谈全球复合材料的发展概况

谈全球复合材料的发展概况
谈全球复合材料的发展概况

全球复合材料发展概况

复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。

随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。

从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达14.8万吨,欧洲汽车复合材料用量到2003年估计可达10.5万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达7.5万吨,汽车等领域的用量仅为2.4万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减

振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。

另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。

树脂基复合材料的增强材料

树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。

1、玻璃纤维

目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃纤维属于耐高温的玻璃纤维,是比较理想的耐热防火材料,用其增强酚醛树脂可制成各种结构的耐高温、耐烧蚀的复合材料部件,大量应用于火箭、导弹的防热材料。迄今为止,我国已经实用化的高性能树脂基复合材料用的碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维中,只有高强度玻璃纤维已达到国际先进水平,且拥有自主知识产权,形成了小规模的产业,现阶段年产可达500吨。

2、碳纤维

碳纤维具有强度高、模量高、耐高温、导电等一系列性能,首先在航空航天领域得到广泛应用,

近年来在运动器具和体育用品方面也广泛采用。据预测,土木建筑、交通运输、汽车、能源等领域将会大规模采用工业级碳纤维。1997~2000年间,宇航用碳纤维的年增长率估计为31%,而工业用碳纤维的年增长率估计会达到130%。我国的碳纤维总体水平还比较低,相当于国外七十年代中、末期水平,与国外差距达20年左右。国产碳纤维的主要问题是性能不太稳定且离散系数大、无高性能碳纤维、品种单一、规格不全、连续长度不够、未经表面处理、价格偏高等。

3、芳纶纤维

20世纪80年代以来,荷兰、日本、前苏联也先后开展了芳纶纤维的研制开发工作。日本及俄罗斯的芳纶纤维已投入市场,年增长速度也达到20%左右。芳纶纤维比强度、比模量较高,因此被广泛应用于航空航天领域的高性能复合材料零部件(如火箭发动机壳体、飞机发动机舱、整流罩、方向舵等)、舰船(如航空母舰、核潜艇、游艇、救生艇等)、汽车(如轮胎帘子线、高压软管、摩擦材料、高压气瓶等)以及耐热运输带、体育运动器材等。

4、超高分子量聚乙烯纤维

超高分子量聚乙烯纤维的比强度在各种纤维中位居第一,尤其是它的抗化学试剂侵蚀性能和抗老化性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力。除在军事领域,在汽车制造、船舶制造、医疗器械、体育运动器材等领域超高分子量聚乙烯纤维也有广阔的应用前景。该纤维一经问世就引起了世界发达国家的极大兴趣和重视。

5、热固性树脂基复合材料

热固性树脂基复合材料是指以热固性树脂如不饱和聚酯树脂、环氧树脂、酚醛树脂、乙烯基酯树脂等为基体,以玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等为增强材料制成的复合材料。环氧树脂的特点是具有优良的化学稳定性、电绝缘性、耐腐蚀性、良好的粘接性能和较高的机械强度,广泛应用于化工、轻工、机械、电子、水利、交通、汽车、家电和宇航等各个领域。1993年世界环氧树脂生产

能力为130万吨,1996年递增到143万吨,1997年为148万吨,1999年150万吨,2003年达到180万吨左右。我国从1975年开始研究环氧树脂,据不完全统计,目前我国环氧树脂生产企业约有170多家,总生产能力为50多万吨,设备利用率为80%左右。酚醛树脂具有耐热性、耐磨擦性、机械强度高、电绝缘性优异、低发烟性和耐酸性优异等特点,因而在复合材料产业的各个领域得到广泛的应用。1997年全球酚醛树脂的产量为300万吨,其中美国为164万吨。我国的产量为18万吨,进口4万吨。乙烯基酯树脂是20世纪60年代发展起来的一类新型热固性树脂,其特点是耐腐蚀性好,耐溶剂性好,机械强度高,延伸率大,与金属、塑料、混凝土等材料的粘结性能好,耐疲劳性能好,电性能佳,耐热老化,固化收缩率低,可常温固化也可加热固化。南京金陵帝斯曼树脂有限公司引进荷兰Atlac系列强耐腐蚀性乙烯基酯树脂,已广泛用于贮罐、容器、管道等,有的品种还能用于防水和热压成型。南京聚隆复合材料有限公司、上海新华树脂厂、南通明佳聚合物有限公司等厂家也生产乙烯基酯树脂。

1971年以前我国的热固性树脂基复合材料工业主要是军工产品,70年代后开始转向民用。从1987年起,各地大量引进国外先进技术如池窑拉丝、短切毡、表面毡生产线及各种牌号的聚酯树脂(美、德、荷、英、意、日)和环氧树脂(日、德)生产技术;在成型工艺方面,引进了缠绕管、罐生产线、拉挤工艺生产线、SMC生产线、连续制板机组、树脂传递模塑(RTM)成型机、喷射成型技术、树脂注射成型技术及渔竿生产线等,形成了从研究、设计、生产及原材料配套的完整的工业体系,截止2000年底,我国热固性树脂基复合材料生产企业达3000多家,已有51家通过ISO9000质量体系认证,产品品种3000多种,总产量达73万吨/年,居世界第二位。产品主要用于建筑、防腐、轻工、交通运输、造船等工业领域。在建筑方面,有内外墙板、透明瓦、冷却塔、空调罩、风机、玻璃钢水箱、卫生洁具、净化槽等;在石油化工方面,主要用于管道及贮罐;在交通运输方面,汽车上主要有车身、引擎盖、保险杠等配件,火车上有车厢板、门窗、座椅等,船艇方面主要有气垫船、救生艇、侦察艇、渔船等;在机械及电器领域如屋顶风机、轴流风机、电缆桥架、绝缘棒、集成电路板等产品都具有相当的规模;在航空航天及军事领域,轻型飞机、尾翼、卫星天线、火箭喷管、防弹板、防弹衣、鱼雷等都取得了重大突破。

热塑性树脂基复合材料

热塑性树脂基复合材料是20世纪80年代发展起来的,主要有长纤维增强粒料(LFP)、连续纤维增强预浸带(MITT)和玻璃纤维毡增强型热塑性复合材料(GMT)。根据使用要求不同,树脂基体主要有PP、PE、PA、PBT、PEI、PC、PES、PEEK、PI、PAI等热塑性工程塑料,纤维种类包括玻璃纤维、碳纤维、芳纶纤维和硼纤维等一切可能的纤维品种。随着热塑性树脂基复合材料技术的不断成熟以及可回收利用的优势,该品种的复合材料发展较快,欧美发达国家热塑性树脂基复合材料已经占到树脂基复合材料总量的30%以上。

