带钢的纠偏原理

带钢的纠偏原理
带钢的纠偏原理

钢带的纠偏原理

生产线用钢带纠偏系统是通过改变纠偏辊的位置来使走偏了的钢带恢复到中心位置,从而保证钢带的稳定运行。

常见的纠偏系统如图1所示,由纠偏辊和框架、钢带位置光电检测器、电子信号放大器、液压站、电液伺服阀、伺服油缸、位移传感器等几大部分组成一个闭环控制系统。

图1纠偏系统组成示意图

1-钢带位置光电检测器;2-纠偏辊及框架;3-纠偏辊位移传感器;

4-电子信号放大器;5-液压站;6-电液伺服阀;7-伺服油缸;8-旋转轴(图中不可见);

其工作原理是:如图2所示

图2钢带位置光电检测器原理图;

光电检测器有光源发射器和接收器两个主要部分,光源发射器发生的光线一部分被钢带挡住,另外在钢带两侧边缘各有一部分射向对面的光电二极管接收器,被其接收到转换成电信号。接收器分为钢带两侧边两部分,分别与两只可变电阻R3、R4组成了电桥。如果钢带处于生产线中心位置,则两侧边的接收器接收到的光线量相同,其两部分光电二极管的电流或电阻也相同,即R l=R2。这时调整可变电阻,使R3=R4。这样电桥的Rl×R4=R2×R3,处于平衡状态,输出的信号为零,纠偏辊也处于中心位置状态。

如果钢带偏向一边,则电桥的R l×R4与R2×R3不等,会输出一定的信号给信号处理放大器,这个信号即是钢带的位置偏差信号,能反映出钢带往哪个方向偏离中心线,偏移量是多少。放大器‘便由此计算出为了纠正这样大小的偏移量和纠偏辊应该转过的理论角度。另外,有一个位移传感器安装于纠偏旋转框上,它是一个可变电阻,输出的阻值随纠偏辊的位置变化而变化,它也向信号处理放大器提供一个纠偏辊的实际位置信号,即反映纠偏目前已经往哪个方向旋转,旋转的实际角度是多少。这样信号处理放大器就可以将纠偏辊所需要旋转的理论角度与实际角度相比较,决定驱动

纠偏辊框架的液压缸是向外伸出还是向内缩回,且移动多少,并向液压控制系统发出指令,由电液伺服阀控制液压缸动作,推动纠偏辊框架向所需的角度方向旋转,从而使钢带恢复到正常位置。钢带位置光电检测器连续不断地检测钢带的位置,整个闭环控制系统就不断地循环工作,保证了钢带正常地沿生产线中心线运行,这是纠偏系统最常见的钢带位置控制模式,原理图见图3。

图3纠偏系统控制原理图;

这个模式中控制钢带所处的位置可以在生产线中心,也可以通过调整可变电阻的配比,使钢带偏向某一边一定的距离。

附:纠偏控制系统图

带钢跑偏控制

带钢跑偏控制 摘要:本文对带钢连续处理机组的带钢跑偏机理进行了详细的分析,并指出一些常用的防跑偏对策;对“卷效应”的原理及 其可能对带钢表面产生的影响进行了说明;对带钢自动纠偏控制装置的各种形式进行分析,并指出在应用中应注意的问题;并对硅钢机组的纠偏辊布置的合理性进行了分析。 关键词:带钢 跑偏 摩擦 扰动 机理 1 前言 众所周知,在带钢连续作业线上,带钢的跑偏几乎是不可避免的,带钢跑偏不仅会影响带钢质量,甚至会严重损坏机组设备,对机组的稳定运行带来严重影响。特别是随着涂镀、连续退火及酸轧联合机组的发展,机组处理的带钢长度长、厚度薄及机组速度高和活套量的增加,为了保证机组的稳定运行及获得边部整齐的带卷,对带钢的跑偏进行研究和控制显得越来越重要。 2 带钢跑偏的机理 在带钢连续作业线上,除开卷机及卷取机外,带钢在传输过程中主要与各种辊子接触,从力的角度来说,带钢稳定传送过程中所受的横向扰动主要来自开卷机、卷取机及带钢与辊子之间的摩擦力,以及带卷错边的影响。为了便于分析,可取带钢连续作业机组中常用的一些辊子与开卷机及卷取机组成一个简易机组模型来进行带钢跑偏机理的分析。 图1 机组模型图 1 开卷机 2 夹送辊 3.4.5.6 转向辊 7 支撑辊 8 转向夹送辊 10.11 压辊 9 卷取机 2.1 各种辊子与带钢的摩擦接触状态带来的扰动 如图1所示的辊子为绝对圆柱形、辊子轴线与机组中心线垂直、夹送辊及压辊两端的压力相等、板形平直(断面为矩形),则辊子不会对带钢产生横向扰动,带钢不跑偏。但是,由于辊子的制造及安装误差、辊面及轴承的磨损、轴承座的松动等,特别是带钢板形的影响,将不可避免对运行中的带钢产生横向扰动。 2.1.1 辊子轴线与机组中心不垂直 如图2所示,辊子中心线与机组中心不垂直,偏转了α角,其中阴影部分为带钢与辊子接触区域。 图2 辊子轴线与机组中心不垂直时的跑偏 图3 速度矢量分析 当带钢刚绕进辊子5时,在AB 上取一点m ,则m 点处的带钢速度V s 与辊面线速度V r 有一夹角α,两者必然有一速度差ΔV sr ,于是辊子对带钢产生一个与ΔV sr 方向相反的摩擦力F ,使带钢跑偏,跑偏方向与F A V sr V sr

