高考数学圆锥曲线专题复习

高考数学圆锥曲线专题复习
高考数学圆锥曲线专题复习

圆锥曲线

一、知识结构

1.方程的曲线

在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:

(1)曲线上的点的坐标都是这个方程的解;

(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线.

点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上f(x0,y 0)=0;

点P0(x0,y0)不在曲线C上f(x0,y0)≠0

两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则

f1(x0,y0)=0

点P0(x0,y0)是C1,C2的交点

f2(x0,y0) =0

方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆

圆的定义:点集:{M||OM|=r},其中定点O为圆心,定长r为半径.

圆的方程:

圆心在c(a,b),半径为r 的圆方程是

(x-a)2

+(y-b)2

=r 2

圆心在坐标原点,半径为r 的圆方程是

x 2

+y 2

=r 2

(2)一般方程

当D 2

+E 2

-4F >0时,一元二次方程

x 2

+y 2

+Dx+Ey+F=0

叫做圆的一般方程,圆心为(-,-),半径是.配方,将方程x 2+y 2

+Dx+Ey+F=0化为

(x+

)2

+(y+

)2

=

当D 2

+E 2

-4F=0时,方程表示一个点

(-,-);

当D 2

+E 2

-4F <0时,方程不表示任何图形.

点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r 点M 在圆C 内,|MC |=r

点M 在圆C 上,|MC |>r

点M 在圆C 内,

其中|MC |=

.

(3)直线和圆的位置关系

①直线和圆有相交、相切、相离三种位置关系 直线与圆相交有两个公共点 直线与圆相切有一个公共点 直线与圆相离

没有公共点 ②直线和圆的位置关系的判定 (i)判别式法

(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d=与半径r 的大小关系来判定.

椭 圆 双曲线 抛物线

轨迹条件

|2MF |+|1MF ||{M }

2a |<2F 1F |=2a, .|2MF |-|1MF ||{M 2a}.

|>2F 2F |=±2a, {M | |MF |=点M 到

直线l 的距离}.

圆 形

线 性 质

标准方程 0)>b >=1(a +

0)

>0,b >=1(a - y 2=2px(p >0)

顶 点 (a,0);2a,0),A -(1A (0,b)2b),B -(0,1B A 1(0,-a),A 2(0,a) O(0,0)

轴 对称轴x=0,y=0

长轴长:2a 短轴长:2b

对称轴x=0,y=0 实轴长:2a 虚轴长:2b 对称轴y=0

焦 点

F 1(-c,0),F 2(c,0) 焦点在长轴上 F 1(-c,0),F 2(c,0) 焦点在实轴上

F(,0)

焦点对称轴上

焦 距

,=2c |2F 1F | c= =2c,|2F 1F | c=

准 线

x=±

准线垂直于长轴,且在椭圆外.

x=±

准线垂直于实轴,且在两顶点的内侧.

x=-

准线与焦点位于顶点两侧,且到顶点的距离相等.

离心率 e=,0<e <1 e=,e >1

e=1

4.圆锥曲线的统一定义

平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l 的距离之 比是一个常数e(e >0),则动点的轨迹叫做圆锥曲线.其中定点F(c,0)称为焦点,定直线l 称为准线,正常数e 称为离心率.

当0<e <1时,轨迹为椭圆,当e=1时,轨迹为抛物线当e >1时,轨迹为双曲线 5.坐标变换

坐标变换 在解析几何中,把坐标系的变换(如改变坐标系原点的位置或坐标轴的方向)叫做 坐标变换.实施坐标变换时,点的位置,曲线的形状、大小、位置都不改变,仅仅只改变点 的坐标与曲线的方程.

坐标轴的平移 坐标轴的方向和长度单位不改变,只改变原点的位置,这种坐标系的变换叫 做坐标轴的平移,简称移轴.