高性能热塑性树脂基复合材料以注射件居多,基体以PP、PA为主。产品有管件(弯头、三通、法兰)、阀门、叶轮、轴承、电器及汽车零件、挤出成型管道、GMT模压制品(如吉普车座椅支架)、汽车踏板、座椅等。玻璃纤维增强聚丙烯在汽车中的应用包括通风和供暖系统、空气过滤器外壳、变速箱盖、座椅架、挡泥板垫片、传动皮带保护罩等。

滑石粉填充的PP具有高刚性、高强度、极好的耐热老化性能及耐寒性。滑石粉增强PP在车内装饰方面有着重要的应用,如用作通风系统零部件,仪表盘和自动刹车控制杠等,例如美国HPM公司用20%滑石粉填充PP制成的蜂窝状结构的吸音天花板和轿车的摇窗升降器卷绳筒外壳。

云母复合材料具有高刚性、高热变形温度、低收缩率、低挠曲性、尺寸稳定以及低密度、低价格等特点,利用云母/聚丙烯复合材料可制作汽车仪表盘、前灯保护圈、挡板罩、车门护栏、电机风扇、百叶窗等部件,利用该材料的阻尼性可制作音响零件,利用其屏蔽性可制作蓄电池箱等。

我国的热塑性树脂基复合材料的研究开始于20世纪80年代末期,近十年来取得了快速发展,2000年产量达到12万吨,约占树脂基复合材料总产量的17%,,所用的基体材料仍以PP、PA为主,增强材料以玻璃纤维为主,少量为碳纤维,在热塑性复合材料方面未能有重大突破,与发达国家尚有差距。

我国复合材料的发展潜力和热点

我国复合材料发展潜力很大,但须处理好以下热点问题。

1、复合材料创新

复合材料创新包括复合材料的技术发展、复合材料的工艺发展、复合材料的产品发展和复合材料的应用,具体要抓住树脂基体发展创新、增强材料发展创新、生产工艺发展创新和产品应用发展创新。到2007年,亚洲占世界复合材料总销售量的比例将从18%增加到25%,目前亚洲人均消费量仅为0.29kg,而美国为6.8kg,亚洲地区具有极大的增长潜力。

2、聚丙烯腈基纤维发展

我国碳纤维工业发展缓慢,从CF发展回顾、特点、国内碳纤维发展过程、中国PAN基CF市场概况、特点、“十五”科技攻关情况看,发展聚丙烯腈基纤维既有需要也有可能。

3、玻璃纤维结构调整

我国玻璃纤维70%以上用于增强基材,在国际市场上具有成本优势,但在品种规格和质量上与先进国家尚有差距,必须改进和发展纱类、机织物、无纺毡、编织物、缝编织物、复合毡,推进玻纤与玻钢两行业密切合作,促进玻璃纤维增强材料的新发展。

4、开发能源、交通用复合材料市场

一是清洁、可再生能源用复合材料,包括风力发电用复合材料、烟气脱硫装置用复合材料、输变电设备用复合材料和天然气、氢气高压容器;二是汽车、城市轨道交通用复合材料,包括汽车车身、构架和车体外覆盖件,轨道交通车体、车门、座椅、电缆槽、电缆架、格栅、电器箱等;三是民航客机用复合材料,主要为碳纤维复合材料。热塑性复合材料约占10%,主要产品为机翼部件、垂直尾翼、机头罩等。我国未来20年间需新增支线飞机661架,将形成民航客机的大产业,复合材料可建成新产业与之相配套;四是船艇用复合材料,主要为游艇和渔船,游艇作为高级娱乐耐用消费品在欧美有很大市场,由于我国鱼类资源的减少、渔船虽发展缓慢,但复合材料特有的优点仍有发展的空间。

5、纤维复合材料基础设施应用

国内外复合材料在桥梁、房屋、道路中的基础应用广泛,与传统材料相比有很多优点,特别是在

桥梁上和在房屋补强、隧道工程以及大型储仓修补和加固中市场广阔。

6、复合材料综合处理与再生

重点发展物理回收(粉碎回收)、化学回收(热裂解)和能量回收,加强技术路线、综合处理技术研究,示范生产线建设,再生利用研究,大力拓展再生利用材料在石膏中的应用、在拉挤制品中的应用以及在SMC/BMC模压制品中的应用和典型产品中的应用。

21世纪的高性能树脂基复合材料技术是赋予复合材料自修复性、自分解性、自诊断性、自制功能等为一体的智能化材料。以开发高刚度、高强度、高湿热环境下使用的复合材料为重点,构筑材料、成型加工、设计、检查一体化的材料系统。组织系统上将是联盟和集团化,这将更充分的利用各方面的资源(技术资源、物质资源),紧密联系各方面的优势,以推动复合材料工业的进一步发展。

世界核电技术发展简史

世界核电技术发展简史 1、第一代核电技术 即早期原型反应堆,主要目的是为通过试验示范形式来验证核电在工程实施上的可行性。 前苏联在1954年建成5兆瓦实验性石墨沸水堆型核电站;英国1956年建成45兆瓦原型天然铀石墨气冷堆型核电站;美国1957年建成60兆瓦原型压水堆型核电站;法国1962年建成60兆瓦天然铀石墨气冷堆型核电站;加拿大1962年建成25兆瓦天然铀重水堆型核电站。这些核电站均属于第一代核电站。 2、第二代核电技术 第二代核电技术是在第一代核电技术的基础上建成的,它实现了商业化、标准化等,包括压水堆、沸水堆和重水堆等,单机组的功率水平在第一代核电技术基础上大幅提高,达到千兆瓦级。 在第二代核电技术高速发展期,美、苏、日和西欧各国均制定了庞大的核电规划。美国成批建造了500至1100兆瓦的压水堆、沸水堆,并出口其他国家;前苏联建造了1000兆瓦石墨堆和440兆瓦、1000兆瓦VVER型压水堆;日本和法国引进、消化了美国的压水堆、沸水堆技术,其核电发电量均增加了20多倍。 美国三里岛核电站事故和前苏联切尔诺贝利核电站事故催生了第二代改进型核电站,其主要特点是增设了氢气控制系统、安全壳泄压装置等,安全性能得到显著提升。此前建设的所有核电站均为一代改进堆或二代堆,如日本福岛第一核电站的部分机组反应堆。我国目前运行的核电站大多为第二代改进型。 3、第三代核电技术 指满足美国“先进轻水堆型用户要求”(URD)和“欧洲用户对轻水堆型核电站的要求”(EUR)的压水堆型技术核电机组,是具有更高安全性、更高功率的新一代先进核电站。 第三代先进压水堆型核电站主要有ABWR、System80+、AP600、AP1000、EPR、ACR等技术类型,其中具有代表性的是美国的AP1000和法国的EPR。中国已引进AP1000等技术,分别在浙江三门和山东海阳等地开工建造。 4、第四代核电技术 第四代核电是由美国能源部发起,并联合法国、英国、日本等9个国家共同研究的下一代核电技术。目前仍处于开发阶段,预计可在2030年左右投入应用。第四代核能系统将满足安全、经济、可持续发展、极少的废物生成、燃料增殖的风险低、防止核扩散等基本要求。