纠偏说明书

K50纠偏控制系统

(请务必在使用之前阅读) 为了安全使用本产品 ▲在安装和使用之前,请务必详细阅读本说 明书,一定要注意安全,正确使用本产品, 并遵守本说明书中的各种规定。 ▲本纠偏控制器是采用CPU 控制的机电设备, 用来纠正卷材的偏移,所以要严格遵守机电 设备有关规定和法则,适用标准,进行搬 运、安装操作和维护。 在打开控制器准备安装和接线之前要断开控制器电源至少要5分钟。正确的配置和安装是控制器正常运行的前提。 对以下几点要特别注意: ● 安装工作必须在无电状态下进行。 ●容许保护等级:保护接地,只有正确连接保护接地,才能减少外界电磁干扰。●与电网断开后,要等电容放电完毕,才可进行操作。●不要让任何异物进入控制器内。 ●在使用前,要除去所有覆盖物,以防止控制器过热。●切勿在易燃易爆等危险环境中使用。 ●请勿将本产品安装在高温、潮湿等恶劣环境下。● 请勿将产品直接安装在易受震动冲击的环境中。 ● 任何单位部门(Kortis 和Kortis 指定公司除外)未经允许不得擅自拆卸、修理及更改产品。※注意:Kortis对由于不遵守本说明或适用规则而造成的损坏概不负责。 ※注意:因产品更新换代迅速,说明书有变动之处,恕不另行通知,本公司对此保留最终解释权。 危险 如果错误操作,将会产生危险情况,导致伤亡。 注意 如果错误操作,将会产生危险情况,造成设备损坏及财产损失。 设计注意事项

目 录 1.1 概述 1.2 功能及特点1.3 操作界面 第一章 系统概述 112 第二章 安装与配线 2.1 控制器安装 2.2 超声波传感器安装2.3 控制器基本配线 34第三章 编程方法 3.1 控制器菜单画面3.2 编程方法 3.3 画面说明及参数设置 678 第四章 调试运行 4.1 调试步骤 4.2 控制器内部菜单4.3 调试方法 9915 5.1 技术参数5.2 环境规格5.3 外形尺寸161617第五章 规格及维护 5.4 系统维护 19 5

钢带机网带、钢带自动纠偏及钢带自动加压卸料说明

钢带机网带、钢带纠偏及自动加、卸压系统说明网带自动纠偏系统: 由执行部件:调偏气胎、调偏辊和信号反馈系统组成,其作用是调整由于滤带张力不均,辊筒安装误差,物料不均等多种原因所造成的滤带跑偏,从而保证滤带的正常行走、保证带式压滤机的连续性和稳定性。 其工作原理是网带与纠偏辊接触的先后,使得网带往先接触端跑,进而对跑偏网带进行纠偏; 上图示,纠偏辊、网带、纠偏气胎,如网带跑到左边,我们要对网带进行纠偏使它跑到右边,纠偏传感器会产生一个信号,使上下两边气胎产生不同的压力,使右侧的纠偏辊下移,进而使右侧的网带先接触纠偏辊,网带会慢慢的跑回右侧;反之,纠偏辊会上移,进而使左侧的网带先接触纠偏辊,网带会慢慢的跑回左侧。 钢带自动双向纠偏系统:

钢带纠偏,由于平时钢带纠偏气缸是缩在里面的,要纠偏时才会伸出来,从以往的使用情况看,左侧的传感器控制右侧的气缸,右侧的传感器控制左侧的气缸为好。其控制原理和网带的控制原理一样。 钢带机钢带自动同步加压、卸压系统: 钢带同步涨紧、同步卸压利用液压站和钢带机自身附带的现步系统共同完成。 液压站作用功能 本动力液压站是由柱塞泵、电磁换向阀、溢流阀、分流阀、保压阀、蓄能器、电接点压力表、截止阀、电机、压力表、液压集成块、油箱、电器控制系统等组成,具有压力可调、同步顶升、长时间保压顶升功能。当负载力突然增大时,溢流阀泄压,蓄能器缓冲,此时,千斤顶相当于液压弹簧,能够随着负载的变化,千斤顶、行程自由升降,具有保护钢带的作用。 工作原理:一、手动状态时,当接下上升按钮时,线圈b工作,这时,千斤顶处于顶升状态,达到压力时,松开按钮,这时蓄能器充满液压油,处于保压状态。当接下下降控制按钮时,线圈a工作,千斤顶同程状态。 二、自动状态时,当按钮调到自动控制状态时,千斤顶、自动同步顶升,达到电接点压力表调定上限压力值时,蓄能器译注液压油,线圈失电。自动处于保压状态。当长时间处于工作状态时,由于系统压力损失,压力降至电接点压力表设定的下限,此时,压力表自动启动电机,油泵工作,线圈b工作,油缸上升补压。达到压力表设定压力值时,线圈b失电。千斤顶重新处于保压状态。 注意事项:1、动力油适用46号、68号抗磨液压油。 2、电机顺时针转向。 3、液压油加到液位计。 4、有压力表的那边集成块上的两个接千斤顶的上面。设有分流集流阀的集成块的两个接口按千斤顶的下腔。

带钢纠偏控制系统设计

目录 摘要 (4) Abstract .................................................................................................. 错误!未定义书签。引言 . (5) 1 电液伺服控制系统 (7) 1.1电液控制系统的发展历史概述 (7) 1.2电液伺服控制系统的特点和构成 (8) 1.3电液伺服控制系统的发展趋势 (8) 2 带钢纠偏控制系统设计 (9) 2.1带钢纠偏控制系统原理 (9) 2.1.1课题背景 (9) 2.1.2带钢纠偏控制系统简介 (9) 2.1.3带钢纠偏控制系统工作原理 (9) 2.2带钢纠偏控制系统设计 (10) 2.2.1控制系统参数及基本要求 (10) 2.2.2控制系统设计方案 (11) 2.2.3纠偏液压站原理图设计 (12) 2.3带钢纠偏控制系统元件设计选型 (14) 2.3.1光电传感器设计 (14) 2.3.2电液伺服阀设计选型 (19) 2.3.3液压缸设计选型 (21) 2.3.4系统其他元件设计选型 (22) 3 带钢纠偏控制系统建模及仿真 (23) 3.1带钢纠偏控制系统模型建立 (23) 3.1.1伺服阀传递函数 (23)

3.1.2卷取机传递函数 (24) 3.1.3其他元件传递函数 (24) 3.2带钢纠偏控制系统仿真 (25) 3.2.1系统调节品质分析 (25) 3.2.2系统的闭换阶跃响应 (28) 3.3常规PID控制器 (29) 3.3.1 PID控制算法简介 (30) 3.3.2常规PID仿真及结果分析 (34) 4 智能PI控制器的设计及仿真 (36) 4.1智能PI控制器设计原理 (36) 4.2智能PI控制器仿真及结果分析 (39) 4.2.1智能PI控制器仿真 (39) 4.2.2结果分析 (40) 5智能PI控制器的全数字实现 (43) 5.1计算机控制系统简介 (43) 5.1.1计算机控制系统概述 (43) 5.1.2计算机控制系统的组成 (43) 5.1.3 计算机控制系统的结构 (44) 5.2 最小应用系统的设计 (45) 5.3 系统的软件设计 (46) 5.3.1主程序设计 (46) 5.3.2 8279键盘中断程序 (49) 5.3.3 8279显示子程序 (52) 5.3.4 中断服务程序 (54) 结论 (64)

