抛物线y2=4x上的任意一点,过P′作抛物线的准线l的垂线,垂足为D,连P′F(F为抛物线的焦点),由抛物线的定义可知:

.

过A作准线l的垂线,交抛物线于P,垂足为Q,显然,直线AQ之长小于折线AP′D之长,因而所求的点P 即为AQ与抛物线交点.

∵AQ直线平行于x轴,且过A(3,2),所以方程为y=2,代入y2=4x得x=1.

∴P(1,2)与F、A的距离之和最小,最小距离为4.

【点评】(1)化曲线为直线是求距离之和最有效的方法,在椭圆,双曲线中也有类似问题.

(2)若点A在抛物线外,则点P即为AF与抛物线交点(内分AF).

(二) 数形结合在函数中的应用

1. 利用数形结合解决与方程的根有关的问题

方程的解的问题可以转化为曲线的交点问题,从而把代数与几何有机地结合起来,使问题的解决得到简化.

【例5】已知方程x2-4x+3=m有4个根,则实数m的取值范围.

【分析】此题并不涉及方程根的具体值,只求根的个数,而求方程的根的个数问题可以转化为求两条曲线的交点的个数问题来解决.

解:方程x2-4x+3=m根的个数问题就是函数y=x2-4x+3与函数y=m图象的交点的个数.

作出抛物线y=x2-4x+3=(x-2)2-1的图象,将x轴下方的图象沿x轴翻折上去,得到y=x2-4x+3的图象,再作直线y=m,如图所示:由图象可以看出,当0

数形结合可用于解决方程的解的问题,准确合理地作出满足题意的图象是解决这类问题的前提.

2. 利用数形结合解决函数的单调性问题

函数的单调性是函数的一条重要性质,也是高考中的热点问题之一.在解

决有关问题时,我们常需要先确定函数的单调性及单调区间,数形结合是

确定函数单调性常用的数学思想,函数的单调区间形象直观地反映在函数

的图象中.

【例6】确定函数y=的单调区间.

画出函数的草图,由图象可知,函数的单调递增区间为(-∞,0],[1,+∞),函数的单调递减区间为[0,1].

3. 利用数形结合解决比较数值大小的问题

【例7】已知定义在R上的函数y=f(x)满足下列三个条件:①对任意的x∈R都有f(x+4)=f(x);②对任意的

0≤x1

显然,f(4.5)

4. 利用数形结合解决抽象函数问题

抽象函数问题是近几年高考中经常出现的问题,是高考中的难点.利用数形结合常能使我们找到解决此类问题的捷径.

【例8】设f(x),g(x)分别是定义在R上的奇函数和偶函数,在区间[a,b](a0,且f(x)·g(x)有最小值-5.则函数

y=f(x)·g(x)在区间[-b,-a]上().

A. 是增函数且有最小值-5

B. 是减函数且有最小值-5

C. 是增函数且有最大值5

D. 是减函数且有最大值5【解

析】f′(x)g(x)+f(x)g′(x)=[f(x)·g(x)]′>0.∴

y=f(x)·g(x)在区间[a,b](a

y=f(x)·g(x)是奇函数. 因此它的图象关于原点对称,作出示意图,易知函数y=f(x)·g(x)在区间[-b,-a]上是增函数且有最大值5,因此选C.

(三)运用数形结合思想解不等式

1. 求参数的取值范围

【例9】若不等式>ax的解集是{x|0

A. [0,+∞)B. (-∞,4]

C. (-∞,0)D. (-∞,0]

解:令f(x)=,g(x)=ax,则f(x)=的图象是以(2,0)为圆心,以2为半径的圆的上半部分,包括点(4,0),不包括点(0,0);g(x)=ax的图象是通过原点、斜率为a的直

线,由已知>ax的解集是{x|0

即要求半圆在直线的上方,由图可知a<0,所以选C.

【点评】本题很好的体现了数形结合思想在解题中的妙用.

【例10】若x∈(1,2)时,不等式(x-1)2

A. (0,1)B. (1,2)

C. (1,2]D. [1,2]

解:设y1=(x-1)2(1

由图可知若y11.

y1=(x-1)2过(2,1)点,当y2=logax也过(2,1)点,即a=2时,恰有y1

(1

【例11】已知f(x)是R上的偶函数,且在[0,+∞)上是减函数,f(a)=0(a>0),那么不等式xf(x)<0的解集是().

A. {x|0a}

C. {x|-a

解:依题意得f(x)是R上的偶函数,且在[0,+∞)上是减函数,f(a)=0(a>0),可得到f(x)图象,又由已知xf(x)<0,可知x与f(x)异号,从图象可知,当x∈(-a,0)∪(a,+∞)时满足题意,故选B.

【例12】设函数f(x)=2,求使f(x)≥2的取值范围.

【解法1】由f(x)≥2得2≥2=2.

易求出g(x)和h(x)的图象的交点立时,x的取值范围为[,+∞). 【解法3】由的几何意义可设F1(-1,0),F2(1,0),M(x,y),则

,可知M的轨迹是以F1、F2为焦点的双曲线的右支,其中右顶点为(,0),由

双曲线的图象和x+1-x-1≥知x≥.

【点评】本题的三种解法都是从不同角度构造函数或不等式的几何意义,让不等式的解集直观地表现出来,体现出数形结合的思想,给我们以“柳暗花明”的解题情境.

(四)运用数形结合思想解三角函数题

纵观近三年的高考试题,巧妙地运用数形结合的思想方法来解决一些问题,可以简化计算,节省时间,提高考试效率,起到事半功倍的效果.

【例13】函数f(x)=sinx+2sinx,x∈[0,2π]的图象与直线y=k有且仅有2个不同的交点,则k的取值范围是.

【分析】本题根据函数解析式,画出图象,可以直观而简明地得出答案,在有时间限制的高考中就能大大地节约时间,提高考试的效率.

解:函数f(x)=由图象可知:1

【例14】当0

A. 2B. 2C. 4D. 4

解:y=则y为点A(0,5)与点B(-sin2x,3cos2x)两点连线的斜率,又点B的轨迹

方程(0<α<),即x2+=1(x<0),如图,当过点A的直线l∶y=kx+5与椭圆x2+=1(x<0)相切时,k有最小值4,故选C.

【例15】若sinα+cosα=tanα(0<α<),则α∈().

解:令f(x)=sinx+cosx=sin(x+ )(0<α<),g(x)=tanx,画出图象,从图象上看出交点P的横从标xP>.再令α=,则sin+cos=≈1.366,tan=≈1.732>1.367,由图象知xP应小于.故选C. 【点评】本题首先构造函数f(x),g(x),再利用两个函数的图象的交点位置确定α>,淘汰了A、B两选项,然后又用特殊值估算,结合图象确定选项C,起到了出奇制胜的效果.

【例16】已知函数f(x)是定义在(-3,3)上的奇函数,当0

解:函数f(x)定义在(-3,3)上,且是奇函数,根据奇函数图象性质可知,f(x)在(-3,0)上的图象如图所示,若使f(x)cosx<0,只需f(x)与cosx异号,即图象须分别分布在x轴上下侧,由图可知,有三部分区间符合条件要求,即(-,-1)∪(0,1)∪(,3),故选B.

【点评】已知函数的一部分图象,根据函数的性质可得到函数的另一部分图象,利用数形结合的思想,可以先画出完整的函数图象,再研究有关问题.

【例17】△ABC中,A=,BC=3,则△ABC的周长为().

解:本题是我们常用三角恒等变形和正弦定理通过一定量的计算来完成的,但是应用数形结合,可以很快解决问题.为此,延长CA到D,使AD=AB,则CD=AB+AC,∠CBD=∠B+,∠D=,由正弦定理

即AB+AC=6sin(B+),故选C.

