基于人类视觉系统的立体图像质量评价方法

基于人类视觉系统的立体图像质量评价方法
基于人类视觉系统的立体图像质量评价方法

人类视觉上的限制 教学设计 副本

生物学科教学设计 姓名+学号: 学校: 年级:2016级 指导老师: 联系电话: 比赛编号:(由组委会填写) 年月日

比赛编号__________(由组委会填写)

导入1min 讲述(一)3min 一、引出片段课题 同学们,本节课我们来学习人类视觉 上的限制。在正式学习前我们先来复习一 下上节课学习的有关人类眼球结构和视 力形成过程的知识。大家还记得这些内容 吗?让我们一起来回顾一下吧。 (板书,贴图画) 人类的眼球结构主要有:角膜,瞳孔, 晶状体,玻璃体,视网膜,视网膜上有感 光细胞,视神经等。 当一个物体反射来的光线进入你的 眼睛,依次经过角膜,瞳孔,晶状体和玻 璃体,经过晶状体等的折射,落在视网膜 上形成一个物像,视网膜上的感光细胞将 图像信息通过视觉神经传给大脑,大脑综 合处理有关信息,便形成了视觉。(边讲 解边用教鞭在图像上指引) 通过这些内容的学习,我们知道了眼 睛看见外部环境的原理,正是如此,我们 才能清晰地看见视力和视野范围内的环 境。 学生注意力 集中,跟随 着教师回忆 旧知识。 复述视觉的 形成过程,为 引出“人类视 觉上的限制 ——盲点”作 铺垫

讲述(二)5min 老师有一个问题:一个物体在人眼的 ........ 视力和视野范围之内,我们是不是一定能.................. 够看见它呢 .....? 有人会认为一定可以,有人会认为不 一定。我们不妨做一个实验来看看怎样。 二、体验盲点实验 1.实验器材:视标、笔; 2.实验人员:受试者和测试者; 3.实验过程: (1)受试者站在黑板前约20厘米处, 用手遮住左眼,用粉笔在黑板上与右眼相 平的位置划一个"+"号; (2)受试者的右眼注视着"+"号, 头部和眼球都不能转动; (3)测试者用视标从"+"中心向右 侧沿直线缓缓移动,受试者眼球不能随着 视标转动,仅用余光观察视标,体验在视 .... 标移动过程中是否能够一直看见视标................。 请一位同学上台和我一起完成这个 实验,为大家做一个示范,有人自告奋勇 吗?(指导学生实验,并叮嘱在视标的移 学生积极讨 论,相互交 流看法。 提出核心问 题 通过实验保 持学生高水 平的好奇心, 为学生提供 直接具体的 经验

图像质量评价标准

图像质量评价标准图像质量评价标准 文件编号 : 秘密等级:发出部门 : 颁发日期 : 版本号 : 发送至: 抄送: 总页数: 附件: 主题词:图像质量评价 编制 : 审核 : 批准 : 文件分发清单 分发部门/人数量签收人签收日期分发部门/人数量签收人签收日期 文件更改历史 更改日期版本号更改原因

图像质量评价标准 目录 1.目的及适用范围 (3) 2.规范性参考文件 (3) 3.术语与定义: (3) 3.1 主观评价 (3) 3.2 测试图像 (3) 4.一般要求 (3) 4.1测试样品 (3) 4.2测试环境 (3) 4.3 图片的选择 (4) 4.4测试项目 (4) 4.4.1静态图片测试项目: (4) 4.4.2 动态视频测试项目: (4) 4.5 评价方法及等级等级 (5) 4.5.1评价方法描述 (5) 4.5.2 数据处理 (6) 5.测试项目及评价方法 (6) 5.1 完整性及几何失真测试图 (6) 5.2 清晰度测试 (7) 5.3 图像层次、灰阶测试 (9) 5.4 色彩饱和度测试 (10) 5.6 抖动及噪点测试 (14) 5.7图像暗场特性 (17) 5.8图像亮场特性 (18) 5.9 图像完整性及失真测试 (19) 5.10 RGB重合性测试 (19) 5.11 移动字幕处理能力测试 (20) 5.11视频显示流畅性测试: (21) 5.12运动图像帧速度测试 (21) 5.13运动图像同步性测试 (21) 5.14运动图像更新程度测试 (21) 6.附件:评价项目及表格 (22) 第2页共22页

1.目的及适用范围 标准规定了公司显示产品图像质量测试的静态图片及动态视频。 标准的目的是给出图像质量的评价、判断标准及方法。 标准适用于公司所有显示产品(DLP、LCD、IDB等)的设计、生产、调试评价的依据。 2.规范性参考文件 GB/T 9379-1988 电视广播接收机主观试验评价方法 GY/T 228 -2007 标准清晰度数字电视主观评价 3.术语与定义: 3.1 主观评价 subjective assessment 直接利用观察者对被测系统质量的主观反应来确定被测系统性能的一种方法 3.2 测试图像 test materials 用于公司显示产品图像质量评价的、在图像内容上有特定要求的静止图像或动态视频。 4.一般要求 4.1测试样品 测试样品(以下简称“样品”)应是在逐批检查的合格产品批次中随机抽取的合格品。 4.2测试环境 本标准的测试环境应使用经过确认的标准测试设备,标准测试设备是指正常工作状态下的显示单元及显示系统(显示系统需确认颜色一致、机械位置、光学性能参数等均已达到系统要求或客户使用要求);标准的DVD播放机;标准的信号源;标准连接线缆。