浅析带钢的对中纠偏控制(新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 浅析带钢的对中纠偏控制(新 版) Safety management is an important part of production management. Safety and production are in the implementation process

浅析带钢的对中纠偏控制(新版) 本文详细分析了带钢在运行过程中跑偏产生的原因、特点及其类别。针对带钢的跑偏现象,进行了深入研究,提出了纠偏的措施,也探讨了各种设计方法的可行性和有效性,从而为选取最佳的设计方案提供依据。 带钢跑偏原因分析 工程设计和应用中,无论带钢形状的板形缺陷、塔形卷曲、处理线设备安装偏差及调整不当、处理工艺对带钢的影响等都会导致运动的带钢在生产线上发生偏移。 1.1.带钢的板形缺陷。各种形式的板形缺陷主要有:带钢断面形状、平坦度、带头焊接没对齐或偏斜。当带钢在运动过程中,它的形状并不能得到纠正。依照拱形的大小,会产生相应大小的跑偏。 1.2.设备精度。包括转向辊、张力辊及活套车等安装精度、夹送辊压力不均、各种辊子辊面不均匀磨损等因素均会造成带钢横向

跑偏。 根据带钢的运行行为,辊子上的带钢总是趋向于以90°的夹角垂直辊子轴线方向运行。事实上,辊子轴线不平行,甚至带钢拱形都会导致带钢进入辊子的角度偏离90°。偏离的大小,记为跑偏角。 为带钢跑偏速度,mm/s;为跑偏速度系数,其大小与辊子表面状态、带钢与辊子包角等有关,理想状况下可取1.0;为辊子圆周线速度,mm/s;—跑偏角度。 实际上,各种辊子在长期运行过程中,由于单边磨损大而成锥形。由于锥形辊使带钢张力分布不均匀,使带钢总是向粗的一端跑偏,而锥度的大小影响了跑偏的速度。 1.3.张力控制 带钢张力波动,特别是由于带钢张力不足或张力控制调整不当,会引起带钢张力的强烈波动,从而造成带钢运行过程中横向跑偏。 高的单位面积张力可以消除部分带钢弯曲及本身缺陷,从而每个转向辊上带钢的横向偏差都会得到消减。可是,由于带钢的材料属性以及用于控制带钢张力的张力辊的驱动运行的限制,带钢张力

结构纠偏

结构纠偏

建筑物的沉井冲水掏土纠偏和锚杆静压桩托换加固 该帖被浏览了528次| 回复了0次 1 引言 软土地基的变形问题是房屋地基设计中的一个主要问题,其变形问题主要 反映在以下几个方面: (1)沉降和差异沉降大:工程实测资料表明,对砖墙承重的混合结构,如以楼层数表示地基受荷大小,则3层房屋天然地基沉降量一般为150~200mm;4层变化较大一般为200~500mm; 5、6层则可能 达700mm。 (2)沉降速率大:建筑物沉降速率是衡量地基发展程度与状况的一个重要标志。软土地基沉降速率一般均较大,而加荷终止时沉降速率最大。随着时间的发展,沉降速率逐渐衰减,约在半年到一年时 间内为建筑物差异沉降发展到最快时期,也是建筑物最易出现裂缝的时期。在正常情况下,如沉降速率减到0.05m/d以下时能出现等速沉降,但长时间的等速沉降就有导致地基丧失稳定的危险。 (3)沉降稳定时间长:由于软土渗透性弱,孔隙水不易排除,所以建筑物沉降稳定历时较长,有些建筑物建成后几年、十几年甚至几十年沉降都未完全稳 定。 宁波地区一大批80年代初建造的多层民用住宅楼,由于受当时造价的限制基本上均未打桩,基础形式大都采用条基或筏基。虽建造至今已有将近20年时间,但由于上述软土地基的特点及外界干扰因 素的影响(如邻近建筑物施工等)使其中有相当一部分房屋产生了不均匀沉降,从而出现墙身开裂、倾斜率过大等问题,有的甚至成为危房。为了保障人民的生命财产安全,如何既经济又适用地对这些房 屋进行加固或纠偏已成为当前极迫切的问题。 2 沉井冲水掏土纠偏和锚杆静压桩托换加固 (1)建筑物的纠偏托换方法众多,其中纠偏方法有堆载加压纠偏、锚桩加压纠偏、掏土纠偏、降水掏土纠偏、压桩掏土纠偏、浸水纠偏、顶升纠偏等。托换加固方法有基础加宽托换、坑式托换、桩式 托换、灌浆托换、高压喷射注浆托换、热加固托换、基础减压和加强刚度托换等。在众多的方法中笔者从多年的实践中得出用沉井冲水掏土纠偏结合锚杆静压桩托换加固法是一种在软土地基上对建筑物 进行纠偏加固的既经济又可靠的好方法。 (2)该法的基本原理是:在基础沉降小的建筑物一侧,设置若干个沉井,沉

纠偏原理及其应用

纠偏院里的分析与应用 1带钢连续处理过程的跑偏分析 工程设计和应用中,无论带钢形状的板形缺陷、塔形卷曲、处理线设备安装偏差及调整不当、处理工艺对带钢的影响等都会导致运动的带钢在生产线上发生偏移[2]。 各种形式的板形缺陷主要有:带钢断面形状、平坦度、带头焊接没对齐或偏斜。当带钢在运动过程中,它的形状并不能得到纠正。依照拱形的大小,会产生相应大小的跑偏。 设备精度包括转向辊、张力辊及活套车等安装精度、夹送辊压力不均、各种辊子辊面不均匀磨损等因素均会造成带钢横向跑偏。 根据带钢的运行行为,辊子上的带钢总是趋向于以90 o 的夹角垂直辊子轴线方向运行。事实上,辊子轴线不平行,甚至带钢拱形都会导致带钢进人辊子的角度偏离90 o 。偏离的大小,记为跑偏角。那么,跑偏理论计算公式为: F = K·L·tanα ( l ) 式中 F——跑偏量,mm ; K——跑偏系数; L——自由带钢长度,mm ; α——跑偏角,度。 带钢的跑偏速度与带钢跑偏角、辊子的输送速度有关。 Vα=v k·V c·tanα(2) 式中 Vα——带钢跑偏速度,mm/s ; v k——跑偏速度系数,其大小与辊子表面状态、带钢与辊子包角等有 关,理想状况下可取1.0 ; V c——辊子圆周线速度,mm/s; α——跑偏角,度。 实际上,各种辊子在长期运行过程中,由于单边磨损大而成锥形。由于锥形辊使带钢张力分布不均匀,使带钢总是向粗的一端跑偏,而锥度的大小影响了跑偏的速度。 张力控制带钢张力波动,特别是由于带钢张力不足或张力控制调整不当,会引起带钢张力的强烈波动,从而造成带钢运行过程中横向跑偏。 高的单位面积张力可以消除部分带钢弯曲及本身缺陷,从而每个转向辊上带钢的横向偏差都会得到消减。可是,由于带钢的材料属性以及用于控制带钢张力的张力辊的驱动运行的限制,带钢张力增加是受限制的。 2带钢对中纠偏原理研究