(五)运用数形结合思想解复数题

【例18】设|z

1|=5,|z

2

|=2, |z

1

-z

2

|=13,求

z

z

1

2

的值。

【分析】利用复数模、四则运算的几何意义,将复数问题用几何图形帮助求解。

【解】如图,设z

1=OA、z

2

=OB后,则z

1

=OC、z

2

=OD如图所示

由图可知,|z

z

1

2

|=

5

2

,∠AOD=∠BOC,由余弦定理得:

cos∠AOD=5213

252

222

+-()

××

4

5

∴z

z

1

2

5

2

(

4

5

±

3

5

i)=2±

3

2

【另解】设z

1=OA、z

2

=OD如图所示。则|

z

z

1

2

|=

5

2

,且

cos∠AOD=5213

252

222

+-()

××

4

5

,sin∠AOD=±

3

5

所以z

z

1

2

5

2

(

4

5

±

3

5

i)=2±

3

2

i,即

z

z

1

2

=2±

3

2

i。

【注】本题运用“数形结合法”,把共轭复数的性质与复平面上的向量表示、代数运算的几何意义等都表达得淋漓尽致,体现了数形结合的生动活泼。一般地,复数问题可以利用复数的几何意义而将问题变成几何问题,也可利用复数的代数形式、三角形式、复数性质求解。

本题设三角形式后转化为三角问题的求解过程是:设z

1=5(cosθ

1

+isinθ

1

),z

2

=+isinθ

2

),则|z

1

z 2|=|(5cosθ

1

-2cosθ

2

)+(5sinθ

1

+2sinθ

2

)i|=

2920

12

-+

cos()

θθ=13,所以cos(θ

1

+θ

2

)=

4

5

,sin(θ

1

+θ

2

)=±

3

5

z z 1

2

5

2

12

22

[cos()sin()]

(cos sin)

-+-

+

θθ

θθ

i

i

5

2

[cos(θ

1

+θ

2

)+isin(θ

1

+θ

2

)]=

5

2

(

4

5

±

3

5

i)=2±

3

2

i。

本题还可以直接利用复数性质求解,其过程是:由|z

1

-z2|=13得:

y A

D

O B x

C

y A

D

O x

(z

1-z

2

)(z

1

-z

2

)=z

1

z

1

+z

2

z

2

-z

1

z

2

-z

1

z

2

=25+4-z

1

z

2

-z

1

z

2

=13,

所以z

1z

2

+z

1

z

2

=16,再同除以z

2

z

2

z

z

1

2

z

z

1

2

=4,设

z

z

1

2

=z,解得z=2±

3

2

i。

几种解法,各有特点,由于各人的立足点与思维方式不同,所以选择的方法也有别。一般地,复数问题可以应用于求解的几种方法是:直接运用复数的性质求解;设复数的三角形式转化为三角问题求解;设复数的代数形式转化为代数问题求解;利用复数的几何意义转化为几何问题求解。

四、运用数形结合思想分析和解决问题时,要注意如下几点

在解题时,有时把数转化为形,以形直观地表达数来解决,往往使复杂问题简单化、

抽象问题具体化.但是,依赖图象直观解题,也要注意如下几个问题.

1、注意图象延伸趋势

【例19】判断命题:“当a>1时,关于x的方程ax=logax无实解.”正确与

否.

错解:在同一坐标系中分别作出函数y=ax及y=logax的图象(a>1)(如

图1),可见它们没有公共点,所以方程无实解,命题正确.

【评析】实际上对不同的实数a,y=ax和y=logax的图象的延伸趋

势不同.例如当a=2时,方程无实数解;而当a=时,x=2是方程的

解.说明两图象向上延伸时,一定相交,交点在直线y=x上.

2、注意图象伸展“速度”

【例20】比较2n与n2的大小,其中n≥2,且n∈N+.

错解:在同一坐标系中分别作出函数y=2x及y=x2的图象(如图2).

由图可知,两图象有一个公共点.

当x=2时,2x=x2;

当x>2时,2x

∴当n=2时,2n=n2;

当n>2,且n∈N+时,2n

【评析】事实上,当n=4时,2n与n2也相等;当n=5时,2n>n2.错因是没有充分注意到两个图象在x≥2时的递增“速度”!要比较两个图象的递增速度,确实很难由图象直观而得.本题可以先猜想,后用数学归纳法证明.

本题的正确答案是

当n=2、4时,2n=n2;

当n=3时,2n

当n≥5时,n∈N+时,2n>n2.

证明略.

3、注意数形等价转化

【例21】已知方程x2+2kx-3k=0有两个实数在-1与3之间,求k的取值范围.

错解:令f(x)=x2+2kx-3k,结合题意画出图象3中的(1),再由图象列出不等

解略.

【评析】事实上,不等式组(*)并不与题意等价,图象3中的(2)也满足不等式组(*),但两实根均大于3,还可以举出两实根均小于-1的反例.若不等式组(*)与图3中的(1)等价,需加上条件-3

注意等价性.

4、注意仔细观察图象

【例22】已知关于x、y的方程组

(a>b>0)有四组实数解,求a、b、m应满足的关系.

错解:已知方程组中的两个方程分别是椭圆和抛物线的方程,原方程组有四组实数解等价于椭圆与抛物线有四个不同的公共点.由图4知,m<-b,且

【评析】观察图象过于草率!事实上,图5也是一种可能的情形,即当=a时,仍有可能为四组解.例如当a=2,b=1,m=-4时,可得解集为:{(2,0),(-2,0),(,),(-)}.

现用数形结合求解:

考虑一元二次方程

a2y2+b2y-(m+a2)b2=0,

令Δ=0(即相切情形),

解得m=-,

结合图象,

注意到m<-b,则a、b、m应满足的关系是-

看出,有些问题可以用图象解决,但要认真分析,有些问题很难由图象直观而得,值得注意.

5.数形结合也有简繁之分

数形结合的核心与灵魂是“结合”.解题时,由于观察与联想的视角不同,会出现不同的“结合”,“结合”得好就得到好的解题方法,“结合”得不好就使解题过程繁琐且易出错,“结合”的优劣反映出了我们的基础与能力,也反映出我们思维灵活性与创造性的水平,“结合”的优化选择,应是数形结合法研究的重要一环.为便于说明,我们先看几例:

【例23】已知方程mx=x+m有两个相异实根,求实数m的取值范围. 视

角一:视方程mx=x+m两边的代数式为两个函数,分别画出函数y=mx,y=x+m的图象

(如图1),由于两个函数中都含有m,故需进一步对m进行分类讨论,情况复杂.

图1仅表示m>0时的示意图.

视角二:由m≠0,先将原方程变形,得x-1=x,再视方程x-1=x两边的代数式

为两个函数,分别画出函数y=x-1,y=x的图象(如图2),由图易看出:

当0<<1或-1<<0,即m<-1或m>1时,图象有两个不同交点,此时原方程有两个相

异实根.

视角三:用分离参数法,先将原方程化为=m.

分别作出函数y=,y=m的图象(如图3),由图易看出,当m<-1,m>1时,两函数的图象有两个不同交点,

此时原方程有两个相异实根.

视角四:用分离参数法,先将原方程化为.

当x>0时,得1-=,当x<0时,得-1-=.

分别作出函数y=,y=的图象(如图4),由图易

看出,当0<<1或-1<<0,即当m>1或m<-1时,两函

数的图象有两个不同交点,此时原方程有两个相异实根.

可见,例1的各解虽同是数形结合,但大有简繁之分,视角二优于视角一,视角一中两函数中的都含有m,因而他们的图象也是变化的,虽可以通过讨论而获得结论,但讨论时容易因考虑不周而产生漏解,视角三虽看图直观明了,但图象不易作出,而视角四既比视角三作图方便,又比视角二简单,不用讨论,这是因为视角二还有一个函数中含有m,而视角四中已不含m,所以这里以视角四为最理想.

【例24】已知函数f(x)=ax2+bx且2≤f(1)≤4,1≤f(-1)≤2,求f(-2)的取值范围.

这是我们常出错的题,其代数解法有待定系数法、特征函数法、三角代换法等,而众所周知的数形结合法是线性规划法.