机器人视觉系统介绍

机器人视觉(Robot Vision)简介 机器视觉系统的组成 机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。 机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。 机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。 将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。 视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。 图像的获取 图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成: *照明 *图像聚焦形成 *图像确定和形成摄像机输出信号

放射科图像质量评价标准(精编文档).doc

【最新整理,下载后即可编辑】 放射科图像质量评价标准 (2016年修订) 一、一般要求 1、X线照片满足影像诊断要求。 2、X线照片标识,左右标志正确,检查号、检查日期、检查医院、被检者姓名、性别、年龄、图像放大比例或比例尺等信息完整。 3、图像放大比例一致:正位片与侧位片或斜位片放大比例一致。同一部位不同时间摄片放大比例一致。 4、整体画面布局美观,影像无失真变形。 二、优质图像标准 1、密度合适 2、层次分明 3、摄影体位标准: 4、照射野大小合适: 被检部位影像全部在照片上显示,但不应过多包含非检查部位,尤其是内分泌腺;重点组织界限清楚;脊柱应含相邻椎体;四肢长骨应至少包括1个邻近关节;肋骨应包括第1或第12肋骨。 5、无体外伪影。 6、无运动伪影。 7、特殊检查体位应标注。 8、胶片无污片、划片、粘片、指纹。

放射科图像质量评价内容及方法 项目评价内容和方法扣分 图像对比看电脑图片或胶片图像,对比欠佳5 图像层次看电脑图片或胶片,层次欠分明 5 投照野控制投照野过大或包括不全 5 伪影不影响诊断的伪影,如内衣扣、金属线5 有可能误认为病变的伪影 50 伪影范围较大,掩盖诊断区。50 呼吸伪影或运动伪影5~10 抽查胶片,有污片、划片、粘片 5 图像标识不完整 5 图像重要标识如左右、姓名、性别错误 50 摄影体位不标准15~20 特殊体位无标注,如腹部立位位,水平侧位10 摄影部位错误对照申请单和摄影部位是否一致50 图像放大比例抽查胶片,图像放大比例是否一致5 用片统一,尺寸合理抽查胶片 5 质量等级评价方法:结合DR影像质量要求,每份图像为100分,扣完为止。 优:≥90分良:80~89分合格:70~79分不合格:<70分

双目视觉成像原理

双目视觉成像原理 1.引言 双目立体视觉(Binocular Stereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity)图。 双目立体视觉测量方法具有效率高、精度合适、系统结构简单、成本低等优点,非常适合于制造现场的在线、非接触产品检测和质量控制。对运动物体(包括动物和人体形体)测量中,由于图像获取是在瞬间完成的,因此立体视觉方法是一种更有效的测量方法。双目立体视觉系统是计算机视觉的关键技术之一,获取空间三维场景的距离信息也是计算机视觉研究中最基础的内容。 2.双目立体视觉系统 立体视觉系统由左右两部摄像机组成。如图一所示,图中分别以下标L和r标注左、右摄像机的相应参数。世界空间中一点A(X,Y,Z)在左右摄像机的成像面C L和C R上的像点分别为al(ul,vl)和ar(ur,vr)。这两个像点是世界空间中同一个对象点A的像,称为“共轭点”。知道了这两个共轭像点,分别作它们与各自相机的光心Ol和Or的连线,即投影线alOl和arOr,它们的交点即为世界空间中的对象点A(X,Y,Z)。这就是立体视觉的基本原理。 图1:立体视觉系统 3.双目立体视觉相关基本理论说明 3.1 双目立体视觉原理 双目立体视觉三维测量是基于视差原理,图2所示为简单的平视双目立体成像原理图,两摄像机的投影中心的连线的距离,即基线距为b。摄像机坐标系的原点在摄像机镜头的光心处,坐标系如图2所示。事实上摄像机的成像平面在镜头的光心后,图2中将左右成像平面绘制在镜头的光心前f处,这个虚拟的图像平面坐标系O1uv的u轴和v轴与和摄像机坐标系的x轴和y轴方向一致,这样可以简化计算过程。左右图像坐

超声科图像质量评价详细介绍

超声科图像质量评价评分标准细则 附表(一) 1.图像清晰度(10分)(一副图像显示不清晰扣1分) 2.图像均匀性(10分)(一副图像不均匀扣1分) 3.超声切面标准性(10分)(一副图像不标准扣1分,漏一个常规切面扣2分) 4.伪相识别(10分)(缺伪像图像相关图像扣5分) 5.彩色血流显示情况(10分)(缺规定血流图像一副扣2分)6.图像于超声报告相关性(10分)(缺报告相关性常规切面图像一副扣1分) 7.图像有无斑点、雪花细粒、网纹(10分)(一副图像有斑点、雪花细粒、网纹扣1分) 8.图像与临床疾病相关性(10分)(报告所选图像与疾病相关性无关扣5分) 9.探测深度(要占1/2以上)(10分)(一副图像未达到1/2扣1分) 10.工作频率与脏器相关性(10分)(一副图像工作频率与脏器相关性不符扣1分)

超声科图像质量评价评分标准 1.图像清晰度10分 2.图像均匀性10分 3.超声切面标准性10分 4.伪相识别10分 5.图像与报告相关性10分 6.彩色血流显示情况10分 7.图像有无斑点、雪花细粒、网文10分 8.图像与临床疾病相关性10分 9.探测深度(要占1/2以上)10分 10.工作频率与脏器相关性10分

