数学:中学数学竞赛培优教程试题03及解析

数学:中学数学竞赛培优教程试题03及解析
数学:中学数学竞赛培优教程试题03及解析

(15)整数的分类

【知识精读】

1.余数的定义:在等式A=mB+r中,如果A、B是整数,m是正整数,

r为小于m的非负整数,那么我们称r是A 除以m的余数。

即:在整数集合中 被除数=除数×商+余数(0≤余数<除数)

例如:13,0,-1,-9除以5的余数分别是3,0,4,1 

(∵-1=5(-1)+4。 -9=5(-2)+1。)

2.显然,整数除以正整数m ,它的余数只有m种。

例如整数除以2,余数只有0和1两种,除以3则余数有0、1、2三种。

3.整数的一种分类:按整数除以正整数m的余数,分为m类,称为按模m分类。例如:m=2时,分为偶数、奇数两类,记作{2k},{2k-1} (k为整数)

m=3时,分为三类,记作{3k},{3k+1},{3k+2}.

或{3k},{3k+1},{3k-1}其中{3k-1}表示除以3余2。

m=5时,分为五类,{5k}.{5k+1},{5k+2},{5k+3},{5k+4}

或{5k},{5k±1},{5k±2}, 其中5k-2表示除以5余3。

4.余数的性质:整数按某个模m分类,它的余数有可加,可乘,可乘方的运算规律。

举例如下:

①(3k1+1)+(3k2+1)=3(k1+k2)+2 (余数1+1=2)

②(4k1+1)(4k2+3)=4(4k1k2+3k1+k2)+3 (余数1×3=3)

③(5k±2)2=25k2±20k+4=5(5k2±4k)+4 (余数22=4)

以上等式可叙述为:

①两个整数除以3都余1,则它们的和除以3必余2。 

②两个整数除以4,分别余1和3,则它们的积除以4必余3。

③如果整数除以5,余数是2或3,那么它的平方数除以5,余数必是

4或9。

余数的乘方,包括一切正整数次幂。

如:∵17除以5余2 ∴176除以5的余数是4 (26=64)

5.运用整数分类解题时,它的关鍵是正确选用模m。

【分类解析】

例1. 今天是星期日,99天后是星期几?

分析:一星期是7天,选用模m=7, 求99除以7的余数

解:99=(7+2)9,它的余数与29的余数相同,

29=(23)3=83=(7+1)3它的余数与13相同,

∴99天后是星期一。

又解:设{A}表示A除以7的余数,

{99}={(7+2)9}={29}={83}={(7+1)3}={13}=1

例2. 设n为正整数,求43 n+1 除以9的余数。

分析:设法把幂的底数化为9k+r形式

解:43 n+1=4×43n=4×(43)n=4×(64)n=4×(9×7+1)n

∵(9×7+1)n除以9的余数是1n=1

∴43 n+1 除以9的余数是4。

例3. 求证三个连续整数的立方和是9的倍数

解:设三个连续整数为n-1,n,n+1

M=(n-1)3+n3+(n+1)3=3n(n2+2)

把整数n按模3,分为三类讨论。

当n=3k (k为整数,下同)时,M=3×3k[(3k)2+2]=9k(9k2+2)

当n=3k+1时, M=3(3k+1)[(3k+1)2+2]=3(3k+1)(9k2+6k+3)

=9(3k+1)(3k2+2k+1)

当n=3k+2时, M=3(3k+2)[(3k+2)2+2]=3(3k+2)(9k2+12k+6)

=9(3k+2)(3k2+4k+2)

∴对任意整数n,M都是9的倍数。

例4. 求证:方程x2-3y2=17没有整数解

证明:设整数x按模3分类讨论,

①当x=3k时, (3k)2-3y2=17, 3(3k2-y2)=17

⑵当x=3k±1时, (3k±1)2-3y2=17 3(3k2±2k-y2)=16

由①②左边的整数是3的倍数,而右边的17和16都不是3的倍数,

 ∴上述等式都不能成立,因此,方程x2-3y2=17没有整数解

例5. 求证:不论n取什么整数值,n2+n+1都不能被5整除

证明:把n按模5分类讨论,

当n=5k时,n2+n+1=(5k)2+5k+1=5(5k2+k)+1

当n=5k±1 时,n2+n+1=(5k±1)2+5k±1+1

=25k2±10k+1+5k±1+1=5(5k2±2k+k)+2±1

当n=5k±2时,n2+n+1=(5k±2)2+5k±2+1

=25k2±20k+4+5k±2+1=5(5k2±4k+k+1)±2

综上所述,不论n取什么整数值,n2+n+1都不能被5整除

又证:n2+n+1=n(n+1)+1

∵n(n+1)是两个连续整数的积,其个位数只能是0,2,6

 ∴n2+n+1的个位数只能是1,3,7,故都不能被5整除。

【实战模拟】

1. 已知a=3k+1, b=3k+2, c=3k (a,b,c,k都是整数)

填写表中各数除以3的余数。

a+b a+c ab ac 2a 2b a2 b2 b3 b5 a+b)5

2. 376÷7的余数是_____

3.今天是星期日,第2天是星期一,那么第2111天是星期几?

4.已知m,n都是正整数,求证:3n m(n2+2)

5. 已知a是奇数但不是3的倍数,求证:24(a2-1)

(提示a可表示为除以6余1或5,即a=6k±1)

一二三四五

1 2 3 4

6. 把正整数按表中的规律排下去,问100

将排在哪一列?答:___

7. 已知正整数n 不是4的倍数 求证:1n +2n +3n +4n 是10的倍数 8. 任给5个整数,必能从中找到3个,

其和能被10整除,这是为什么?

9对任意两个整数,它们的和、差、积中

至少有一个是3的倍数,试说明理由。

10.任意10个整数中,必有两个,它们的差是9的倍数。这是为什么?如果改为任意n +1个,则必有两个,它们的差是n 的倍数,试说明理由。

11.证明 x 2+y 2-8z=6没有整数解

12.从1开始的正整数依次写下去,直到第198位为止 即 位

1981234那么这个数用9除之,余数是___

练习

2. 1

3. 日

4. 设n=3k, 3k+1, 3k-1讨论

6. 100除以8余数为4,故在第五列

7. 可列表说明n=4k+3, 4k+2, 4k+1, 4k 时,其和均为0

8. 整数除以3,余数只有0,1,2三种,按5个整数除以3的余数各种情况讨论………

10. 整数除以9余数只有9类,而10个………

11. ∵x 2+y 2=8z+6, ∴右边除以8,余数 是6,左边整数x,y 按除以4的余数,分为4类,4k,4k+1,4k+2,4k -1, 则x 2+y 2除以8的余数………

