基于PPKTP晶体的飞秒激光倍频实验研究

龙源期刊网 https://www.360docs.net/doc/ea18725110.html,

基于PPKTP晶体的飞秒激光倍频实验研究作者:刘延等

来源:《湖南师范大学学报·自然科学版》2014年第03期

摘要利用PPKTP晶体进行了中心波长为780 nm、重复频率为250 MHz、脉宽为100 fs、谱宽为15 nm的飞秒激光倍频实验研究.在最佳匹配温度条件下,得到了功率约为23 mW、中心波长为390 nm、谱宽为0.6 nm的紫外倍频光,倍频转换效率为13.9%.该脉冲激光具有模式极优、线宽很窄等特点,是一种很有价值的紫外激光光源.

关键词 PPKTP晶体;飞秒激光;倍频

中图分类号 O437文献标识码 A文章编号 10002537(2014)03005805

“量子纠缠”被称为“量子力学的精髓”[1],它“反映了量子力学的本质——相干性、或然性和空间非定域性”[2],这些性质深刻影响着人们对物理世界的认知和理解,同时也为人们探索物理世界提供了全新的方法、手段和资源.在量子计算和量子通信等领域,量子纠缠已经得到

了广泛应用[34],而这些应用得益于人们不断制备出新型高效率的量子纠缠源.在多光子纠缠研究领域,研究者常利用780 nm的飞秒激光脉冲经过LBO等非线性晶体,倍频产生390 nm激光脉冲,再利用参量下转换过程产生纠缠光子对[5]和多光子纠缠态[6].但是,LBO晶体二阶非线性系数较低,需要较高的基频激光能量,而且制备的390 nm激光模式较差.作者在本研究中,利用单脉冲能量仅为0.66 nJ、功率165 mW的 780 nm飞秒激光,倍频得到单脉冲能量0.09 nJ、功率23 mW的390 nm的紫外脉冲激光,转换效率为 13.9%,且激光模式极优、线宽很窄.这为利用PPKTP等新型高效率的非线性晶体,研制低功耗、小体积、高效率的新型多光子纠缠源,提供了一种有价值的紫外激光光源.

1 周期极化晶体倍频的理论

2 倍频实验装置

采用准相位匹配技术实现飞秒激光脉冲PPKTP晶体倍频实验.实验中,使用Menlosystem 公司MFiber A 780的飞秒激光作为基频光,输出激光的中心波长为780 nm、脉宽为100 fs、

重复频率为250 MHz、功率为165 mW、脉冲的峰值能量为0.66 nJ.该激光光束为高斯型光

束,M2因子为1.02.用光束分析仪测量得到的光束亮斑(如图1所示),光束直径约为1 mm.用高分辨率光谱仪测量得到了激光脉冲的光谱图(如图2所示),频谱宽约为15 nm.

图1 基频光光斑

Fig.1 The light spot of fundamental frequency light

图2 基频光光谱

飞秒激光对氟化镁烧蚀机理研究

飞秒激光对氟化镁烧蚀机理研究 3 李成斌 贾天卿 孙海轶 李晓溪 徐世珍 冯东海 王晓峰 葛晓春 徐至展 (中国科学院上海光学精密机械研究所强场激光物理国家重点实验室,上海 201800) (2005年4月8日收到;2005年6月16日收到修改稿) 用扫描电镜(SEM )研究了氟化镁在800nm 超短脉冲激光作用下的单枪表面烧蚀形貌.根据烧蚀斑面积与激光脉冲能量间的对数关系,测得烧蚀阈值与激光脉宽的关系曲线(55—750fs ).计算了导带电子的双光子吸收,改进了多速率方程模型,很好地解释了实验结果. 关键词:飞秒激光,氟化镁,烧蚀机理,双光子吸收 PACC :4262A,6180,7750 3国家重点基础研究发展规划项目(批准号:G1999075200 )资助的课题.11引言 超短脉冲激光对材料的微加工和烧蚀机理是人们研究的热点 [1—9] .氟化镁是一种很好的紫外光窗 口和光纤材料,有广泛的应用前景,但是目前尚未见到飞秒激光脉冲作用下氟化镁烧蚀的研究报道.2004年Rethfeld 提出了一种计算材料破坏阈值的多 速率方程模型 [10] .该模型考虑特殊高能电子的作 用,研究了在强激光照射下导带电子的碰撞级联过程,解释了一些实验现象.但是它只是考虑导带电子的单光子吸收.近年来研究表明,导带电子的双光子吸收在飞秒激光与材料相互作用过程中起重要作用 [11,12] . 本文采用800nm 超短脉冲激光和扫描电镜 (SEM ),研究了氟化镁单枪表面烧蚀形貌.利用烧蚀斑面积与激光脉冲能量间的对数关系,测量了氟化镁烧蚀阈值与激光脉宽(55—750fs )的关系曲线.理论上考虑到被激发电子在超短时间范围内的非稳态能量分布,计算了导带电子的双光子吸收,发展了多方程速率模型,研究了飞秒激光脉冲对氟化镁的烧蚀机理. 21实验装置与结果 实验采用钛2蓝宝石激光器,其标准输出是脉冲 宽为50fs,波长800nm,最大输出能量600μ J.我们采用半波片和起偏镜连续调节输出脉冲的能量,通过调节压缩光栅改变脉冲宽度.脉冲通过透镜垂直 聚焦在样品前表面,束腰半径约为25μm,氟化镁样品厚约1mm,双面抛光.样品被固定在三维移动靶架上,每一个点打一枪. 图1为样品在飞秒激光脉冲作用下,用扫描电镜观察到的材料烧蚀形貌.烧蚀坑边缘非常清晰,看不到明显的热力学熔化作用的痕迹.这与材料在长脉冲激光作用下的烧蚀形貌完全不同.材料在激光照射下,电子通过发射声子冷却,与晶格达到热平衡的时间在ps 量级.热扩散、材料熔化的时间为几十皮秒.因此,在长脉冲激光作用下,电子气中沉积的激光能量在激光脉冲照射材料的时间间隔内就传给离子,并导致材料的加热、熔化乃至烧蚀.热力学效应在激光与材料的相互作用中起重要作用.然而,当脉宽降低到飞秒量级,这个尺度小于电子2声子相互作用时间,电子气中沉积的激光能量来不及传给离子,导致材料的“冷烧蚀”. 材料的烧蚀阈值是指在材料的表面形成永久性可探测损伤的最小激光能量.目前实验测量材料烧蚀阈值有很多种方法[1,2,4,6,13,14] ,我们测量了烧蚀斑 的面积,发现其与激光能量的对数成线性依赖关 系 [15] .结果如图2所示,由直线的横轴截距能够计 算烧蚀阈值F th ,斜率可以确定束腰半径L 的大小. 用这种方法,我们测定了800nm 激光照射下, 第55卷第1期2006年1月100023290Π2006Π55(01)Π0217204 物 理 学 报 ACTAPHYSICASINICA Vol.55,No.1,January,2006 ν2006Chin.Phys.Soc.