超声科图像质量评价细则 附表(二) 按照超声科常规切面操作规范规定细则如下: 1.肝脏:正常肝脏6个切面(第一肝门,门静脉二维图像,门静脉 血流频谱图像并有测值,第二肝门图像,肝脏工字状结构图像,肝左叶图像)。 异常肝脏8个切面(第一肝门,门静脉二维图像,门静脉血流频谱图像并有测值,第二肝门图像,肝脏工字状结构图像,肝左叶图像,异常部位二维及彩色) 2.胆囊:正常1个切面(显示胆囊颈部,胆囊底部) 异常2个切面(显示胆囊颈部+胆囊底部,异常部位图像) 3.胰腺:正常2个切面(胰腺的二维+彩色血流图像,显示胰头, 胰体,胰尾,) 4.异常3个切面(胰头,胰体,胰尾,胰腺彩色血流图像) 5.脾脏:正常2个切面(脾脏全长及脾门彩色血流图像) 异常3个切面(脾脏全长切面,异常二维及彩色血流图像) 5.泌尿系统:正常双肾2个切面(肾脏纵切面二维及彩色血流图像)异常双肾4个切面(肾脏纵切面二维及彩色血流图像,异常部位二维及彩色) 6.膀胱:正常2个切面(膀胱三角,膀胱底部) 异常4个切面(膀胱三角,膀胱底部,异常部位二维及彩色)7.前列腺:正常3个切面(前列腺纵切面,前列腺横切面,前列腺彩

机器人视觉系统

机器人视觉系统 ——人脸识别技术 优势 1 不被察觉,不会引起人的反感。 2 非接触性,不需要和设备接触即可识别 3 自然性 4 准确,可靠,灵活。 原理 在检测到人脸并定位面部关键特征点之后,主要的人脸区域就可以被裁剪出来,经过预处理之后,馈入后端的识别算法。识别算法要完成人脸特征的提取,并与库存的已知人脸进行比对,完成最终的分类。 主要过程 一般分三步: (1)首先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码贮存起来。 (2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。(智械科技) (3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的“面纹编码”方式是根据人脸脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中精确地辩认出某个人。人脸的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。 实现方法 基于OpenCv人脸识别设计方案 1 系统组成 以OpenCV 图像处理库为基础,利用库中提供的相关功能函数进行各种处理:通过相机对图像数据进行采集,人脸检测主要是调用已训练好的Haar 分类器来对采集的图像进行模

式匹配,检测结果利用PCA 算法可进行人脸图像训练与身份识别,而人脸表情识别则利用了Camshift 跟踪算法和Lucas–Kanade 光流算法。

视觉人类学

一、日本动漫中的中国形象刻板印象分析 我是一个喜欢看动漫的人,而众所周知,日本动漫在动漫行业确实是独树一帜的。而看了多年的动漫,不难发现很多框架较大的动漫都会涉及到中国。而从中我们不难发现日本动漫对中国形象有了一个刻板印象。 (1)中国人出场男人唐装女人旗袍的复古印象。这一点可以说是一种积极的印象了,在国内已经被大多数人给遗忘的古典服饰好歹还是被日本人给记住了。这种刻板印象却突显了国人的悲哀,日本人的和服至今依旧是一种正式的正常的穿着,而在国内却是鲜少见到唐装旗袍,这些东西都是出现在特定的场合了,真正的只能成为一种文化而已了。再从日本人的角度来看,为什么他们的印象都是停留在这些复古服饰呢?即使在现代甚至是未来背景的动漫中(如《叛逆的鲁鲁修》《四驱兄弟》等),中国人依旧是穿着复古,这是不是意味着日本人对中国的刻板印象就是如此一个古代的文明国度?发人深思。 (2)日本动漫中的中国只有乡村没有城市。这种刻板印象的产生实在令人不可思议,无论是在怎样的一部动漫中看到的始终只是中国那么一个乡村,更甚者中国角色是从深山老林出来的。这样的刻板印象,是中国的落后所造成的,虽然地大物博,虽然中国人自己自信满满,但是外国人却始终是把中国划归了落后的国家。 (3)日本动漫中的中国充满了神秘感。在绝大多数提到中国的日本动漫中,中国始终是一个神秘的古老的令人好奇的国度,而其中的中国角色也会拥有一些神秘的能力,切换到中国的场景也经常是一个充满神秘感的地方。不难看出日本人对中国的好奇与向往的刻板印象。 总之,从日本动漫中可以发现许多日本人对中国形象的刻板印象,或好或坏。我们也需要反思反思这种刻板印象产生的原因了。 二、浅谈孙明经 孙明经,一个鲜为人知的名字,一个被尘封的记忆,一段没能载入历史的遗憾。 孙明经先生一生都在为中国的影视建设而奋斗,他参与了国家电影、广播、摄影高等教育的创建工作,创建了国家电影、广播、电视、摄影高等教育最早的十几门课程,同时也建设了其教材,为国家培养了一大批电影、电视、广播、摄影的大学教师和高级人才,还拍摄了可观数量的教育电影及科学考察照片(亲自摄制科考及教育电影63部,负责组织摄制110

机器人视觉系统(Robot Vision)简介

机器人视觉系统(Robot Vision)简介 【字体:大中小】时间:2014-08-28 11:00:06 点击次数:23次 机器视觉系统的组成 机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。 机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。 机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。 将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。 视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。 图像的获取 图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成: *照明 *图像聚焦形成 *图像确定和形成摄像机输出信号