8. 6

8 7 6 5 9 10 11 12 16 15 14

13

( 13)经验归纳法

【知识精读】

1.通常我们把“从特殊到一般”的推理方法、研究问题的方法叫做归纳法。

通过有限的几个特例,观察其一般规律,得出结论,它是一种不完全的归纳法,也叫做经验归纳法。例如

①由 ( - 1)2 = 1 ,(- 1 )3 =- 1 ,(- 1 )4 = 1 ,……,

归纳出 - 1 的奇次幂是- 1,而- 1 的偶次幂 是 1 。

②由两位数从10 到 99共 90 个( 9 × 10 ),

三位数从 100 到 999 共900个(9×102),

四位数有9×103=9000个(9×103),

…………

归纳出n 位数共有9×10n-1 (个)

③ 由1+3=22, 1+3+5=32, 1+3+5+7=42……

推断出从1开始的n 个連续奇数的和等于n 2等。

可以看出经验归纳法是获取新知识的重要手段,是知识攀缘前进的阶梯。

2. 经验归纳法是通过少数特例的试验,发现规律,猜想结论,要使规律明朗化,必须进行足夠次数的试验。

由于观察产生的片面性,所猜想的结论,有可能是错误的,所以肯定或否定猜想的结论,都必须进行严格地证明。(到高中,大都是用数学归纳法证明)

【分类解析】

例1 平面内n 条直线,每两条直线都相交,问最多有几个交点?

解:两条直线只有一个交点, 1 2

第3条直线和前两条直线都相交,增加了2个交点,得1+2 3

第4条直线和前3条直线都相交,增加了3个交点,得1+2+3

第5条直线和前4条直线都相交,增加了4个交点,得1+2+3+4

………

第n 条直线和前n -1条直线都相交,增加了n -1个交点

由此断定n 条直线两两相交,最多有交点1+2+3+……n -1(个),

这里n ≥2,其和可表示为[1+(n+1)]×, 即个交点。 21+n 2

)1(-n n

例2.符号n !表示正整数从1到n 的連乘积,读作n 的阶乘。例如

 5!=1×2×3×4×5。试比较3n 与(n+1)!的大小(n 是正整数)

解:当n =1时,3n =3, (n +1)!=1×2=2

当n =2时,3n =9, (n +1)!=1×2×3=6

当n =3时,3n =27, (n +1)!=1×2×3×4=24

当n =4时,3n =81, (n +1)!=1×2×3×4×5=120

当n =5时,3n =243, (n +1)!=6!=720 ……

 猜想其结论是:当n =1,2,3时,3n >(n +1)!,当n>3时3n <(n +1)!。

例3 求适合等式x 1+x 2+x 3+…+x 2003=x 1x 2x 3…x 2003的正整数解。

 分析:这2003个正整数的和正好与它们的积相等,要确定每一个正整数的值,我们采用经验归纳法从2个,3个,4个……直到发现规律为止。

 解:x 1+x 2=x 1x 2的正整数解是x 1=x 2=2

x 1+x 2+x 3=x 1x 2x 3的正整数解是x 1=1,x 2=2,x 3=3

x 1+x 2+x 3+x 4=x 1x 2x 3x 4的正整数解是x 1=x 2=1,x 3=2,x 4=4

x 1+x 2+x 3+x 4+x 5=x 1x 2x 3x 4x 5的正整数解是x 1=x 2=x 3=1,x 4=2,x 5=5

x 1+x 2+x 3+x 4+x 5+x 6=x 1x 2x 3x 4x 5x 6的正整数解是x 1=x 2=x 3=x 4=1,x 5=2,x 6=6

…………

由此猜想结论是:适合等式x 1+x 2+x 3+…+x 2003=x 1x 2x 3…x 2003的正整数解为x 1=x 2=x 3=……=x 2001=1, x 2002=2, x 2003=2003。

【实战模拟】

1. 除以3余1的正整数中,一位数有__个,二位数有__个,三位数有__个,n 位数

有____个。

2. 十进制的两位数可记作10a 1+a 2,三位数记作100a 1+10a 2+a 3,四位数

21a a 321a a a 记作____,n 位数___记作______

4321a a a a 3. 由13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43

=(___)2 ,13+______=152,13+23+…+n 3=(

)2。 4. 用经验归纳法猜想下列各数的结论(是什么正整数的平方)

①=(___)2;;-=( __)2。 个个 1101111 252222个 121111n 个

22222n 个②=(____)2;=(___)2 个91111 个95655 n 个

n 个56551111

5. 把自然数1到100一个个地排下去:123......91011 (99100)

① 这是一个几位数?②这个数的各位上的各个数字和是多少

6.计算+++…+= 12111?13121?14131?20

191? (提示把每个分数写成两个分数的差)

7.a 是正整数,试比较a a+1和(a+1)a 的大小.

8.. 如图把长方形的四条边涂上红色,然 后把宽3等分,把长8等分,分成24个 小长方形,那么这24个长方形中,

两边涂色的有__个,一边涂色的有__个,四边都不着色的有__个。

本题如果改为把宽m 等分,长n 等分(m,n 都是大于1的自然数)那么这mn 个长方形中,两

边涂色的有__个,一边涂色的有__个,四边都不着色的有__个

9.把表面涂有红色的正方体的各棱都4等分,切成64个小正方体,那么这64个中,三面涂色的有__个,两面涂色的有___个,一面涂色的有___个,四面都不涂色的有____个。

本题如果改为把长m 等分,宽n 等分,高p 等分,(m,n,p 都是大于2的自然数)那么这mnp 个正方体中,三面涂色的有___个,两面涂色的有___个,一面涂色的有____个,四面都不涂色的有_____个。

10.一个西瓜按横,纵,垂直三个方向各切三刀,共分成___块,其中不带皮的有__块。

11.已知两个正整数的积等于11112222,它们分别是___,___。

练习 

3,30,3×102,3×10n-1

1. 10n-1a 1+10n-2a 2_+……+10a n-1+a n

4. ①333332, ②, 个n 2333 位923433 位

n 2

34335.①192位,②901位(50个18,加上1)

6. ∵=- …… 12111 111121220

97. a=1,2时,a a+1<(a+1)a ……

8. 4,14,6; 4, 2m+2n-8, (m-2)(n-2)

9. 8,24,24,8; 

8,4×[(m -2)+(n-2)+(p-2)],2[(m-2)(n-2)+(m-2)](p-2)+(n-2)(p-2)], (m-2)(n-2)(p-2)

10. 64,8 11. 3334

(14)乘法公式

【知识精读】

1.乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。

公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。

公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。

2.基本公式就是最常用、最基礎的公式,并且可以由此而推导出其他公式。

完全平方公式:(a±b)2=a2±2ab+b2,

平方差公式:(a+b)(a-b)=a2-b2

立方和(差)公式:(a±b)(a2ab+b2)=a3±b3

3.公式的推广:

①多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd

即:多项式平方等于各项平方和加上每两项积的2倍。

②二项式定理:(a±b)3=a3±3a2b+3ab2±b3

(a±b)4=a4±4a3b+6a2b2±4ab3+b4)

(a±b)5=a5±5a4b+10a3b2 ±10a2b3+5ab4±b5)