固体激光倍频、调Q实验

声光调Q倍频YAG激光器实验声光调制器由石英晶体、铌酸锂或重火石玻璃作为声光介质,通过压电晶体电声转换器将超声波耦合,在声光介质中产生超声波光栅,介质的折射率被周期性调制形成折射率体光栅。在腔内采用该技术,可将连续的1064nm基频光变换成10KHz的高重复率脉冲激光,由于具有重复频率和峰值功率高的特点,可获得高平均功率的倍频绿光输出。 【实验目的】 (1)掌握声光调Q连续激光器及其倍频的工作原理; (2)学习声光调Q倍频激光器的调整方法; (3)了解声光调Q固体激光器的静态和动态特性,并掌握测试方法;(4)学习倍频激光器的调整方法。【实验原理】 【实验原理】 声光调Q倍频连续YAG激光器的工作原理 (1)声光调Q基本原理:

图1 声光调制器工作原理 声光调制器是由石英晶体、铌酸锂、或重火石玻璃做为声光介质,通过电声换能器(压电晶体)将超声波耦合进去,在声光介质中产生超声波光栅。超声波光栅将介质的折射率进行周期性调制,从而进一步形成折射率体光栅。如图1所示。光栅公式如下式 (1) 式(1)中,是声光介质中的超声波波长,为布拉格衍射角,为入射光波波长,n为声光介质的折射率。当入射光以布拉格角入射时,出射光将被介质中的体光栅衍射到一级衍射最大方向上。利用声光介质的这种性质,可以对激光谐振腔内的光束方向进行调制。当加入声光调制信号时,光束偏转出腔外,不能在腔内形成振荡,即此时为高损耗腔。在此期间泵浦灯注入给激活介质(激光晶体)的能量储存在激光上能级,形成高反转粒子数。当去掉声光调制信号时,光束不被偏转,在腔内往返,形成激光振荡。由于前面积累的高反转粒子数远远超过激光阈值,所以瞬时形成脉冲激光输出,从而形

飞秒,皮秒以及纳秒激光器切割固体

飞秒,皮秒以及纳秒激光器溶解固体 摘要:0.2—5000ps激光溶解固体 题目:蓝宝石激光脉冲的开发、模型以及其性质的展示。飞秒激光对精密材料进行加工的优势也进行了讨论和展示。 正文:高效的利用激光对精密材料进行加工离不开对于调解激光辐射与物质之间相互影响的重要规律的知识。为了实现这一目标,激光与物质之间相互影响的系统研究是必要的。由于现在激光系统的进步,尤其是那些基于啁啾脉冲扩展技术,这样系统的研究已经在非常广泛的激光领域成为可能。CPA系统能够使激光脉冲持续时间从大约100飞秒变至几十纳秒,而其他特性不改变。这就允许我们对多种不稳定的激光与物质之间相互影响的过程进行细致的分析。举些例子,最近的学术研究对于损伤阈值、分割阈值以及高强度激光溶解都有提及。这个系统的研究只是刚刚开始,更多的研究将会帮助我们了解和证实飞秒激光系统对于精密材料加工的潜质。 最近进行的一些关于飞秒和纳秒脉冲溶解固体的实验。飞秒激光的染色和受激分子激光系统对精密材料加工的优势已经体现无疑。在这一研究报告中,我们展示了激光溶解和打孔技术的商业用途,蓝宝石激光提供了一个780nm,能量为100mJ,持续时间可在0.2—5000ps进行变化的激光系统。实验处于一个低影响的体系中,在其中,只是很少量的超出蒸发阈值。这个体系对于溶解精密固体实验意义非凡,这样一来,固体内的能量沉积和热影响区域都会被降到最低。我们讨论和举例飞秒激光脉冲的优点,希望能刺激在这个领域新的研

究。第一部分中,我们将展示三种不同持续时间的脉冲在低影响条件下溶解金属的特点:飞秒,皮秒以及纳秒激光器这三种实验对象。关于实验的配置和结果,我们将在第二部分中给出。 1、理论知识背景 在低强度的短波激光脉冲作用于金属物时,由于反方向的韧制辐射,激光的能量会被自由电子吸收。然后,被吸收的激光能量需要在电子系统中热能化,将能量传输到晶格中,由于电子的热量传输给了溶解目标,导致能量流失。如果我们假定,在电子系统中的热能化是非常快而且其电子和晶格系统都以热量为表征( T&i T),那么能量 e 进入金属中的过程就可描述为一维下,以两个温度为变化量的扩散模型: 在上式中,z为与固体目标表面垂直的一个分量,Q(z)是热流量,S为激光加热源项,I(t)是激光光强,A=1-R和α分别是材料表面透射率和材料的吸收常数, C和i C分别是电子和晶格系统的单位 e 体积比热容,γ是电子-晶格耦合的特征参量, k是电子的热导率。 e 在上式中,忽略了晶格系统中的热导率。电子比热容远远低于晶格比热,因此电子会被加热到一个非常高的瞬时温度。当电子的温度(单位能量)残留小于费米能量时,电子比热容和非平衡态的电子比热容