这类问题可看作一个条件极值问题,即变量a、b在

2≤a+b≤4①

1≤a-b≤2②这两个约束条件下,求目标函数y=4a-2b的最大(小)值问题

.约束条件2≤a+b≤4,1≤a-b≤2的解集是非空集,在坐标平面上表

示的区域是由直线:a+b=4,a+b=2,a-b=2,a-b=1所围成的封闭

图形(图5中的阴影部分).

y的大小又可以看作直线b=2a-y在b轴上截距的大小,

从图中易知当直线b=2a-y经过A(,),C(3,1)

时截距分别为最小f(-2)=5和最大f(-2)=10. 所以5≤f(-2)≤10.其实还可有如下数形结合法:

要求f(-2)的取值范围,只要确定f(-2)的最大(小)值,即找到f(x)的图象在x=-2时的最高点F与最低点E的纵坐标,为此只要确定f(x)经过E、F时的函数表达式,由于f(x)=ax2+bx是经过原点(c=0)的抛物线系,所以只要再有两点就可确定,由已知2≤f(1)≤4,1≤f(-1)≤2,知f(x)在x=1时的最高点B(1,4),最低点A(1,2),f(x)在x=-1时的最高点D(-1,2),最低点C(-1,1),(如图6),由抛物线的图象特征易知经过F点的图象就是经过O、B、D的图象C2,经过E点的图象就是经过O、A、C的图象C1,于是:

将B(1,4),D(-1,2)坐标代入f(x)=ax2+bx得

解得a=3,b=1.

故图象经过O、B、D的函数为C2∶f(x)=3x2+x,所以

fmax(-2)=10.

将A(1,2),C(-1,1)的坐标代入f(x)=ax2+bx得

故图象经过O、A、C的函数为C1∶f(x)=x2+x,fmin(-2)=5.

所以5≤f(-2)≤10.

【例25】正数a、b、c、A、B、C满足a+A=b+B=c+C=k,求证:aB+bC+cA

本题的难度较大,用代数方法一时是无从下手的.若能数形结合,揭示其条件a+A=b+B=c+C=k中隐含的几何背景——联想到三数相等的几何图形是等边三角形,则可得如下简捷的证法.

证明:如图7,

作边长为k的正三角形PQR,分别在各边上取点L、M、N,使得QL=A,LR=a,RM=B,MP=b,PN=C,NQ=c,

如果再观察a+A=b+B=c+C=k这个代数条件,从三数相等的几何图形是等边三角形,联想到四数

相等a+A=b+B=c+C=k的几何图形是正方形.则又可作边长k的正方形(图8).

由面积关系知其结论aB+bC+cA

仅举三例,可见一斑,不但数形结合的确好,而且同是数形结合,也有不好与好之分,只有把握住“结合”这一数形结合法的核心,才能把在由数到形这一变换、操作过程中的图形选择的多样性,变成解题的灵活性和创造性.在实际学习中要结合具体问题掌握一些常规的操作策略,例如要画的若是函数图象,那就要设法让要画图象的函数尽可能少含参变量,最好不含参变量,如果一定要含有,也要设法让它在较低次的函数(如一次函数)或在简单函数中含有.只有这样,才能从一个新的层面上去理解、掌握、运用好数形结合法.

【结束语】在数形结合法的学习中,我们还应进一步看到运算、证明的简捷化与严格化

是密切相关的,“数学中每一步真正的进步都与更有力的工具和更简单的方法的发展密切联系着,

这些工具和方法同时会有助于理解已有的理论并把陈旧的复杂的东西抛到一边.数学科学发展的

这种特点是根深蒂固的.”“把证明的严格化与简捷化绝对对立起来是错误的.相反,我们可以通过

大量的例子来证实;严格的方法同时也是比较简捷比较容易理解的方法.正是追求严格化的努力

驱使我们去寻求更简捷的推理方法”.

数形结合的思想方法(2)---高考题选讲

数形结合思想是一种很重要的数学思想,数与形是事物的两个方面,正是基于对数与形的抽象研究才产生了数学这门学科,才能使人们能够从不同侧面认识事物,华罗庚先生说过:“数与形本是两依倚,焉能分作两边飞.数缺形时少直观,形少数时难入微.”

把数量关系的研究转化为图形性质的研究,或者把图形性质的研究转化为数量关系的研究,这种解决问题过程中“数”与“形”相互转化的研究策略,就是数形结合的思想.数形结合思想就是要使抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来.

在使用过程中,由“形”到“数”的转化,往往比较明显,而由“数”到“形”的转化却需要转化的意识,因此,数形结合思想的使用往往偏重于由“数”到“形”的转化.

考试中心对考试大纲的说明中强调:“在高考中,充分利用选择题和填空题的题型特点,为考查数形结合的思想提供了方便,能突出考查考生将复杂的数量关系转化为直观的几何图形问题来解决的意识,而在解答题中,考虑到推理论证的严密性,对数量关系问题的研究仍突出代数的方法而不提倡使用几何的方法,解答题中对数形结合思想的考查以由‘形’到‘数’的转化为主.”

1. 注重图形的内涵与拓展,突出对数字直觉能力的考查

【例1】图1有面积关系则由图2有体积关系:_______.

解:

【点评】本题注重考查图形分析能力.思维方式上从平面向空间拓展,面积与体积类比,直观类比与猜想并举.体现了高考题以能力立意考查注重素质的命题原则.

【例2】如图所示,已知椭圆=1的左、右焦点分别为F1,F2,点P在椭圆上,若F1,F2,P是一个直角三角形的三个顶点,则点P到x轴的距离为().

解:以O为圆心以OF1为半径画圆,可知此圆与椭圆无交点,则△F1F

P中∠PF1F2(或∠PF2F1)为直角,如此求出P点坐标即得yp=±,

2

故选D.

【点评】本题以作图直观判断为突破口,直觉与逻辑推理互动,化解析几何问题为平面几何问题,化计算为判断,在理性的高度认识问题.

【例3】某城市各类土地租价y(万元)与该地段和市中心的距离x(km)关系如图所示.其中l1表示商业用地,l2表示工业用地,l3表示居住用地.要使各类用地租金收入最高,应将工业用地划在().

A. 与市中心距离分别为3km和5km的圆环型区域上

B. 与市中心距离分别为1km和4km的圆环型区域上

C. 与市中心距离为5km的区域外

D. 与市中心距离为5km的区域内

解:由函数y的实际意义知:在区间(1,4)上,即在与市中心距离分别为1km和4km的圆环型区域上,工业用地的租金大于商业用地的租金和居住用地的租金,为了获取最高的租金,因此这个区域应租用给工业,故选B.

【点评】这道题考查的是阅读理解能力,提醒我们在日常的学习中,要注意训练直觉思维,养成整体观察、检索信息、把握问题实质的良好习惯.

2. 注重绘图,突出对动手能力和探究性学习的考查

【例4】设奇函数f(x)定义域为[-5,5],若当x∈[0,5]时,f(x)图象如下图,则不等式f(x)<0的解集是____.

解:由奇函数的图象关于原点对称,完成f(x)在定义域内的图象,再由f(x)<0找出使f(x)图象在x轴下方的区域,从而得到不等式f(x)<0的解集为(-2,0)∪(2,5].

【点评】用数形结合的方法去分析解决问题除了能读图外,还要能画图.绘制图形既是数形结合方法的需要,也是培养我们动手能力的需要.

【例5】设集合U={(x,y)x∈R,y∈R},A={(x,y)2x-y+m>0},B={(x,y)x+y-n≤0},那么点P(2,3)∈A∩(B)的充要条件是().

A. m>-1,n<5B. m<-1,n<5

C. m<-1,n>5D. m>-1,n>5

解:先假定点P(2,3)在直线2x-y+m=0和直线x+y-n=0上,则m=-1,n=5.再确定两个不等式2x-y-1>0和x+y-5>0所共同确定的区域,平移两直线得到答案A.

【点评】此题考查了集合、二元一次不等式表示的区域、充要条件等知识.以运动、变化、联系的观点考虑问题,变静态思维方式为动态思维方式,强调辨证思维能力.

3. 注重对思维的灵活性和创造性的考查

【例6】已知点P是椭圆上的动点,F1,F2分别是左、右焦点,O为原点,则

的取值范围是().

解:此题的一种解法是:在△PF1F2中,根据中线定理得:PF12+PF22=2OP2+2F1O2,再由椭圆定义,得到

(PF1-PF2)2=OP2-16,由2≤OP≤2得答案D.另一种解法是数形结合,根据P点所处的位置对取值的影响来判断出结论.逐渐移动P点到长轴端点,OP值逐渐增大,

逐渐接近,当移动P点到短轴端点时PF1=PF2,取最小值0.从而判断出答案为D.

【点评】解法二是采用极端性原则变静态思维方式为动态思维方式,把数与形分别视为运动事物在某一瞬间的取值或某一瞬间的相对位置.运用动态思维方式处理、研究问题,揭示了问题的本质,体现了思维的灵活性.