…………

注意观察右边展开式的项数、指数、系数、符号的规律

③由平方差、立方和(差)公式引伸的公式

(a+b)(a3-a2b+ab2-b3)=a4-b4

(a+b)(a4-a3b+a2b2-ab3+b4)=a5+b5

(a+b)(a5-a4b+a3b2-a2b3+ab4-b5)=a6-b6

…………

注意观察左边第二个因式的项数、指数、系数、符号的规律

在正整数指数的条件下,可归纳如下:设n为正整数

(a+b)(a2n-1-a2n-2b+a2n-3b2-…+ab2n-2-b2n-1)=a2n-b2n

(a+b)(a2n-a2n-1b+a2n-2b2-…-ab2n-1+b2n)=a2n+1+b2n+1

类似地:

(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n 

4. 公式的变形及其逆运算

由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab

由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得a3+b3=(a+b)3-3ab(a+b)

由公式的推广③可知:当n为正整数时

a n-

b n能被a-b整除,

a2n+1+b2n+1能被a+b整除,

a2n-b2n能被a+b及a-b整除。

【分类解析】

例1. 己知x+y=a xy=b

求 ①x2+y2 ②x3+y3 ③x4+y4 ④x5+y5

解: ①x2+y2=(x+y)2-2xy=a2-2b

②x3+y3=(x+y)3-3xy(x+y)=a3-3ab

③x4+y4=(x+y)4-4xy(x2+y2)-6x2y2=a4-4a2b+2b2

④x5+y5=(x+y)(x4-x3y+x2y2-xy3+y4)

 =(x+y)[x4+y4-xy(x2+y2)+x2y2]

=a[a4-4a2b+2b2-b(a2-2b)+b2]

=a5-5a3b+5ab2

例2. 求证:四个連续整数的积加上1的和,一定是整数的平方。

证明:设这四个数分别为a, a+1, a+2, a+3 (a为整数)

a(a+1)(a+2)(a+3)+1=a(a+3)(a+1)(a+2)+1=(a2+3a)(a2+3a+2)+1

=(a2+3a)2+2(a2+3a)+1=(a2+3a+1)2

∵a是整数,整数的和、差、积、商也是整数

∴a2+3a+1是整数 证毕

例3. 求证:2222+3111能被7整除

证明:2222+3111=(22)111+3111=4111+3111

根据 a2n+1+b2n+1能被a+b整除,(见内容提要4)

 ∴4111+3111能被 4+3整除

∴2222+3111能被7整除

例4. 由完全平方公式推导“个位数字为5的两位数的平方数”的计算规律解:∵(10a+5)2=100a2+2×10a×5+25=100a(a+1)+25

∴“个位数字为5的两位数的平方数”的特点是:幂的末两位数字是底数个位数字5的平方,幂的百位以上的数字是底数十位上数字乘以比它大1的数的积。

如:152=225 幂的百位上的数字2=1×2),252=625 (6=2×3),

352=1225 (12=3×4) 452=2025 (20=4×5)

……

【实战模拟】

1.填空:

①a2+b2=(a+b)2-_____ ②(a+b)2=(a-b)2+___

③a3+b3=(a+b)3-3ab(___) ④a4+b4=(a2+b2)2-____

,⑤a5+b5=(a+b)(a4+b4)-_____ ⑥a5+b5=(a2+b2)(a3+b3)-____

2.填空:

①(x+y)(___________)=x4-y4 ②(x-y)(__________)=x4-y4

③(x+y)( ___________)=x5+y5 ④(x-y)(__________)=x5-y5 

3.计算:

①552= ②652= ③752= ④852= ⑤952=

4. 计算下列各题,你发现什么规律

⑥11×19= ⑦22×28= ⑧34×36= ⑨43×47= ⑩76×74=

5..已知x+=3, 求①x 2+ ②x 3+ ③x 4+的值 x 121x 31x 41x

6.化简:①(a+b )2(a -b)2

②(a+b)(a 2-ab+b 2)

 ③(a -b)((a+b)3-2ab(a 2-b 2)

④(a+b+c)(a+b -c)(a -b+c)(-a+b+c)

7.己知a+b=1, 求证:a 3+b 3-3ab=1

8.己知a 2=a+1,求代数式a 5-5a+2的值

9.求证:233+1能被9整除

10.求证:两个连续整数的积加上其中较大的一个数的和等于较大的数

的平方

11.如图三个小圆圆心都在大圆的直径上,它们

的直径分别是a,b,c

练习

4. 十位上的数字相同,个位数的和为10的两个两位数相乘,其积的末两位数是两个个位

数字的积,积的百位以上的数是,原十位上数字乘上比它大1的数的积

8. n(n+1)+(n+1)=(n+1)2

9. ①可证明3个小圆周长的和减去大圆周长,其差等于0

②(ab+ac+bc)

2

全等三角形培优竞赛讲义(四)等腰三角形

全等三角形培优竞赛讲义(四) 等腰三角形 【知识点精读】-、等腰三角形的性质 1. 有关定理及其推论 定理:等腰三角形有两边相等; 定理:等腰三角形的两个底角相等(简写成“等边对等角”)。 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 推论2:等边三角形的各角都相等,并且每一个角都等于60°。等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; 2. 定理及其推论的作用 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。 二、等腰三角形的判定 1. 有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。) 推论1:三个角都相等的三角形是等边三角形。 推论2:有一个角等于60°的等腰三角形是等边三角形。 推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 2. 定理及其推论的作用。 等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。 3. 等腰三角形中常用的辅助线 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线

初中九年级数学竞赛培优讲义全套专题10 最优化_答案[精品]

专题10 最优化 例1. 4 提示:原式=1 12 - 62 -+)(x . 例2. B 提示:由-1≤y ≤1有0≤≤1,则=22 +16+3y 2 =142 +4+3是开口向上,对称轴为7 1 -=x 的抛物线. 例3. 分三种情况讨论:①0≤a +?)(,∴f (a )=2a ,即2a =2132-2+a ,则?? ? ??=--=413 172b a 综上,(a ,b )=(1,3)或(17-2-, 4 13 ) 例4. (1) 121≤≤x ,y 2 = 21+216143-2+-)( x .当=4 3时,y 2 取得最大值1,a =1; 当21= x 或=1时,y 2取得最小值21,b =22.故a 2+b 2=2 3. (2) 如图,AB =8,设AC =,则BC =8- ,AD =2,CD =42+x ,BE =4,CE =16)-8(2+x BF =AD =2. 10)24(816)8(4222222=++=+=≥+=+-++EF DF DE CE CD x x 当且仅当D ,C ,E 三点共线时,原式取最小值.此时△EBC ∽△DAC ,有 22 4 ===DA EB CA BC , 从而=AC = 3831=AB .故原式取最小值时,=3 8. (3)如图, 原式= [] 22222 2 2)24()13()32()01(032--0y x y x -+-+-+-+-+)()(