飞秒激光的发展和应用

飞秒激光的发展和应用 (.) 摘要:随着激光技术的研究、开发和应用十分活跃。本文简要介绍了飞秒激光发展、特点及技术研究进展和发展趋势。 关键词:飞秒,激光技术,激光手术,激光武器,飞秒脉冲,飞秒激光 作者简介: 0 引言 20世纪以光科学与工程技术研究为基础所积累的丰硕成果,已在世界范围内对人类现代物质和精神文明做出了巨大的贡献。21世纪将是光子技术进一步大发展的时代,激光技术将成为世界各国竞争的焦点之一,以激光技术为核心的相关产业将成为知识经济时代和信息时代的重要驱动力量。 飞秒激光是过去20年间由激光科学发展起来的最强有力的新工具之一。飞秒脉冲是如此的短,目前已经达到了4 fs以内(可见光-近红外波段),1飞秒(fs,即10-15 s),仅仅是1千万亿分之一秒,如果将10 fs作为几何平均来衡量宇宙,其寿命仅不过1 min而已。飞秒脉冲又是如此之强,采用多级啁啾脉冲放大(CPA)技术获得的最大脉冲峰值功率可达到100太瓦(TW,即1012 W)甚至皮瓦(PW,即1015 W)量级,其可聚焦强度比将太阳辐射到地球上的全部光聚焦成针尖般大小后的能量密度还要高[1]。飞秒激光完全是人类创造的奇迹。 1 飞秒激光的原理 众所周知,组成物质的分子和原子,每时每刻都在快速地运动,这是微观物质重要的基本属性。飞秒激光产生后,人类能够在原子和电子的层面上观察到它们超快运动的过程并加以利用。在高强度飞秒激光的作用下,气态、液态、固态物质会在瞬息间变成等离子体。高功率飞秒激光与电子束碰撞,能够产生X 射线飞秒激光、射线激光以及正负电子对。此外,利用飞秒激光能够有效地加速电子,使加速器的规模得到上千倍的压缩。高功率飞秒激光与物质相互作用,能够产生足够数量的中子,实现激光受控核聚变的快速点火[2]。 通过对飞秒的研究,除了揭示自然科学的奥妙之外,还促进了新型“飞秒激光”技术的应用和发展。飞秒激光是一种周期可以用飞秒计算的超强超短脉冲激光。它的出现为人类提供了前所未有的全新实验手段与物理条件,有着十分广阔的应用前景。 2 飞秒激光的特点 根据飞秒激光超短和超强的特点,大体上可以将应用研究领域分成超快瞬态现象的研究和超强现象的研究。它们都是随着激光脉冲宽度的缩短和脉冲能量的增加而不断的得以深入和发展。 飞秒激光的特点:(1)持续时间极短,只有几个飞秒,是人类目前在实验条件下所能获得的最短的脉冲,所以飞秒激光是无穿透性的,对眼内组织无损伤。(2)具有极高瞬时功率,可达到百万亿瓦。近红外激光脉冲,在经过角膜组织表面时不被吸收,通过调节聚焦透镜和角膜表面相对位置。将脉冲聚焦在预定深度的一个小点上,当每次脉冲达到聚焦点时,触发一次称为激光诱导光衰变作用,多脉冲定位在同一个焦点深度,通过形成一层小直径的气泡来实现切割手术。(3)能聚焦到比头发丝直径还要小的空间区域。每个脉冲的连接的紧密性,决定了切割平面的光滑性。

倍频晶体

倍频晶体,用于倍频效应的一类非线性光学晶体。其基本条件是:⑴不具有中心对称性; ⑵对基频波和倍频波的透明度高;⑶二次非线性电极化系数大,这是因为倍频转换效率与此系数的平方成正比;⑷有位相匹配能力,特别是非临界匹配能力。位相匹配角度和温度容限要在;⑸光学均匀性好,损伤阈值高;⑹物化性能稳定;⑺生长工艺比较容易,能得到足够大的晶体,在位相匹配方向上达到可用长度。 常用的倍频晶体:⒈磷酸二氢铵(ADP)、磷酸二氢钾(KDP)、磷酸二氘钾(DKDP)、砷酸二氘铯(DCDA)、砷酸二氢铯(CDA)等晶体。它们是产生倍频效应和其它非线性光学效应的一类具有代表性的晶体,适用于近紫外可见光区和近红外区,其损伤阈值大。 ⒉铌酸锂(LN)、铌酸钡钠、铌酸钾、α型碘酸锂等晶体。它们的二次非线性电极化系数大,而且LN、BNN等晶体的 折射率对温度敏感,并且与色散效应的温度变化特性不同,可适当调节温度实现非临界匹配,它们适用于可见光区和中红外区(0.4μ-5μ)。LN在光照下易产生折射率变化,有光损伤现象;BNN的损伤阈值比LN高,但固熔区域较宽,组分易变动而导致光学均匀性变差,较难得到性能优良的大型晶体;铌酸钾不存在固熔区,有可能得到光学性质均匀的大型晶体;α型碘酸锂是水溶液生长晶体,能培养出光学质量好的大型晶体,且损伤阈值比BNN晶体高,缺点是不具有非临界匹配能力。 ⒊砷化镓、砷化铟、硫化锌、碲化镉、碲、硒等半导体晶体。它们的二次非线性电极化系数比前两类的晶体更大,适用于较宽的红外波段。但除硒、碲外,多数晶体无双折射效应,不能实现位相匹配。 与其它晶体区别 用于和频、差频和光的参量振荡效应的非线性光学晶体的基本要求和倍频晶体相同。

浅谈激光烧蚀技术的应用及研究进展

龙源期刊网 https://www.360docs.net/doc/ea18725110.html, 浅谈激光烧蚀技术的应用及研究进展 作者:宫琳琳李爽 来源:《科技资讯》2014年第04期 摘要:随着激光技术的发展,当今社会激光烧蚀技术越来越受到了人们的关注。本文主 要介绍了几种激光烧蚀技术的不同应用,以及对激光烧蚀技术的进展做了简单的研究。 关键词:烧蚀等离子体聚合物 中图分类号:O657.3 文献标识码:A 文章编号:1672-3791(2014)02(a)-0019-01 激光烧蚀技术是通过飞秒-纳秒量级的脉冲激光来将材料表面烧蚀,已经被广泛应用于微加工、外科手术、X射线激光、生物分子质谱以及一些艺术品修复/清洁等领域;对激光烧蚀 产生的等离子体的光学/光谱诊断是研究等离子体动力学的主要方法之一。 1 激光烧蚀技术的应用 1.1 激光烧蚀光谱(LAS、LIBS)技术的应用 近年来光谱领域发展迅速,其中激光烧蚀光谱技术是其中一种比较崭新的分析手段。该技术主要是通过聚焦强激光束激发样品靶面,产生高温等离子体,通过测定等离子体冷却过程中发射光谱的波长与强度来进行定量分析、元素定性。激光烧蚀光谱技术虽然对于痕量元素的分析能力不足,但是该技术并不需要对样品进行繁琐的化学处理,具有破坏性小,具有快速、实时、可远程监测等特点,被广泛应用于地质、冶金、核工业、材料、燃料能源、生物医药等领域;电感耦合等离子体质谱(ICP2MS) 分析技术是一种公认的高灵敏度、强有力的、多元素及同位素分析技术。 1.2 激光烧蚀技术在微纳米材料制备中的应用 激光与靶材相互作用后,周围的物理空间便可粗略的分为高温高压等离子体聚集区、液相区和固相区三个区域,如图1所示。等离子体聚集区是由离子、电子以及未电离的中性粒子集合组成,整体呈现电中性,该区域对激光能量的传输障碍比较小。液相区是靠近等离子聚集区的熔融层,材料处于液态或固-液共存态。靠近液相区的是固相区,该区域虽然也吸收了激光能量,能使温度升高,但是能量强度不足以使该层进行熔化。基于激光烧蚀技术制备的各类材料的生长过程,如一维纳米线和零维纳米颗粒、二维薄膜等,几乎都是通过应用高温高压等离子体的成核、生长所完成。因此,激光烧蚀产生的高温高压等离子体在激光烧蚀技术制备微纳米材料中起着重要的作用。