航空航天复合材料技术发展现状

航空航天复合材料技术发展现状 2008-11-25 中国复合材料在线[收藏该文章] 材料的水平决定着一个领域乃至一个国家的科技发展的整体水平;航空、航天、空天三大领域都 对材料提出了极高的要求;材料科技制约着宇航事业的发展。 固体火箭发动机以其结构简单,机动、可靠、易于维护等一系列优点,广泛应用于武器系统及航 天领域。而先进复合材料的应用情况是衡量固体火箭发动机总体水平的重要指标之 一。在固体发动机研制及生产中尽量使用高性能复合材料已成为世界各国的重要发展目标, 目前已拓展到液体动力领域。科技发达国家在新材料研制中坚持需求牵引和技术创新相结合,做到了需求牵引带动材料技术发展,同时材料技术创新又推动了发动机水平提高的良性发展。 目前,航天动力领域先进复合材料技术总的发展方向是高性能、多功能、高可靠及低成本。 作为我国固体动力技术领域专业材料研究所,四十三所在固体火箭发动机各类结构、功能复合材料研究及成型技术方面具有雄厚的技术实力和研究水平,突破了我国固体火箭发动 机用复合材料壳体和喷管等部件研制生产中大量的应用基础技术和工艺技术难关,为我国的 固体火箭发动机事业作出了重要的贡献,同时牵引我国相关复合材料与工程专业总体水平的 提高。建所以来,先后承担并完成了通讯卫星东方红二号远地点发动机,气象卫星风云二号 远地点发动机,多种战略、战术导弹复合材料部件的研制及生产任务。目前,四十三所正在 研制多种航天动力先进复合材料部件,研制和生产了载人航天工程的逃逸系统发动机部件。 二、国内外技术发展现状分析 1、国外技术发展现状分析 1.1结构复合材料 国外发动机壳体材料采用先进的复合材料,主要方向是采用炭纤维缠绕壳体,使发动机质量比有较大提高。如美国“侏儒”小型地地洲际弹道导弹三级发动机(SICBM-1 、-2、- 3 )燃烧室壳体由IM-7炭纤维/HBRF-55A 环氧树脂缠绕制作,IM-7炭纤维拉伸强度为 5 300MPa , HBRF-55A 环氧树脂拉伸强度为84.6MPa,壳体容器特性系数(PV/Wc )>3 9KM ;美国的潜射导弹“三叉戟II (D5 )”第一级采用炭纤维壳体,质量比达0.944,壳 体特性系数43KM,其性能较凯芙拉/环氧提高30% 国外炭纤维的开发自八十年代以来,品种、性能有了较大幅度改观,主要体现在以下两个方 面:①性能不断提高,七、八十年代主要以3000MPa的炭纤维为主,九十年代初普遍使用 的IM7、IM8纤维强度达到5300MPa,九十年代末T1000纤维强度达到7000MPa,并已开始工程应用;②品种不断增多,以东丽公司为例,1983年产的炭纤维品种只有4种,至U 1995 年炭纤维品种达21种之多。不同种类、不同性能的炭纤维满足了不同的需要,为炭纤维复合材料的广泛应用提供了坚实的基础。 芳纶纤维是芳族有机纤维的总称,典型的有美国的Kevlar、俄罗斯的APMOC,均已在多 个型号上得到应用,如前苏联的SS24、SS25洲际导弹。俄罗斯的APMOC纤维生产及其应 用技术相当成熟,APMOC纤维强度比Kevlar高38%、模量高20%,纤维强度转化率已达到75%以上。PBO纤维是美国空军1970年开始作为飞机结构材料而着手研究的产品,具有刚

世界各国钢材牌号对照表

一、我国钢号表示方法概述 钢的牌号简称钢号,是对每一种具体钢产品所取的名称,是人们了解钢的一种共同语言。我国的钢号表示方法,根据国家标准《钢铁产品牌号表示方法》(GB221-79)中规定,采用汉语拼音字母、化学元素符号和阿拉伯数字相结合的方法表示。即: ①钢号中化学元素采用国际化学符号表示,例如Si,Mn,Cr……等。混合稀土元素用“RE”(或“Xt”)表示。 ②产品名称、用途、冶炼和浇注方法等,一般采用汉语拼音的缩写字母表示,见表。 ③钢中主要化学元素含量(%)采用阿拉伯数字表示。表:GB标准钢号中所采用的缩写字母及其涵义

二、我国钢号表示方法的分类说明 1.碳素结构钢 ①由Q+数字+质量等级符号+脱氧方法符号组成。它的钢号冠以“Q”,代表钢材的屈服点,后面的数字表示屈服点数值,单位是MPa例如Q235表示屈服点(σs)为235 MPa 的碳素结构钢。 ②必要时钢号后面可标出表示质量等级和脱氧方法的符号。质量等级符号分别为A、 B、C、D。脱氧方法符号:F表示沸腾钢;b表示半镇静钢:Z表示镇静钢;TZ表示特殊镇静钢,镇静钢可不标符号,即Z和TZ都可不标。例如Q235-AF表示A级沸腾钢。 ③专门用途的碳素钢,例如桥梁钢、船用钢等,基本上采用碳素结构钢的表示方法,但在钢号最后附加表示用途的字母。 2.优质碳素结构钢

①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.45%的钢,钢号为“45”,它不是顺序号,所以不能读成45号钢。 ②锰含量较高的优质碳素结构钢,应将锰元素标出,例如50Mn。 ③沸腾钢、半镇静钢及专门用途的优质碳素结构钢应在钢号最后特别标出,例如平均碳含量为0.1%的半镇静钢,其钢号为10b。 3.碳素工具

海南热带花卉产业现状及趋势

目录: 前言 1花卉产业的定义及其特点 2花卉产业的现状 3海南省发展花卉生产的有利条件 气候优势条件 资源优势条件 其他优势条件 4花卉生产中存在的问题产品缺乏特色、品质不良 政府导向不力、发展盲目性较大缺乏统一规划、布局不合理政策导向不力花卉科研、新品种开发滞后保鲜技术落后、交通不便组织不完善、缺乏中介机构信息不畅、缺乏销售平台5海南花卉产业的发展思路特色产品定位——热带花卉区域布局、重点突出引种与科研相结合加强保鲜技术的应用、完 善交通网络 龙头企业、花协带动 完善信息体系、构建销售平台 6结语

