最新初二数学竞赛基本几何证明及计算

最新初二数学竞赛基本几何证明及计算
最新初二数学竞赛基本几何证明及计算

初二数学竞赛基本几何证明及计算

?中,AD⊥BC 于D,AB+BD=CD。证明∠B=2∠C。

1:如图1,在ABC

C

图1

?中,AB=AC。D,E分别是BC,AC上的点。问∠BAD与

2. 如图2,在ABC

∠CDE满足什么条件时,AD=AE。

B C

图2

3. 如图3,六边形ABCDEF 中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,FA-CD=3。求BC+DE 的值。

D

图3

4. 如图4,在凸四边形ABCD 中,∠ABC=300,∠ADC=600

,AD=DC 。

证明BD 2=AB 2+BC 2

D

图4

5. 如图5,P 是ABC ?边BC 上一点,PC=2PB 。已知∠ABC=450,∠APC=600。

求∠ACB 的度数。

图5

6. 如图6,中,在ABC ?BC=a, AC=b, 以AB 为边向外作等边三角形△ABD 。

问∠ACB 为多少度时,点C 与点D 的距离最大?

A

图6

7. 如图7,在等腰中,ABC ?AB=AC ,延长AB 到D ,延长CA 到E ,连DE ,恰好有AD=BC=CE=DE 。证明∠BAC=1000

C D

图7

8. 如图8,在中,ABC ?AD 是边BC 上的中线,AB=2,AD=6,AC=26。 求∠ABC 的度数。

B 图8

9. 如图9,在ABC ?的外面作正方形ABEF 和ACGH ,AD ⊥BC 于D 。延长DA

交FH 于M 。证明:FM=HM 。

G

图9

10. 如图10,P ,Q ,R 分别是等边ABC ?三条边的中点。M 是BC 上一点。以MP 为一边在BC 同侧作等边PMS ?。连SQ 。证明 RM=SQ.

B C 如图10

11. 如图11,在四边形ABCD 中,AB=a, AD=b, BC=CD. 对角线AC 平分∠BAD 。问a 与b 符

合什么条件时,有∠

D+∠B=1800。

A

如图11

12. 如图12,在等腰中,ABC ?AD 是边BC 上的中线,E 是△ADB 内任一点,连

AE ,BE ,CE 。证明:∠AEB >∠AEC 。

B

图12

13. 如图13,在凸四边形ABCD 中,AB=AD ,∠BAD=600,∠BCD=1200

证明:BC+CD=AC 。

B

D 图13

14. 如图14,在中,ABC AD 是边BC 上的中线,点M 在AB 上,点N 在AC 上。 已知∠MDN=900,BM 2+CN 2=DM 2+DN 2。证明:AD 2=4

1(AB 2+AC 2)

B

C 图14

15.如图1,在ABC ?中,BC AD A ⊥?=∠,90

BC FG E AB F AD BCA D //,,,于交于的平分线交于∠ 的长。求于交BG AB AE G AB ,14,4,==

图1

16.如图2,AC AB A ABC Rt =?=∠?,90中,, 论。

小关系,并证明你的结的大与请猜想于交作过延长线于交作于交平分CE BM M BD BC AH A E BD BD CE D AC ABC BD ,,,⊥⊥∠

图2

17.如图3,为三角形内,的面积为

M ABC 1? 三边中点的点关于分别为任一点,ABC M Q P N ?,, 的面积。对称点,求NPQ ?