Nd:YAG激光器倍频特性 实验报告

Nd:YAG 激光倍频特性 实验目的:1. 了解二次非线性光学效应 2. 了解二倍频晶体中相位匹配 实验原理: 当强光与物质作用后,表征光学的许多参量如折射率、吸收系数、散射截面等不再是常数,而是一个与入射光有关的变量,相应也出现了在线性光学中观察不到的许多新的光学现象,非线性光学的产生与研究大大加深了我们对光与物质相互作用本质的认识,同时也具有极其重要的实用价值。 1. 光学倍频 光学倍频又称二次谐波,指在非线性介质中传播频率为ν的激光,其中一部分能量转换到频率为2ν的光波中去,使在介质中传播的有频率为ν和2ν两种光波。 从量化概念来说,这相当于两个光子在非线性介质内发生湮灭,并产生倍频光子的现象。在倍频过程中满足能量守恒何动量守恒定律。 2. 二次谐波的效率 由基波的能量(功率)转换成二次谐波的能量(功率)的比值,反映了介质的二次谐波效率,为: ωωηI I 2= 常用二次谐波非线性材料有KDP 倍频晶体和KTP 倍频晶体等。KTP 晶体性能优于KDP 晶体,非线性系数是后者的15倍,光损伤阈值也高(大于400mW/cm 2)。 3. 相位匹配 相位匹配物理实质是:基频光在晶体中沿途各点激发的倍频光,在出射面产生干涉,只有相位匹配时才可干涉增强,达到好的倍频效率。相位匹配要求基频光和倍频光在晶体中的传播速度相等,即折射率相等,对于双折射晶体,基频光在晶体面上的入射则需要一定的角度相位匹配。实验中,KTP 晶体是加工好的,只需垂直晶体面入射即可满足相位匹配条件。 实验装置 1. He-Ne 激光器 2. 小孔光阑 3. 1064nm 全反凹面镜M 1 4. Cr 4+ :YAG 调Q 晶体 5. Nd:YAG 振荡棒 6. 输出镜M 2 7. Nd:YAG 放大棒 8. 平板玻璃 9. 能量计 10. KTP 晶体 图1 实验光路示意图 本实验采用与“Nd:YAG 激光器调Q 激光束放大特性”相同的实验装置,倍频晶体放置于放大级输出端后方。 实验过程 实验中要特别注意眼睛不可直视Y AG 输出激光以及He-Ne 激光,并小心精密操作设备。 1、倍频激光输出调节 (1)按照与前一实验相同步骤调整Nd:Y AG 激光器,放置调Q 晶体,放大级工作开启。 (2)在Nd:Y AG 放大棒后加入KTP 晶体,轻轻转动KTP 角度,使KTP 输出由一弱散斑汇聚成一耀眼亮点,即达到晶体最佳匹配效果。倍频后输出激光为1064nm 和532nm 两

飞秒激光器的应用研究

飞秒激光器的应用研究 院系:信息科学与技术系 专业班:光信0801班 姓名:周紫雁 学号:20081182002 2012年5月

飞秒激光器的应用研究The Study of the Applications of Femtosecond Laser

摘要 飞秒激光是人类目前在实验室条件下所能获得最短脉冲的技术手段,它的独特优势使飞秒激光器在各领域的应用倍受关注,飞秒激光器在高速光通讯、强场科学、纳米科学、生物医学等领域具有广泛的应用。通过研究其应用现状以及供需量,不但可以了解飞秒激光的基本特性与工业优势,并且可以给各企业的激光器开发提供参考。 首先,本文对飞秒激光的物理特性及主要用途进行了概述,阐述了飞秒激光的优势与特性。通过翻阅资料与数据,对飞秒激光器国际方面应用现状进行分析。虽然目前飞秒激光器在激光加工行业所占份额很小,但是它的应用前景不可估量。在数据分析之后,以实际考察以及案例分析的方法,对飞秒激光器在中国的应用现状进行了分析,由于飞秒激光微加工在国内运用少之又少,但是在屈光矫正方面应用广泛,并对此进行详细的考察。结论得出,飞秒激光目前处于供小于求的状态,若广泛引进可以达到很高的效益。 关键词:飞秒激光工业应用眼科应用

Abstract Currently, femtosecond laser is the shortest pulse technology which we can obtain in the laboratory conditions. Due to these advantages, the applications of the femtosecond laser in different fields raise folks’ attentions. Femtosecond lasers have a great applying prospect in high-speed optical communication, strong field science, Nano science, biology medicine. To study the market situation and the demands and supply, not only can we grasp the information of the major nature and industrial advantages of femtosecond laser, but also can give the departments of retailer and the manager a great reference to make the long-term strategic plan. Firstly,the physical characteristics and the use of femtosecond has been illustrated basically. It is illumined the unique advantages and nature of femtosecond laser. Then, I analyzed the international market of the femtosecond laser via the date and paging the information. Although the industry of femtosecond laser accounts for a small market share, it has a mega international market prospect. Through the investigation and case analysis, the Chinese market of femtosecond lasers is analyzed. Due to the little application of femtosecond laser in the domestic micro processing field and the wide use in LASIK, I laid more emphasis in the biology and medicine market and made the conclusion, that recently the supply of the femtosecond laser is less than the demands, if abundant equipment can be imported, it can bring large quantities of economic effects. Key words:Femtosecond laser industrial application ophthalmology application