人类视觉系统

人类视觉系统,即Human visual system。人类视觉系统只有3种视锥细胞,因此在缤纷的世界中,即使面对似锦的繁花,我们也可能犹如色盲,常常对一些色彩“视而不见”;而鸟类独特的视觉系统,拥有4种视锥细胞,能辨别出更多色彩,看见的世界也更加绚丽多彩,远远超越了人类。 对颜色/亮度的感知 人类对光的感知是依靠视网膜(retina)细胞。cones(圆锥细胞)负责感知光度(较强光)和色彩, rods(杆状细胞)仅能感知光度,不能感知颜色,但其对光的敏感度是cones的一万倍。在微弱光环境下rods起主要作用,因此我们不能在暗环境中分辨颜色。一些数码相机的夜光拍摄模式也模拟了这一特性。 视网膜中三种圆锥细胞(cones) 有重叠的频率响应曲线,但响应强度有所不同,他们分别对红(570nm), 绿(535nm), 蓝(445nm)光有最敏感,共同决定了色彩感觉。光度(luminance) 正比于视网膜细胞接受到的光强度能量,但人类对相同强度不同波长的光具有不同的敏感度。可感知的波长范围380nm~780nm,称为可见光。其中对绿色(550nm)光产生最大的光强敏感度。 视力 眼睛的空间分辨能力,即视力,通常用可分辨视角(degree)的倒

数为单位。正常人的最少可辨视觉阀值约0.5”,最大视觉范围200度(宽)×135度(高)。 空间频率 即影像在空间中的变化速度。用亮度呈空间正弦变化的条纹做测试,亮度Y(x,y) = B(1+mcos2πfx), 给定条纹频率f为一固定值(看作是宽度),改变振幅m(看作对比度),测试分辨能力。显然m越大分辨越清楚,测试不同条件下(不同cpd)可分辨的最少m值,定义1/mmin为对比敏感度(contrast sensitivity)。定义人眼的对空间感觉的角度频率:cpd: cycle / degree ,表示眼球每转动一度扫过的黑白条纹周期数。对给定的条纹,这个值与人眼到显示屏的距离有关,对于同样大小的屏幕,离开越远,cpd越大。 通常人眼对空间的感觉相当于一个带通滤波器。最敏感在2~5个cpd ,空间截止频率为30cpd。比如我们看油画和电视机屏幕时,当距离离开一定远,cpd增大,人的眼睛就分辨不了象素点细节,便感觉不到颗粒感了。 当人观察一个静止影像时,眼球不会静止一处(精神病人除外), 通常停留在一处几百毫秒完成取像后,移到别处取像,如此持续不断。这种运动称为跳跃性运动(saccadic eye movement)。研究表明跳跃性运动可以增大对比敏感度,但敏感度峰值却减少。 对时间频率的感知

影像图像质量评价表.doc

影像图像质量评价: 以每天阅片的形式对每一张图像进行评价,参加人员前一天夜班、当天 上夜班、白班、技术组人员。 日期:影像号:操作员:分数:内容备注扣分标准扣分 1. 图像对比看电脑图片或胶片图像,对比欠佳 5 2. 图像层次看电脑图片或胶片图像,层次欠分明 5 3 被检查者部位、肢位置不正、照片上下、左右边缘不对 5 体位置准确,照片上称、体位不标准 下、左右边缘对称 4. 人为伪影如未去除金属物引起的伪影10 5. 运动伪影不影响诊断5-10 6. 设备伪影不影响诊断5-10 7. 拼音错误如‘ o’拼为‘ e’等10 8. 图像标识不完整 5 9. 图像重要标识错如左右 . 姓名 . 性别错误50 误 10. 造影片造影剂造影剂显影不均匀、充盈吧不满意55 显影均匀、充盈满意 11 图像后处理方法不准确,不影响诊断10 12. 检查部位错误对照申请单和检查部位是否一致50 日期 : 影像号:操作员:分数:内容备注扣分标扣分 准 1. 图像对比看电脑图片或胶片图像,对比欠佳 5 2. 图像层次看电脑图片或胶片图像,层次欠分明 5 3 被检查者部位、肢位置不正、照片上下、左右边缘不对 5 体位置准确,照片上称 下、左右边缘对称 4. 人为伪影如未去除金属物引起的伪影10 5. 运动伪影不影响诊断5-10 6. 设备伪影不影响诊断5-10 7. 拼音错误如‘ o’拼为‘ e’等 8. 图像标识不完整 5 9. 图像重要标识错如左右 . 姓名 . 性别错误50 误 10. 造影片造影剂造影剂显影不均匀、充盈吧不满意55 显影均匀、充盈满意 11 图像后处理方法不准确,不影响诊断10 12. 检查部位错误对照申请单和检查部位是否一致50 质量等级评价方法:结合影像质量要求,每份图像为100 分,扣完为止 优:≥ 90 分良: 80~89 分差: 70~79分不合格:< 70 分