图3

18.如图4,在的高,点是已知P ABC CE BD ?, ,,AB CQ CE Q AC BP BD ==上,在点的延长线上, 。且证明:AQ AP AQ AP ⊥=

B

C 图4

初二数学压轴几何证明题含答案

1.四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC. (1)如图1,若点E在CB边的延长线上,直接写出EG与GC的位置关系及的值; (2)将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由; (3)将图1中的△BEF绕点B顺时针旋转α(0°<α<90°),若BE=1,AB=,当E,F,D三点共线时,求DF的长及tan∠ABF的值. 解:(1)EG⊥CG,=, 理由是:过G作GH⊥EC于H, ∵∠FEB=∠DCB=90°, ∴EF∥GH∥DC, ∵G为DF中点, ∴H为EC中点, ∴EG=GC,GH=(EF+DC)=(EB+BC), 即GH=EH=HC, ∴∠EGC=90°, 即△EGC是等腰直角三角形, ∴=;

(2) 解:结论还成立, 理由是:如图2,延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,∵在△EFG和△HDG中 ∴△EFG≌△HDG(SAS), ∴DH=EF=BE,∠FEG=∠DHG, ∴EF∥DH, ∴∠1=∠2=90°-∠3=∠4, ∴∠EBC=180°-∠4=180°-∠1=∠HDC, 在△EBC和△HDC中 ∴△EBC≌△HDC. ∴CE=CH,∠BCE=∠DCH, ∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°, ∴△ECH是等腰直角三角形, ∵G为EH的中点, ∴EG⊥GC,=, 即(1)中的结论仍然成立; (3) 解:连接BD,

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高” A B C D F P

还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、 E 、 F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 / / 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

初二数学-几何证明题

初二数学-几何证明 1如图,在平行四边形中,点 E , F 是对角线BD 上两点,且BF DE . (1) 写出图中每一对你认为全等的三角形; (2) 选择(1)中的任意一对全等三角形进行证明. 2、如图,E 、F 是平行四边形 ABCD 对角线BD 上的两点,给出下列三个条件:① BE = DF ; ②/ AEB =Z DFC ;③AF // EC 。请你从中选择一个适当的条件 ________________________ ,使四 边形AECF 是平行四边形,并证明你的结论。 3、如图△ ADF 和厶BCE 中,/ A= / B ,点D 、E 、F 、C 在同一直线上, 有如下三个关系式: ① AD=BC :② DE=CF :③ BE // AF 。 1)请用其中两个关系式作为条件,另一个作为结论,写出一个你认为正确的命题. (用序号 写出命题书写形式,如:如果O ,那么◎ 2)选择(1)中你写出的命题,说明它正确的理由. 4、如图,在菱形 ABCD 中,/ A=60 ° , AB=4 , E 是边 AB 上一动 点,过点 E 作EF 丄AB 交AD 的延长线于点 F ,交BD 于点M .请判 断厶DMF 的形状,并说明理由. 匚 C

5、.如图,在口ABCD中,E为BC边上一点,且AB AE . (1)求证:△ ABC◎△ EAD . (2)若AE 平分/ DAB,/ EAC 25°,求/ AED 的度数. 6、如图,在等边△ ABC中,点D为AC中点,以AD为边作菱形ADEF,且AF // BC , 连结FC交DE于点G . 求证:△ ADB AFC ; 7、如图.在梯形纸片ABCD中.AD // BC, AD>CD .将纸片沿过点D的直线折叠,使点C 落在AD上的点C’处,折痕DE交BC于点E.连结C乍 ⑴求证:四边形CD C'E是菱形; ⑵若BC = CD+AD,试判断四边形ABED的形状,并加以 证明;