高中数学竞赛之路

金牌学生推荐(可参照选择) 一、第零阶段:知识拓展 《数学选修4-1:几何证明选讲》《数学选修4-5:不等式选讲》《数学选修4-6:初等数论初步》 二、全国高中数学联赛各省赛区预赛(即省选初赛) 1、《五年高考三年模拟》B版或《3年高考2年模拟》第二轮复习用 2、《高中数学联赛备考手册》华东师范大学出版社(推荐指数五颗星) 3、《奥赛经典:超级训练系列》高中数学沈文选主编湖南师范大学出版社(推荐指数五颗星) 4、单樽《解题研究》(推荐指数五颗星) 5、单樽《平面几何中的小花》(个别地区竞赛会考到平几) 6、《平面几何》浙江大学出版社 7、奥林匹克小丛书第二版《不等式的解题方法与技巧》苏勇熊斌著 三、第二阶段:全国高中数学联赛 一试 0、《奥林匹克数学中的真题分析》沈文选湖南师范大学出版社(推荐指数五颗星)1、《高中数学联赛考前辅导》熊斌冯志刚华东师范大学出版社2、《数学竞赛培优教程(一试)》浙江大学出版社3、命题人讲座《数列与数学归纳法》单樽4、《数列与数学归纳法》(小丛书第二版,冯志刚)5、《数列与归纳法》浙江大学出版社韦吉珠6、《解析几何的技巧》单樽(建议买华东师大出版的版本)7、《概率与期望》单樽8、《同中学生谈排列组合》苏淳9、《函数与函数方程》奥林匹克小丛书第二版10、《三角函数》奥林匹克小丛书第二版11、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星)12、《圆锥曲线的几何性质》13、《解析几何》浙江大学出版社 二试 平几1、高中数学竞赛解题策略(几何分册)沈文选(推荐指数五颗星) 2、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 3、奥林匹克小丛书第二版《平面几何》 4、浙大小红皮《平面几何》 5、沈文选《三角形的五心》 6、田廷彦《三角与几何》 7、田廷彦《面积与面积方法》不等式 8、《初等不等式的证明方法》韩神 9、命题人讲座《代数不等式》计神10、《重要不等式》中科大出版社11、奥林匹克小丛书《柯西不等式与平均值不等式》数论(9,10,11选一本即可,某位大神说二试改为四道题以来没出过难题)12、奥林匹克小丛书初中版《整除,同余与不定方程》13、奥林匹克小丛书《数论》14、命题人讲座《初等数论》冯志刚组合15、奥林匹克小丛书第二版《组合数学》16、奥林匹克小丛书第二版《组合几何》17、命题人讲座刘培杰《组合问题》18、《构造法解题》余红兵19、《从特殊性看问题》中科大出版社20、《抽屉原则》常庚哲 四、中国数学奥林匹克(Chinese Mathematical Olympiad)及以上 命题人讲座《圆》田廷彦《近代欧式几何学》《近代的三角形的几何学》《不等式的秘密》范建熊、隋振林《奥赛经典:奥林匹克数学中的数论问题》沈文选《奥赛经典:数学奥林匹克高级教程》叶军《初等数论难题集》命题人讲座《图论》奥林匹克小丛书第二版《图论》《走向IMO》

人教版九年级数学上下册培优讲义机构辅导资料(共30讲)

九年级讲义目录

专题01 二次根式的化简与求值 阅读与思考 二次根式的化简与求值问题常涉及最简根式、同类根式,分母有理化等概念,常用到分解、分拆、换元等技巧. 有条件的二次根式的化简与求值问题是代数变形的重点,也是难点,这类问题包含了整式、分式、二次根式等众多知识,又联系着分解变形、整体代换、一般化等重要的思想方法,解题的基本思路是: 1、直接代入 直接将已知条件代入待化简求值的式子. 2、变形代入 适当地变条件、适当地变结论,同时变条件与结论,再代入求值. 数学思想: 数学中充满了矛盾,如正与负,加与减,乘与除,数与形,有理数与无理数,常量与变量、有理式与无理式,相等与不等,正面与反面、有限与无限,分解与合并,特殊与一般,存在与不存在等,数学就是在矛盾中产生,又在矛盾中发展. =x , y , n 都是正整数) 例题与求解 【例1】 当x = 时,代数式32003 (420052001)x x --的值是( ) A 、0 B 、-1 C 、1 D 、2003 2- (绍兴市竞赛试题) 【例2】 化简 (1(b a b ab b -÷-- (黄冈市中考试题) (2 (五城市联赛试题)

(3 (北京市竞赛试题) (4 (陕西省竞赛试题) 解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解. 思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度. 【例3】比6大的最小整数是多少? (西安交大少年班入学试题) 解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y == 想一想:设x=求 432 32 621823 7515 x x x x x x x --++ -++ 的值. (“祖冲之杯”邀请赛试题) 的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.

人教版初一数学培优和竞赛二合一讲炼教程:二元一次方程组解的讨论

人教版初一数学培优和竞赛二合一讲炼教程 (10)二元一次方程组解的讨论 【知识精读】 1. 二元一次方程组???=+=+222 111c y b x a c y b x a 的解的情况有以下三种: ① 当2 12121c c b b a a ==时,方程组有无数多解。(∵两个方程等效) ② 当2 12121c c b b a a ≠=时,方程组无解。(∵两个方程是矛盾的) ③ 当 2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ??? ????--=--=12212 11212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得) 2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。 3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。(见例2、3) 【分类解析】 例1. 选择一组a,c 值使方程组???=+=+c y ax y x 275 ① 有无数多解, ②无解, ③有唯一的解 解: ①当 5∶a=1∶2=7∶c 时,方程组有无数多解 解比例得a=10, c=14。 ② 当 5∶a =1∶2≠7∶c 时,方程组无解。 解得a=10, c ≠14。 ③当 5∶a ≠1∶2时,方程组有唯一的解, 即当a ≠10时,c 不论取什么值,原方程组都有唯一的解。 例2. a 取什么值时,方程组? ??=+=+3135y x a y x 的解是正数? 解:把a 作为已知数,解这个方程组

初中八年级数学竞赛培优讲义全套专题25 配方法-精编

专题 25 配方法 阅读与思考 把一个式子或一个式子的部分写成完全平方式或者几个完全平方式的和的形式,这种方法叫配方法,配方法是代数变形的重要手段,是研究相等关系,讨论不等关系的常用技巧. 配方法的作用在于改变式子的原有结构,是变形求解的一种手段;配方法的实质在于揭示式子的非负性,是挖掘隐含条件的有力工具. 配方法解题的关键在于“配方”,恰当的“拆”与“添”是配方常用的技巧,常见的等式有: 1、222 2()a ab b a b ±+=± 2、2 a b ±= 3、2222 222()a b c ab bc ca a b c +++++=++ 4、2 2 2 2221 [()()()]2 a b c ab bc ac a b b c a c ++---= -+-+- 配方法在代数式的求值,解方程、求最值等方面有较广泛的应用,运用配方解题的关键在于: (1) 具有较强的配方意识,即由题设条件的平方特征或隐含的平方关系,如2 a = 能 联想起配方法. (2) 具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式. 例题与求解 【例1】 已知实数x ,y ,z 满足2 5,z 9x y xy y +==+- ,那么23x y z ++=_____ (“祖冲之杯”邀请赛试题) 解题思路:对题设条件实施变形,设法确定x , y 的值. 【例2】 若实数a ,b , c 满足222 9a b c ++= ,则代数式2 2 2 ()()()a b b c c a -+-+- 的 最大值是 ( ) A 、27 B 、18 C 、15 D 、12 (全国初中数学联赛试题) 解题思路:运用乘法公式 ,将原式变形为含常数项及完全平方式的形式.