坐标轴的平移公式 设平面内任意一点M ,它在原坐标系xOy 中的坐标是9x,y),在新坐标系x ′O′y′中的坐标是(x′,y′).设新坐标系的原点O′在原坐标系xOy 中的坐标是(h,k),则

-h

(1) 或(2)

y=y′+k y′=y-k公式(1)或(2)叫做平移(或移轴)公式.

方程焦点焦线对称轴

椭圆+=1 (±c+h,k)x=±+h

x=h

y=k + =1 (h,±c+k)y=±+k

x=h

y=k

双曲线-=1 (±c+h,k)=±+k

x=h

y=k -=1 (h,±c+h)y=±+k

x=h

y=k

抛物线(y-k)2=2p(x-h) (+h,k) x=-+h y=k (y-k)2=-2p(x-h) (-+h,k) x=+h y=k (x-h)2=2p(y-k) (h, +k) y=-+k x=h (x-h)2=-2p(y-k) (h,- +k) y=+k x=h

二、知识点、能力点提示

(一)曲线和方程,由已知条件列出曲线的方程,曲线的交点

说明在求曲线方程之前必须建立坐标系,然后根据条件列出等式进行化简 .特别是在求出方程后要考虑化简的过程是否是同解变形,是否满足已知条件,只有这样求出的曲线方程才能准确无误.另外,要求会判断曲线间有无交点,会求曲线的交点坐标.

三、考纲中对圆锥曲线的要求:

考试内容:

. 椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程;

. 双曲线及其标准方程.双曲线的简单几何性质;

. 抛物线及其标准方程.抛物线的简单几何性质;

考试要求:

. (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程;

. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质;

. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质;

. (4)了解圆锥曲线的初步应用。

四.对考试大纲的理解

高考圆锥曲线试题一般有3题(1个选择题, 1个填空题, 1个解答题), 共计22分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查以圆锥曲线的基本概念和性质为主, 难度在中等以下,一般较容易得分,解答题常作为数学高考中的压轴题,综合考查学生数形结合、等价转换、分类讨论、逻辑推理等诸方面的能力,重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 往往结合平面向量进行求解,在复习应充分重视。

求圆锥曲线的方程

【复习要点】

求指定的圆锥曲线的方程是高考命题的重点,主要考查识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法.

一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤.

定形——指的是二次曲线的焦点位置与对称轴的位置.

定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m>0,n>0).

定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小.

【例题】

【例1】双曲线=1(b∈N)的两个焦点F1、F2,P为双曲线上一点,

|OP|<5,|PF1|,|F1F2|,|PF2|成等比数列,则b2=_________.

解:设F1(-c,0)、F2(c,0)、P(x,y),则

|PF1|2+|PF2|2=2(|PO|2+|F1O|2)<2(52+c2),

即|PF1|2+|PF2|2<50+2c2,

又∵|PF1|2+|PF2|2=(|PF1|-|PF2|)2+2|PF1|·|PF2|,

依双曲线定义,有|PF1|-|PF2|=4,

依已知条件有|PF1|·|PF2|=|F1F2|2=4c2

∴16+8c2<50+2c2,∴c2<,

又∵c2=4+b2<,∴b2<,∴b2=1.

【例2】已知圆C1的方程为,椭圆C2的方程为

,C2的离心率为,如果C1与C2相交于A、B两点,且线段AB恰为圆C1的直径,求直线AB的方程和椭圆C2的方程。

解:由

设椭圆方程为

两式相减,得

解得故所有椭圆方程

【例3】过点(1,0)的直线l与中心在原点,焦点在x轴上且离心率为的椭圆C相交于

A、B两点,直线y=x过线段AB的中点,同时椭圆C上存在一点与右焦点关于直线l对称,试求直线

l与椭圆C的方程.

解法一:由e=,得,从而a2=2b2,c=b.

设椭圆方程为x2+2y2=2b2,A(x1,y1),B(x2,y2)在椭圆上.