初二数学几何证明初步练习题含答案

几何证明初步练习题 1、三角形的内角和定理:三角形的内角和等于180°. 推理过程: ○ 1 作CM ∥AB ,则∠A= ,∠B= ,∵∠ACB +∠1+∠2=1800( ,∴∠A+∠B+∠ACB=1800. ○ 2 作MN ∥BC ,则∠2= ,∠3= ,∵∠1+∠2+∠3=1800,∴∠BAC+∠B+∠C=1800 . 2.求证:在一个三角形中,至少有一个内角大于或者等于60°。 3、.如图,在△ABC 中,∠C >∠B,求证:AB >AC 。 4. 已知,如图,AE 5. 已知:如图,EF ∥AD ,∠1 =∠2. 求证:∠AGD +∠BAC = 180°. 反证法经典例题 6.求证:两条直线相交有且只有一个交点. 7.如图,在平面内,AB 是L 的斜线,CD 是L 的垂线。 求证:AB 与CD 必定相交。 8.2 一.角平分线--轴对称 9、已知在ΔABC 中,E为BC的中点,AD 平分BAC ∠,BD ⊥AD 于D .AB =9,AC=13 求DE的长 第9题图 第10题图 第11题图 分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD =DF .又BE =EC ,即D E为Δ BCF 的中位线.∴DE=12FC=12 (AC-AB)=2. 10、已知在ΔABC 中,108A ∠=,AB =AC ,分ABC ∠.求证:BD 平BC =AB +CD . 分析:在BC上截取BE=BA,连接D E.可得ΔBAD ≌ΔBED .由已知可得:18ABD DBE ∠=∠=,108A BED ∠=∠=, 36C ABC ∠=∠=.∴72DEC EDC ∠=∠=,∴CD =CE ,∴BC =AB +CD . 11、如图,ΔABC 中,E是BC 边上的中点,DE ⊥BC 于E ,交BAC ∠的平分线AD 于D , 过D 作DM ⊥AB 于M,作DN ⊥AC 于N .求证:BM =CN . 分析:连接DB 与DC .∵DE 垂直平分BC ,∴DB =DC .易证ΔAMD ≌ΔAND . ∴有DM =DN .∴ΔBMD ≌ΔCND (HL).∴BM =CN . 二、旋转 12、如图,已知在正方形ABCD 中,E在BC 上,F在DC 上,BE +DF =EF . 求证:45EAF ∠=. 分析:将ΔADF 绕A顺时针旋转90得ABG .∴GAB FAD ∠=∠.易 证ΔAGE ≌ΔAFE . ∴ 1452FAE GAE FAG ∠=∠=∠= 13、如图,点E 在ΔABC 外部,D 在边BC 上,DE 交AC 于F .若123∠=∠=∠, AC=AE.求证:ΔABC ≌ΔADE . C B A D E F D A B C B A E D N M B D A C 213E D B A

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

数学竞赛平面几何重要知识点绝对精华

数学竞赛平面几何重要知识点 梅涅劳斯定理: 设D 、E 、F 分别是ABC ?三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=??EA CE FC BF DB AD 。 斯德瓦特定理:设P 是ABC ?的边BC 边上的任一点,则 BC PC BP AP BC AB PC AC BP ??+?=?+?222 西摩松定理: 设P 是ABC ?外接圆上任一点,过P 向ABC ?的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。

6、共角定理:设ABC ?和C B A '''?中有一个角相等或互补(不妨设A=A ')则 C A B A AC AB S S C B A ABC ' '?''?='''?? 与圆有关的重要定理 4.四点共圆的主要判定定理 (1)若∠1=∠2,则A 、B 、C 、D 四点共圆; (2)若∠EAB=∠BCD ,则A 、B 、C 、D 四点共圆; (3)若PA ?PC=PB ?PD ,则A 、B 、C 、D 四点共圆; 三角形的五心 三角形的三条中线共点,三条角平分线共点,三条高线共点,三条中垂线共点。三角形的垂心、重心、外心共线(欧拉线),并且重心把连结垂心和外心的线段分成2∶1的两段。三角形的外心和内心的距离)2(r R R d -=。此公式称为欧拉式,由此还得到r R 2≥。当且仅当△ABC 为正三角形时,d=0,此时R=2r.其中R 和r 分别是三角形外接圆半径和内切圆半径。 与△的一边及另两边的延长线均相切的圆称为△的旁切圆,旁切圆的圆心称为旁心。

重要例题 例1.设M 是任意ABC ?的边BC 上的中点,在AB 、AC 上分别取点E 、F,连EF 与AM 交于N ,求证:)(21AF AC AE AB AN AM +=(1978年辽宁省中学数学竞赛) 例 2. 已知点O 在ABC ?内部,022=++OC OB OA .OCB ABC ??与的面积之比为_________________. 例3. 如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点. ⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点. ⑵在△ABC 中,∠A <∠B <∠C . ①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.