初中七年级数学竞赛培优讲义全套专题07 整式的加减

专题07 整式的加减 阅读与思考 整式的加减涉及许多概念,准确地把握这些概念并注意它们的区别与联系是解决有关问题的基础,概括起来就是要掌握好以下两点: 1.透彻理解“三式”和“四数”的概念 “三式”指的是单项式、多项式、整式;“四数”指的是单项式的系数、次数和多项式的系数、次数. 2.熟练掌握“两种排列”和“三个法则” “两种排列”指的是把一个多项式按某一字母的升幂或降幂排列,“三个法则”指的是去括号法则、添括号法则及合并同类项法则. 物以类聚,人以群分.我们把整式中那些所含字母相同、并且相同字母的次数也相同的单项式作为一类——称为同类项,一个多项式中的同类项可以合聚在一起——称为合并同类项.这样,使得整式大为简化,整式的加减实质就是合并同类项. 例题与求解 [例1]如果代数式ax5+bx3+cx-5,当x=-2时的值是7,那么当x=7时,该式的值是______. (江苏省竞赛试题) 解题思路:解题的困难在于变元个数多,将x两个值代入,从寻找两个多项式的联系入手. [例2]已知-1<b<0,0<a<1,那么在代数式a-b,a+b,a+b2,a2+b中,对于任意a,b对应的代数式的值最大的是( ) A.a+b B.a-b C.a+b2D.a2+b (“希望杯”初赛试题) 解题思路:采用赋值法,令a=1 2 ,b=- 1 2 ,计算四个式子的值,从中找出值最大的 式子. [例3]已知x=2,y=-4时,代数式ax2+1 2 by+5=1997,求当x=-4,y=- 1 2 时, 代数式3ax-24by3+4986的值. (北京市“迎春杯”竞赛试题) 解题思路:一般的想法是先求出a,b的值,这是不可能的.解本例的关键是:将给定的x,y值分别代入对应的代数式,寻找已知与待求式子之间的联系,整体代入求值.[例4]已知关于x的二次多项式a(x3-x2+3x)+b(2x2+x)+x3-5.当x=2时的值为-17,求当x=-2时,该多项式的值. (北京市“迎春杯”竞赛试题) 解题思路:解题的突破口是根据多项式降幂排列、多项式次数等概念挖掘隐含的关于a,b的等式. [例5]一条公交线路上起点到终点有8个站.一辆公交车从起点站出发,前6站上车100人,前7站下车80人.问从前6站上车而在终点下车的乘客有多少人?

高中数学竞赛培优——不等式

不等式 例1. 已知122016,,,x x x ??? 均为正实数,则 3201621112122015122016 4x x x x x x x x x x x x x + ++???++?????? 的最小值__________ 例2. 已知二次函数()20y ax bx c a b =++≥< ,则24a b c M b a ++= - 的最小值为 ____________ 例3. 记223 (,)()(),03x F x y x y y y =-++≠ ,则(),F x y 的最小值是________ 例4. 已知[],1,3,4,a b a b ∈+= 求证:1146103 a b a b ≤+ ++< 例5. 设0,1,2,,,i x i n ≥=???约定11,n x x += 证明:() () 2 12 2 1 11 .2 11n k k k k x x x +=++ ≥ ++∑ 证明:因0,1,2,,,i x i n ≥=???令2tan ,0,,1,2,,2k k k x k n πθθ?? =∈=??????? 约定 11, n θθ+= () () 2 44 112 2 11 =cos sin 11k k k k k x x x θθ++++ +++() 2 222211 cos sin 2 2 k k k k θθ+++≥ = 所以() () 2 22112 2 11 11 =.2211n n k k k k k k k x x x ++==++ ≥++∑ ∑ 例6. 设2,,n n N +≥∈ 求证:ln 2ln 3ln 1 .23n n n ?????< ()ln 1n n <- 例7. 已知* ,,n N x n ∈≤求证:2(1)n x x n n e x n --≤. 【证明】原不等式等价于2 ((1))x n n x n x n e n -≤-?. 当2x n ≥,上述不等式左边非正,不等式成立; 当2x n <时,由1(0)y e y y ≥+≥及贝努力不等式(1)1(1,1)n y ny n y +≥+≥>-,

王总结数学:高一逆袭培优班数学“不掉队”!快人一步,高二高三成优势!

王总结数学:高一逆袭培优班数学“不掉队”!快人 一步,高二高三成优势! 每一年我们都会收到很多高一学生的求助,他们刚入高中就被数学吓到了,抱怨数学难,不知道数学怎么学? 为什么会这样呢? 因为,高中数学和初中数学存在本质的差别,很多同学初中时,只要在数学考试前刷题补习就能取得很好的成绩,但是到了高中,这一招就根本没用了! 初中时名列前茅,到了高中成绩大幅下滑,这种落差打击了很多同学的自信。刚入高一,千万不能输在起点,否则高二高三会非常吃力辛苦。 王总结数学《高一逆袭培优课程》就是你不被落下,超越同伴的秘密武器。 《高一逆袭培优课程》针对高一学生精选课程内容:高一同步课程+应试秒杀技巧,高考之前无限次观看。 在王总结数学《高一逆袭培优》课程中,包括了高一必修课程的所有重难点,还有总结好了的考试常考知识点和题型。这些都能帮助学生打牢基础知识,让学生树立数学信心,在高一时拿下高分,在高二高三时学习游刃有余。 里面还包括了应试模型秒杀技巧,让学生能在考试中达到用时最短,准确率高,得分高的效果。 王总结数学《高一逆袭培优班》由高考数学应试专家王总结

老师亲自授课,985高校毕业的答疑老师全程跟踪督促保证授课质量! 课下还有多重保障障,为孩子的成绩保驾护航! 王总结数学就是采取的这样的革命课程体系,很多同学的成绩都在这样的保障之下得到提升,如此也在万千学生和家长之中收获了良好的口碑! 我们为什么一定要在高一时学好数学拿下高分? 因为无论是整个高中最重要的学习版块——基本初等函数,还是最让人头疼的高考必考分——数列,它们都集中在高一的课程中,如果等到高三再补,无疑增加了负担。正所谓“磨刀不误砍柴工”。 王总结数学《高一逆袭培优》课程,一直以来备受家长学生的欢迎肯定,提分效果非常明显,每一年的报名也是非常火爆的。