对中纠偏系统

对中纠偏系统 在工业生产中,一般长度在10米以上生产线,如冶金行业铜版、铁板、不锈钢板、织布和印染行业的布料及造纸行业的纸卷在连续生产中都要保证材料处于一定的横向位置,如材料跑偏会造成材料的损失,严重时造成设备的损坏。为保证生产安全顺利的进行,一般会在生产线上安装数套对中(CPC)或纠偏(EPC)装置。 现着重介绍卷取机纠偏系统 一、系统说明 卷取机纠偏系统是一个连续的闭环式调节系统,有探测头连续的测量板带位置变化,将板带的位置偏差信号输入电控系统,电控系统的输出与液压站电液伺服阀相连,伺服阀驱动与卷取机相连的液压缸而使卷取机跟踪进带位置,卷取机和测量探头的相接使板带能准确地卷取。 二、卷取机纠偏、 开卷机的纠偏和中间纠偏控制是对板带位置的偏差进行纠正,卷取机的纠偏则是对板带的位置进行跟踪;并不是对板带位置的偏差进行纠正,而是跟踪进板的位置;这样就可以使板带边缘在卷取时对准一点而使带卷的一边平齐。 采用对边纠偏装置,使探测头测量板带的一边,对准一点进行精确的卷取;当板带边缘尚未剪齐,或下一道工序板带仍需对中纠偏时,应采用这种纠偏卷取。

对于任何卷取机的纠偏系统,探测头必须安装在导向辊附近,并与卷取机相连以保证同步移动;这种连接可以通过机械的金属臂直接相连或电的同步跟踪来实现。有一点十分重要需加以注意,那就是板带需紧贴导向辊而没有相对滑动,因此板带的导向辊上应有一定的包角,导向辊的直径必须足够大,以确保板带在一定的张力下精确的卷取。 三、系统原理图 1、采用红外线光电探边器控制的EPC系统 卷取机 纠偏原理图(一)

2、采用单片机和CCD光电探边器控制的EPC系统 卷取机 纠偏原理图(二)

光电纠偏控制器

GD-4B 型光电纠偏控制器 GD-4B 型光电纠偏控制器为边缘位置检测装置(EPC),是对薄型软物料在传送过程中水平方向位置偏移进行控制的系统,具有自动检测、自动跟踪、自动调整等功能。能对纸张、薄膜、不干胶带、铝箔等物料的标志线或边缘进行跟踪纠偏,以保证卷绕、分切的整齐。该系统可用于轻工、纺织、印染、印刷等行业。 该系统用光电开关检测物料边缘的位置,由同步电机驱动器、同步电机、丝杠、拖板等组成执行机构,完成对物料的牵引,修正物料运行时的偏差。 GD-4B光电纠偏控制器的控制单元由单片机及大规模集成电路组成,内置EEPROM数据存储器,可永久保存用户的状态设置,掉电不丢失数据;内置死机自恢复电路、EMI干扰抑制电路,系统可在较恶劣的环境工作;整个系统采用“模块化”理念设计,便于用户组成综合控制系统。 技术指标 1.跟踪标志宽度>2mm 2.光电检测开关与物料的距离12mm±2mm 3.响应时间25ms 4.灵敏度±0.5mm 5.驱动器速度:8mm/s 6.推动力:50-500Kgf(由电机的输出功率决定) 7.位置失控保护 8. 光电开关输出方式:NPN常开型 9. 安装方式:嵌入式;面板尺寸:197*105;开孔尺寸:180*92 二、工作条件 1.工作电压AC 220V±10% 50Hz 2.环境温度50 o C以下 3.空气湿度≤85%(25 o C) 三、工作原理 本系统中,由光电检测开关检测单边或双边的位置,以拾取位置偏差信号。再将位置偏差信号进行逻辑运算,产生控制信号,用同步电机驱动机械执行机构(丝杠、拖板等),修正物料运行时的蛇型偏差,控制物料直线运动。 在偏差方向上设置左、右限位开关,防止系统失控。 单边双开关控制时,光电头置于材料一边。使材料边缘处于光电传感器二不灵敏区内。优点:控制误差较小,材料宽度变化时,光电头位置可以不变。缺点:如果边缘破损,会强制跟踪导

纠偏技术及常用纠偏方法介绍

纠偏技术及常用纠偏方法的介绍 一、纠偏技术的进展 建(构)筑物的纠偏(有的文献中也称作纠倾)技术、托底技术、平移技术及增层加载时的地基基础加固技术,被统称为基础工程的“后继技术”,这四项技术在20世纪前半叶仅在少数几个国家受到重视,在我国也是从20世纪后半叶才逐渐兴起的。建(构)筑物的纠偏技术、托底技术、平移技术及增层加载时的地基基础加固技术经常联合使用,以满足各种工程需要,它们与常规的地基及基础处理即有联系,又有区别。这四项技术的出现和兴起,一方面是由于土力学理论的发展、地基处理技术及相应施工机械与监测技术的进步而使这些技术的实现成为可能,另一方面是受与日俱增的客观需求分不开的。一些古建筑的倾斜和相继倒塌,迫使人们采取各种措施来保护现存的古迹和文物;新建建(构)筑物因地基处理不当或其它原因而发生倾斜,迫使人们开始重视建筑物的纠偏和基础托底加固技术,以减少大量经济损失。特别是在城市建筑群密集的地方,新建建(构)筑物常常会促使既有建筑物发生不均匀沉降;城市功能的改变,干道的重新规划,常要求将一些重要建筑物及文化遗址完整地平移。 世界上许多著名的大型建(构)筑物都是由于地基基础的问题而发生倾斜,因当时挽救乏术,不得不任其倒塌和倾斜,典型的例子如建于中世纪著名的英国Ely大教堂和法国的Bauyais大教堂的倒塌。举世闻名的意大利比萨斜塔,始建于1173年,竣