4. 注重方法的通用性、应用性,突出能力考查

【例7】电信局为了满足客户的不同需求,制定了A,B两种话费计算方案.这两种方案应付话费(元)与通话时间(分钟)之间的关系如下图所示(MN∥CD).

(1)若通话时间为2小时,按方案A,B各付话费多少元?

(2)方案B从500钟以后,每分钟收费多少元?

(3)通话时间在什么范围内方案B才会比方案A优惠?

解:由M(60,98),C(500,168),N(500,230).

∵MN∥CD.

设这两方案的应付话费与通话时间的函数关系式分别为f A(x),f B(x),

(1)通话两小时的费用分别是116元和168元.

(2)由f B(n+1)-f B(n)=0.3(n>500)或由直线CD的斜率的实际意义知方案B从500分钟以后每分钟收费0.3元.

(3)由图知:当0≤x≤60时f A(x)500时f A(x)>f B(x);当60f B(x)得x>,即通话时间为(,+∞)时方案B较优惠.

【评析】此题在实际问题中融入函数,直线等知识,考查了阅读理解能力,体现了在知识应用过程中对能力的考查.

下面就高考中出现的一些相关题进行点评

【例8】. 若方程lg(-x2+3x-m)=lg(3-x)在x∈(0,3)内有唯一解,求实数m的取值范围。

【分析】将对数方程进行等价变形,转化为一元二次方程在某个范围内有实解的问题,再利用二次函数的图像进行解决。

【解】原方程变形为

30

33

2

->

-+-=-?

?

?

x

x x m x

即:

30

21

2

->

-=-?

?

?

x

x m ()

设曲线y

1=(x-2)2 , x∈(0,3)和直线y

2

=1-m,图像如图所示。由图可知:

①当1-m=0时,有唯一解,m=1;

②当1≤1-m<4时,有唯一解,即-3

∴ m=1或-3

此题也可设曲线y

1=-(x-2)2+1 , x∈(0,3)和直线y

2

=m后画出图像求解。

【注】一般地,方程的解、不等式的解集、函数的性质等进行讨论时,可以借助于函数的图像直观解决,简单明了。此题也可用代数方法来讨论方程的解的情况,还可用分离参数法来求(也注意结合图像分析只一个x值)。

【例9】. 直线L 的方程为:x =-

p 2 (p>0),椭圆中心D(2+p

2

,0),焦点在x 轴上,长半轴为2,短半轴为1,它的左顶点为A 。问p 在什么范围内取值,椭圆上有四个不同的点,它们中每一个点到点A 的距离等于该点到直线

L 的距离?

【分析】 由抛物线定义,可将问题转化成:p 为何值时,以A 为焦点、L 为准线的抛物线与椭圆有四个交点,再联立方程组转化成代数问题(研究方程组解的情况)。

【解】 由已知得:a =2,b =1, A(

p

2

,0),设椭圆与双曲线方程并联立有: y px

x p y 22

222241=-++=?????

??[()],消y 得:x 2-(4-7p)x +(2p +p 24)=0 所以△=16-64p +48p 2

>0,即6p 2

-8p +2>0,解得:p<

1

3

或p>1。 结合范围(p 2,4+p 2

)内两根,设f(x)=x 2

-(4-7p)x +(2p +p 24),

所以

p 2<472-p <4+p 2即p<12,且f(p 2)>0、f(4+p

2

)>0即p>-4+32。

结合以上,所以-4+32

3

【注】 本题利用方程的曲线将曲线有交点的几何问题转化为方程有实解的代数问题。一般地,当给出方程的解的情况求参数的范围时可以考虑应用了“判别式法”,其中特别要注意解的范围。另外,“定义法”、“数形结合法”、“转化思想”、“方程思想”等知识都在本题进行了综合运用。

【例10】. 设a 、b 是两个实数,A ={(x,y)|x =n ,y =na +b} (n ∈Z ),B ={(x,y)|x =m ,y =3m 2

+15} (m ∈Z),C ={(x,y)|x 2

+y 2

≤144},讨论是否,使得A ∩B ≠φ与(a,b)∈C 同时成立。

【分析】集合A 、B 都是不连续的点集,“存在a 、b ,使得A ∩B ≠φ”的含意就是“存在a 、b 使得na +b =3n

2

+15(n ∈Z)有解(A ∩B 时x =n =m )。再抓住主参数a 、b ,则此问题的几何意义是:动点(a,b)在直线L :nx +y =3n 2

+15上,且直线与圆x 2

+y 2

=144有公共点,但原点到直线L 的距离≥12。

【解】 由A ∩B ≠φ得:na +b =3n 2

+15 ;

设动点(a,b)在直线L :nx +y =3n 2

+15上,且直线与圆x 2

+y 2

=144有公共点,

所以圆心到直线距离d =

||3151

22

n n ++=3(n 2

1++

41

2

n +)≥12

∵ n 为整数 ∴ 上式不能取等号,故a 、b 不存在。

【注】 集合转化为点集(即曲线),而用几何方法进行研究。此题也属探索性问题用数形结合法解,其中还体现了主元思想、方程思想,并体现了对有公共点问题的恰当处理方法。

本题直接运用代数方法进行解答的思路是:

由A ∩B ≠φ得:na +b =3n 2

+15 ,即b =3n 2

+15-an (①式);

由(a,b)∈C得,a2+b2≤144 (②式);

把①式代入②式,得关于a的不等式:

(1+n2)a2-2n(3n2+15)a+(3n2+15)2-144≤0 (③式),

它的判别式△=4n2(3n2+15)2-4(1+n2)[(3n2+15)2-144]=-36(n2-3)2

因为n是整数,所以n2-3≠0,因而△<0,又因为1+n2>0,故③式不可能有实数解。

所以不存在a、b,使得A∩B≠φ与(a,b)∈C同时成立

【例11】已知f(x)=ax+b,2a2+6b2=3,证明对任意x∈[-1,1]恒有f(x)≤.

【点拨】从等式2a2+6b2=3联想到几何图形:椭圆.于是一个好解法出现了.

这是本题的

一个优美解,从等式的外形联想到构造一个几何图形,思维在数和形的天地里驰骋.

【例12】设p=(log2x)2+(t-2)log2x+1-t,当t∈[-2,2]时恒有p>0,求x的范围.

【点拨】初读,无论如何与图形挂不起钩来,但t的范围不是确定了吗?而且发现p是关于t的一次函数.这个发现好极了,一次函数的图象太简单了,于是按t降幂排列:p=f(t)=(log2x-1)t+log22x-2log2x+1,

∵t∈[-2,2]时p>0恒成立(如图2),

∴f(-2)>0且f(2)>0,

∴x>8或0

简捷吧?数与形和谐地统一,使得问题真正化繁为简了.

【例13】设x≥1,求点A(x+,x-)与点B(1,0)之间的距离的最小值.

【点拨】A是个动点,这个动点在坐标平面上的轨迹图形是什么呢?

令z=x+,y=x-,

则y2-z2=-4(z≥2).

这个表达式太熟悉了,它的图象是双曲线的一支.

用不着画出图形来,在脑子里做想像,我们准确地判断ABmin=1.

【点拨】机敏的读者一下子发现了一个熟悉的图形:椭圆.这样,思路纳入了解析几何的轨道,下面的解法,当然与解析几何紧密地联系在一起了.

如图3所示,设椭圆的长轴为2a ,焦距为2c ,

丰富的想像,是数向形转化的前提,外形的启发,是构造图象的直接提示.数形结合,既有它的优越性又有其局限性,它决非放之四海而皆准,只有那些因为数形结合而使得解答简捷的问题,我们才选用.

【点拨】读完题目与任何一个图形似乎很难联系起来,我们在对已知条件的分析中,去寻觅解题的灵感. a 2

这样一来,一个二次函数的图形出现了,它对解题有帮助吗?