人类视觉注意力的发展与分析

2012年第12期 吉林省教育学院学报 No.12,2012 第28卷JOURNAL OF EDUCATIONAL INSTITUTE OF JILIN PROVINCE Vol .28(总288期) Total No .296 收稿日期:2012—10—18 作者简介:陈梦泽(1984—),男,吉林长春人,长春师范学院数学学院,助教,硕士。研究方向:图像处理,视频图像水印,计算视觉等。 人类视觉注意力的发展与分析 陈梦泽 (长春师范学院数学学院,吉林长春130000) 摘要:人类视觉在面对复杂场景时,会迅速将注意力集中在显著性区域,从而发现其感兴趣的目标。由于注意力选择机制的存在,这种处理的精确性和速度会超过机器视觉。因此如何设计出能够模拟人类视觉注意力的模型是现在我们亟待解决的问题。 关键词:视觉注意;显著图;视觉特征中图分类号:TP391.41 文献标识码:A 文章编号:1671—1580(2012)12—0139—02 人类进行视觉信息的处理主要通过人类视觉注意这一重要的心理调节机制, 在信息爆炸的社会,有大量视觉信息输入的时候做有机筛选变得非常有必要,视觉注意力提供了这样的功能。人类视觉系统可以帮助我们过滤一些不相关的信息,更加关注感 兴趣的事物, 通过及时分析视频中主要的信息(颜色、亮度、轮廓、运动等),从而快速地提取关键目标对象。将这种机制引入到图像分析领域可以大大提高图像处理的效率。它主要应用在下面几个主要领域:图像和视频的压缩及编码、信息隐藏和数字水 印、 目标分割和检测识别、图像检索、场景分析等 。 一、静态图像影响视觉注意程度的主要因素 图1观察图像 最基本的视觉信息包括:颜色、亮度、轮廓、位置 等。根据人类视觉处理信息的流程, 对于静止的图像,底层视觉特征是影响视觉注意程度的首要因素:物体的亮度越高越容易被关注、物体的边缘有较高的对比度可以得到更多的注意,颜色越鲜艳则在图片中更突出。例如我们在看到图1时,我们会在第 一时间注意到鱼,两只鱼在视觉上是显著的,它们的 颜色和形状都和背景不一样, 在水中很明显。这种明确的视觉特性差异是由物理刺激形成的。同时高层信息对注意力也有较大影响:例如人们会更注意 尺寸大的或者细长条的物体, 位于区域中央25%的区域比其余部分注意度高,例如图1中鱼的位置在图片的中央,就单一物体来说在画面中最大;前景比 背景包含更多的语义信息, 则具有更高的注意程度,例如在包含有人物的图像中,人物尤其是面部及面部器官更容易吸引注意。 对于静态图像的视觉注意力的研究有很多经典的模型。最早的Treisman 提出的特征整合理论,把视觉信息处理过程分为前注意阶段和集中注意阶段,在前注意阶段提出各种视觉特征,并在注意阶段 以串行方式整合为视觉客体。在此基础上, 1990年,Wolfe 提出了指向性搜索理论,对一幅图像,通过滤波得到各个视觉特征的特征图,然后通过不同 的加权方式将其综合成一张特征图, 图像中幅度大的地方就是感兴趣的区域。1998年, Itti 等在Koch 的理论框架基础上提出了显著性的视觉注意模型,它的目标选择是基于自底向上数据驱动的,通过特征提取、显著图生成和注意焦点的转移三个过程来选取目标对象。 二、动态图像影响视觉注意程度的主要因素在视频中除了有静态图像影响视觉注意程度的因素外,最引人注意的是运动特征,高速行驶的汽车总要比静止的路标更吸引人的注意。随着时间的推 9 31

放射科图像质量评价记录42681

汇总季度:2011年第四季度 汇总时间:2011年1月2日 汇总人员:孙万龙 汇总结果; 本季度共抽查CR照片45张,CT照片15张。 抽查结果: 1.其中1份CR照片有异物(纽扣),1份CR照片有遮线器边影,1份CR片颗粒粗糙。 2.1份CR照片忘记填写患者的年龄。 3.1份CT片图像良好,但照片呈线状伪影,系激光打印机激光头粘附灰尘。 4.本次抽查结果为甲级片率为91%,无废片。 整改措施: 1.所有影像科技师应该树立高度责任心和职业感,在检查前详细地核查病人的资料,务必将这些资料填写完整、准确无误。 2.影像技师要加强业务学习,严格掌握技术操作规范,掌握机器的投照条件。 3.激光打印机、阅读器应有专人定期清洁维护,保持打印机和阅读器所在房间清洁,无关人员禁止入内,减少灰尘带入。

汇总季度:2012年第一季度 汇总时间:2012年4月4日 汇总人员:于清山 汇总结果; 本季度共抽查CR照片45张,CT照片15张。 抽查结果: 1.其中2份CR照片有异物(分别为拉链和内衣上的胶字)。 2.1份CR照片灰雾度过大,曝光过度. 3.1份CR片有伪影,系IP板污染。 4.CT片未查出问题,本次抽查结果为甲级片率为93%,无废片。 整改措施: 1.所有影像科技师应该树立高度责任心和职业感,在检查前详细地核查病人身上有无异物,并耐心地说服病人摘除异物,取得病人的配合。 2.影像技师要加强业务学习,严格掌握技术操作规范,掌握机器的投照条件。 3.IP板暗盒影轻取轻放,竖立直放,避免碰撞、震动、跌落,远离放射源,避免强光照射,IP板应定期用脱脂棉及无水乙醇清洁。