工于1372年,施工历时整整200年,主要就是因为施工中塔身曾两次出现倾斜,虽然从结构上采取了一些措施,仍无法纠正,而一再被迫停工,最终不得不带着倾斜而结顶。美国著名岩土工程学家C. Spencer曾于1953年预测,比萨斜塔如不进行纠偏,势必在50~100年后倒塌。至1990年,塔顶中心点已向南偏离中心线4.5m,塔身倾角5o33′17″。在我国,苏州虎丘塔是继杭州雷锋塔倒坍后现存的唯一具有千年以上历史的古砖塔。虎丘塔呈七级八角形,塔底直径13.66m,高47.5m。塔顶位移1978年为2.3m,塔顶重心偏离基础轴线0.924m。经专家调查研究,虎丘塔倾斜和墩身开裂,主要原因是地基土中存在压缩性大且厚度不均匀的可塑状粘性填土,以及由于地基土的流失,而使砖砌体长期处于偏心受压状态。经过正确的纠偏加固措施以后,塔体的不均匀沉降和倾斜已得到了控制。 其它类建筑物的倾斜事例就更不胜枚举。建(构)筑物因地基和基础处理不当而倾斜、倒塌或拆除的后果是严重的。1995年12月26日,汉口桥苑新村的一栋18层住宅楼因地基基础设计、施工等多种原因以致发生严重倾斜,最后被控爆拆除,给人们以极其深刻的印象。该住宅楼是采用336根锤击沉管扩底灌注桩基础,桩长17.5m,桩端进入中密粉细砂持力层1~4m,这一栋楼房失稳的事故也告诉我们采用桩基础并不是万无一失的。 由于设计、施工的问题而引起建筑物倾斜的例子是非常多的,其造成的社会影响和经济损失也是很明显的。当建筑物发生

EPC纠偏总结

1.工作原理: 如上图所示:两个高频光传感器,一个垂直安装(测量探头),一个带有一定的角度(参考探头),两个传感器由一个伺服电机驱动。安装时调整两个传感器的位置,使发送到传感器的两束光线的交点与光源的中心线平行。带钢下方是一个固定安装可调高频光源,向两个传感器发射高频光线。当有带钢通过时两个传感器在伺服电机的驱动下向带钢的边部移动,如果垂直探头的检测电压为5V (MESS1和GND),表明传感器已经检测到带钢边部。系统通过伺服电机的移动得到带钢的偏移量,然后将这个信号传送到控制单元,最后控制单元根据这个信号去控制液压执行单元动作,从而使带钢的边部的偏移量在工艺要求的范围内,系统纠偏方向与带钢的移动方向相同。 2.两个检测探头的调节: 在控制单元EVK2_CP的电路板(如图2箭头2所示)上有4个插孔,分别是GND,W,REF1,MESS1。 ㈠根据带钢运行方向调节测量探头: 该探头应该与带钢运行方向垂直,以带钢运行方向为基准前后移动测量探头,用万用表测量MESS1,黑表笔接GND,当所测电压为最大值并且唯一(感光度

最大),固定该探头,调节控制面板上的R1使测量电压值为DC10V。测量探头调节完毕。 ㈡根据带钢运行方向调节参考探头: 以带钢运行方向为基准前后移动参考探头,用万用表测量REF1,黑表笔接GND,当所测电压为最大值并且唯一,固定该探头,调节控制面板上的R2使测量电压值为DC5V。该步为参考探头的第一步调节。 ㈢参考探头的第2步调节: 把万用表连接到测量点MESS1和GND上,用一块最小宽度为250mm的钢板直接放置到光源上,挡住测量探头接收器的检测范围,沿带钢横截面方向移动钢板,到万用表上的读数为2.5V为止。后将万用表连接到测量点REF1和GND上,沿带钢横截面方向左右转动参考探头,使测量仪表上的读数为2.5V,用螺丝固定参考探头。至此,参考探头位置调节完毕。 3.常用按键如下: EPC操作面板 显示屏中显示画面共两种参数:M为反馈值,P为设定值。(我们只能修改设定值,即P值。共21个M选项,45个P选项)。 面板右边青色区域为现场操作按钮,各按钮功能如下: 远程本地控制切换,当指示灯亮时为远程控制

EH-1003HS带材纠偏控制系统

EH-1003HS带材纠偏控制系统 一带材纠偏系统工作原理 钢铁、橡胶、造纸等工业企业在对带材进行生产或加工过程中,需要将带材准确无偏地送入下道工序机组。但是,由于外界的各种因素的影响,总会造成偏差。为了保证产品质量及满足正常生产或加工的需要,就得使用纠偏系统,通过自动调节来消除偏差,使带材中心始终被控制在生产线的中心。 系统主要由CSEC-20电液伺服控制器(其中包括红外宽光束对中传感器、电液伺服放大器和泵电机启动装置等)、油缸(用户自备),位移传感器(CRDB-A)、电液伺服阀(CSV8系列),液压站(CHPS)等元器件组成。光电传感器的检测器是成对使用,其对称中心与生产线中心是一致的。在生产过程中,当带材中心偏离生产线机械中心时,两光电传感器被遮挡部分面积就不一样,因此其输出两个大小不同的电信号至前置放大器,通过前置放大器相加运算后,输出一个与帘子布位置偏差大小、方向有关的电信号至主放大器,主放大器输出一电流信号给伺服阀动圈以控制伺服阀的方向与流量;伺服阀控制油缸,使位移-摆动辊偏移,同时带动位移传感器,使位移传感器也输出一反相信号给主放大器,此信号使伺服阀输出减小;当此信号与前置放大器输出信号等值反相时,伺服阀输出为零,位移-摆动辊停止运动,此时辊与起始位置有一位移并成一角度,带材在这一位移与角度作用下产生位移-螺旋效应;直至偏差消除,两光电检测器输出电压一致,前置放大器输出为零,位移-摆动辊偏角也回到零,即起始位置,此时带材中心与生产线机械中心无偏差。如再有偏差,则重复上述过程,从而达到连续纠正偏差的目的。整个系统是逐级推动、闭环工作的。元件故障与调整不当都可能使系统失常。在系统中如出现故障,应根据情况具体分析、区别对待,切忌非专业人员乱拆乱调,以免损失纠偏精度。 二系统框图 见下页《带材纠偏系统示意图》 三电气原理及连接图