二次函数g (a )的图象的对称轴为a=,而k≥2,则g (a )在0

【例14】

【例15】

中考数形结合题

做家长信任的教育机构【中考冲刺】数形结合的5个常考类型 数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法. 1用数形结合的思想解题可分两类 (1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等; (2)运用数量关系来研究几何图形问题,常常要建立方程(组)或建立函数关系式等. 22. 热点内容 在初中教材中,“数”的常见表现形式为: 实数、代数式、函数和不等式等,而“形”的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数图象对应一条直线,二次函数的图像对应着一条抛物线,这些都是初中数学的重要内容. 【典型例题】

类型一、利用数形结合探究数字的变化规律 1. 如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是. 【思路点拨】 首先计算几个特殊图形,发现:数出每边上的个数,乘以边数,但各个顶点的重复了一次,应再减去.第1个图形是2×3-3,第2个图形是3×4-4,第3个图形是4×5-5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n2+2n. 【答案与解析】 第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋(2×3-3)个; 第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子(3×4-4)个; 第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子(4×5-5)个; 按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n(n+2). 故答案为n(n+2)=n2+2n. 【总结升华】 这样的试题从最简单的图形入手.找出图形中黑点的个数与第n个图形之间的关系,找规律需要列出算式,一律采用原题中的数据,不要用到计算出来的结果来找规律. 举一反三:

(完整版)数形结合思想例题分析(可编辑修改word版)

(1- a )2 + b 2 a 2 + (1- b )2 (1- a )2 + (1- b )2 (1- a )2 + b 2 a 2 + (1- b )2 (1- a )2 + (1- b )2 y r x 数形结合思想例题分析 一、构造几何图形解决代数与三角问题: 1、证明恒等式: 例 1 已知 x 、 y 、 z 、 r 均为正数,且 x 2 + y 2 = z 2 , z ? = x 2 求证: rz = xy . C A B z 分析:由 x 2 + y 2 = z 2 , 自然联想到勾股定理。由 z ? = x 2 . 可以联想到 射影定理。从而可以作出符合题设条件的图形(如图)。对照图形,由直角三角形面积的两种 算法,结论的正确性一目了然。 证明:(略) 小结:涉及到与平方有关的恒等式证明问题,可构造出与之对应的直角三角形或圆,然后利用图形的几何性质去解决恒等式的证明问题。 2、证明不等式: 例 2 已知:0< a <1,0< b <1. 求证 + + + ≥ 2 2. 证明:如图,作边长为 1 的正方形 ABCD ,在 AB 上取点 E ,使 AE= a ;在 AD 上取点 G ,使 AG= b , 过 E 、G 分别作 EF//AD 交 CD 于 F ;作 GH//AB 交 BC 于 H 。设 EF 与 GH 交于点 O ,连接 AO 、BO 、CO 、DO 、AC 、BD. 由题设及作图知△ AOG 、△ BOE 、△ COF 、△ DOG 均为直角三角形,因此 OA = OB = OC = OD = 且 AC = BD = 由于 OA + OC ≥ AC , OB + OD ≥ BD . 所以: + + + ≥ 2 2. x 2 - r 2 x 2 - r 2 a 2 + b 2 a 2 + b 2 (1- a )2 + b 2 (1- a )2 + (1- b )2 a 2 + (1- b )2 2 a 2 + b 2

数形结合的思想

数形结合的思想 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意

义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。数学中的知识,有的本身就可以看作是数形的结合。如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

数形结合例题选集

数形结合 一、在一些命题证明中的应用举例: 1、证明勾股定理: 2222 c b a b a 0.5ab 4=+=-+?)()( 解析:上图中,四个小三角形(阴影部分)的面积加上中间小正方形的面积等于大正方形的面积,化简后得到勾股定理222c b a =+。 2、证明乘法公式(平方差与完全平方): ))((b a b a b a 22-+=- 2ab b a b a 222 ++=+)( 解析:在上图中,利用正方形和小正方形面积的转化,能更进一步理解平方差公式与完全平方公式的运算过程以及公式的本质问题。 3、证明基本不等式:

解析:如上图所示,直角三角形斜边上的中线等于斜边的一半,长度为 2 b a +,根据直角三角形的相似关系,可以得到直角三角形斜边上的高的长度为a b ,显然在直角三角形中,斜边上的中线的长度会大于等于高,利用这样简洁明了的几何图解,对基本不等式的理解也就更加简单了。 4、证明正(余)弦定理: 解析: (1)如上图所示,csinB bsinC bsinC a 2 1 h a 21S ABC =??=?= ?的面积; 即sinC c sinB b sinA a sinC c sinB b ===,同理可得; 根据圆的性质(等弧对等角)2R sinA a 2R a sinD sinA D A ===∠=∠,即,; 综上,得正弦定理:2R sinC c sinB b sinA a ===。 (2)根据勾股定理2 2222222cosB c a b cosB c c CE AC BE AB )()(,即?--=?--=-; 整理可得余弦定理:2ac b c a cosB 2 22-+=;同理得出cosA 、cosC 的余弦定理。 5、证明结论),(,2 0x sinx x x tan π ∈>>

数形结合思想例题选讲

数形结合思想例题选讲 数形结合思想是“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。 应用数形结合的思想,应注意以下数与形的转化 (1)集合的运算及韦恩图 (2)函数及其图象 (3)数列通项及求和公式的函数特征及函数图象 (4)方程(多指二元方程)及方程的曲线 以形助数常用的有 借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方 法; 以数助形常用的有 借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。 例题选讲 类型一:集合的运算及韦恩图 利用数形结合的思想解决集合问题,常用的方法有数轴法、韦恩图法等。当所给问题的数量关系比较复杂,且没有学容斥原理前,不好找线索时,用韦恩图法能达到事半功倍的效果。 例1.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( ) ().A M P S B 。()M P S ().I C M P S e ().I D M P S e 解:阴影部分是M 与P 的公共部分(转化为集合语言就是M P ),且在 S 的外部(转化为集合语言就是C I S ),故选C 。通过上述例子,我们知道:当应用题中牵 涉到集合的交集、并集、补集时,用韦恩图比用数轴法简便。 类型二:图表信息题 此类题目都有图形(或图表)作为已知条件,须联系函数的性质分析求解,解 决问题的关键是从已知图形(图表)中挖掘信息. 例2.直角梯形ABCD 如图(1),动点P 从B 点出发,由A D C B →→→沿边运动,设点P 运动的路 程为x ,ABP ?的面积为 )(x f .如果函数)(x f y =的图象如图(2),则ABC ?的面积为( ) A .10 B .16 C . 解:由)(x f y = 图象可知,当04()0x f x →由时由由4=x 及9=x 时)(x f 不变,说明P 点在DC 上,即所以AD=14-9=5,过D 作DG AB ⊥ 则DG=BC=4 3=∴AG ,由此可求出AB=3+5=8. 16482 1 21=??=?=?BC DB S ABC 选B 例3.在某种新型材料的研制中,实验人员获得了下列一组实验数据: 现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是 A .y =2x -2 B.y = 21(x 2 -1) C.y =log 2x D.y =log 2 1x A B C D P 图(1)

七年级数形结合数学专题训练

平面直角坐标系------数形结合思想的平台 一、知识点: 1.平面直角坐标系的定义; 2.坐标平面内点的坐标的定义; 3.各象限内及坐标轴上点的坐标的特征; 4.一三(二四)象限角平分线上的坐标特点; 5.与坐标轴平行的直线上的点的坐标的特征; 6.一维、二维坐标; 7、点的坐标与点到坐标轴的距离之间的关系, 8、坐标平面内线段长度与线段两端点坐标之间的关系; 9、面积割补法; 10、绝对值的性质; 11、图形面积公式; 12、平移的性质; 二、基本思想方法: 1、思想:数形结合思想、分类讨论思想、方程思想、算术法。 2、方法:画示意图、平移。 三、典型题目 (一)基础知识训练 称点是点C,则点C所表示的数是.在x轴上,到原 2.(1)请在下面的网格中建立平面直角坐标系,使得A,B两点的坐标分别为(4,1),(1,-2); (2)在(1)的条件下,过点B作x轴的垂线,垂足为点M,在BM的延长线上截取MC=BM. ①写出点C的坐标; ②平移线段AB使点A移动到点C,画出平移后的线段CD,并写出点D 的坐标. (注:本题训练坐标平面内点的坐标与线段长度的关系,请尝试总结出公式) 3.已知直角坐标平面内两点A(-2,-3)、B(3,-3),将点B向上平移5个单位到达点C,求: (1)A、B两点间的距离; (2)写出点C的坐标; (3)四边形OABC的面积. 4.在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B (5,0),C(3,3),D(2,4),求四边形ABCD的面积