初二几何证明题

28.(本小题满分10分) 如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A 向点B运动,点Q从点C向点D运动,且保持AP-CQ。设AP=x (1)当PQ∥AD时,求x的值; (2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围; (3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围。 21.(本小题满分9分) 如图,直线y x m =+与双曲线 k y x =相交于A(2,1)、B两点. (1)求m及k的值; (2)不解关于x、y的方程组 , , y x m k y x =+ ? ? ? = ?? 直接写出点B的坐标; (3)直线24 y x m =-+经过点B吗?请说明理由. (第21题)

28.(2010江苏淮安,28,12分)如题28(a)图,在平面直角坐标系中,点A坐标为(12,0),点B坐标为(6,8),点C为OB的中点,点D从点O出发,沿△OAB的三边按逆时针方向以2个单位长度/秒的速度运动一周. (1)点C坐标是( ,),当点D运动8.5秒时所在位置的坐标是( ,); (2)设点D运动的时间为t秒,试用含t的代数式表示△OCD的面积S,并指出t为何值 时,S最大; (3)点E在线段AB上以同样速度由点A向点B运动,如题28(b)图,若点E与点D同时 出发,问在运动5秒钟内,以点D,A,E为顶点的三角形何时与△OCD相似(只考虑以点A.O为对应顶点的情况): 题28(a)图题28(b)图 (10江苏南京)21.(7分)如图,四边形ABCD的对角线AC、BD相较于点O,△ABC≌△BAD。求证:(1)OA=OB;(2)AB∥CD. (10江苏南京)28.(8分)如图,正方形ABCD的边长是2,M是AD的中点,点E从点A

青岛版初中数学八年级上册5.6几何证明举例

§5.6 几何证明举例(2) 教学目标: 1. 学生能够证明等腰三角形的性质定理和判定定理。 2. 会运用等腰三角形的性质和判定进行有关的证明和计算。 3. 应用等腰三角形的性质和判定进一步认识等边三角形。 4. 培养学生分析问题和逻辑推理的能力。 教学重、难点: 重点:会证明等腰三角形的性质定理和判定定理。 难点:等腰三角形的性质定理和判定定理的应用。 教学准备: 电子白板、直尺、圆规、直角三角板 教学过程 一、情境导入、复习回顾 1、等腰三角形的性质是什么,这个命题的逆命题是什么? 二、交流展示(鼓励学生自己写出证明的过程,注意几何证明的三步) (1)“等腰三角形的两个底角相等”是真命题吗?怎样证明。 证明:等腰三角形的两个底角相等。 已知:如图,在△ABC中,AB=AC 求证:∠B=∠C 法1 证明:过点A作∠BAC的角平分线交BC于点D ∴∠BAD = ∠CAD (角平分线定义) 在△BAD与△CAD中 ∵AB = AC (已知) ∠BAD = ∠CAD (已证) AD = AD (公共边) ∴△BAD≌△CAD(SAS) ∴∠ B = ∠ C (全等三角形对应角相等) 法2 证明:作BC边上的中线 AD ∴ BD = CD (中线定义) 在△BAD与△CAD中 ∵AB = AC (已知) BD = CD (已证) AD = AD (公共边) ∴△BAD≌△CAD( SSS )

∴∠B = ∠ C (全等三角形对应角相等) (2)“等腰三角形的两个底角相等”的逆命题是真命题吗,怎样证明它的正确性? 证明:有两个角相等的三角形是等腰三角形。 已知:如图,在如图,在△ABC中,∠B=∠C 求证:AB=AC 证明:作AD⊥BC,垂足为D 则∠ADB=∠ADC=90°(垂直的定义), 在△ABD和△ACD中, ∵∠B=∠C (已知), ∠ADB=∠ADC=90°(已证) AD=AD (公共边) ∴△ABD≌△ACD (AAS) ∴AB=AC(全等三角形的对应边相等) (3) 利用等腰三角形的性质定理和判定定理证明: (鼓励学生当老师讲给其他同学听) ①等边三角形的每个内角都是60° ②三个角都相等的三角形是等边三角形。 三、精讲点拨: 1、等腰三角形的性质: 性质1: 性质2: 2、数学语言表达: 性质1:性质2: 在△ABC ∵ AB=AC ∵ AB=AC ∴∠B= ∠C ① AD平分∠BAC (等边对等角) ②AD⊥BC ③ BD=DC ( ①,② ,③均可作为一个条件,推出其他两项 ) (三线合一) 四、典例精析 例1 已知,D是△ABC内的一点,且DE=DC,BD平分∠ABC,CD平分∠ACB 求证:AB=AC