美塞斯FIFE纠偏系统介绍(纠偏控制器)

美塞斯FIFE纠偏系统介绍(纠偏控制器)

————————————————————————————————作者:————————————————————————————————日期:

美塞斯FIFE纠偏系统介绍 控制器 纠偏控制器(MC16) 型号为4008301898的FIFE产品平滑而高效的卷材生产始于正确的纠偏控制系统。FIFE?为您提供一系列的自动控制系统,使您获得精密而可靠的纠偏性能、以及将来升级您生产线的灵活性。 卷材纠偏控制器 FIFE卷材纠偏控制器功能强大、安装简单、操作方便,具有极高的动态响应水平以提高纠偏精度并减少浪费。 D-MAXTM 系列卷材纠偏系统 ●一个由功能强大、模块化的组件构成的完整系统,用以提高效率和卷半质量 ●模块化设计理念,可以作为预接线控制器系统或者多功能组件中的独立功能模块使用●控制器外观朴实,能够提供最高水平的纠偏精度,选用功能强大,例如高速联网和远程 系统监控功能 ●图形化的操作界面,简明易发的操作语言,可以使 您的安装我操作变得简单 POLARIS TM卷材纠偏控制器 ●精密的卷材纠偏控制器,安装和操作都很简单 ● 5.67”x5.67”x4.06”(144mm x 144mm x 103mm)

的小巧箱体,容易嵌入机器的控制面板中 ●直观而友好的操作界面能够减小两批产品转换中的停工时间 ●高动态响应性能,确保恒定,优质的卷装 CDP-01 卷材纠偏控制器 ●具有高品质的动态响应性能,能够驱动 单个、两个或者三个纠偏器同时使用 ●内置信号放大器,专门用于红外感应器 在检测透明卷材时将信号放大,提高检 测精度 ●不需要PLC也可以同时控制多达3套纠 偏系统 网络通讯 可选的串行总线通讯协议转换器,使您可以通过现有的ControlNet,DeviceNet,InterBus,Profibus,Modbus/TCP Ethernet,或Ethernet IP获得纠偏数据。 动力装置 不管您选用什么样的控制系统,FIFE动力装置都具有足够的灵活性来满足任何卷材和载荷方面的要求。 ●适合于随较大载荷的放卷/收卷电气液压式或气动液压式纠偏系统 ●紧凑、模块化的结构是完全独立可用的 ●几乎不需要维护

浅析带钢的对中纠偏控制

浅析带钢的对中纠偏控 制 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

浅析带钢的对中纠偏控制本文详细分析了带钢在运行过程中跑偏产生的原因、特点及其类别。针对带钢的跑偏现象,进行了深入研究,提出了纠偏的措施,也探讨了各种设计方法的可行性和有效性,从而为选取最佳的设计方案提供依据。 带钢跑偏原因分析 工程设计和应用中,无论带钢形状的板形缺陷、塔形卷曲、处理线设备安装偏差及调整不当、处理工艺对带钢的影响等都会导致运动的带钢在生产线上发生偏移。 1.1.带钢的板形缺陷。各种形式的板形缺陷主要有:带钢断面形状、平坦度、带头焊接没对齐或偏斜。当带钢在运动过程中,它的形状并不能得到纠正。依照拱形的大小,会产生相应大小的跑偏。 1.2.设备精度。包括转向辊、张力辊及活套车等安装精度、夹送辊压力不均、各种辊子辊面不均匀磨损等因素均会造成带钢横向跑偏。 根据带钢的运行行为,辊子上的带钢总是趋向于以90°的夹角垂直辊子轴线方向运行。事实上,辊子轴线不平行,甚至带钢拱形都会导致带钢进入辊子的角度偏离90°。偏离的大小,记为跑偏角。

为带钢跑偏速度,mm/s;为跑偏速度系数,其大小与辊子表面状态、带钢与辊子包角等有关,理想状况下可取1.0;为辊子圆周线速度,mm/s;—跑偏角度。 实际上,各种辊子在长期运行过程中,由于单边磨损大而成锥形。由于锥形辊使带钢张力分布不均匀,使带钢总是向粗的一端跑偏,而锥度的大小影响了跑偏的速度。 1.3.张力控制 带钢张力波动,特别是由于带钢张力不足或张力控制调整不当,会引起带钢张力的强烈波动,从而造成带钢运行过程中横向跑偏。 高的单位面积张力可以消除部分带钢弯曲及本身缺陷,从而每个转向辊上带钢的横向偏差都会得到消减。可是,由于带钢的材料属性以及用于控制带钢张力的张力辊的驱动运行的限制,带钢张力增加是受限制的。 带钢对中纠偏控制措施

带钢纠偏控制系统

摘要 本设计是针对钢带在卷取机上绕卷运行时发生的左右偏移而提出控制方案及具体处理方法。采用智能PID控制算法,对钢带的偏移量进行实时的控制,使之在左右偏移时偏移量控制在安全的范围内。主要是对系统数学模型的建立和数据处理的算法分析。深入阐述了纠偏控制系统设计思想及实现方法,对提高带钢生产效率和产品质量具有积极的意义。 关键字:钢带;纠偏控制;智能PID控制;卷取机

Abstract This design is for the steel strip in the coiling machine on the occurrence of the left and right deviation and put forward the control scheme and specific processing method. The PID control algorithm is adopted to control the steel strip, and the offset is controlled in the range of safety. Is mainly about the establishment of the system mathematical model and data processing algorithm analysis. The design idea and realization method of deviation correction control system are introduced, which has positive significance to improve the production efficiency and product quality. Keywords:steel strip; deviation control; intelligent PID control; coiling machine