摘要:由于消费水平的提高和全球花卉热的形成,特别是发展中国家花卉业的兴起,导致了花卉业的激烈竞争,这就迫使花卉业要充分发挥自身优势,生产出特色产品、品牌产品,以使在竞争中立于不败之地。因此,海南作为一个新兴的花卉大省,必须走特色之路,充分利用自身资源发展热带花卉。然而,海南花卉业存在:由于起步晚、产业基础较差、产销分离、信息滞后、没有相应的销售平台等等一系列问题。本文通过针对海南特有的地理、气候、花卉种质、土地和劳动力等方面的资源特点,就海南花卉产业的发展现状,浅议发展海南花卉产业应如何定位及其应对策略。

关键词:花卉产业市场定位热带花卉 前言 花卉是世界各国农业中唯一不受农产品配额限制和21 世纪最有希望的农业产业和环境产业之一,被誉为“朝阳产业”。花卉产品逐渐成为国际贸易的大宗商品。随着品种的改进,包装、保鲜技术的应用和交通运输条件的改善,花卉市场日趋国际化。花卉生产专业化、管理现代化、产品系列化、周年供应等已成为花卉生产发展的主要特色。2000 年中国花卉种植面积已达万 hm2,销售额540 亿元,出口创汇亿美元,生产面积居世界第一,占世界生产面积的1/3 以上。但产值却不到世界花卉总产值的1%。世界花卉出口贸易额为70 亿美元,荷兰占70%,而中国却占不足 4%[ 1] 。究其原因主要是由于中国花卉综合生产配套技术水平低下,管理不到位,产品质量差,缺乏国际竞争力。 在了解花卉产业的发展之前,先 来认识一下花卉这种活体商品的产业特性,以便于理解其市场、技术与生产的独特关系。在生产方面,花卉如一般农作物受气候、地理与生产技术的限制,尽管新的生产技术试图克服自然条件的束缚,但为价格竞争的生产成本考虑,适地适种仍是影响生产区位的基木因子。在市场方面,作为商品作物,花卉较蔬果更属非民生必须的奢侈性文化商品,因此对市场的消费能力至为敏感,一旦其市场面临经济停

当今世界各国核电发展情况介绍

当今世界各国核电发展情况介绍 导语:全球首座商用核动力电站开始于20世纪50年代,目前全球有445座商用核动力反应堆在31个国家运行,总装机容量达387GW,另有64座在建。作为持续、可靠的低碳能源,核电已向全球提供超过11%的电能。此外,还有大约240座研究堆运行在56个国家,180座动力堆为大约140支舰船、潜艇提供着动力。总体情况核裂变能技术(特定原子核分裂释放大量能量)首先发展于20世纪40年代,从二战期间直到1945年,研究主要集中在利用特定核素(铀或钚)的原子核分裂所释放出的大量能量以制造炸弹,即原子弹。到20世纪50年代,核裂变能技术开始转向和平利用,主要是用于核动力发电。如今,在世界电力能源中,核电已具备举足轻重的地位。目前,民用核电已拥有超过1.65万堆年的运行经验,并且占世界电力能源供给的11.5%(来自31个国家的核动力发电)。另外许多国家建造了不少研究堆,一方面为科学研究提供中子源束流;另一方面用于制造医用、工业用同位素。众所周知,目前仅有8个国家具有核武器制造能力。于此相比,却有56个国家运行着大约240座民用研究堆。超过1/3存在于发展中国家。目前31个国家拥有445台商业核动力反应堆,总装机容量达387GW,这一发电量超过法国或德国所有电力来源的3

倍不止。另外还有64座商用核动力反应堆在建,相当于目前核电装机容量的18%。同时,已有150多座商用核动力反应堆具有明确的建设计划,相当于目前核电装机容量的一半。全球16个国家在很大程度上依赖于核电,其核电占比超过本国电力供给的1/4。法国电力来源中,核电贡献3/4左右;比利时、捷克、芬兰、匈牙利、斯洛伐克、瑞典、瑞士,斯洛文尼亚,乌克兰等国的核电占比达1/3或更多;南韩、保加利亚核电提供30%以上的电能;美国、英国、西班牙、罗马尼亚核电占各国电能的20%;日本过去很大成分上依赖核电,占比超过1/4,目前期望返回当时水平。在那些不持有核电厂的国家中,意大利和丹麦,能源供给中,有10%来自于核电。世界各国情况中国中国政府计划到2020年,核电装机容量将达到在运58GW,在建30GW。从2002年到2015年内,中国已完成了28台新核电机组的建造及开始运营。目前已有33台机组在运,22台机组在建,其中包括4台AP1000核电机组(全球首堆)和高温气冷堆示范电厂,更多机组还在计划建造中,可能将会在三年内开始。另外,中国已经开始了出口国产反应堆设计,中国核反应堆技术的研究与发展同样是首屈一指。印度根据国家能源政策,印度核电发展目标是:到2020年达到装机14.5 GW,包括轻水堆、重水堆及快堆。目前,印度除了21台机组已在运外,另外还有6台机组在建,包括国产和进口的设

从世界钢铁产量排名看钢铁消耗(终审稿)

从世界钢铁产量排名看 钢铁消耗 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

现代钢铁工业始建于19世纪初期,至今已有百年历史。但直到第二次世界大战前,钢铁工业发展缓慢,产量有限,生产国不多,且分布十分集中。1937年总产量1.1亿吨,多分布在大西洋北部沿岸地区,美国和西欧共占总产量的3/4,再加上原苏联则达87.5 %。这是战前世界三大钢铁生产地区。其形成的主要因素:西欧是资本主义工业化的源地,开发较早;美国起步迟,但发展迅速;苏联十月革命后,由于经济发展与国防的需要,大大加快了钢铁工业的发展。各国丰富的煤铁资源,有利的经济技术和方便的运输条件都给各国钢铁工业发展提供了物质基础。 战后,特别是50年代以来,世界钢铁工业迅猛地发展,产量倍增,钢铁工业地域结构也随之发生变化。50~60年代是世界钢铁产量迅猛发展时期。1950年只产1.89亿吨,而1968、1972、1974年分别超过5亿吨、6亿吨、7亿吨,到1979年达7.4亿吨,其间净增5.5亿多吨,年平均增长1900万吨。同期,年产1000万吨以上的国家由4个增加到16个,并出现了设备能力超过1亿吨的国家。进入80年代,世界性经济危机造成市场萎缩,能源供给紧张,发达国家产业结构的大调整等等,致使钢铁工业开工不足,产量停滞或下降。产量维持在6.7~9亿吨。 从50年代中期开始,日本钢铁工业发展极为迅速,先后超过法国、英国、原联邦德国,到1980年超过美国跃居世界第二位。同期,原苏联大力发展钢铁工业,于1971年超过美国,登上“冠军”宝座。进入70年代后,亚非拉发展中国家钢铁工业日益壮大,产量成倍增长。亚洲的中国、印度、朝鲜发展迅速,特别是中国1982年超过原联邦德国成为世