则x12+2y12=2b2,x22+2y22=2b2,两式相减得,

(x12-x22)+2(y12-y22)=0,

设AB中点为(x0,y0),则k AB=-,

又(x0,y0)在直线y=x上,y0=x0,

于是-=-1,k AB=-1,

设l的方程为y=-x+1.

右焦点(b,0)关于l的对称点设为(x′,y′),

由点(1,1-b)在椭圆上,得1+2(1-b)2=2b2,b2=.

∴所求椭圆C的方程为 =1,l的方程为y=-x+1.

解法二:由e=,从而a2=2b2,c=b.

设椭圆C的方程为x2+2y2=2b2,l的方程为y=k(x-1),

将l的方程代入C的方程,得(1+2k2)x2-4k2x+2k2-2b2=0,

则x1+x2=,y1+y2=k(x1-1)+k(x2-1)=k(x1+x2)-2k=-.

直线l:y=x过AB的中点(),则,

解得k=0,或k=-1.

若k=0,则l的方程为y=0,焦点F(c,0)关于直线l的对称点就是F点本身,不能在椭圆C上,所以k=0舍去,从而k=-1,直线l的方程为y=-(x-1),即y=-x+1,以下同解法一.

解法3:设椭圆方程为

直线不平行于y轴,否则AB中点在x轴上与直线中点矛盾。

故可设直线

,,,

,,

,,

,,,

,,

则,

,,

所以所求的椭圆方程为:

【例4】如图,已知△P1OP2的面积为,P为线段P1P2的一个三等分点,求以直线OP1、OP2为渐近线且过点P的离心率为的双曲线方程.

解:以O为原点,∠P1OP2的角平分线为x轴建立如图所示的直角坐标系.

设双曲线方程为=1(a>0,b>0)

由e2=,得.

∴两渐近线OP1、OP2方程分别为y=x和y=-x

设点P1(x1,x1),P2(x2,-x2)(x1>0,x2>0),

则由点P分所成的比λ==2,

得P点坐标为(),

又点P在双曲线=1上,

所以=1,

即(x1+2x2)2-(x1-2x2)2=9a2,整理得8x1x2=9a2①

即x1x2=②

由①、②得a2=4,b2=9

故双曲线方程为=1.

【例5】过椭圆C :上一动点P引圆O:x 2+y2=b2的两条切线P A、P B,

A、B为切点,直线AB与x轴,y轴分别交于M、N两点。(1) 已知P点坐标为(x0,y0)并且x 0y0≠0,试

求直线AB方程;(2) 若椭圆的短轴长为8,并且

,求椭圆C 的方程;(3) 椭圆C上是否存在

点P,由P向圆O所引两条切线互相垂直?若存在,请求出存

在的条件;若不存在,请说明理由。

解:(1)设A(x1,y1),B(x2,y2)

切线P A:,P B:

∵P点在切线P A、P B上,∴

∴直线AB的方程为

(2)在直线AB方程中,令y=0,则M(,0);令x=0,则N(0,)

∴①

∵2b=8 ∴b=4 代入①得a2 =25, b2 =16

∴椭圆C方程:(注:不剔除xy≠0,可不扣分)

(3) 假设存在点P(x0,y0)满足P A⊥P B,连接O A、O B由|P A|=|P B|知,

四边形P A O B为正方形,|OP|=|O A| ∴①

又∵P点在椭圆C上∴②

由①②知x

∵a>b>0 ∴a2-b2>0

(1)当a2-2b2>0,即a>b时,椭圆C上存在点,由P点向圆所引两切

线互相垂直;

(2)当a2-2b2<0,即b

【例6】已知椭圆C的焦点是F1(-,0)、F2(,0),点F1到相应的准线的距离为,过F2点且倾斜角为锐角的直线l与椭圆C交于A、B两点,使得|F2B|=3|F2A|.

(1)求椭圆C的方程;(2)求直线l的方程.