倍频

实验一: 倍频电路与高频谐振功率放大器 实验目的: 通过本实验,进一步了解和掌握丙类倍频电路和高频丙类谐振功率放大器的工作原理,了解和掌握倍频器中LC 选频回路Q 值变化对电路性能的直接影响关系,了解与掌握激励信号的幅值、负载电阻RL 的阻抗变化对放大器性能的影响。通过实验、能够使学生初步掌握对高频电路的调整技巧,学会使用基本仪器对高频电路的测量及对电路的分析。 1.1 倍频器与高频谐振功率放大器工作原理 (1) 丙类倍频器工作原理 倍频器是把输入的信号频率f 0成整数倍增到n f 0的倍频电路。比较常用的电路有2倍 频、3倍频、5倍频等倍频电路形式,它常常被用于发射机、接收机电路或其它电路的中间级。 倍频器按其工作原理可分为两大类: 第一类是参量倍频器:它利用具有PN 结元器件的结电容量的非线性变化,从而得到输入信号的n 次谐波频率分量。常见的变容管倍频器、阶跃管倍频器就属于这种类型。 第二类是丙类倍频器:它利用晶体管的非线性效应,把正弦波变换成正弦脉冲波,由于脉冲波中含有丰富的谐波份量,通过LC 选频回路将信号的n 次谐波选出、从而完成对信号的n 次倍频功能。这类倍频器的电路形式与丙类谐振放大器之间没有太大的区别、所以又称为丙类倍频器。本实验中所采用的倍频器就属于这种电路类型。 图1-1 是本次实验用丙类倍频倍电原理图。 从图中可以看出该电路和丙类谐振功放级电路在电路结构上非常相类似、不同之处仅在于倍频器选用的两级LC 选频网络的固有谐振频率选择在输入信号f 0的三倍频上。选用二级LC 选频,以提高选频效果。 LC 选频回路公式为: ≈ f LC π21 (U1)表示前级送来的载波信号,它经由L3、C13、C14组成的并联谐振回路选频后、经电容分压加载到倍频管BG3基极。 由于U1信号具有较大的电压幅值,完全可以使倍频管BG3工作在丙类状态下。 我们知道,当晶体管工作在开关状态时、其集电极

激光倍频实验报告

篇一:激光谐振腔与倍频实验 激光谐振腔与倍频实验 a13组 03光信息陆林轩 033012017 实验时间:2006-4-25 [实验目的和内容] 1、学习与掌握工作物质端面呈布儒斯特角的钕玻璃激光器的调节,以获得激光红外输出。 2、掌握腔外倍频技术,并了解倍频技术的意义。 3、观察倍频晶体0.53?m绿色光的输出情况。[实验基本原理] 1、激光谐振腔 光学谐振腔是激光器的重要组成部分,能起延长增益介质的作用(来提高光能密度),同时还能控制光束的传播方向,对输出激光谱线的频率、宽度、和激光输出功率、等都产生很大的影响。 图1 激光谐振腔示意图 (1)组成: 光学谐振腔是由两个光学反射镜面组成、能提供光学正反馈作用的光学装置,如图1所示。两个反射镜可以是平面镜或球面镜,置于激光工作物质两端。两块反射镜之间的距离为腔长。其中一个镜面反射率接近100%,称为全反镜;另一个镜面反射率稍低些,激光由此镜输出,故称输出镜。 (2)工作原理: 谐振腔中包含了能实现粒子数反转的激光工作物质。它们受到激励后,许多原子将跃迁到激发态。但经过激发态寿命时间后又自发跃迁到低能态,放出光子。其中,偏离轴向的光子会很快逸出腔外。只有沿着轴向运动的光子会在谐振腔的两端反射镜之间来回运动而不逸出腔外。这些光子成为引起受激发射的外界光场。促使已实现粒子数反转的工作物质产生同样频率、同样方向、同样偏振状态和同样相位的受激辐射。这种过程在谐振腔轴线方向重复出现,从而使轴向行进的光子数不断增加,最后从部分反射镜中输出。所以,谐振腔是一种正反馈系统或谐振系统,具有很好的准直,选频和放大功能。 (3)种类:图2 谐振腔的种类 按组成谐振腔的两块反射镜的形状以及它们的相对位置,可将光学谐振腔区分为:平行平面腔,平凹腔,对称凹面腔,凸面腔等。平凹腔中如果凹面镜的焦点正好落在平面镜上,则称为半共焦腔;如果凹面镜的球心落在平面镜上,便构成半共心腔。对称凹面腔中两块反射球面镜的曲率半径相同。如果反射镜焦点都位于腔的中点,便称为对称共焦腔。如果两球面镜的球心在腔的中心,称为共心腔。 如果光束在腔内传播任意长时间而不会逸出腔外,则称该腔为稳定腔(满足,否则称为不稳定腔(满足1?g1.g2或0?g1.g2)。上述列举的谐振腔都属0?g1.g2?1) 稳定腔。 (4)本实验中的激光谐振腔: 本实验采用的是外腔式钕玻璃激光器。外腔式激光器的两个反射镜是放在激光棒的外侧,长度可调,频率可变,在激光棒的两侧按一定的角度贴有布儒斯特窗片。由于布儒斯特窗对p 偏振分量具有100%的透过率,从而输出线偏光。 2、激光倍频 (1)非线性光学基础 极化强度矢量和入射长的关系为: p??(1)e??(2)e2??(3)e3??(1) ……分别是线性极化率,二阶非线性极化率,三阶非线性极化率……,?(2) ,?(1),?(3),且每加一次极化,?值减小七八个数量级。在入射光场比较小的时候,?