2018-2019-世界花卉产业发展趋势-word范文 (3页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 世界花卉产业发展趋势 随着世界花卉生产的不断扩大,市场竞争日趋激烈,各国都在利用自身优势,采取相应对策,保住或开拓国际花卉市场的份额。下面是小编为你整理的 世界花卉产业发展趋势,供大家阅览! 世界花卉产业发展趋势 随着花卉商品国际化程度提高,欧美国家一些有眼光的公司都意识到取长 补短、加强合作,才能共同谋取到更大的利益,在国际竞争中立于不败之地, 这已成为现代花卉企业的发展方向。合作经营或联合经营,主要表现为生产上 的合作和贸易上的合作两方面。如荷兰的CAN和IBC等合作组织,农民加入后,该组 织可高额投资购置大型设备,为农民提供生产加工的场地和生产花卉必需 的设备。在经营和贸易上的合作,可以实现利益共享,风险共担,最大限度地 保护了生产者和经营者的利益。另一方面,随着花卉产业的日趋兴旺,一些实 力雄厚的贸易公司或实业公司涉足花卉业,使世界花卉业的发展更添生机。如 日本麒麟啤酒集团通过数次跨国并购花卉企业,现已基本形成一个有影响的国 际花卉企业。 世界切花品种从过去的四大切花为主导变为以月季、菊花、香石竹、百合、唐菖蒲、郁金香、大惠兰等为主要种类,盆栽植物以球根秋海棠、印度胶榕、凤梨科植物、龙血树、杜鹃花、万年青、一品红等最为畅销。而近年来,一些 新品种受到欢迎。如大花飞燕草、乌头属、风铃草属、羽衣草属、熊耳草属、 石竹属、丁香属花卉以及在南美、非洲和热带地区开发的花卉种类在市场上受 到欢迎。 我国花卉产业发展概况 改革开放以来,特别是近年来,随着经济的发展和人们生活水平的提高,以及城市园林建设步伐加快,人们对花卉消费水平在不断提高,市场需求日益 增加,国内流通网络初步形成,我国花卉业出现了快速发展的新局面。据统计1990~201X年间,全国花卉生产面积由4万多公顷扩大到24.6万公顷,年均增 长17.95%;销售额由12亿元增加到215.8亿元,年均增长30.04%;鲜切花产量 由2.2亿支增加到37亿支,年均增长29.25%;盆栽植物由1.6亿盆增加到10.5

(发展战略)世界核电发展概述 中国核电建设简史

世界核电发展概述 中国核电建设历程 (一)世界核电发展概述 1954年6月27日投入使用的世界最早核电站—莫斯科西南110公里的奥布宁斯克核电站,5MW容量。(于2002年4月30日关闭,现改建一所博物馆。) 1960年美国核能发电占总电能的0.1%。(当时只美国有规模核电) 1970年有核电的国家核电量占总电量的百分比:美国1.4%;苏联0.5%;日本1.5%;西德3.7%。 1980年有核电的国家核电量占总电量的百分比:美国11.0%;苏联5.4%;日本16.0%;西德14.2%。 1980年主要国家核电装机容量:美国5649万千瓦;苏联1230万千瓦;日本1569万千瓦。 1980年全球核电占发电量的16%。 1981年主要国家核电装机容量:美国6074万千瓦;苏联1450万千瓦;日本1626万千瓦。 1982年11月法国核电装机容量2200万千瓦,占总装机容量的33.8%。法有22台90万千瓦核电机组投入生产。 1982年11月英国核电装机容量占总电量的8.1%。 1983年5月5日签订中法核电合作备忘录,计五条。主要内容:法国供四座核岛,常规岛英国两套,法选两套,均由法总设计。 1983年10月11日。国际原子能机构27届大会一致通过决议,接纳中华人民共和国为该机构成员国。 1985年12月12日中法广东核电站谈判达成协议。由法国法马通公司向中国提供两座90万千瓦反应堆。

1986年4月26日,苏联基辅北180公里的切尔诺贝利核电站发生严重事故,放射性物质泄漏,传播到北欧一带,苏要求瑞典帮助,大火七天扑灭。其原因是人为连续违反操作规程而导致,安全壳不能全包容而向外泄漏。 1990年初,宜宾核燃料元件厂开始生产,供秦山核电站核燃料组件。95年1月起,向大亚湾核电站提供更换的燃料组件。 1991年12月大亚湾核电站第一台投产,填补我国核电的空白。 1991年12月31日,中国—巴基斯坦核电站合作合同签字。中国30万千瓦核电站和平利用于巴,接受国际原子能机构监督。 1992年12月18日中俄签订核电站合作协定。关于两台100万级核电机组的核电站项目。 1994年4月我国自行研究、设计和建设的第1座核电站-秦山核电站正式投入商业运行。 1996年12月27日,在莫斯科签订俄罗斯提供两台百万千瓦压水堆(VVER-1000型)核电机组合同。厂址在江苏连云港,称田湾核电站。 1996年世界核电所占比率最高的国家:法国核电占总电量的78.2% 。 1999年各国核发电量(单位:亿千瓦时):美国7778.9、法国3942.4、日本3166.2、德1700.0、俄国1218.8、英国962.8、加拿大734.9、中国149.5。 2001年4月19日报道,核电专用电缆在天津诞生,核二院等单位研制1E级K3类电缆通过专家鉴定,国内首家寿命达到50年。 2001年4月19日,日本高濱关西电力公司属下1号核电厂发生泄漏事故,将负荷降至75%,对泄漏详细检查。 2001年5月17日报道,我国新一代、第一座高温气冷核反应堆在京建成。世界最新技术,继美、英、德、日后第五个掌握的国家。