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

八年级上册几何证明题专项练习

八年级上册几何证明题专项练习 1.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB. 2.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 3.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D. (1)求证:AC∥DE; (2)若BF=13,EC=5,求BC的长. 4.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D. 5.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB 求证:AE=CE.

6.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC. 7.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB. 8.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF. 9.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF. 10.如图,已知∠CAB=∠DBA,∠CBD=∠DAC. 求证:BC=AD.

11.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE. 12.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF. 13.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2. (1)求证:BD=CE; (2)求证:∠M=∠N. 14.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E. 求证:△ACD≌△CBE. 15.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,错角相等,同旁角互补.利用这些 性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . ∥= A D B P Q 图1 P E D G A B F C 图2

八年级(上)数学培优专题_如何做几何证明题(含答案)

如何做几何证明题 【知识精读】 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 【分类解析】 1、证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 例1. 已知:如图1所示,?ABC 中,∠=?===C AC BC AD DB AE CF 90,,,。 求证:DE =DF C F B A E D 图1

分析:由?ABC 是等腰直角三角形可知,∠=∠=?A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =,∠=?DCF 45。从而不难发现??DCF DAE ? 证明:连结CD AC BC A B ACB AD DB CD BD AD DCB B A AE CF A DCB AD CD =∴∠=∠∠=?=∴==∠=∠=∠=∠=∠=90,,,, ∴?∴=??A D E CDF DE DF 说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。本题亦可延长ED 到G ,使DG =DE ,连结BG ,证?EFG 是等腰直角三角形。有兴趣的同学不妨一试。 例2. 已知:如图2所示,AB =CD ,AD =BC ,AE =CF 。 求证:∠E =∠F D B C F E A 图2 证明:连结AC 在?ABC 和?CDA 中, AB CD BC AD AC CA ABC CDA SSS B D AB CD AE CF BE DF ===∴?∴∠=∠==∴=,,,??() 在?BCE 和?DAF 中,

平面几何四大定理

. . 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R , 则P 、Q 、R 共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。 求证:FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平 行线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB

DEG 截△ABM →1DB MD GM AG EA BE =??(梅氏定理) DGF 截△ACM →1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE +=MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上, λ===EA CE FB AF DC BD ,AD 、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 B

初中数学所有几何证明定理

初中数学所有几何证明定理 证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里 就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思 维是非常重要的思维方式,在证明题中体现的更加明显。 同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。 例如: 可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要 证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什 么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样 我们就找到了解题的思路,然后把过程正着写出来就可以了。 (3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认 真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知 条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或 平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。 证明题要用到哪些原理?

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。

初二上几何证明题100题专题训练

C A B C D E P 图 ⑴八年级上册几何题专题训练100题 1、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR ∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。 C B 2、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。 3、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。 4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .

5、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。 (1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明); (2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。 6、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD, 连结EC、ED,求证:CE=DE 7、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。 8. 如图,已知△EAB≌△DCE,AB,EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数. A B C O M N

小学数学竞赛几何题集锦

小学数学竞赛几何图形集锦 第一部分基础题 1、(06年清华附中考题) 如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE=13 AB,已知四边形EDCA 的面积是35,求三角形ABC 的面积. 2、(06年西城实验考题) 四个完全一样的直角三角形和一个小正方形拼成一个大正方(如图)如果小正方形面积是1平方米,大正方形面积是5平方米,那麽直角三角形中,最短的直角边长度是______米. 3、(05年101中学考题) 一块三角形草坪前,工人王师傅正在用剪草机剪草坪.一看到小灵通,王师傅热情地招呼,说:“小灵通,听说你很会动脑筋,我也想问问你,这块草坪我把它分成东、西、南、北四部分(如图).修剪西部、东部、南部各需10分钟,16分钟,20分钟.请你想一想修 4、(05年三帆中学考题) 右图中AB=3厘米,CD=12厘米,ED=8厘米,AF=7厘米.四边形ABDE 的面积是平方厘米. 5、 (06年北大附中考题)