飞秒激光器

飞秒激光是过去20年间由激光科学发展起来的最强有力的新工具之一。飞秒脉冲时域宽度是如此的短,目前已经达到了4fs以内。1飞秒(fs),即10-15s ,仅仅是1千万亿分之一秒,如果将10fs作为几何平均来衡量宇宙,其寿命仅不过1min而已;飞秒脉冲又是如此之强,采用多级啁啾脉冲放大(CPA)技术获得的最大脉冲峰值功率可达到百太瓦(TW,即1012W)甚至拍瓦(PW,即1015W)量级,其聚焦强度比将太阳辐射到地球上的全部光聚焦成针尖般大小后的能量密度还要高。飞秒激光完全是人类创造的奇迹。 近二十年来,从染料激光器到克尔透镜锁模的钛宝石飞秒激光器,以及后来的二极管泵浦的全固态飞秒激光器和飞秒光纤激光器,虽然说脉冲宽度和能量的记录在不断刷新,但最大进展莫过于获得超飞秒脉冲变得轻而易举了。桑迪亚国家实验室的R.Trebino说:“过去1 0年中,(超快)技术已有显著改善, 钛蓝宝石激光器和现在的光纤激光器正在使这种(飞秒) 激光器的运转变得简洁和稳定。这种激光器现在人们已可买到, 而10年前, 你却必须自己建立。”比如,著名的飞秒激光系统生产商美国Clark-MXR公司将产生高功率飞秒脉冲的所有部件全部集成到一个箱子里,采用掺铒光纤飞秒激光器作为种子源,加上无需调整(NO Tweak)的特殊设计,形成了世界上独一无二,超稳定、超紧凑的CPA2000系列钛宝石啁啾脉冲放大系统。这种商品化的系统不需要飞秒专家来操作,完全可以广泛应用于科研和工业上的许多领域里。 根据飞秒激光超短和超强的特点,大体上可以将应用研究领域分成超快瞬态现象的研究和超强现象的研究。它们都是随着激光脉冲宽度的缩短和脉冲能量的增加而不断的得以深入和发展。飞秒脉冲激光的最直接应用是人们利用它作为光源, 形成多种时间分辨光谱技术和泵浦/探测技术。它的发展直接带动物理、化学、生物、材料与信息科学的研究进入微观超快过程领域, 并开创了一些全新的研究领域, 如飞秒化学、量子控制化学、半导体相干光谱等。飞秒脉冲激光与纳米显微术的结合, 使人们可以研究半导体的纳米结构(量子线、量子

倍频激光原理

倍频激光器的原理 激光 激光是受激辐射光的简称,其原理是: 当原子系统受到外来光子作用下,且外来光子能量刚好是原子系统某两个高低能级的能量差,即hv21=E2-E1时,则处于高能级E2的粒子可能会在这个光子的诱发下,而跃迁到低能级E1并发射一个与原外来光一模一样的光子,这种过程称之为光的受激辐射。受激辐射产生的光就叫做激光。 激光器 要使受激辐射起主要作用而产生激光,必须满足三个前提条件: 1.有提供放大作用的增益介质作为激光工作物质,(Y AG激光器采用掺钕离子的钇铝石榴 石制成的晶体棒)。 2.有外界激励能源,使介质上下能级产生粒子数反转分布。(Y AG激光器,采用氪灯或氙 灯或半导体激光二极管泵浦,即用光轰击YAG晶体使其中的Nd3+产生粒子数反转分布,聚光腔起辅助作用,目的是使灯发出的光尽可能多的反射或散射到YAG晶体上)。 3.有激光谐振腔,使受激辐射光在谐振腔中产生震荡,(最简单常见的是由一块半反镜, 一块全反镜构成,激光由半反镜输出)。 谐振腔相当于激光器的正反馈,没有谐振腔即是一个光放大器,引进谐振腔而使放大光产生振荡形成激光振荡器,成为激光器。 因此,一个完整的激光器应包括:工作物质、外界激励能源、谐振腔。 YAG激光器 YAG激光器是固体激光器的一种,它的工作物质是掺钕钇铝石榴石晶体(Y AG),即简称YAG激光器。 泵浦源 泵浦源是为工作物质提供能量,使工作物质内原子产生受激辐射从而产生激光。 YAG激光器的泵浦源一般采用椭圆柱腔,氪灯和激光棒分别置于椭圆柱腔的两个焦点轴上,因椭圆的一个焦点(如氪灯)发出的光经一次反射或直射可达另一个焦点上(激光棒),所以,这种结构可以将氪灯发出的光尽可能多的汇聚在激光棒上。 不同的激光有不同的泵浦源。 倍频绿激光 YAG激光器产生的激光的波长为1064nm,其波长比红色光的波长还要长,位于可见光

飞秒光纤激光器的应用

飞秒光纤激光器的应用 飞秒光纤激光器是一种主要由光纤激光器构成,具有飞秒(10负15次秒)区持续时间的脉冲激光器。 飞秒激光器的脉宽极窄,瞬问功率极高,既使平均输出功率为lW,峰值功率也能达到千瓦级至兆瓦级以上。飞秒激光器现已应用于以往纳秒脉冲激光器或连续波激光器无法应用的各种领域。 1990年,日本爱信精机公司以IMRA AmericaInc.的名字在美国成立了一家子公司,门从事飞秒光纤激光器的研发、生产、销售与应用开发工作。因此“IMRA”既是美国研究法人的名字,又是爱信精机公司生产的激光器的商标名称,这是在美国研究开发、日本制造的激光器。 1、飞秒光纤激光器的优点 1.1、小型轻便 光纤激光器在确保必要光学长度的同时,可将光纤卷成半径约3cm的环形。与固体激光器相比,光纤激光器的体积大幅缩小。光纤形态每单位体积的表面积大于棒状或片状晶体激光器,散热效果好,不需要冷却器等外围装置,因此在这方面又大幅缩小了激光器的体积。 1.2、高可靠性高稳定性 光纤激光器是由光纤部件组装而成。这些光纤部件采用电弧熔接的方法,因此光学轴长期无偏移,这种连接方法确保了光纤激光器的稳定性和可靠性。另外,IMRA激光器系统外部采购的元器件都严格选用高可靠性的光通信部件,这也对激光器系统的高可靠性提供了保障。 1.3、高光束质量 单模光纤输出的光是近乎理想的点光源,输出光束的圆度和强度分布较容易获得接近理想的高质量输出光束。飞秒光纤激光器在用于微细加工时,聚焦光束很容易达到透镜的聚焦极限,因此适于微细加工。 1.4、低功耗 现已广泛使用的钛宝石飞秒激光振荡器的晶体吸收波长在530nm附近,将大功率Nd:YAG激光器的波长转换成530nm来泵浦激光器,既需要大型Nd:Y AG激光器,又需要冷却器,其电能消耗很大。而光纤激光器则不需要冷却器,可以用二极管激光器直接泵浦。结果表明,飞秒光纤激光器的电光转换效率优于钛宝石飞秒激光器1个数量级。 2、飞秒光纤激光振荡器 虽然20世纪90年代初问世的飞秒光纤激光器的光学轴具有长期无偏移的特点,但因温度的变化等会使偏振面光纤旋转,从而导致输出功率的改变,因此需要偏振面的调整机构,并需要维护。 1994年,Fermann等人利用新结构的被动锁模飞秒脉冲激光振荡器实现了无调整运转。科研人员在谐振腔的两端对置法拉第转子,以往返运转来补偿因环境变化所引起的偏振旋