初中七年级数学竞赛培优讲义全套专题16 不等式

专题16 不等式(组) 阅读与思考 客观世界与实际生活既存在许多相等关系,又包含大量的不等关系,方程(组)是研究相等关系的重要手段,不等式(组)是探求不等关系的基本工具,方程与不等式既有相似点,又有不同之处,主要体现在: 1. 解一元一次不等式与解一元一次方程类似,但解题时要注意两者之间的重要区别;等式两边都乘(或除)以同一个数时,只要考虑这个数是否为零,而不等式两边都乘以(或除以)同一个数时,不但要考虑这个数是否为零,而且还要考虑这个数的正负性. 2. 解不等式组与解方程组的主要区别是:解方程组时,我们可以对几个方程进行“代入”或“加减”式的加工,但在解不等组时,我们只能对某个不等式进行变形,分别求出每个不等式的解集,然后再求公共部分.通俗地说,解方程组时,可以“统一思想”,而解不等式组时只能“分而治之”. 例题与求解 【例1】已知关于x 的不等式组?????<-+->-+x t x x x 2 35 35 2恰好有5个整数解,则t 的取值范围是( ) A 、2116-<<-t B 、2116-<≤-t C 、2116-≤<-t D 、2 116-≤≤-t (2013 年全国初中数学竞赛广东省试题) 解题思路:把x 的解集用含t 的式子表示,根据题意,结合数轴分析t 的取值范围. 【例2】如果关于x 的不等式7 10 05)2(< >---x n m x n m 的解集为那么关于x 的不等式)0(≠>m n mx 的解集为 . (黑龙江省哈尔滨市竞赛试题) 解题思路:从已知条件出发,解关于x 的不等式,求出m ,n 的值或m ,n 的关系. 【例3】已知方程组?? ?=+=-6 2y mx y x 若方程组有非负整数解,求正整数m 的值. (天津市竞赛试题) 解题思路:解关于x ,y 的方程组,建立关于m 的不等式组,求出m 的取值范围. 【例4】已知三个非负数a ,b ,c 满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,求m 的最大 值和最小值. (江苏省竞赛试题) 解题思路:本例综合了方程组、不等式(组)的知识,解题的关键是用含一个字母的代数式表示m ,通过解不等式组,确定这个字母的取值范围,在约束条件下,求m 的最大值与最小值.

初中培优竞赛含详细解析 第1讲 整数的基本性质

初中数学竞赛专题1——整数的基本性质 1.(1,2)(数学#初中#竞赛#初中竞赛#数学竞赛#初中数学竞赛#整数#选择题) 【标准答案】1#0#1#4#A 三人中每两个人的平均年龄加上余下一人的年龄分别是47,61,60,那么这三个人中最大年龄与最小年龄的差是 ( ) A. 28 B. 27 C. 26 D. 25 【分析】设三个人的年龄分别为X1,X2,X3,根据题意,则 +X2+2X3=47×2 ① X X2+X3+2X1=61×2 ② X3+X1+2X2=60×2 ③ 由①+②+③得X1+X2+X3=84,分别代入①②③得X1=38,X2=36,X3=10. 所以X1-X3=28. 【答案】A 【技巧】设未知数列方程(组)来解应用题是常用的方法. 2.(2,3)(数学#初中#竞赛#初中竞赛#数学竞赛#初中数学竞赛#整数#选择题) 【标准答案】2#0#1#4#B 三角形的三边长a、b、c都是整数,且[a,b,c]=60,(a,b) =4,(b,c)=3则a+b+c的最小值是 ( ) {注:[a,b,c]表示a、b、c的最小公倍数,(a,b)表示a,b的最大公约数} A.30 B.31 C.32 D. 33 【分析】因为(a,b)=4,所以a,b都是4的倍数.因为(b,c)=3,所以b,c都是3的倍数.从而a=4a1,b=12b1,c=3c1,a1、b1、c1都是正整数;又因为[a,b,c]=60,所以a,b,c中至少有一个被5整除,即a1、b1、c1中至少有一个被5整除.因为abc三个数的系数中,c的系数最小为3,所以只有当a1、b1 取最小时,三个数之和才最小,那么当a1= b1=1,c1=5时,a+b+c=4+1+15=31最小. 【答案】B 【技巧】根据最大公约数和最小公倍数的性质,用解析式表示未知数. 【易错点】若不注意三角形三边的关系(两边之和大于第三边)就容易出错.

数学培优讲义(均值不等式)

数学培优讲义 均值不等式 均值不等式是高中数学的必修内容,它作为几个重要不等式之一在高考、数学竞赛中都有广泛的应用。本节主要内容是两个、三个或n 个(n ∈N +)正数的算术平均数不小于它的几何平均数,借助均值不等式证明其它不等式以及求函数的最值。主要的手段是合理地构造定和、定积、巧妙地利用等号的成立条件来实现证明和求最值。 定理1、),(222R b a ab b a ∈≥+ 推论1、),(2+∈≥+R b a ab b a 2 2??? ??+≤b a ab 推论2、 ),,(33+∈≥++R c b a abc c b a 3 3??? ??++≤c b a abc 推论3、 ),...,,(......212121+∈≥+++R a a a a a a n a a a n n n n (等号成立的条件是n a a a =???==21) 例 题 分 析 例1、已知a 1,a 2,…, a n 是n 个正数,满足a 1.a 2…a n =1 求证:(1+ a 1)(1+ a 2)…(1+ a n )n 2≥ 练习1、已知a 1,a 2,…, a n 是n 个正数,满足a 1.a 2…a n =1 求证:(2+ a 1)(2+ a 2)…(2+ a n )n 3≥ 练习2、设a >b >0,那么a 2+)(1 b a b -的最小值是_____

例2、(1)的最大值;求函数设)cos 1(2sin ,0αα πα+=<> 练习2、设a >b >c ,证明 4≥--+--c b c a b a c a 练习3、设X 1, X 2…X n +∈R ,求证≥++++-1221322221...X X X X X X X X n n n X 1+ X 2+…+ X n 练习4、的最小值,求设xz y z x y z x z y x ++-- ->>)(272

新高考文科数学二轮培优教程文档:第二编 专题三 数列 第1讲

专题三 数列 第1讲 等差数列与等比数列 「考情研析」 1.从具体内容上,主要考查等差数列、等比数列的基本计算和基本性质及等差、等比数列中项的性质、判定与证明. 2.从高考特点上,难度以中、低档题为主,近几年高考题一般设置一道选择题和一道解答题,分值分别为5分和12分. 核心知识回顾 1.等差数列 (1)通项公式:□ 01a n =a 1+(n -1)d =a m +(n -m )d . (2)等差中项公式:□022a n =a n -1+a n +1(n ∈N *,n ≥2). (3)前n 项和公式:□ 03S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 2.等比数列 (1)等比数列的通项公式:□ 01a n =a 1q -=a m q -. (2)等比中项公式:□ 02a 2n =a n -1·a n +1(n ∈N *,n ≥2). (3)等比数列的前n 项和公式: □ 03S n =??? na 1(q =1), a 1-a n q 1-q =a 1(1-q n )1-q (q ≠1) . 3.等差数列的性质(n ,m ,l ,k ,p 均为正整数) (1)若m +n =l +k □ 01a m +a n =a l +a k (反之不一定成立);特别地,当m +n =2p 时,有□ 02a m +a n =2a p . (2)若{a n },{b n }是等差数列,则{ka n +tb n }(k ,t 是非零常数)是□ 03等差数列. (3)等差数列的“依次每m 项的和”即S m □04S 2m -S m ,□ 05S 3m -S 2m ,…仍是等差数列.