汇总季度:2012年第二季度 汇总时间:2012年7月3日 汇总人员:郑和永 汇总结果; 本季度共抽查CR照片45张,CT照片15张。 抽查结果: 1.其中4份CR照片有异物(分别为文胸上的金属、拉链、内衣上的胶字和身上贴的膏药)。 2.1份CR照片灰雾度过大,曝光过度. 3.1份CT片图像良好,但照片呈线状伪影,系激光打印机激光头粘附灰尘。 4.本次抽查结果为甲级片率为90%,无废片。 整改措施: 1.所有影像科技师应该树立高度责任心和职业感,在检查前详细地核查病人身上有无异物,并耐心地说服病人摘除异物,取得病人的配合。 2.影像技师要加强业务学习,严格掌握技术操作规范,掌握机器的投照条件。 3.激光打印机、阅读器应有专人定期清洁维护,保持打印机和阅读器所在房间清洁,无关人员禁止入内,减少灰尘带入。

视觉人类学的三个维度

龙源期刊网 https://www.360docs.net/doc/ea11332642.html, 视觉人类学的三个维度 作者:邓启耀 来源:《学术探索》2013年第01期 摘要:看或被看,是一种不可避免的状态。就我们在什么情况下在场观看?观看者和被观看者处于什么关系?透过我们的观看,呈现的是自己文化的影像记忆,还是现实人文的多重镜像?我们的图像如何具有我们的文化特质等问题,本文结合2009年在昆明召开的国际人类学与民族学联合会第16届大会研讨情况,对“我看人,人看我;我看人,也看我;我看人怎么看我”三个视觉人类学角度做些论述,以期和学界同仁分享大会研讨成果。 关键词:视觉人类学;我看人;人看我;我看我 中图分类号:C95 文献标识码:A 文章编号:1006-723X(2013)01-006-06 2009年 7月27日—31日,号称人类学民族学奥运会的“国际人类学与民族学联合会第16届大会”在昆明召开,有来自国内外的三千多学者参加。大会分为若干论坛,影视人类学是其中规模最大的论坛之一,有18个专题组。“视觉表达和跨文化观察暨庄学本百年诞辰纪念研讨会”,是“国际人类学与民族学联合会第16届大会”影视人类学论坛引起较大反响的专题组之一,由中山大学人类学系、广东美术馆和中央民族大学联合主办,笔者和法国亚威农艺术学院雅克·德冯特(Jacques Defert)教授、摄影理论家李媚教授共同主持。本专题组有来自中、 法、美、日等国的40多位学者参加,根据论文内容分为三个单元:第一单元为“我看人:谁是我?谁是他者?庄学本百年诞辰纪念研讨会”,第二单元为“人看我,我看我:本文化持有者自述和视觉分享”,第三单元为“我看人,人看我:局外人和局内人的对视与对话”。 研讨会开始,笔者作为执行主席做《我看人看我》的专题主持开场白,笔者认为,看或被看,是一种不可避免的状态。问题是,我们在什么情况下在场观看?观看者和被观看者处于什么关系?透过我们的观看,呈现的是自己文化的影像记忆,还是现实人文的多重镜像?我们的图像如何具有我们的文化特质?已故著名人类学家费孝通先生关于“我看人,人看我”的人类学观察,从视觉人类学角度可以在不同的断句情况下理解:我看人,人看我;我看人,也看我;我看人怎么看我等等。这是本专题组研讨主题策划的一个结构性考虑。 一、我看人:谁是我?谁是他者? 庄学本百年诞辰纪念研讨会研讨会是对尘封半个世纪的摄影大师庄学本影像的多学科学 术研讨。庄学本作为中国现代影视人类学的杰出先行者和摄影艺术家,他的摄影考察以及摄影作品所具有的历史丰富性以及文化、艺术品质,无疑值得后人发掘与研究。本次会议研讨主题为:20世纪初中国的西部开发和边地摄影、庄学本与中国人类学摄影、拍摄者与被拍摄者、 他者观看的多种方式、民族学:国家建构与民族认同的人类学考察、中国历史中的影像人类学

影像科图像质量评价

影像科图像质量评价Newly compiled on November 23, 2020

影像科图像与报告质量评价制度 根据医院规定与科室具体情况及发展的要求,制定相应的质控、项目评价、改进措施制度。 一、科主任负责全部的质控指标检查CT检查由石应同志负责质控指标,普放检查由袁林同志负责质控指标MR 检查由黄静同志负责质控指标,报告书写由王大江同志负责质控指标。 二、要求各部门认真做好检查及报告质量的督查,对不合格的投照检查CT 扫描MR检查和相关不合格的报告要进行及时的修改更正,提出相应的改进措施及方案,做好相关的记录。 三、普放CR、DR 质控指标,登记时是否与患者的姓名、性别、年龄、检查部位一致,投照时是否与申请单一致,扫描图像后投照部位的左右一定要标记准确,对投照条件使用不佳的图像不要传输,一定要重新投照后再传输,对打印胶片时,外科需要手术的患者和内科有病变的片子一定要打1:1 的胶片,对普放报告要及时检查描述的准确性,左右的描述及意见,及诊断意见的正确与否。 CT 质控量指标,CT 扫描检查的患者的姓名、性别、年龄、扫描部位是否与申请单一致,扫描所用的参数是否符合扫描部位的要求,对不符合要求的要及时纠正,对诊断报告的描述是否符合影像表现,诊断是否恰如其分,对错误的要及时修改。 MR质控量指标,MR扫描检查的患者的姓名、性别、年龄、扫描部位是否与申请单一致,扫描所用的参数是否符合扫描部位的要求,对不符合要求