14 飞秒激光器-成像

第十四章飞秒激光成像技术 飞秒激光脉冲技术在生物学中测量领域也有广泛的应用。例如利用时间分辨的透射光谱测量组织的散射和吸收,并检测脑内血红蛋白的氧化。飞秒光学测距技术已应用于视网膜和皮肤的微观结构测量[1]。更引人注目的是对于透明物体的双光子吸收荧光显微镜[2]和对于高度散射物体的光学断层扫描(层析)成像技术的发展[3]。飞秒激光成像技术的最大优点是高分辨率。本章着重介绍这两种成像技术。 14.1飞秒激光显微镜 14.1.1双光子吸收荧光显微镜 共焦显微镜是普通光学断层扫描成像仪器之一,其原理如图14.1.1所示,激光光源聚焦在被测物体上。在显微镜探测器前放一小孔光阑,只允许物镜焦点的光进入探测器,而离焦的光线则被挡住。这样就可以只观察和记录在焦点的发光。如果做横向和纵向的扫描,就可得到被观察物体的三维成像。该成像技术已经被广泛应用于观察活体生物。但是利用共焦显微镜观察存在如下问题:1)观察生物样品常常要涂荧光染料。这些染料通常需要用紫外光来激发。但是强紫外光对活体生物样品有杀伤作用。2)焦点的小孔光阑尺寸对显微镜分辨率有显著影响。光阑太大,分辨率就会降低;光阑太小,则通过的光太弱,影响信噪比。 双光子吸收[4] (Two Photon Absorption: TPA)荧光显微镜是用红外光源代替紫外光源, 利用非线性效应, 使染料吸收两个红外光子获得激发而发光的技术。Kaiser等在CaF2: Eu2+晶体中首次观察到了双光子激发现象[5]。1990年Denk 和Webb 首次将双光子激发应用到共聚焦荧光显微镜中[2]。在双光子吸收显微镜中,该非线性吸收效应将染料的激发局限在焦点,即只有在焦点处光强达到一定程度时, 双光子吸收作用才明显增强,在焦点之外由于光强相对较弱, 不能产生双光子吸收而发光。因此只在空间的某一点即焦点发光(如图14.1.2)。相对于紫外光光源,双光子吸收荧光显微镜仅需要可见光或者红外光作为激发光源,也不需要用紫外透过率高的物镜,可以减少紫外光对于样品的光漂白和光损伤。这是双光子吸收激发荧光的主要优点之一。把激发光局限在焦点,而不是整个样品,小孔光阑也就不是必要的了,这样就不会限制入射到探测器的光子数目,有利于提高信噪比。另外,荧光发光强度正比于激发光强度的平方,有效地减少了发光点的尺寸,提高了分辨率(如图14.1.3)。多光子吸收法采用更长波长的光源,分辨率会更高。 图14.1.1 共焦显微镜及相关显微镜结构示意图

飞秒激光器的市场调查分析报告

飞秒激光器的市场调查分析报告 院系:信息科学与技术系 专业班:光信0801班 姓名:周紫雁 学号:20081182002 2012年5月

飞秒激光器的市场调查分析报告

摘要 从1980年后期起, 超短光脉冲的产生及放大技术迅速发展。飞秒激光的特征是超高速和超高强度, 正是由于飞秒激光器的这种优势使飞秒激光器及其在各领域的应用倍受关注。飞秒激光是人类目前在实验室条件下所能获得最短脉冲的技术手段。飞秒激光在瞬间发出的巨大功率比全世界发电总功率还大,科学家预测飞秒激光将为新能源的产生发挥重要作用。就目前来说,飞秒激光器在高速光通讯、强场科学、纳米科学、生物医学等领域具有广泛的应用和潜在的市场前景。 本文旨在研究其市场情况以及供需量,可以得出其投放入市场的适用量,从而可以对产品市场的销售商、生产的管理部门提高工参考依据以及为其做长期战略性规划提供参照。本文第一章主要对飞秒激光的物理特性及主要用途进行了概述,第二章通过翻阅资料和统计数据对飞秒激光器国际市场行情分析,第三章通过实际考察以及案例分析,对于飞秒激光器中国市场行情进行了分析。 关键词:飞秒激光市场分析调研

Abstract (Times New Roman字体,小二号加粗,居中) (空一行) The dissolution of labour contract by employer………………………………(小四号Times New Roman字体)……………………………………………………………… Key words(顶格四号Times New Roman字体,加粗):labor contract dissolute by employer dissolute right away(用小四号Times New Roman书写词条,各词条间用两个英文空格隔开,其它格式同中文摘要)