纤维复合材料行业“十三五”发展规划

纤维复合材料行业“十三五”发展规划 进入“十二五”以来,玻璃纤维复合材料工业,在发展规划的引导下,克服世界经济持续低迷和国内经济转型的种种实际困难,发展取得长足进步。玻璃纤维行业,在池窑技术不断完善提升和实现新突破的同时,制品深加工发展成为所有企业的关注焦点,全行业发展战略结构大调整的“十二五”规划目标初步实现。复合材料行业,复合材料产品制造工艺技术与装备水平稳步提升,产品应用领域不断拓展和扩大。随着玻璃纤维复合材料工业不断发展壮大和延伸,“十三五”期间,作为纤维复合材料产业链的主体,将全面实现整合和提升,并由此带动整个纤维复合材料产业的发展和壮大。 一、玻璃纤维行业发展现状分析 根据国内外市场形势的变化,《玻璃纤维行业“十二五”发展规划》提出了“全行业进行发展战略结构大调整,从以发展池窑为中心,转移到完善提升池窑技术、重点发展玻纤制品加工业为主的方向上来”的行业发展战略大调整。在此战略规划的引导下,一方面大型池窑企业积极实施精细化管理,进行工艺技术改造和产能结构调整;另一方面球窑、坩埚等中小企业积极实施转产制品深加工业,全行业积极培育和打造大型制品深加工生产基地。 1、玻纤纱: 经过努力,全行业成功扭转了玻纤纱产能过快增长的势头,产量增速已连续多年保持在个位数。同时,玻纤纱产能结构明显优化,池窑拉丝比例进一步提升至90%以上,玻纤纱品种由普通中碱和无碱纱为主,转变为以无氟无硼高性能玻纤纱为主,并能根据市场和客户需求实现差异化生产,满足风电、化工、电绝缘、建筑、热塑等不同领域。 代铂坩埚纱产能持续减少。球窑及坩埚生产企业环保、能耗及招工压力不断加大,同时在产品结构方面又逐步受到池窑生产企业的挤压,因此近年来球窑产能规模持续萎缩。截止到2014年底,球窑产能规模约为35万吨,其中无碱球窑产年产量仅为10万吨左右,大批坩埚拉丝生产企业已经或正在实施转产转型。 池窑企业数量和规模相对稳定。截止到2014年底,国内池窑企业21家,池窑产能总规模达到331万吨,其中三大玻纤——巨石、泰山、重庆的合计产能

世界花卉产业概貌

世界花卉产业概貌 发布时间:2004-12-25 花卉生产贸易先进国 1.荷兰世界上最大的花卉生产和出口国,素有“欧洲花园”的美誉,花卉品种已超过11000个,其中以郁金香最为闻名,其培育的郁金香品种约700种,远销100多个国家和地区。 2.哥伦比亚世界第二大鲜花生产和出口国。地处赤道附近,南美洲西北部,首都波哥大郊区是该国切花的主要产地,全年温度在10-25℃,四季如春。哥伦比亚以盛产鲜花闻名于世。 3.以色列鲜花出口位居世界第三。以色列花卉种植面积约为2000公顷,每年生产切花15亿支以上。其中,最多的属玫瑰,约占2/3;其他是康乃馨、百合花等。 4.泰国世界花卉主产国、最大兰花出口国,1998年出口额为4500万美元。 5.马来西亚 1993年花卉种植总面积为1286公顷,金马伦高地、吉隆坡、柔佛为主产区,马政府计划大力发展兰花。该国切花产值2000万美元以上。 6.伊朗 1999年有4000多个花卉生产单位,生产的花卉有2000多种,其中有50多种花卉用于出口,创汇能力可达3亿美元,但由于缺乏花卉出口基地,实际出口值仅1.8亿美元。 7.新加坡花卉业十分发达,其野生资源丰富,境内拥有多个兰花植物园,拥有兰花种类数百种。1995年新加坡向日本、澳大利亚、美国及欧洲等国家和地区出口价值4.2亿人民币的热带兰花切花,约占世界热带兰切花市场份额的10%。出口的兰花中以国花——胡姬花著称于世。 8.印度印度花卉业通常划分成3部分:①切花、切叶(包括鲜花和干燥产品及增值产品),观叶花卉总面积中约2/3是传统花卉,另1/3用于生产切花。其观叶植物有树类、龙血树类、长寿花、杜鹃类、秋海棠类、花叶万年青类、一品红、非洲紫罗兰等。②苗圃业,包括花籽、球根、组培苗及其他苗木。花籽的生产已普遍,但仅由少数公司出售,也有唐昌蒲、百合的球根在北部山区生产。目前已有30余家单位生产组培苗,年生产能力4000万株以上。晚香玉和非洲菊已普遍采用组培苗。

世界核电发展概述中国核电建设简史

世界核电发展概述中国核电建设简史 中国核电建设历程 (一)世界核电进展概述 1954年6月27日投入使用的世界最早核电站—莫斯科西南110公里的奥布宁斯克核电站,5MW容量。(于2002年4月30日关闭,现改建一所博物馆。) 1960年美国核能发电占总电能的0.1%。(当时只美国有规模核电) 1970年有核电的国家核电量占总电量的百分比:美国1.4%;苏联0.5%;日本1.5%;西德3.7%。 1980年有核电的国家核电量占总电量的百分比:美国11.0%;苏联5.4%;日本16.0%;西德14.2%。 1980年要紧国家核电装机容量:美国5649万千瓦;苏联1230万千瓦;日本1569万千瓦。 1980年全球核电占发电量的16%。 1981年要紧国家核电装机容量:美国6074万千瓦;苏联1450万千瓦;日本1626万千瓦。 1982年11月法国核电装机容量2200万千瓦,占总装机容量的33.8%。法有22台90万千瓦核电机组投入生产。 1982年11月英国核电装机容量占总电量的8.1%。 1983年5月5日签订中法核电合作备忘录,计五条。要紧内容:法国供四座核岛,常规岛英国两套,法选两套,均由法总设计。 1983年10月11日。国际原子能机构27届大会一致通过决议,接纳中华人民共和国为该机构成员国。 1985年12月12日中法广东核电站谈判达成协议。由法国法马通公司向中国提供两座90万千瓦反应堆。

1986年4月26日,苏联基辅北180公里的切尔诺贝利核电站发生严峻事故,放射性物质泄漏,传播到北欧一带,苏要求瑞典关心,大火七天扑灭。其缘故是人为连续违反操作规程而导致,安全壳不能全包容而向外泄漏。 1990年初,宜宾核燃料元件厂开始生产,供秦山核电站核燃料组件。95年1月起,向大亚湾核电站提供更换的燃料组件。 1991年12月大亚湾核电站第一台投产,填补我国核电的空白。 1991年12月31日,中国—巴基斯坦核电站合作合同签字。中国30万千瓦核电站和平利用于巴,同意国际原子能机构监督。 1992年12月18日中俄签订核电站合作协定。关于两台100万级核电机组的核电站项目。 1994年4月我国自行研究、设计和建设的第1座核电站-秦山核电站正式投入商业运行。 1996年12月27日,在莫斯科签订俄罗斯提供两台百万千瓦压水堆(VVER-1000型)核电机组合同。厂址在江苏连云港,称田湾核电站。 1996年世界核电所占比率最高的国家:法国核电占总电量的78.2% 。 1999年各国核发电量(单位:亿千瓦时):美国7778.9、法国3942.4、日本3166.2、德1700.0、俄国1218.8、英国962.8、加拿大734.9、中国149.5。 2001年4月19日报道,核电专用电缆在天津产生,核二院等单位研制1E级K3类电缆通过专家鉴定,国内首家寿命达到50年。 2001年4月19日,日本高濱关西电力公司属下1号核电厂发生泄漏事故,将负荷降至75%,对泄漏详细检查。 2001年5月17日报道,我国新一代、第一座高温气冷核反应堆在京建成。世界最新技术,继美、英、德、日后第五个把握的国家。