解:(1)依题意,椭圆中心为O(0,0),

点F1到相应准线的距离为,

a2=b2+c2=1+3=4

∴所求椭圆方程为

(2)设椭圆的右准线与l交于点P,作AM⊥,AN⊥,垂足分别为M、N. 由椭圆第二定义,

同理|BF2|=e|BN|

由Rt△PAM~Rt△PBN,得…9分

的斜率.

∴直线l的方程

【例7】已知点B(-1,0),C(1,0),P是平面上一动点,且满足

(1)求点P的轨迹C对应的方程;

(2)已知点A(m,2)在曲线C上,过点A作曲线C的两条弦AD和AE,且AD⊥AE,判断:直线DE是否过定点?试证明你的结论.

(3)已知点A(m,2)在曲线C上,过点A作曲线C的两条弦AD,AE,且AD,AE的斜率k1、k2满足k1·k2=2.求证:直线DE过定点,并求出这个定点.

解:(1)设

【例8】已知曲线,直线l过A(a,0)、

B(0,-b)两点,原点O到l的距离是

(Ⅰ)求双曲线的方程;

(Ⅱ)过点B作直线m交双曲线于M、N两点,若,求直线m的方程.

解:(Ⅰ)依题意,由原点O到l的距离

为,得又

故所求双曲线方程为

(Ⅱ)显然直线m不与x轴垂直,设m方程为y=k x-1,则点M、N坐标()、()是方程组的解

消去y,得①

依设,由根与系数关系,知

==

=

∴=-23,k=±

当k=±时,方程①有两个不等的实数根

故直线l方程为

【例9】已知动点与双曲线的两个焦点、的距离之和为定值,且的最小值为.

(1)求动点的轨迹方程;

(2)若已知,、在动点的轨迹上且,求实数的取值范围.

解:(1)由已知可得:,

∴所求的椭圆方程为.

(2)方法一:

由题知点D、M、N共线,设为直线m,当直线m的斜率存在时,设为k,则直线m的方程为y = k x +3 代入前面的椭圆方程得

(4+9k 2) x2 +54 k +45 = 0 ①

由判别式,得.

再设M (x 1 , y1 ), N ( x2 , y2),则一方面有

,得

另一方面有,②

将代入②式并消去x 2可得

,由前面知,

∴,解得.

又当直线m的斜率不存在时,不难验证:,

所以为所求。

方法二:同上得

设点M (3cosα,2sinα),N (3cosβ,2sinβ)

则有

由上式消去α并整理得

, 由于

∴,解得为所求.

方法三:设法求出椭圆上的点到点D的距离的最大值为5,最小值为1.

进而推得的取值范围为。

【求圆锥曲线的方程练习】

一、选择题

1.已知直线x+2y-3=0与圆x2+y2+x-6y+m=0相交于P、Q两点,O为坐标原点,若OP⊥OQ,则m 等于( )

A.3

B.-3

C.1

D.-1

2.中心在原点,焦点在坐标为(0,±5)的椭圆被直线3x-y-2=0截得的弦的中点的横坐标为,则椭圆方程为( )

3.直线l的方程为y=x+3,在l上任取一点P,若过点P且以双曲线12x2-4y2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_________.

4.已知圆过点P(4,-2)、Q(-1,3)两点,且在y轴上截得的线段长为4,则该圆的方程为_________.

三、解答题

5.已知椭圆的中心在坐标原点,焦点在x轴上,它的一个焦点为F,M是椭圆上的任意点,|MF|的最大值和最小值的几何平均数为2,椭圆上存在着以y=x为轴的对称点M1和M2,且|M1M2|=,试求椭圆的方程.

6.某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其中最长的支柱的长.

7.已知圆C1的方程为(x-2)2+(y-1)2=,椭圆C2的方程为=1(a>b

>0),C2的离心率为,如果C1与C2相交于A、B两点,且线段AB恰为圆C1

的直径,求直线AB的方程和椭圆C2的方程.

参考答案

一、1.解析:将直线方程变为x=3-2y,代入圆的方程x2+y2+x-6y+m=0,

得(3-2y)2+y2+(3-2y)+m=0.