的要及时纠正,对诊断报告的描述是否符合影像表现,诊断是否恰如其分,对错误的要及时修改。 六、对修改的检查及报告要做好相关记录。 七、对不按照上述标准执行的按相关文件做相应的处理。 图像及报告质量评价小组成员及职责 为加强影像科图像质量管理和质量控制,保证影像科诊断质量与医疗安全,并明确图像质量评价小组。 一、影像科图像及报告质量评价小组成员如: 组长: 成员: 技师组: 诊断组: 二、影像科图像与报告质量评价小组职责: (一)影像科应建立图像及报告质量评价小组,小组成员应包括影像科主任、影像诊断医师、影像科技师。 (二)影像科图像与报告质量评价小组负责图像与报告质量评价的全面实施,组织定期和不定期的核查。 (三)影像科技师负责检查扫描过程的质量控制,发现图像质量问题应及时解决。 (四)影像诊断医师负责诊断操作的质量控制和图像诊断质量控制,发现问题应及时解决并与技师沟通。

双目立体视觉

计算机双目立体视觉 双目立体视觉技术是仿照人类利用双目线索感知深度信息的方法,实现对三维信息的感知。为解决智能机器人抓取物体、视觉导航、目标跟踪等奠定基础。 双目立体视觉(Binocular Stereo Vision )是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点之间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获取的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作为视差(Disparity )图像。 双目立体视觉系统 立体视觉系统由左右两部摄像机组成,如图,世界空间中的一点A(X,Y ,Z)在左右摄像机的成像面1C 和r C 上的像点分别为)(111,v u a 和) (r r r v u a ,。这两个像点是世界空间中同一个对象点A 的像,称为“共轭点”。知道了这两个共轭像点,分别作它们与各自相机的光心1O 和r O 的连线,即投影线11O a 和r r O a ,它们的交点即为世界空间中的对象点A 。这就是立体视觉的基本原理。 双目立体视觉智能视频分析技术 恢复场景的3D 信息是立体视觉研究中最基本的目标,为实现这一目标,一个完整的立体视觉系统通常包含六个模块:图像获取、摄像机标定、特征提取、立体匹配、三维恢复和视频

分析(运动检测、运动跟踪、规则判断、报警处理)。 图像获取(Image Acquisition ) 数字图像的获取是立体视觉的信息来源。常用的立体视觉图像一般为双目图像,有的采用夺目图像。图像的获取方式有很多种,主要有具体运用的场合和目的决定。立体图像的获取不仅要满足应用要求,而且考虑视点差异、光照条件、摄像机的性能和场景特点等方面的影像。 摄像机标定(Camera Calibration ) 图像上每一点的亮度反映了空间物体表面某点反射光的强度,而该点在图像上的位置则与空 间物体表面相应点的几何位置有关。这些位置的相互关系由摄像机成像几何模型来决定。该几何模型的参数称为摄像机参数,这些参数必须由实验与计算来确定,实验与计算的过程称为摄像机定标。 立体视觉系统摄像机标定是指对三维场景中对象点在左右摄像机图像平面上的坐标位置 )(111,v u a 和) (r r r v u a ,与其世界空间坐标A (X, Y , Z )之间的映射关系的确立,是实现立体视觉三维模型重构中基本且关键的一步。 特征提取(Feature Acquisition ) 特征提取的目的是获取匹配得以进行的图像特征,图像特征的性质与图像匹配的方法选择有着密切的联系。目前,还没有建立起一种普遍适用的获取图像特征的理论,因此导致了立体视觉研究领域中匹配特征的多样化。像素相位匹配是近二十年才发展起来的一类匹配算法。相位作为匹配基元,本身反映着信号的结构信息,对图像的高频噪声有很好的一直作用,适于并行处理,能获得亚像素级精度的致密视差。但存在相位奇点和相位卷绕的问题,需加入自适应滤波器解决。或者是像素的集合,也可以是它们的抽象表达,如图像的结构、图像的目标和关系结构等。常用的匹配特征主要有点状特征、线装特征和区特征等几种情形。 一般而言,尺度较大的图像特征蕴含较多的图片信息,且特征本身的数目较少,匹配效率高;但特征提取和描述过程存在较大的困难,定位精度也较差。而对于尺度较小的图像特征来说,对其进行表达和描述相对简单,定位的精度高;但由于特征本身数码较多,所包含的图像信息少,在匹配时需要采用较为严格的约束条件和匹配策略,一尽可能的减少匹配歧义和提高匹配效率。总的来说,好的匹配特征应该具有要可区分性、不变性、唯一性以及有效解决匹配歧义的能力。 图像匹配(Image Matching ) 在立体视觉中,图像匹配是指将三维空间中一点A (X, Y , Z )在左右摄像机的成像面1C 和r C 上的像点)(111,v u a 和) (r r r v u a ,对应起来。图像匹配是立体视觉中最重要也是最困难的问题,一直是立体视觉研究的焦点。当空间三维场景经过透视投影(Perspective Projection )变换为二维图像时,同一场景在不同视点的摄像机图像平面上成像会发生不同程度的扭曲和变形,而且场景中的光照条件、被测对象的几何形状和表面特性、噪声干扰和畸变、摄像机特性等诸多因素的影响都被集中体现在单一的图像灰度值中。显然,要包含了如此之多不利因素的图像进行精准的匹配是很不容易的。

人的视觉系统主要由什么组成.