全国通用初中数学竞赛培优辅导讲义(28—33)讲

全国初中数学竟赛辅导讲义修订(2) 三角形的边角性质 内容提要 三角形边角性质主要的有: 1. 边与边的关系是:任意两边和大于第三边,任意两边差小于第三边,反过来要使三条线 段能组成一个三角形,必须任意两条线段的和都大于第三条线段,即最长边必须小于其 他两边和。用式子表示如下: a,b,c 是△ABC 的边长b a c b a b a c a c b c b a +<-??? ????????>+>+>+?< 推广到任意多边形:任意一边都小于其他各边的和 2. 角与角的关系是:三角形三个内角和等于180 ;任意一个外角等于和它不相邻的两个 内角和。 推广到任意多边形:四边形内角和=2×180 , 五边形内角和=3×180 六边形内角和=4×180 n 边形内角和=(n -2) 180 3. 边与角的关系 ① 在一个三角形中,等边对等角,等角对等边; 大边对大角,大角对大边。 ② 在直角三角形中, △ABC 中∠C=Rt ∠2 22c b a =+?(勾股定理及逆定理) △ABC 中?? ??=∠∠=∠ 30A Rt C a :b :c=1:3:2 △ABC 中?? ??=∠∠=∠ 45A Rt C a :b :c=1:1:2 例题 例1.要使三条线段3a -1,4a+1,12-a 能组成一个三角形求a 的取值范围。 (1988年泉州市初二数 学双基赛题) 解:根据三角形任意两边和大于第三边,得不等式组 ?????+>-+-->-++->++-141312131214121413a a a a a a a a a 解得?? ???<->>51135.1a a ∴1.5

初中几何学霸内部秘籍系列1(学而思培优竞赛)

初中几何学霸内部秘籍系列1(学而思培优 竞赛) 模型 1 :角平分线上的点向两边作垂线 如图,P 是∠MON 的平分线上一点,过点 P 作 PA⊥OM 于点 A,PB⊥ON 于点 B。 结论:PB=PA。 模型证明: ∵OP平分∠MON, ∴∠AOP=∠BOP; 又 PA⊥OM ,PB⊥ON, ∴∠OAP=∠OBP=90°; OP=OP; ∴RT△OAP≌RT△OBP, ∴PB=PA。 模型分析 利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,

为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的 突破口。 模型实例 (1)如图①,在△ABC 中,∠C=90°,AD 平分∠CAB,BC=6,BD=4,那么点 D 到直线 AB 的距离是_____; (2)如图②,∠1=∠2,∠3=∠4。 求证:AP 平分∠BAC。 解析:(1)由角平分线模型知,D到AB的距离等于DC=2 (2)如图分别做AB、BC、AC三边的高,由题意易得三边高相等, ∴AP 平分∠BAC

模型练习 1.如图,在四边形 ABCD 中,BC>AB,AD=DC,BD 平分∠ABC。 求证:∠BAD+∠BCD=180°。 证明:如图延长BA, 过D作DE、DF垂直BA延长线、BC于E、F两点, ∵BD 平分∠ABC ∴DE=DF, 又AD=DC ∴RT△DEA≌RT△DFC ∴∠DAE=∠BCD ∴∠BAD+∠BCD=180° 2.如图,△ABC 的外角∠ACD 的平分线 CP 与内角∠ABC 的平分线 BP 交于点 P,若∠BPC=40°,则∠CAP= 。

高中数学竞赛培优专题辅导-复数

高中数学竞赛培优专题辅导-复数 一、基础知识 1.复数的定义:设i 为方程x 2 =-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算。便产生形如a+bi (a,b ∈R )的数,称为复数。所有复数构成的集合称复数集。通常用C 来表示。 2.复数的几种形式。对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。若z=r(cos θ+isin θ),则θ称为z 的辐角。若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ 表示cos θ+isin θ,则z=re i θ ,称为复数的指数形 式。 3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。模与共轭的性质有:(1)2121z z z z ±=±;(2)2121z z z z ?=?;(3)2||z z z =?;(4)2 1 21z z z z =???? ??;(5)||||||2121z z z z ?=?; (6)| || |||2121z z z z = ;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2 +|z 1-z 2|2 =2|z 1|2 +2|z 2|2 ;(9)若|z|=1,则z z 1= 。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1? ?z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若2 1 212, 0r r z z z = ≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2e i(θ1+θ2) , .) (2 12121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ).

高一数学 培优教材三角函数

高一年段数学培优教材第四讲 三角函数 一、基础知识: 1. 函数sin ()y x x R =∈的对称轴方程为,2 x k k Z π π=+ ∈,对称中心坐标是(,0),k k Z π∈; cos ()y x x R =∈的对称轴方程为,x k k Z π=∈,对称中心坐标是(,0),2 k k Z π π+ ∈ tan (,)2 y x x k k Z π π=≠+ ∈的对称中心坐标是(,0),k k Z π∈,它不是轴对称图形. 2. 求三角函数最值的常用方法: ① 通过适当的三角变换,把所求的三角式化为sin()y A x b ω?=++的形式,再利用正弦函数的有界性求其最值. ② 把所求的问题转化为给定区间上的二次函数的最值问题. ③ 对于某些分式型的含三角函数的式子的最值问题(如sin cos a x b y c x d +=+)可利用正弦函数的有界性来求. ④ 利用函数的单调性求. 二、综合应用: 1. 已知函数()y f x =是以5为最小正周期的奇函数,且(3)1f -=,则对锐角α,当1sin 3 α= 时,)f α=_________________ 2. 已知222,a b +=则sin cos a b θθ+的最大值是___________ 3. 函数22sin 2sin cos 3cos y x x x x =++取最小值的x 的集合为______________ 4. 函数5cos 23sin ,[,]63 y x x x ππ =+∈--的最大值和最小值的和为______________. 5. 函数sin cos sin ,y x x x cosx x R =+-∈的最大值为_____________ 6. 函数sin (0)2cos x y x x π= <<+的最大值是_________________ 7. 函数()(cos sin )cos f x a x b x x =+有最大值2,最小值1-,求sin()4 y a bx π =+ 的最小正周期. 8. 已知函数2 ()2sin sin cos f x a x x x a b =-++的定义域是[0, ]2 π ,值域是[5,1]-,求,a b 的值. 9. 已知函数()sin 2cos2f x x a x =+的图象关于直线8 x π =- 对称,求a 的值. 10.已知()sin cos (,,f x A x B x A B ωωω=+是常数,且0)ω>的最小正周期为2,并且当1 3 x = 时,()f x 取最大值为2. (1)求()f x 表达式; (2)在区间2123 [,]44 上是否存在()f x 的图象的对称轴?若存在,求出其方程;若不存在,说明理由. 11.已知函数()sin()(0,0)f x x ω?ω?π=+>≤≤是R 上的偶函数,其图象关于点3( ,0)4M π对称,且在区间[0,]2 π 上是单调函数,求,?ω的值. 12.已知定义在区间2[, ]3 ππ-上的函数)(x f y =的图象关于直线6 π - =x 对称,当2[, ]6 3 x π π∈- 时,函数 ()s i n ()(0, 0,) 22 f x A x A ππ ω?ω?=+>>-<< , 其图象如图所示. (1)求函数()y f x =在2[, ]3 ππ-的表达式; x