复合材料的发展概述

复合材料的发展 摘要:材料是科学技术发展的基础,复合材料作为最新发展起来的一大类新型材料,对科学技术的发展产生了极大的推动作用。对航空航天事业的影响尤为显著。复合材料的发展近几十年来极为迅速。从最早出现的宏观复合材料,如水泥与砂石、钢筋复合而成的混凝土,到随后发展起来的微观复合材料:聚合物基、金属基和无机非金属材料基复合材料。各种新型复合材料及其制备技术犹如雨后春笋般出现,同时,随着科学技术的发展,特别是尖端科学技术的突飞猛进,对材料的性能要求越来越高,因而对复合材料也提出了更高的要求。 前言 复合材料与金属、高聚物、陶瓷并称为四大材料。今天,一个国家或地区的复合材料公业水平,已经成为衡量其科技以经济实力的标志之一,先进复合材料是国家安全和国民经济具有竞争力优势的源泉。在未来的发展中,只有复合材料有可能大概率的提高。 环氧树脂是优良的反应固化型性树脂,在纤维增强复合材料领域中,环氧树脂大型身手,它与高性能纤维PAN基碳纤维、芳纶纤维、聚乙烯纤维、玄武岩纤维、S与E玻璃纤维复合,便成为不可代替的重要的基体纤维和结构纤维,广泛运用在电子电力、航空航天、运动器材、建筑补强、压力管维、化工防腐等

六大领域。普遍认为今后先进复合材料将按四个方向发展,即低成本、高性能、多功能和智能化。本文简要介绍这四个方面的发展前景。 关键词:低成本;多功能;高性能;智能化 经过20世界60年代末期使用,树脂基高性能复合材料被用于飞机的承力结构,后又逐渐进入工业其他领域。70年代末期发展出了用高强度、高模量的耐热碳纤维和陶瓷纤维与金属复合,特别是鱼轻金属复合,形成了金属基复合材料,克服了树脂基复合材料耐热性差、导热性低等缺点,已广泛应用于航空航天等高科技领域。80年代开始,逐渐出现了陶瓷复合材料。复合材料因其具有可设计的特点受到广泛的重视,因而发展极快。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达14.8万吨,欧洲汽车复合材料用量到2003年估计可达10.5万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达7.5万吨,汽车等领域的用量仅为2.4万吨。不过从全球范围看,汽车是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振

我国核能发展现状

我国核能发展现状 目前我们国家核能起着相当重要的作用,核能的和平利用是20世纪人类最伟大的成就之一,经过半个多世纪的发展,核技术已经渗透到能源、工业、农业、医疗、环保等各个领域,特别是核能在电力工业成功运用,为提高各位人们的生活质量与水平作出了重要贡献。 目前核电约占世界总发电量的16%,与水电、火电一起构成电力能源三大支柱,核能技术不断发展和进步寄托着人类对未来的希望,它将成为最终解决全球可持续发展的综合能源之一。世界50多年的核能发展表明,核能不失为一种清洁、安全和经济的能源,随着我国经济的持续高速发展,毕竟对能源提出快速增长要求,而我国目前以煤炭为主的能源结构又与日益严重的环境问题日益相关,所以发展核能是解决我国能源短缺、改善能源结构、控制环境污染、保障能源结构重要途径之一。 中国建设的第一座核电厂1991年建成投产,结束了中国大陆无核电力的历史,1994年投产大电站,1996年中国又自主设计建设了二级核电站,三级核电站,随着最近广东核电厂投入,我国目前公共12组核电机组投入运行,运行的核电机组安全状况良好,平均用于值可达到85%,核电辐射水平一直保持在本地水平。 到目前为止我国已合作了12个核电项目,共31台机组,合作规模达到3378万千瓦,已开工建设24台,建成规模2660万千瓦。核电作为我国新能源的主力军,正面临着难得的发展机遇,进入了批量化、规模化的发展阶段,目前我国引进三代核技术AP1千以及EP2顺利建成,它在中国经济快捷的发展,对核燃料的高效利用以及对减少高排放物发挥了重大的效应。 07年3月,随着中美间两份重要协议《核岛供货合同框架协议》和《技术转让合同的框架协议》的签署,美国西屋公司和绍尔公司组成的西屋联合体在中国的第三代核电招标中正式中标,AP1000成为三代核电自主化依托项目所选择的技术路线,世界上最先进的第三代核电技术AP1000落户中国。 AP1000技术虽然先进,但到目前为止世界上尚没有一座建成的电站,中国将是第一个“品尝”这一技术的国家。我国的研究人员从AP600到AP1000进行了十多年的研究,对这一技术有较深入的了解。第三代技术是从第二代发展来的,其主要系统均有工程实践,只是核电站安全系统设计理念不同,AP1000使用的是非能动的方式。 作为第三代核电站,AP1000具有良好的安全性和经济性。第二代核电站主要是上世纪70年代根据当时安全法规设计的。其设计基准不考虑核电站严重事故(如

世界核电站建设现状及前景

世界核电站建设现状及前景 胡经国 人类使用的能源已由木材时代、煤炭时代、石油时代进入到核能时代。利用核裂变反应产生的巨大能量—核裂变能(本文所说的核能是指核裂变能)发电已有30多年的历史。今天,核能已成为技术上最成熟、安全、经济、清洁、最有潜力和发展前途的一种新能源。在当今世界能源日益紧缺的情况下,建设核电站对于世界经济的发展具有重要的战略意义。尽管发生了美国三里岛和苏联切尔诺贝利核电站事故,但是世界核电站建设仍然在持续、稳定地向前发展。 到1983年9月,全世界已有20多个国家和地区拥有在运转的核电站270多座,总装机容量为1700亿瓦。同时,在建和拟建的核电站尚有200多座。 据国际原子能机构统计,1984年,全世界有34座核电站投产发电,使世界核电站发电量增长17%,达到2200亿瓦。当年,全世界新建核电站14座。 到1986年底,全世界在运转的核电站达到376座,总装机容量达到2769.75亿瓦;在建的核电站有135座,总装机容量为1469.31亿瓦;拟建的核电站有124座,总装机容量为1218.9亿瓦。 到1987年6月底,全世界在运转的核电站有389座,总装机容量达到3000亿瓦。当时,世界各国核电站所提供的电力,相当于700多万桶石油的能量。去年,全世界又增加了20座核电站,使世界核电站总数达到420座。 据预测,到2000年,全世界已安装的核电站的装机容量将达到4970~6460亿瓦;到2025年,将增加到8750~21600亿瓦。 到1986年底,核电站发电量占世界发电总量的比重已上升到了15%。同时,核电站发电量占各国发电总量的比重,法国为70%,比利时为67%,瑞典为50%,瑞士和西德两国分别为39%和30%,日本和美国两国分别为25%和17%。 据预测,到2000年,核电站发电量占世界发电总量的比重,将从现在的15%上升到20%~30%。 目前,全世界的核电站都是利用铀235或钚239等容易裂变的同位素,通过核裂变反应获得巨大的能量的。近几年来,一些工业发达国家正在加紧研究通过受控核聚变反应获得更加巨大的能量。科学家们预测,到本世纪末,受控核聚变技术将获得重大突破。到21世纪,人类通过受控核聚变反应所获得的能量将会越来越多。核能在世界能源消费结构中的比