5.计算图中四边形ABOD的面积. 6.已知点A(-4,-1),B(2,-1) =12.求点C的坐标(写必要的(1)在y轴上找一点C,使之满足S △AB C 步骤); =12的点C有多少个?这些(2)在直角坐标系中找一点C,能满足S △AB C 点有什么特征? 7.如图,每个小正方形的边长为单位长度1. (1)写出多边形ABCDEF各个顶点A、B、C、D、E、F的坐标,说出各点到两坐标轴的距离;并总结坐标平面内的点到坐标轴距离公式。(2)点C与E的坐标什么关系? (3)直线CE与两坐标轴有怎样的位置关系? (4)你能求出图中哪些线段的长度?(总结公式)哪些图形的面积? 8.如图,在△ABC中,已知点A(0,3),B(-2,-3),C(3,-5).(1)在给出的平面直角坐标系中画出△ABC; (2)将△ABC向左平移4个单位,作出平移后的△A′B′C′; (3)点B′到x、y轴的距离分别是多少? 9.如,在平面直角坐标系中,O为坐标原点,已知点A(0,a),B(b,b),C(c,a),其中a,b满足关系式|a-4|+(b-2)2=0,c=a+b. (1)求A、B、C三点的坐标,并在坐标系中描出各点; (2)在坐标轴上是否存在点Q,使△COQ得面积与△ABC的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由; (3)如果在第四象限内有一点P(2,m),请用含m的代数式表示四边形BCPO的面积.

最新小学数学六年级下册《数形结合解决问题》

小学数学六年级下册《数形结合解决问 题》

青岛版小学数学六年级下册《数形结合解决问题》精品教案 【教学内容】: 义务教育课程标准实验教科书青岛版小学数学六年级下册116——117页。【教学目标】: 在回顾整理的过程中,加深对数形结合思想方法的认识,使学生充分感受数形结合在小学数学学习中的应用。 【教学重点】: 通过一些数形结合的实例,使学生体会数形结合思想的优越性,并能帮助学生建立思路解决问题。 【教学过程】; 一、谈话引入。 师:同学们,在我们的数学学习中,除了研究各种数以外,还经常要用到各种各样的图形。利用图形来研究问题,会使问题变得更加简单明了。请同学们回忆所学的知识,你能举一些这样的例子吗? 学生思考后举例。 【设计意图】教师给学生一定的思考时间,可以使学生对所学过的用图形来研究问题的有关知识进行初步的梳理,从而为本节课的学习做好铺垫。 二、自主探究。 1、教师出示某电脑公司2008年各种电脑销售情况的具体数据及条形统计图、扇形统计图和某电脑公司2004-2008最畅销的两种电脑销量折线统计图。 师:仔细观察这些数据和统计图,你有什么发现?

学生各抒己见,发表自己的看法。 师引导学生总结:图形描述数据更加直观、有效。条形统计图能清楚看出数量的多少,扇形统计图能清楚看出个部分同总数之间的关系,折线统计图能清楚看出数量增长情况。 【设计意图】将原始数据和统计图同时呈现,可以给学生造成视觉上的冲击。原始数据杂乱无章而统计图简单明了,能够帮助阅读的人有效的提取信息。对于用图形描述数据的优越性,学生一目了然。 2、师:图形不仅在描述数据方面有优越性,在其他方面同样能体现出优势。你还能举例说明数形结合在其他方面的应用吗?(生独立思考)下面请同学们以小组为单位交流自己的想法。交流过程中,要注意倾听他人的想法。 集体交流。 教师在学生交流的基础上引导学生发现:画图可以帮助我们理解计算方法、图形可以更加形象的反映成正比例关系的两种量的变化情况、在平面内确定物体的位置也利用了数形结合。 3、小结 师:通过刚才的交流,我们发现实际上许多问题的解决都利用了数形结合,你能谈一谈自己的体会吗? 【设计意图】学生个人的想法可能是粗浅的、片面的,而通过小组交流,倾听他人的想法和意见,可以进一步完善自己的想法。教师在学生交流的基础上运用多媒体呈现相关的例子,通过这些数形结合的直观的例子,让学生充分感受数形结合在数学学习中的应用。 三、拓展延伸。

小学数学总结-数形结合

数形结合总结 数形结合之规律 【典型例题】 例1 观察下列算式: , 65613,21873,7293,2433, 813,273,93,338 7 6 5 4321======== …… 用你所发现的规律写出20043的末位数字是__________。 例2 观察下列式子: 326241?==+?;4312252?==+?;5420263?==+?;6530274?==+?…… 请你将猜想得到的式子用含正整数n 的式子表示来__________。 例4 图3—4①是一个三角形,分别连接这个三角形三边的中点,得到图3—4②;再分别连结图3—4②中间的小三角形三边的中点,得到图3—4③,按此方法继续下去,请你根据每个图中三角形个数的规律,完成下列问题。 …… (1)将下表填写完整 (2)在第n 个图形中有____________________个三角形(用含n 的式子表示)。 例6.如图,把一个面积为1的正方形分等分成两个面积为21的矩形,接着把面积为21的矩形等分成两个面积为4 1 的正方形,再把面积为 41的矩形等分成两个面积为8 1 的矩形,如此进行下去,试利用图形提示的规律计算: =+++++++256 11281641321161814121 例7.把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正 方体的个数是 例8.观察下列图形并填表。 ① ② ③ 1 1

周长 5 8 11 14 … 例9.把1到200的数像下表那样排列,用正方形框子围住横的3个数,竖的3个数,这9个数的和是162。如果在表的另外的地方,也用正方形围住另外的9个数。 (1) 当正方形左上角的数是100时,这9个数的和是多少? (2) 当正方形中9个数的和是1557时,最大的数是多少? 200 199198197196 19528272625242322212019181716151413121110987654321 例10.将1至1001个数如下图的格式排列。用一个长方形框入12个数,要使这12个数的和等于(1)1986;(2)2529;(3)1989是否办得到?如果办不到,简单说明理由:如果办得到,写出长方形框里的最大的数和最小的数。 1001 10009999989979969952827262524232221 2019181716151413121110987 654321 例11.把2012个正整数1,2,3,4,…,2012按如图方式排列成一个表. (1)用如图方式框住表中任意4个数,记左上角的一个数为x ,则另三个数用含x 的式子表示出来,从小到大依次是______,______,______. (2)由(1)中能否框住这样的4个数,它们的和会等于244吗?若能,则求出x 的值;若不能,则说明理由. 例12. 把2011个正整数1,2,3,4,…,2010,2011按如图方式排列成一个表.

中考数学专题复习_数形结合思想

中考数学专题复习——数形结合思想 一、知识梳理 数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的。 华罗庚先生曾指出:“数与形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休。”这充分说明了数形结合在数学学习中的重要性,是中考数学的一个最重要数学思想。 二、典型例题 (一)在数与式中的应用 例1、实数a 、b 在数轴上的位置如图所示,化简2 ||a a b +-=_________。 (二)在方程、不等式中的应用 例2、已知关于x 的不等式组0 20x a x ->?? ->? 的整数解共有2个,则a 的取值范围是____________。 例3、用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( ) A .203210x y x y +-=??--=?, B .2103210x y x y --=??--=? , C .2103250x y x y --=?? +-=? , D .20210x y x y +-=?? --=? , (三)在锐角三角函数中的应用 例4、画△ABC ,使cosA=2 1 ,AB =2cm ,∠A 的对边可以在长为1cm 、2cm 、3cm 中任选,这 样的三角形可以画_______个。 (四)在函数中的应用 例5、如图为二次函数2y ax bx c =++的图象,在下列说法中: ①0ac <;②方程20ax bx c ++=的根为11x =-,23x =; ③0a b c ++>;④当1x >时,y 随着x 的增大而增大. a b 0 · P (1,1) 1 1 2 2 3 3 -1 -1 O x y x y O 3 -1