初中九年级数学竞赛培优讲义全套专题10 最优化

专题10 最优化 阅读与思考 数学问题中常见的一类问题是:求某个变量的最大值或最小值;在现实生活中,我们经常碰到一些带有“最”字的问题,如投入最少、效益最大、材料最省、利润最高、路程最短等,这类问题我们称之为最值问题,解最值问题的常见方法有: 1.配方法 由非负数性质得()02 ≥±b a . 2.不等分析法 通过解不等式(组),在约束条件下求最值. 3.运用函数性质 对二次函数()02 ≠++=a c bx ax y ,若自变量为任意实数值,则取值情况为: (1)当0>a ,a b x 2-=时,a b ac y 442-=最小值 ; (2)当0

【例3】()2 13 22+-=x x f ,在b x a ≤≤的范围内最小值2a ,最大值2b ,求实数对(a ,b ). 解题思路:本题通过讨论a ,b 与对称轴0=x 的关系得出结论. 【例4】(1)已知2 11- + -=x x y 的最大值为a ,最小值b ,求2 2b a +的值. (“《数学周报》杯”竞赛试题) (2)求使()168422 +-+ +x x 取得最小值的实数x 的值. (全国初中数学联赛试题) (3)求使2016414129492222+-+++-++y y y xy x x 取得最小值时x ,y 的值. (“我爱数学”初中生夏令营数学竞赛试题) 解题思路:解与二次根式相关的最值问题,除了利用函数增减性、配方法等基本方法外,还有下列常用方法:平方法、判别式法、运用根式的几何意义构造图形等. 【例5】如图,城市A 处位于一条铁路线上,而附近的一小镇B 需从A 市购进大量生活、生产用品,如果铁路运费是公路运费的一半,问:该如何从B 修筑一条公路到铁路边,使从A 到B 的运费最低? (河南省竞赛试题) 解题思路:设铁路与公路的交点为C ,AC =x 千米,BC =y 千米,AD =n 千米,BD =m 千米,又设铁路每千米的运费为a 元,则从A 到B 的运费( ) ay m y n a S 222+--=,通过有理化,将式子整理 为关于y 的方程.

初中数学竞赛培优辅导反证法和构造法(含答案)

培优辅导 反证法和构造法 一、选择题: 1.若假设“整数a,b,c 中恰有一个偶数”不成立,则有( ) A 、a,b,c 都是奇数 B 、a,b,c 都是偶数 C 、a,b,c 中至少有两个偶数 D 、a,b,c 都是奇数或至少有两个偶数 2.已知△ABC 的周长为18,c b a 、、三边的关系为c b a ≤≤,则( ) A 、a <6 B 、a >6 C 、a >7 D 、6≤a 3.A 、B 、C 、D 、E 、F 、六个足球队单循环赛,已知A 、B 、C 、D 、E 五个队已经分别比赛了5、4、3、2、1场,则还未与B 队比赛的球队是( ) A 、C 队 B 、D 队 C 、E 队 D 、F 队 4.设等式在实数范围内成立,其中a 、x 、y 是两两不同的 实数,则 的值是( ) A 、3 B 、 31 C 、2 D 、3 5 5.关于x 的一元二次方程2a x 2 -2x-3a-2=0的一根大于1,另一根小于1,则a 的取值范围 是 ( ) A 、a >0或a <-4. B 、a <-4. C 、a >0. D 、-4<a <0. 二、填空题 6.用反证法证明:“三角形中最多有一个角是直角或钝角。”时,第一步应反设: ________________________________________________. 7.不查表可求得=?5.22cot _________. 8.321-+-++x x x 的最小值是______________. 9.若28,142 2=++=++x xy y y xy x ,则=+y x _________. 10.已知))((4)2a c b a c b --=-(且0≠a ,则a c b +=______________. 三、解答题

【精品】五年级下册数学试题:培优专题讲练:第4讲 巧解盈亏应用题 人教版

第4讲巧解盈亏应用题 方法和技巧 分配某种物品,分配者一定,被分配的物品数一定,两种分配方案的结果会出现“盈”(余)或“亏”(不足),求分配者数和被分配物品数,这类问题叫盈亏问题。 常用方法:总差额÷每人(或每件的差额)=人数(或件数)A级基础点睛 【例1】小波从家去体育馆参加比赛,先以50米每分钟的速度走了4分钟后,发现这样走下去要迟到3分钟;后来他改用65米每分钟的速度前进,结果提前3分钟到达。问:小波家和体育馆相距多少米? 分析与解由每分钟走50米要迟到3分钟,可知体育馆进行比赛时,小波离体育馆有50×3=150(米);由每分钟走65米早到3分钟,可知体育馆进行比赛时,他还可以走65×3=195(米)。 每分钟50米少150米 ?分钟每分钟 每分钟65米多195米 比较两种方案,每分钟相差65-50=15(米),结果相差150+195=345(米)。时间为345÷15=23(分),即出发4分钟后距离准时比赛时间。按第一种方案一共药性4+23+3=30(分)才能到达体育馆,小波家与体育馆相距50×(345÷15﹢7)=50×﹙23﹢7﹚ =1500米答:小波家和体育馆相距1500米。

做一做1 动物园为猴山的猴买来桃,这些桃如果每只猴分5个,还剩32个;如果其中10只小猴分4个,其余的猴分8个,就恰好分完。问:猴山有猴多少只?共买来多少个桃? 分析与解根据观察对应数量关系的变化寻找答案的解题思路,首先需要把条件“如果其中10只小猴分4个,其余的猴分8个,就恰好分完”转化成: 如果每只猴都分8个就少(8-4)×10=40个,然后按盈亏问题来求解。 每只猴都分8个,所缺桃子数为﹙8-4﹚×10=40﹙个﹚ 猴子总数为﹙40+32﹚÷﹙8-5﹚=24(只) 猴子总数为5×24+32=152﹙个) 答:猴山有猴24只,共买来152个桃。 做一做2 农民种树,其中有3人分得树苗各4棵,其余每人分得3棵,这样最后余下树苗11棵,如果1人先得3棵,其余的每人分得5棵,则树苗恰好分尽。求人数和树苗的总数各是多少? B级更上层楼 【例3】某中学买了一批英文打字机,分给高中三年级各班。其中两个班各分6台,其余各班分3台,则多6台;如果有一个班分7台,其余各班分5台,则还差12台。问:学校买来了多少台打字机分给多少个高中三年级的班?

相关文档
最新文档