人的视觉系统主要由什么组成? 视觉系统 (一)眼睛的构造与功能 眼睛的构造如图所示。人的眼睛是一个直径大约23㎜(毫米)的球状体。 角膜:是眼球的正前方有一层透明组织,角膜好似眼睛的玻璃窗户,光线通过它射入人眼内。角膜具有屈光能力,如果角膜发生病变,会影响视觉能力。它的特点是没有血液供应,无需血管而从水样液即房水中获得营养,角膜实际上和身体的其它部分分隔开来。正因为这样,角膜发生病变或脱落时,有可能从其他个体进行移植。 虹膜:位于角膜之后,呈圆环状,与睫状体相连接。虹膜中央有一圆孔,叫瞳孔。虹膜具有伸缩性,可使瞳孔放大或缩小,以便调节进入眼内的光量。 水晶体:位于瞳孔后面,它的形状与功能相当于凸透镜。水晶体的周围是睫状肌,睫状肌具有伸缩特性,它的收缩和松弛可使水晶体的厚薄发生变化,以改变其屈光能力。它能使远近不同的对象在视网膜上形成清楚的视像。看远距离的物体时,调节处于放松状态,水晶体成扁平形;看近距离物体时,调节处于紧张状态,水晶体的厚度加大,表面的弧度加大。它起透镜的作用,保证视像聚焦在视网膜上,以造成清晰的影像。 眼睛中间的广大部分充满着玻璃状液,又称玻璃体。它为透明胶状物,其功能是经常维持足够的眼压,以防止眼球凹陷,从而保持眼球的正常形状。 由角膜、虹膜、房水、晶状体、玻璃体等组成的眼睛是一套完整的光路系统,它们共同起着透光和折光的作用。 眼球最内一层为视网膜,它是眼睛最重要的部分,因为它具有感光和对光学信息进行处理的能力。视网膜的感光和对光学信息进行处理的能力主要是由感光细胞、双极细胞、神经节细胞组成的纵向传递通路和水平细胞、无足细胞形成的横向联系所构成的网膜复杂的神经网络所完成的。 感光细胞由视锥细胞和视杆细胞组成。人的视网膜大约有659万锥体细胞和1亿杆体细胞,它们具有不同的结构,分布在视网膜的不同部位,属于同一个眼睛中两个具有不同功能的系统。视锥细胞主要分布在网膜中央部分,特别是中央窝,形状粗短,含有颜色视觉所需的化学物质,因而能分辨物体的颜色和细节,是明视器官,在暗光中不起作用;视杆细胞主要分布在网膜的边缘部分,形状细长,含有对弱光极为敏感的化学物质,在暗光中起作用,不能分辨物体的颜色和细节,对不定波长的光只能感觉到明度差别,而无色调的变化。同时,视杆细胞还负责觉察物体的运动。网膜边缘的视杆细胞对红光不很敏感,而对短波端的蓝、绿光敏感;中央视觉对红光较为敏感。 视神经穿出眼球的地方没有感光细胞,所以不能感受光刺激,因而称为盲点。

人类视觉与计算机视觉的比较

人类视觉与计算机视觉的比较 孔 斌 (中国科学技术大学自动化系,中国科学院合肥智能机械研究所) 关键词 知觉 视错觉 计算机视觉 从视错觉等视觉生理现象以及知觉的特性出发,对人类视觉与计算机视觉进行比较,并根据目前对人类知觉活动(特别是视知觉活动)的认识程度讨论计算机视觉目前的状况和今后的发展. 人类自古以来一直在进行着认识自然和改造自然的活动,创造和发展了各种科学技术.随着对自然(包括人本身)的认识的不断加深,人们发明和制造了许多工具和机器,用来提高自己各种活动的效率以及代替自己的部分活动.人们甚至希望能用机器来代替自己的思维活动,从简单、机械的数值运算到复杂、多变的知觉和思考、判断.公元前6 世纪中国人发明了算盘[1],20世纪40年代在美国诞生了第一台电子计算机.计算机视觉和人工智能的研究于20世纪60年代初露端倪.目前,机器人和计算机已能执行有一定复杂程度的知觉任务和推理判断.比如机器人足球赛、计算机下国际象棋等.有不少科幻小说和电影描写了在未来某个时候,计算机已经拥有了人类的全部智能,并且控制奴役着人类;而人类的精英分子则为了反抗计算机、拯救人类,进行了艰难的斗争.这里,我们不去讨论未来的计算机是否真的能拥有人类的全部知觉和思维能力从而代替人脑,本文仅从视错觉、视觉两义性等一些视觉生理现象以及知觉的特性出发,对目前计算机所能拥有的能力视觉与人类的视觉进行比较,并根据目前对人类知觉活动(特别是视知觉活动)的认识程度,讨论计算机视觉目前的状况和今后的发展. 一、视错觉现象 一般来说,在人类的五种基本感觉中, 视觉提供了人类对周围世界了解的大部分信息.常言道 :“ 眼见为实.”果真如此吗 ?有很多情况下“眼见”的并不一定都是“实”的.原因在于,通过我们的眼睛(以及其他感觉器官)而感觉到的外界事物的形象和特性,需要经过大脑的加工处理才能形成相应的知觉和判断.在一定的条件下,大脑会对所看到的形象形成不正确的知觉和判断,即产生视错觉.较为大家熟知的几种视错觉现象包括长短错觉(图1)、大小错觉(图2)、平行错觉(图3)、弯曲错觉(图4)等[1-3]. 图1 长短错觉 图2 大小错觉 图3 平行错觉 图4 弯曲错觉

相关文档
最新文档