七年级(下)数形结合数学专题训练

平面直角坐标系------数形结合思想的平台
一、知识点: 1. 平 面 直 角 坐 标 系 的 定 义 ; 2. 坐 标 平 面 内 点 的 坐 标 的 定 义 ; 3. 各 象 限 内 及 坐 标 轴 上 点 的 坐 标 的 特 征 ; 4. 一 三 ( 二 四 ) 象 限 角 平 分 线 上 的 坐 标 特 点 ; 5. 与 坐 标 轴 平 行 的 直 线 上 的 点 的 坐 标 的 特 征 ; 6. 一 维 、 二 维 坐 标 ; 7、 点 的 坐 标 与 点 到 坐 标 轴 的 距 离 之 间 的 关 系 , 8、 坐 标 平 面 内 线 段 长 度 与 线 段 两 端 点 坐 标 之 间 的 关 系 ; 9、 面 积 割 补 法 ; 10 、 绝 对 值 的 性 质 ; 11 、 图 形 面 积 公 式 ; 12 、 平 移 的 性 质 ; 二、基本思想方法: 1、 思 想 : 数 形 结 合 思 想 、 分 类 讨 论 思 想 、 方 程 思 想 、 算 术 法 。 2、 方 法 : 画 示 意 图 、 平 移 。 三、典型题目 (一)基础知识训练 1 .如 图 ,数 轴 上 A , B 两 点 表 示 的 数 分 别 是 1 和 2 ,点 A 关 于 点 B 的 对 称 点 是 点 C ,则 点 C 所 表 示 的 数 是 点距离为 5 的坐标 分 别 为 ( 4, 1) , ( 1 , -2 ) ; ( 2 )在( 1 )的 条 件 下 ,过 点 B 作 x 轴 的 垂 线 ,垂 足 为 点 M ,在 BM 的 延 长 线 上 截 取 MC=BM . ①写出点 C 的坐标; ② 平 移 线 段 AB 使 点 A 移 动 到 点 C , 画 出 平 移 后 的 线 段 CD , 并 写 出 点 D 的坐标. (注:本题训练坐标平面内点的坐标与线段长度的关系,请尝试总结出公式) . .在 x 轴 上 ,到 原
2.( 1 )请 在 下 面 的 网 格 中 建 立 平 面 直 角 坐 标 系 ,使 得 A , B 两 点 的 坐 标
1

高中数学的数形结合思想方法-全(讲解+例题+巩固+测试)

数形结合的思想方法(1)---讲解篇 一、知识要点概述 数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。 数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。 二、解题方法指导 1.转换数与形的三条途径: ①通过坐标系的建立,引入数量化静为动,以动求解。 ②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。 ③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。 2.运用数形结合思想解题的三种类型及思维方法: ①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。 ②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。 ③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式 的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。 三、数形结合的思想方法的应用 (一)解析几何中的数形结合 解析几何问题往往综合许多知识点,在知识网络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的. 1. 与斜率有关的问题 【例1】已知:有向线段PQ的起点P与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0

2020中考数学 数形结合思想专题练习(含答案)

2020中考数学 数形结合思想专题练习 1.已知直线y 1=2x -1和y 2=-x -1的图象如图X5-1所示,根据图象填空. (1)当x ______时,y 1>y 2;当x ______时,y 1=y 2;当x ______时,y 1<y 2; (2)方程组的解集是____________. 图X5-1 图X5-2 2.已知二次函数y 1=ax 2+bx +c (a ≠0)与一次函数y 2=kx +m (k ≠0)的图象相交于点A (-2,4),B (8,2)(如图X5-2所示),则能使y 1>y 2成立的x 的取值范围是____________. 3.如图X5-3,正三角形ABC 的边长为3 cm ,动点P 从点A 出发,以每秒1 cm 的速度,沿A →B →C 的方向运动,到达点C 时停止.设运动时间为x (单位:秒),y =PC 2,则y 关于x 的函数的图象大致为( ) 图X5-3 A B C D 4.如图X5-4,半径为2的圆内接等腰梯形ABCD ,它的下底AB 是圆的直径,上底CD 的端点在圆周上,则该梯形周长的最大值是______. 图X5-4 21, 1y x y x =-?? =-- ?

5.某市实施“农业立市,工业强市,旅游兴市”计划后,2009年全市荔枝种植面积为24万亩.调查分析结果显示,从2009年开始,该市荔枝种植面积y(单位:万亩)随着时间x(单位:年)逐年成直线上升,y与x之间的函数关系如图X5-5. (1)求y与x之间的函数关系式(不必注明自变量x的取值范围); (2)该市2012年荔枝种植面积为多少万亩? 图X5-5 6.某公司推销一种产品,设x(单位:件)是推销产品的数量,y(单位:元)是推销费,图X5-6表示该公司每月付给推销员推销费的两种方案,看图解答下列问题: (1)求y1与y2的函数解析式; (2)解释图中表示的两种方案是如何付推销费的? (3)如果你是推销员,应如何选择付费方案? 图X5-6

数形结合思想在小学数学中的应用讲解

德宏师范高等专科学校 毕 业 论 文 系部:数学系 姓名:李宏 学号:20130732103 班级:2013级初等教育理科1班

目录 【摘要】 (1) 【关键词】数形结合;小学数学;教学应用 (1) 引言 (1) 1数学结合思想的简要概述 (1) 1.1数形结合思想的涵义 (2) 1.2数形结合在数学中的应用范围 (2) 2数形结合在小学数学中的意义和价值 (2) 2.1数形结合是开启数学大门的金钥匙 (2) 2.1.1数形结合是形成概念的好帮手 (2) 2.1.2数形结合深化课堂知识目标化解难点 (3) 2.2数形结合有助于知识的理解和记忆 (4) 2.3数学结合有利于培养小学生的数学能力 (5) 2.3.1 “数形结合形”发展学生的空间观念,培养学生初步的逻辑思维能力 (5) 2.3 . 2数形结合提高了小学生学习数学的趣味性 (5) 2.3.3能够增强学生学习数学的自信心 (7) 3数形结合在小学数学中的应用 (7) 3.1巧用数形结合,形成概念教学 (7) 3.2巧用数形结合,突破几何难点 (9) 3.3巧用数形结合,解决实际问题 (9) 4在运用数形结合教学中,应注意的问题 (10) 4.1教师应更新教学观念 (10) 4.2要培养学生运用数形结合思想的学习习惯 (11) 4.3充分发挥多媒体技术的作用 (11) 【参考文献】 (12)

数形结合思想在小学数学教学中的应用 【摘要】数形结合思想是一种重要的数学思想,数形结合在数学中应用广泛,新教材也在结合数形结合思想来编写。本文主要研究了四个方面的问题:一是数学结合思想的简要概述;二是数形结合在小学数学中的意义和价值;三是数形结合在小学数学中的应用;四是在运用数形结合教学中,应注意的问题。 【关键词】数形结合;小学数学;教学应用 引言:小学数学教学的根本任务是全面提高学生素质,其中最重要的是思维素质,而数学思想方法是增强学生数学观念、形成良好思维素质的关键。随着小学数学教学改革的不断深入,小学数学的教学模式更加多样化,传统的教学模式已经逐渐被取代。在多媒体教学的加入下,小学数学中的抽象概念变得形象,生动学生的数学逻辑思维能力以及创新能力也是显著提升。数形结合思想在数学中得到了充分的重视。运用数形结合的方法,可以直现感知抽象的理论及概念,避免机械记忆,使枯燥的名词真正地活起来,看得见,更有助于学生掌握知识。新课程标准修改后,将“双基”改为了“四基”,即基础知识、基本技能、基本思想方法、基本活动经验⑴,说明人们已经意识到数学思想方法的重要性。这一转变并不是偶然,而是纵观小学数学学习内容和小学生的认知特点而决定的。常用的数学思想方法:对应思想、假设思想、比较思想、符号化思想、类比思想、转化思想、分类思想、集合思想及数形结合思想等。本文就数形结合思想进行讨论。 1数学结合思想的简要概述 我国数学家张广厚曾说过:“抽象思维如果脱离直观,一般是很有限度的。同样,在抽象中如果看不出直观,一般说明还没有把握住问题的实质。”这句话深刻阐明了“数形结合”的思想[2]。依据《数学课程标准》中“变注重知识获得的结果为知识获得的过程”的教育理念,我以学生发展为立足点,以自主探索为主线,以求异创新为宗旨,采用多媒体辅助教学,运用设疑激趣直观演示,实际操作等教学方法,引导学生动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节中,充分调动学生学习的积极性,培养学生的自主学习、合

高中数学数形结合思想经典例题(含解析)