三角形ABC 中,C 是直角,已知AC =2,CD =2,CB=3,AM=BM ,那么三角形AMN (阴影部分)的面积为多少? 6、(★★)如右图所示,已知三角形ABC 面积为1,延长AB 至D ,使BD=AB ;延长BC 至E ,使CE=2BC ;延长CA 至F ,使AF=3AC , 求三角形DEF 的面积。 7、(★★)右图是一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30公顷,问图中阴影部分的面积是多少? 8、正方形ABFD 的面积为100平方厘米,直角三角形ABC 的面 积,比直角三角形(CDE 的面积大30平方厘米,求DE 的长是多少? 9、(★★★)如下图,已知D 是BC 的中点,E 是CD 的中点,F 是AC 的中点,且ADG ?的 面积比EFG ?的面积大6平方厘米。?的面积是多少平方厘米 ABC ? A B C D E F G 10、(★★)长方形ABCD 的面积为36平方厘米,E 、F 、G 分别为边AB 、BC 、CD 的中点,H 为AD 边上的任一点。求图中阴影部分的面积是多少?

初二(上)几何证明专题复习精选

初二(上)几何证明专题复习1、如图,点D是△ABC的边AB上一点,点 E为AC的中点,过点C作CF∥AB交DE延 长线于点F.求证:AD=CF. 2、如图,AB=AE,∠1=∠2,∠C=∠D. 求证:△ABC≌△AED. 3、如图,点B、F、C、E在一条直线上,FB=CE AB∥ED,AC∥FD,求证:AC=DF. 4、如图,点B在AE上,点D在AC上, AB=AD.请你添加一个适当的条件,使△ABC ≌△ADE(只能添加一个). (1)你添加的条件是. (2)添加条件后,请说明△ABC≌△ADE的 理由. 5、如图,在△ABC中,∠C=90°,AD平分 ∠CAB,交CB于点D,过点D作DE⊥AB 于点E.(1)求证:△ACD≌△AED; (2)若∠B=30°,CD=1,求BD的长; (3)求△ADB的面积. P1

6、如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.求证:AD=BE. 7、如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l 交l于点D.求证:AC=OD. 8、(2013山西)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点。(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法)。 ①作∠DAC的平分线AM。②连接BE并延长交AM于点F。②连接BE并延长交A (2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由。 9、(2013?南京)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.求证:PM=PN. P2

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边 AB 、BC 、CA 于点D 、E 、F ,且D 、E 、 F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-===-, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、 A B C D F P

F ,且D 、E 、F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交 于点P ,直线CP 交AB 于点D /,则 据塞瓦定理有 //1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有//AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、梅涅劳斯定理 3.梅涅劳斯定理及其证明 定理:一条直线与?ABC 的三 边AB 、BC 、CA 所在直线分别交 于点D 、E 、F ,且D 、E 、F 均不 是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. A B C D F P D / A B C D E F G

初中数学几何证明题含答案

初中数学几何证明题含答 案 Newly compiled on November 23, 2020

初中几何证明题 经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) .如下图做GH ⊥AB,连接EO 。由于GOFE 四点共圆,所以∠GFH =∠OEG, 即△GHF ∽△OGE,可得 EO GF =GO GH =CO CD ,又CO=EO ,所以CD=GF 得证。 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) .如下图做GH ⊥AB,连接EO 。由于GOFE 四点共圆,所以∠GFH =∠OEG, 即△GHF ∽△OGE,可得 EO GF =GO GH =CO CD ,又CO=EO ,所以CD=GF 得证。 .如下图做GH ⊥AB,连接EO 。由于GOFE 四点共圆,所以∠GFH =∠OEG, 即△GHF ∽△OGE,可得 EO GF =GO GH =CO CD ,又CO=EO ,所以CD=GF 得证。 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是 AA 1、BB 1、CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 点,AD 、BC 的延长线交MN 于E 、F . A P C D B C D A F G C E B O D