纠偏原理及应用

1带钢连续处理过程的跑偏分析 工程设计和应用中,无论带钢形状的板形缺陷、塔形卷曲、处理线设备安装偏差及调整不当、处理工艺对带钢的影响等都会导致运动的带钢在生产线上发生偏移[2]。 各种形式的板形缺陷主要有:带钢断面形状、平坦度、带头焊接没对齐或偏斜。当带钢在运动过程中,它的形状并不能得到纠正。依照拱形的大小,会产生相应大小的跑偏。 设备精度包括转向辊、张力辊及活套车等安装精度、夹送辊压力不均、各种辊子辊面不均匀磨损等因素均会造成带钢横向跑偏。 根据带钢的运行行为,辊子上的带钢总是趋向于以90 o 的夹角垂直辊子轴线方向运行。事实上,辊子轴线不平行,甚至带钢拱形都会导致带钢进人辊子的角度偏离90 o 。偏离的大小,记为跑偏角。那么,跑偏理论计算公式为: F = K·L·tanα ( l ) 式中 F——跑偏量,mm ; K——跑偏系数; L——自由带钢长度,mm ; α——跑偏角,度。 带钢的跑偏速度与带钢跑偏角、辊子的输送速度有关。 Vα=v k·V c·tanα(2) 式中 Vα——带钢跑偏速度,mm/s ; v k——跑偏速度系数,其大小与辊子表面状态、带钢与辊子包角等有 关,理想状况下可取1.0 ; V c——辊子圆周线速度,mm/s; α——跑偏角,度。 实际上,各种辊子在长期运行过程中,由于单边磨损大而成锥形。由于锥形辊使带钢张力分布不均匀,使带钢总是向粗的一端跑偏,而锥度的大小影响了跑偏的速度。 张力控制带钢张力波动,特别是由于带钢张力不足或张力控制调整不当,会引起带钢张力的强烈波动,从而造成带钢运行过程中横向跑偏。 高的单位面积张力可以消除部分带钢弯曲及本身缺陷,从而每个转向辊上带钢的横向偏差都会得到消减。可是,由于带钢的材料属性以及用于控制带钢张力的张力辊的驱动运行的限制,带钢张力增加是受限制的。 2带钢对中纠偏原理研究

纠偏控制器

纠偏控制器 美塞斯Fife(标准型号MC18/4008301898)英文名:Correction Controller 纠偏控制器概念:纠偏控制器,又称边缘位置控制(E.P.C)经发展又有线条位(L.P.C)中心线位置控制(C.P.C) 纠偏控制器的原理: 在物料卷绕过程中,由光电传感器检测边或线的位置,以拾取边或线位置偏差信号。再将位置偏差信号传递给光电纠偏控制器进行逻辑运算,向机械执行机构发出控制信号,驱动机械执行机构,修正物料运行时的蛇形偏差,保证物料直线运动。可选装左、右限位开关防止系统失控。 纠偏控制器的主要性能指标: 1、对线工作:标志线宽度不小于2mm; 2、对边工作:边标志侧保持2mm以上同色度区; 3、检出距离:同轴反射型光电眼(可见光)为12mm 4、响应时间:光电眼响应时间为2ms,系统响应速度为50ms; 5、纠编精度:±1mm; 6、最大推重:1.5T/3T可选; 7、失控保护:系统自带极限位置失控保护装置(该功能为可选配置)。

纠偏控制器的特点 1、与滑动丝杠副相比驱动力矩为1/3 2、高精度的保证,滚珠丝杆是用日本制造的世界最高水平的机械设备连贯生产出来的,特别是在研削、组装、检查各工序的工厂环境方面,对温度·湿度进行了严格的控制,由于完善的品质管理体制使精度得以充分保证。 3、微进给可能,滚珠丝杆由于是利用滚珠运动,所以启动力矩极小,不会出现滑动运动那样的爬行现象,能保证实现精确的微进给。 4、无侧隙、刚性高,滚珠丝杆可以加予压,由于予压力可使轴向间隙达到负值,进而得到较高的刚性(滚珠丝杠内通过给滚珠加予压力,在实际用于机械装置等时,由于滚珠的斥力可使丝母部的刚性增强)。 5、高速进给可能滚珠丝杆由于运动效率高、发热小、所以可实现高速进给(运动)。 纠偏控制器的用途: 纠偏控制器可对各种卷材进行纠偏工作,根据纠偏材料的印刷图案不同而可以选择跟边,跟线方式,并自由设定单电眼或双电眼检测,纠偏执行电机为永磁低速同步电机。主要应用于印刷包装、造纸、薄膜、纺织等行业需要控制卷边齐整的场合。 纠偏控制器的类型

调心托辊的纠偏原理和应用

调心托辊的纠偏原理和应用带式输送机由于制造、安装以及接头不正等因素的影响, 跑偏问题不可避免。目前, 胶带跑偏的纠偏方法很多, 对于机身来说最常用和最有效的方式是采用调心托辊, 本文对调心托辊的调心原理和常用调心托辊的结构特点进行简单介绍。 1 调心托辊的调心原理 由图1a 可以看出, 当托辊的中心线与胶带的 中心线垂直时, 取胶带与托辊任一接触点M, 该点胶带的线速度V 与托辊的旋转速度V g 相等, 由于无相对滑动速度, 二者之间为静摩擦, 胶带给托辊的摩擦力F t 与托辊给胶带的摩擦反力F d 相平衡, F d 与胶带中心线夹角α= 0 , 因此当托辊的中心线与胶带的中心线垂直时, 胶带横向不受力, 胶带跑偏时托辊不能自动纠偏。 当托辊的中心线与胶带的中心线不垂直时(见 图1b) , 即托辊前倾一定角度ε时, 取任一接触点M, 该点胶带的线速度为V , 托辊的旋转速度为 V g , 由于托辊的中心线与胶带的中心线不垂直时, 产生相对滑动速度ΔV , 二者之间为动摩擦, 胶带给托辊的摩擦力F t 与相对滑动速度ΔV 方向一致, 托辊给胶带的摩擦反力F d 与相对滑动速度ΔV 方向相反; 由于F d 与胶带中心线存在一定角度α, 胶带具有横向力F h 和径向力F j , 托辊给胶带的横向纠偏力F h = F dsinα, 因此, 托辊前倾一定角度后胶带跑偏时具有纠偏能力, 调心托辊就是基于此设计、制造的。 2 调心托辊类型及结构特点 综合TD75、DX、DT Ⅱ选型设计手册, 可以看 出目前较常用的调心托辊主要有槽形调心托辊、锥形调心托辊和摩擦调心托辊。 211 槽形调心托辊 图1 调心托辊的调心原理 (a) 托辊中心线与胶带中心线垂直 (b) 托辊中心线与胶带中心线不垂直 见图2 , 槽形调心托辊主要依据TD75、DX 选 型手册, 3 个槽形辊子和2 个小立辊安装在上横梁上, 下横梁连接在中间架上, 上下横梁通过回转轴连接在一起, 胶带跑偏时, 带动上横梁绕回转轴旋转一定角度ε, 此时调心托辊给胶带施加横向推力F h , 促使跑偏后的胶带自动回到原位, 实现跑偏胶带的自动纠偏, 确保胶带对中运行。其特点是在前倾调心的基础上增加了2 个挡偏立辊, 挡偏立辊