复合材料的发展前景,发展与应用

复合材料的发展及应用 随着科学技术迅速发展,特别是尖端科学技术的突飞猛进,对材料性能提出越来越高,越来越严和越来越多的要求。在许多方面,传统的单一材料已不能满足实际需要。这时候复合材料就出现在了这百家争鸣的舞台上。 基本概论 复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。此定义来自ISO。在复合材料中,通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。从上述定义中可以看出,复合材料是两个或多个连续相与一个或多个分散相在连续相中的复合,复合后的产物为固体时才称为复合材料。所以我们可根据增强材料与基体材料的名称来给复合材料命名,增强基体复合材料。如:玻璃钎维环氧树脂复合材料,可写作玻璃/环氧复合材 料。 分类与性能 按增强材料形态分类可分为(1)连续纤维复合材料;(2)短纤维复合材料;(3)粒状填料复合材料;(4)编织复合材料。按增强纤维种类分类可分为(1)玻璃纤维复合材料;(2)碳纤维复合材料;(3)有机,金属,陶瓷纤维复合材料。在此篇文章中主要讨论以基体材料分类的几种复合材料。1.聚合物基复合材料——比强度,比模量大;耐疲劳性好;减震性好;过载时安全性好;具有多种功能性;

有很好的加工工艺性。2金属基复合材料——高比强度,高比模量;导热,导电性能;热膨胀系数小,尺寸稳定性好;良好的高温性能;耐磨性好;良好的疲劳性能和断裂韧性;不吸潮,不老化,气密性好。此外还有陶瓷,水泥基复合材料,都有与上类似的特点。 基体材料 一:金属材料 选择基体的原则:使用要求,组成特点,基体金属与增强物的相 容性。 结构复合材料的基体:450℃以下的轻金属基体(“铝基和镁基”用于航天飞机,人造卫星,空间站,汽车发动机零件,刹车盘等);450-700℃的复合材料的金属基体(“钛合金”用于航天发动机);1000℃以上的高温复合材料的金属基体(“镍基,铁基耐热合金和金属间化合物”用于燃气轮机)。 二:陶瓷材料 陶瓷是金属和非金属元素的固体化合物,其键合为共价键或离子键,与金属不同,它们不含有大量的电子。一般而言,陶瓷具有比金属更高的熔点和硬度,化学性质非常稳定,耐热性,抗老化性皆佳。常用的陶瓷基体主要包括玻璃(无机材料高温烧结),玻璃陶瓷,氧化物陶瓷(MgO,Al2O3,SiO2,莫来石等),非氧化物陶瓷(氮化物,碳化物,硼化物和硅化物等)。 三:聚合物材料

复合材料的发展和应用的论文

复合材料的发展和应用的论文 全球复合材料发展概况 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商ppg公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国gdp增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达万吨,欧洲汽车复合材料用量到2003年估计可达万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达万吨,汽车等领域的用量仅为万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。 另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。 树脂基复合材料的增强材料 树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。 1、玻璃纤维 目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃

世界各国钢铁公司

世界各国钢铁公司(厂)主要扁平材生产厂家简介1-5 巴西保利斯塔黑色冶金公司(Cosipa) 1-8 巴西淡水河谷公司(CVRD) 1-8 巴西盖尔道钢铁公司(Gerdau) 1-8 巴西图巴朗钢铁公司(Compania Sidierugica de Tuburao,CST) 1-9 德国蒂森克虏伯钢铁公司(Thyssen Krupp) 1-9 俄罗斯北方钢铁公司(Severstal) 1-10 韩国浦项钢铁公司(Posco) 1-10 卢森堡阿塞洛公司(Arcelor) 1-11 美国钢铁公司(United States Steel Corpration) 1-12 美国纽柯公司(Nucor) 1-12 日本东京制钢公司(Tokyo Steel) 1-13 日本钢铁工程控股公司(JFE) 1-13 日本新日制铁公司(Nippon Steel Corporation) 1-13 日本住友金属工业公司(Sumitomo) 1-14 意大利里瓦集团(Riva) 1-14 印度钢铁管理局(SAIL) 1-15 英荷科洛斯公司(Corus) 1-15 英荷米塔尔钢铁公司(Mittal) 1-15 中国鞍山钢铁公司(Anshan Iron and Steel)

1-16 中国上海宝钢集团公司(Shanghai Baosteel) 1-17 中国首钢集团公司(Shougang Group) 1-17 中国台湾省中钢公司(CSC) 1-17 中国武汉钢铁公司(Wuhan Iron and Steel Corporation,WISCO) 1-18 第三部分各个生产厂家的生产成本及相关设备(按中文名称排序) 3-1 阿根廷希德尔拉钢铁公司布宜诺斯艾利斯钢铁厂Siderar Buenos Aires 3-2 埃及亚历山大国家钢铁公司埃尔迪基勒钢铁厂ANSDK El-Dekheila 3-7 澳大利亚博思格钢铁公司坎布拉港钢铁厂 Port Kembla 3-12 巴西保利斯塔黑色冶金公司库巴陶钢铁厂 Cosipa Cubatao 3-17 巴西国家黑色冶金公司沃尔塔雷东达钢铁厂CSN Volta Redonda 3-22 巴西米纳斯吉拉斯钢铁公司奥洛布朗库钢铁厂 Acominas Ouro Branco 3-27 巴西图巴朗黑色冶金公司塞拉钢铁厂 CST Serra 3-32 比利时根特钢铁厂 Gent 3-37 德国蒂森克虏伯钢铁公司杜易斯堡钢铁厂 Duisburg 3-42 俄罗斯北方钢铁公司切烈玻维茨钢铁厂Severstal Cherepovets 3-47 俄罗斯新利佩茨克钢铁公司 Novolipetsk 3-52 法国敦刻尔克钢铁厂 Dunkerque

相关文档
最新文档