整理得5y2-20y+12+m=0,设P(x1,y1)、Q(x2,y2)

则y1y2=,y1+y2=4.

又∵P、Q在直线x=3-2y上,

∴x1x2=(3-2y1)(3-2y2)=4y1y2-6(y1+y2)+9

故y1y2+x1x2=5y1y2-6(y1+y2)+9=m-3=0,故m=3.

2.解析:由题意,可设椭圆方程为: =1,且a2=50+b2,

即方程为=1.

将直线3x-y-2=0代入,整理成关于x的二次方程.

由x1+x2=1可求得b2=25,a2=75.

答案:C

二、3.解析:所求椭圆的焦点为F1(-1,0),F2(1,0),2a=|PF1|+|PF2|.

欲使2a最小,只需在直线l上找一点P.使|PF1|+|PF2|最小,利用对称性可解.

答案: =1

4.解析:设所求圆的方程为(x-a)2+(y-b)2=r2

则有

由此可写所求圆的方程.

答案:x2+y2-2x-12=0或x2+y2-10x-8y+4=0

三、5.解:|MF|ma x=a+c,|MF|min=a-c,则(a+c)(a-c)=a2-c2=b2,

∴b2=4,设椭圆方程为

设过M1和M2的直线方程为y=-x+m

将②代入①得:(4+a2)x2-2a2mx+a2m2-4a2=0

设M1(x1,y1)、M2(x2,y2),M1M2的中点为(x0,y0),

则x0= (x1+x2)=,y0=-x0+m=.

代入y=x,得,

由于a2>4,∴m=0,∴由③知x1+x2=0,x1x2=-,

又|M1M2|=,

代入x1+x2,x1x2可解a2=5,故所求椭圆方程为: =1.

6.解:以拱顶为原点,水平线为x轴,建立坐标系,

如图,由题意知,|AB|=20,|OM|=4,A、B坐标分别为(-10,-4)、(10,-4)设抛物线方程为x2=-2py,将A点坐标代入,得100=-2p×(-4),解得p=12.5,

于是抛物线方程为x2=-25y.

由题意知E点坐标为(2,-4),E′点横坐标也为2,将2代入得y=-0.16,从而|EE′|=

(-0.16)-(-4)=3.84.故最长支柱长应为3.84米.

7.解:由e=,可设椭圆方程为=1,

又设A(x1,y1)、B(x2,y2),则x1+x2=4,y1+y2=2,

又=1,两式相减,得=0,

即(x1+x2)(x1-x2)+2(y1+y2)(y1-y2)=0.

化简得=-1,故直线AB的方程为y=-x+3,

代入椭圆方程得3x2-12x+18-2b2=0.

有Δ=24b2-72>0,又|AB|=,

得,解得b2=8.

故所求椭圆方程为=1.

直线与圆锥曲线

【复习要点】

直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能.

1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.

2.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.

【例题】

且OP⊥OQ,|PQ|=,求椭圆方程.

解:设椭圆方程为mx2+ny2=1(m>0,n>0),P(x1,y1),Q(x2,y2)

由得(m+n)x2+2nx+n-1=0,

Δ=4n2-4(m+n)(n-1)>0,即m+n-mn>0,

由OP⊥OQ,所以x1x2+y1y2=0,即2x1x2+(x1+x2)+1=0,

∴+1=0,∴m+n=2

又22,

将m+n=2,代入得m·n=

由①、②式得m=,n=或m=,n=

故椭圆方程为+y2=1或x2+y2=1.

【例2】如图所示,抛物线y2=4x的顶点为O,点A的坐标为(5,0),倾斜角为的直线l与线段OA相交(不经过点O或点A)且交抛物线于M、N两点,求△AMN面积最大时直线l的方程,并求△AMN的最大面积.

解:由题意,可设l的方程为y=x+m,-5<m<0.