飞秒激光器

可以使光速减慢的飞秒激光器

学员:1111414李鹏辉1111437王小平1111434田朝光1111415李曦 摘要:近年来,随着高新科技的发展,自超短频脉光学问世以来,已经历了25年的发展历程,而这时,飞秒激光器现已在工业加工中得到了应用。因为脉冲短的原因,飞秒激光器也就能拍摄到很多完全想象不到的画面。利用这个,可以对很多领域的学科进行更加细致,更加周密的系统性研究。 论文关键词:超短脉冲组合光玻色-爱因斯坦凝聚 飞秒的概念:飞秒是一种时间单位,1飞秒只有1秒的一千万亿分之一,即1e?15秒或0.001皮秒(1皮秒是,1e?12秒),。它有多快呢?我们知道,光速是30万千米每秒,即 3×10^8m/s。而在1飞秒之内,光只能走0.3 μm,这只是不到一根头发丝的百分之一。 飞秒激光器是指利用锁模技术来获得的飞秒量级短脉冲的激光器。所谓飞秒,也叫做毫微微秒,即1飞秒只有10的负15次方秒。飞秒激光不是单色光,而是中心波长在800nm左右的一段波长连续变化光的组合,利用这段范围内连续波长光的空间相干来获得时间上极大的压缩,从而实现飞秒量级的脉冲输出。所采用的激光晶体为激光谱线很宽的钛宝石晶体。说白了就是一个可以以千兆分之一秒左右的超短时间放光的“超短脉冲光”发生装置。所谓脉冲光是仅在一瞬间放光。 超短脉冲激光器从上世纪80年代开始,经历了从染料到固体飞秒激光器的发展,开辟了科学和工业应用的新时代。但其昂贵的价格,庞大的体积,对环境的稳定性差等缺陷阻碍了飞秒激光的应用。探索新机理,突破现有飞秒激光局限,研制新一代飞秒激光成为世界范围内热门研究课题。自90年代初,光纤激光器利用半导体激光器泵浦,具有小巧、结构简单、无需水冷和可集成化的特点,逐步发展起来并成为钛宝石激光器强有力的竞争者和替代者。早期的飞秒光纤激光器,采用掺铒的通信光纤,工作波长1550nm,普通单模光纤色散为负,能提供与自相位调制对应的啁啾补偿,于是孤子锁模(Soliton mode locking)和展宽脉冲(Stretched pulse)锁模就成为主流机制。由于其倍频光的波长在775nm,经过拉曼移频可移到800nm附近,在商用激光器上,已经用作钛宝石放大器的种子脉冲。但是,由于铒光纤的掺杂浓度不能很高,以及锁模机制的限制,输出脉冲能量仍然很低(10pJ-10nJ量级),限制了此种光纤激光器的应用。进入新世纪后,随着高掺杂掺镱光纤激光器的发展,自相似(Self-similar)和全正色散(All-normal-dispersion)锁模理论被提出并在实验上获得证实,使光纤振荡器的单脉冲能量突破10n。 与其平行的是,90年代中期光子晶体光纤的问世,使得飞秒光纤激光器多了一个选择支。光子晶体光纤的主要特点是大模场面积光纤比普通的双包层光纤能更好地保持单模特性,在放大器上有重要应用。但是,光子晶体增益光纤特别是双包层大模场面积光子晶体光纤价格非常昂贵,远远高于晶体的价格;而且泵浦光的耦合需要在空间进行,对机械件稳定性能要求很高,不像普通单模光纤以及普通的双包层光纤有直接的光纤合成。 对于工作在1微米波段的光子晶体光纤,不同于普通的单模光纤,可以提供负色散,但也仅仅限于光纤芯径在1~2微米的光纤。在这样细的光纤中,孤子能量非常小,否则就会导致脉冲分裂,也不可能作为放大后的压缩器。由于以上缺点,除了放大器,光子晶体光纤做飞秒激光器振荡器并无明显优势。目前国内外报道的光子晶体光纤激光器,都是空间耦合的,并含有光栅对等需要空间的元件,不是低成本、抗击外部环境影响的封闭式结构。 光纤激光器的最大优点是小型化、封闭式及无水冷。如果反过来做成空间式的,那就只有效率高这样的优点,稳定性甚至不如固体激光器。因此,作为放大器的种子光源以及对小能量应用(脉冲能量小于1mJ,例如光波导的刻划、THz波的产生、精密时频传输、纠缠光子对的产生、泵浦探针测量等),普通单模光纤飞秒激光器以及普通大模场面积光纤飞秒放

LBO晶体直接倍频获得488nm激光_王旭葆

第37卷,增刊 红外与激光工程 2008年9月 V ol.37 Supplement Infrared and Laser Engineering Sep. 2008 收稿日期:2008-07-31 基金项目:国家重点基础研究发展计划973计划(2006CB605206)资助课题。 作者简介:王旭葆(1972-),男,黑龙江庆安人,助理研究员,博士后,主要从事激光技术、光学设计等方面研究。Email:wangxubao@https://www.360docs.net/doc/ea18725110.html, LBO 晶体直接倍频获得488 nm 激光 王旭葆,丁 鹏,左铁钏 (北京工业大学 激光工程研究院,北京 100124) 摘要:利用LBO 晶体直接倍频波长为976 nm 的连续半导体激光二极管,获得了波长为488 nm 的连续蓝光输出,最大输出功率25 mW 。设计并分析了一个用于976 nm 激光倍频的L 型谐振腔,并在实验基础上,制成了一台小型全固态488 nm 连续蓝光激光器。 关键词:激光; LBO 晶体; 倍频; 转换效率 中图分类号:TN248.4 文献标识码:A 文章编号:1007-2276(2008)增(激光探测)-0048-03 Compact continuous-wave blue laser at 488 nm with a LBO crystal WANG Xu-bao, DING Peng, ZUO Tie-chuan (Institute of Laser Engineering, Beijing University of Technology. Beijing 100124, China ) Abstract: A compact continuous-wave blue laser at 488 nm, with the maximum output exceeding 25 mW, is demonstrated by direct frequency doubling of a laser diode (LD) with a LBO crystal. Based on the experiments , a compact all - solid state 488 nm blue laser with continuous wave output is made. We present the development and demonstration of tunable high-power blue-green (around 488 nm) laser by using intracavity frequency doubling of a tunable high-power high-brightness external-cavity emitting laser. Key words: Lasers; LBO crystal; Frequency doubling; Conversion efficiency 0 引 言 近年来,小型的全固态蓝光激光器由于其结构紧凑,稳定性高,寿命长等优点,在高密度储存、水下通信、光学信息处理、医学诊断等领域都有着广泛的应用前景。实现全固态蓝色激光光源的途径主要有3种 [1-2] :(1)直接发射蓝光的激光二极管;(2) 激光二极管(LD)倍频的蓝色光源;(3)激光二极管抽运通过非线性光学手段获得的蓝光激光器。文中利用976 nm 二极管激光器作为基频光光源,利用LBO 晶体进行倍频获得488 nm 激光,对其进行了理论和实验研究。 1 实验装置 产生基频光的激光二极管放置在一个安装小型半导体制冷片的热汇上,温度控制在25±1℃,以便保证激光二极管输出稳定的 976 nm 波长的基频激光。制冷片的驱动及温度控制采用一高效电子制冷器(TEC)控制模块(Analog Technologies, Inc.),该模块可以直接提供最大2.5 A 的直流电流驱动半导体制冷片,并可以0.1℃的精度调节控制温度,该模块温度控制稳定,精度足以满足实验要求。激光二极管发出的激光通过一根长1 m 芯径为200 μm 的光纤输出,最大连续输出功率达到1 W 。实验装置如图1所示,Flat mirror1对基频光(976 nm )45o高反,对二次谐波(488 nm )增透,实际当中对于

相关文档
最新文档