高中数学数形结合思想经典例题 一、选择题 1.已知函数f (x )=???? ?3x ,x≤0,log 2 x ,x>0,下列结论正确的是( ) A .函数f (x )为奇函数 B .f (f (14))=1 9 C .函数f (x )的图象关于直线y =x 对称 D .函数f (x )在R 上是增函数 2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0) D .(0,1) 3.函数f (x )=ln|x +cos x |的图象为( )

4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x ) x <0的解集为( ) A .(-2,0)∩(2,+∞) B .(-∞,-2)∪(0,2) C .(-∞,-2)∪(2,+∞) D .(-2,0)∪(0,2) 5.实数x ,y 满足不等式组???? ?x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( ) A.215 5 B .21 C .20 D .25 6.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,1 2) B .(1 2,1) C .(1,2) D .(2,+∞) 7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +y x +y 的最小值为( ) A.53 B .2 C.35 D.12 8.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0

数形结合的典型例题

数形结合思想 、数学结合思想 所谓的数形结合思想,就是根据数与形之间的对应关系,通过数与形的相 互转化来解决数学问题的思想。 数学结合思想的应用包括以下几个方面: (1)“以形助数”把,某些抽象的数学问题直观化、生动化,变抽象思维有形象思维, 提示数学问题的本质; (2)“以数助形”,把直观图形数量化,使形更加精确。 二、运用数形结合需要熟练掌握“数”、“形”及其相互转化: 1.“数”:主要是指数和数量关系。 中学阶段的“数”有以下几类: (1)复数;(2)代数式;(3)函数;(4)不等式;(5)方程;(6)向量。 2.“形”:主要是指图形,有点、线、面、体等。 中学阶段的“形”有以下几类: (1)数轴;(2)Venn 图;(3)函数图象;( 4)单位圆;(5)方程的曲线;(6)平面几 何的图形;(7)立体几何图形;(8)可行域; 三、数形结合思想应用的关键: 1 .由“数”联想到“;形2”.由“图”想“。数” 四、数形结合思想解决的问题类型: 1.运用数轴、Venn 图解决不等(组)的解集、 集合的运算问题;

2.运用平面直角坐标系和函数的图象解决

函数问题、不等式问题、方程问题; 3.三角函数与解三角形问题; 4 .立体几何问题; 5.可行域求最优解问题; 6.数列问题; 7 .方程曲线与曲线方程等解析几何问题; 8.复数冋题。 数形结合思想的典型试题 以形助数探索解题思路 sin7ix(0 < X < 1) 例6 :(改编题)已知函数f(x)斗' ',若a,b,c 互不相等,且 Iog 2011 x(x >1) f (a) = f (b) = f (c),则 a +b +c 的取值范围是(C ) 例7 .设0

数形结合与不等式

数形结合与不等式 在不等式的题目中有一些题目专门考查同学们的数形结合能力,而且有些题目我们必须得用数形结合才能解,这些题目都有一些比较明显的特征,所以我们给大家展示出这些题目的特点,然后告诉大家如何用数形结合的方法进行求解。应用数形结合的典型问题有三大类: 一,解不等式,二.已知不等式组求参数的范围. 三. 求参数的取值范围使不等式(能、恰、恒)成立. 一.解不等式 这一类题目的特征就是不等式两边的表达式不能转化成我们所熟悉的形式,它一般是结合了指数和对数的形式,然后与一般的一次或二次函数比较大小,这时候我们只能用数形结合的方法进行求解。同学们可能觉得直观的作出函数图形并得不出准确的解,但是这类题一般都是以选择题的形式出现,所以我们可以判断出解的大致范围就可以找出正确答案了。 思路是这样的: 第一步:确定我们要做的是哪些函数的图像,然后写出这些函数表达式。 既然是比较两个表达式的大小,我们就把不等式左边写成y=f(x),右边写成y=g(x)的形式 第二步:做出()f x 和()g x 的函数图像 第三步:根据不等式的条件判断满足不等式的区域,这个区域就是 不等式的解集,我们要求的就是()f x 的图像在()g x 的上方时 x 的取值范围 例1设函数f (x )=1221,0, 0 x x x x -?-≤? ??>?,若f (x 0)>1,则x 0的取值范围是 ( ) (A) (-1,1) (B) (-1,+∞) (C)(-∞,-2)∪(0,+∞) (D) (-∞,-1)∪(1,+∞) 解:画出分段函数f (x )=1221,0 , 0 x x x x -?-≤? ??>?及

数形结合思想例题分析

数形结合思想例题分析 一、构造几何图形解决代数与三角问题: 1、证明恒等式: 例1 已知x 、y 、z 、r 均为正数,且 222,x y z +=222z x r x ?-= 求证:.rz xy = 分析:由222,x y z +=自然联想到勾股定理。由 222.z x r x ?-=可以联想到射影定理。从而可以作出符合题设条件的图形(如图)。对照图形,由直角三角形面积的两种 算法,结论的正确性一目了然。 证明:(略) 小结:涉及到与平方有关的恒等式证明问题,可构造出与之对应的直角三角形或圆,然后利用图形的几何性质去解决恒等式的证明问题。 2、证明不等式: 例2 已知:0<a <1,0<b <1. 求证 22222222(1)(1)(1)(1)2 2.a b a b a b a b ++-+++-+-+-≥ 证明:如图,作边长为1的正方形ABCD ,在AB 上取点E ,使AE= a ;在AD 上取点G ,使AG= b , 过E 、G 分别作EF//AD 交CD 于F ;作GH//AB 交BC 于H 。设EF 与GH 交于点O ,连接AO 、BO 、CO 、DO 、AC 、BD. 由题设及作图知△ AOG 、△BOE 、△COF 、△DOG 均为直角三角形,因此 22 OA a b =+ 22 (1)OB a b =-+ 22(1)(1)OC a b =-+- 22 (1)OD a b =+- 且 2AC BD == 由于 ,.OA OC AC OB OD BD +≥+≥ 所以: B A C x y z r

y=1 x y 22222222(1)(1)(1)(1)2 2.a b a b a b a b ++-+++-+-+-≥ 当且仅当1 2 a b ==时,等号成立。 小结:在求证条件不等式时,可根据题设条件作出对应的图形,然后运用图形的几何性质或者平面几何的定理、公理去建立不等式使结论获证。 3、求参数的值或参数的取值范围: 例3 若方程 2 210ax x -+= (a >0)的两根满足:1x <1,1<2x <3,求a 的取值范围。 解析:画出与方程对应的二次函数 2 21y ax x =-+ (a >0)的草图: 0123 x y 0123 x y 由图可知:当 x =1时,y <0; 当x =3时,y >0. 即 2 1 211a ?-?+<0 ; 23231a ?-?+>0. 解得:5 9 <a <1. 例4 若关于x 的不等式2021x mx ≤ ++≤ 的解集仅有一个元素,求m 的值。 解:如图:在同一坐标系内,作出1y =与 2 2y x mx =++的图象。题设条件等价于抛物线 22y x mx =++在直线0y =与 1y =之间的带状区域仅有一个交点,且抛物线开口向上。由图形的直观 性质可知:这个交点只能在直线 1 y =上,故方程组 212y y x mx =? ?=++? 仅有一组解。

数形结合思想的含义数与形是数学中两个最古老

数形结合思想的含义数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法。 正恩格斯曾经说过:"数学是研究现实世界的空间形式和数量关系的一门科学。"在数学领域中包含着两大研究对象,即"数"与"形",这两大研究对象既是对立的又是统一的,它们是数学发展的内在因素。纵观数学知识的发展长河中,数形结合始终是发展的一条主线,并且数与形相结合能够让学生在实际应用中对知识的运用更加广泛和深入。在初中数学教学中教师要特别重视将数形结合的思想渗透到教学环节中,以此来让学生感受到数形结合的伟大力量,促进学生生成数形结合的思想, 让学生在以后的数学学习中受益 1.数形结合思想的涵义 “数”早期是古代的计数,现在表示数量的概念;“形”早期是古代的形状,现在表示空 间的概念。家欧几里得用自己毕生精力完成《几何原本》这一千古流芳的巨着,这是体现数形转化的文字资料。柏拉图说过,只有数学存在的实体才具备永恒的可理解性,任何科学都只有建立在几何学带来的概念和模式上,才可以解释现象表面背后的结构和关系。教育家波利亚也曾说:“画一个图,并用符号表示”。 数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质等等。

相关文档
最新文档