带钢的纠偏原理

钢带的纠偏原理 生产线用钢带纠偏系统是通过改变纠偏辊的位置来使走偏了的钢带恢复到中心位置,从而保证钢带的稳定运行。 常见的纠偏系统如图1所示,由纠偏辊和框架、钢带位置光电检测器、电子信号放大器、液压站、电液伺服阀、伺服油缸、位移传感器等几大部分组成一个闭环控制系统。 图1纠偏系统组成示意图

1-钢带位置光电检测器;2-纠偏辊及框架;3-纠偏辊位移传感器; 4-电子信号放大器;5-液压站;6-电液伺服阀;7-伺服油缸;8-旋转轴(图中不可见); 其工作原理是:如图2所示 图2钢带位置光电检测器原理图; 光电检测器有光源发射器和接收器两个主要部分,光源发射器发生的光线一部分被钢带挡住,另外在钢带两侧边缘各有一部分射向对面的光电二极管接收器,被其接收到转换成电信号。接收器分为钢带两侧边两部分,分别与两只可变电阻R3、R4组成了电桥。如果钢带处于生产线中心位置,则两侧边的接收器接收到的光线量相同,其两部分光电二极管的电流或电阻也相同,即R l=R2。这时调整可变电阻,使R3=R4。这样电桥的Rl×R4=R2×R3,处于平衡状态,输出的信号为零,纠偏辊也处于中心位置状态。 如果钢带偏向一边,则电桥的R l×R4与R2×R3不等,会输出一定的信号给信号处理放大器,这个信号即是钢带的位置偏差信号,能反映出钢带往哪个方向偏离中心线,偏移量是多少。放大器‘便由此计算出为了纠正这样大小的偏移量和纠偏辊应该转过的理论角度。另外,有一个位移传感器安装于纠偏旋转框上,它是一个可变电阻,输出的阻值随纠偏辊的位置变化而变化,它也向信号处理放大器提供一个纠偏辊的实际位置信号,即反映纠偏目前已经往哪个方向旋转,旋转的实际角度是多少。这样信号处理放大器就可以将纠偏辊所需要旋转的理论角度与实际角度相比较,决定驱动

液压纠偏系统简介

液压纠偏系统简介.txt27信念的力量在于即使身处逆境,亦能帮助你鼓起前进的船帆;信念的魅力在于即使遇到险运,亦能召唤你鼓起生活的勇气;信念的伟大在于即使遭遇不幸,亦能促使你保持崇高的心灵。 液压纠偏系统简介 一、概述: 随着现代化轧机速度的提高,对带钢的传送速度也大大的提高了,这样相应的辅助设备的速度也必须提高。为保证带钢在轧制过程中在轧制中心线附近运行,且保证卷取时带卷边缘整齐,从而避免因带材偏离轧制中心线发生的刮坏设备或带材边缘损坏,影响产品质量的事故发生,同时大量减少带边剪切量。所以带钢的边缘控制和机组上的对中控制是带材连续作业上必不可少的环节。 产生带钢偏离轧制中心线的原因有多种,主要是辊系的倾斜,带钢厚度不均、辊距与带钢宽度的比值、辊型结构、带钢的张力等,若参数选择不当都会引起带钢偏离轧制中心线,所以带钢在运行过程中的横向偏离中心线是不可避免的,必须加以控制。 常用的控制方式有四种: 1、机械式:如能自动定心的双锥辊,导向轨等。 2、电动式:采用光电检测器,将偏离信号送至控制柜,从而控制直流电机进行纠偏。 3、气液方式:采用气动检测喷嘴,通过膜片控制射流管喷射的油压推动滑阀控制油缸进行纠偏。 4、光电液方式:采用光电检测器将偏离信号经放大器放大,控制电液伺服阀推动油缸进行纠偏。 这四种控制方式中前三种纠偏速度较慢,满足不了现代化高速生产的需要。而第四种控制方式采用的是电液伺服控制,这种控制方式的信号传输快,电反馈和校正方便,它的检测精度高,检测光电头距离大可达一米左右,可直接方便的装在带钢运行线路上。而且系统动态性能好。因此本设计中我采用光电液控制方式。 按控制对象不同可分开卷机、卷取机和摆动辊三种。为了保证在轧制过程中带材边缘位置不变,保持在轧制中心线附近运行,控制误差为±1~2mm,因此,我在本设计中采用了开卷机边缘控制方式。 二、冷轧带钢液压纠偏系统的组成和工作原理 1、组成:如图(一)所示 该系统由光电检测器(包括液压缸),放大器,比较器,电液伺服阀,开卷机(两个,左右两缸)组成。 2、工作原理:由光电检测器将检测所得的位移信号经反馈到比较器与所给定的位置信号进行比较得到一位置偏差信号,该信号经放大器进行放大,转变成较大的电信号,由此放大后的电信号控制电液伺服阀。电液伺服阀根据所得的电信号调整阀芯的动作,改变了油液的流向和流量,使液压缸动作,推动开卷机向左或向右运动,从而达到带钢纠偏。 三、冷轧带钢机组双柱头开卷机液压传动系统设计: (一)设备传动简介: 双柱头开卷机用于冷轧机组前带卷的开卷,送料和使带钢形成一定张力。开卷机由涨缩柱头,柱头旋转传动装置,柱头移动装置,底座及带钢边缘控制等组成。其中柱头的涨缩,柱头的移动及带钢边缘控制均为液压传动。本设计就是设计柱头的移动和带钢边缘控制。 工艺参数: 最大开卷速度Vk 10m/s 钢卷最大质量m1 15×103kg

相关文档
最新文档