求证:∠DEN=∠F. 经典题(二) 1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC 于M. (1)求证:AH=2OM; (2)若∠BAC=600,求证:AH=AO.(初二) 2、设MN是圆O外一直线,过O作OA⊥MN于A,自 圆于B、C及D、E,直线EB及CD分别交MN于P、求证:AP=AQ.(初二) 3、如果上题把直线MN 设MN是圆O的弦,过MN的中点A任作两弦分别交MN于P、Q. 求证:AP=AQ.(初二) 4、如图,分别以△ABC的AC和BC为一边,在△ABC 和正方形CBFG,点P是EF的中点. 求证:点P到边AB 1、如图,四边形ABCD 求证:CE=CF 2、如图,四边形ABCD 长线于F. 求证:AE=AF

初二上几何证明题 题专题训练 好题汇编

八年级上册几何题专题训练50题 1. 如图,已知△EAB ≌△DCE ,AB ,EC 分别是两个三角形的最长边,∠A =∠C =35°,∠CDE =100°,∠DEB =10°,求∠AEC 的度数. 2. 如图,点E 、A 、B 、F 在同一条直线上,AD 与BC 交于点O, 已知∠CAE=∠DBF,AC=BD.求证: ∠C=∠D 3.如图,OP 平分∠AOB ,且OA=OB . (1)写出图中三对你认为全等的三角形(注:不添加任何辅助线); (2)从(1)中任选一个结论进行证明. 4. 已知:如图,AB =AC ,DB =DC ,AD 的延长线交BC 于点E ,求证:BE =EC 。 5. 如图,在△ABC 中,AB=AD=DC ,∠BAD=28°,求∠B 和∠C 的度数。 7. 写出下列命题的逆命题, 并判断逆命题的真假.如果是真命题,请给予证明;?如果是假命题,请举反例说明. 命题:有两边上的高相等的三角形是等腰三角形. 8. 如图,在△ABC 中,∠ACB=90o , D 是AC 上的一点,且AD=BC ,DE AC 于D , ∠EAB=90o .求证:AB=AE . 9. 如图,等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,B ,P ,Q 三点在一条直线上,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形试证明你的结论. 10. 如图,△ABC 中,∠C=90°,AB 的中垂线DE 交AB 于E ,交BC 于D ,若AB=13,AC=5,则△ACD 的周长为多少 11. 如图所示,AC ⊥BC ,AD ⊥BD ,AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E ,F ,求证:CE =DF. 12. 如图,已知△ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE ,垂足为E ,AD ⊥CE ,垂足为D. (1)判断直线BE 与AD 的位置关系是____;BE 与AD 之间的距离是线段____的长; (2)若AD =6 cm ,BE =2 cm ,求BE 与AD 之间的距离及AB 的长. 13. 如图,已知 △ABC 、△ADE 均为等边三角形,点D 是BC 延长线上一点,连结CE , 求证:BD=CE 14. 如图,△ABC 中,AB =AC ,∠BAC =120°,AD ⊥AC 交BC ?于点D ,求证:?BC =3AD . 15. 如图,四边形ABCD 中,∠DAB=∠BCD=90°,M 为BD 中点,N 为AC 中点,求证:MN ⊥AC . 16、已知:如图所示,在△ABC 中,∠ABC=45°,CD ⊥AB 于点D ,BE 平分∠ABC ,且BE ⊥AC 于点E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G . (1)求证:BF=A C ;? (2)求证:DG=DF . 6. 如图,B 、D 、C 、E 在同一直线上,AB=AC ,AD=AE ,求证:BD=CE 。 B A E D C

相关文档
最新文档