由方程组,消去y,得x2+(2m-4)x+m2=0……………①

∵直线l与抛物线有两个不同交点M、N,

∴方程①的判别式Δ=(2m-4)2-4m2=16(1-m)>0,

解得m<1,又-5<m<0,∴m的范围为(-5,0)

设M(x1,y1),N(x2,y2)则x1+x2=4-2m,x1·x2=m2,

∴|MN|=4.

点A到直线l的距离为d=.

∴S△=2(5+m),从而S△2=4(1-m)(5+m)2

=2(2-2m)·(5+m)(5+m)≤2()3=128.

∴S△≤8,当且仅当2-2m=5+m,即m=-1时取等号.

故直线l的方程为y=x-1,△AMN的最大面积为8.

【例3】已知双曲线C:2x2-y2=2与点P(1,2)。(1)求过P(1,2)点的直线l的斜率取值范围,使l与C分别有一个交点,两个交点,没有交点。(2)若Q(1,1),试判断以Q为中点的弦是否存在.

解:(1)当直线l的斜率不存在时,l的方程为x=1,

当l的斜率存在时,设直线l的方程为y-2=k(x-1),

代入C的方程,并整理得

(2-k2)x2+2(k2-2k)x-k2+4k-6=0………………(*)

(ⅰ)当2-k2=0,即k=±时,方程(*)有一个根,l与C有一个交点

(ⅱ)当2-k2≠0,即k≠±时

Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k-6)=16(3-2k)

①当Δ=0,即3-2k=0,k=时,方程(*)有一个实根,l与C有一个交点.

②当Δ>0,即k<,又k≠±,故当k<-或-<k<或<k<时,方程(*)有两不等实根,l与C有两个交点.

③当Δ<0,即k>时,方程(*)无解,l与C无交点.

综上知:当k=±,或k=,或k不存在时,l与C只有一个交点;

当<k<,或-<k<,或k<-时,l与C有两个交点;

当k>时,l与C没有交点.

(2)假设以Q为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2)

又∵x1+x2=2,y1+y2=2

∴2(x1-x2)=y1-y1

即k AB==2

但渐近线斜率为±,结合图形知直线AB与C无交点,所以假设不正确,即以Q为中点的弦不存在.

【例4】如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.

(1)求该弦椭圆的方程;

(2)求弦AC中点的横坐标;

(3)设弦AC的垂直平分线的方程为y=kx+m,

求m的取值范围.

解:(1)由椭圆定义及条件知,2a=|F1B|+|F2B|=10,得

a=5,又c=4,所以b==3.

故椭圆方程为=1.

(2)由点B(4,y B)在椭圆上,得|F2B|=|y B|=.因为椭圆右准线方程为x=,离心率为,根据椭圆定义,有|F2A|=(-x1),|F2C|=(-x2),

由|F2A|、|F2B|、|F2C|成等差数列,得

设弦AC 的中点为P (x 0,y 0),则x 0==4.

(3)解法一:由A (x 1,y 1),C (x 2,y 2)在椭圆上. 得

①-②得9(x 12-x 22)+25(y 12-y 22)=0, 即9×=0(x 1≠x 2)

将 (k ≠0)代入上式,得9×4+25y 0(-

)=0

(k ≠0)

即k =

y 0(当k =0时也成立).

由点P (4,y 0)在弦AC 的垂直平分线上,得y 0=4k +m , 所以m =y 0-4k =y 0-

y 0=-

y 0.

由点P (4,y 0)在线段BB ′(B ′与B 关于x 轴对称)的内部, 得-

<y 0<

,所以-

<m <

.

解法二:因为弦AC 的中点为P (4,y 0),所以直线AC 的方程为 y -y 0=-(x -4)(k ≠0)

将③代入椭圆方程

=1,得 (9k 2+25)x 2-50(ky 0+4)x +25(ky 0+4)2-25×9k 2=0 所以x 1+x 2==8,解得k =

y 0.(当k =0时也成立)

(以下同解法一).

【例5】

已知双曲线G 的中心在原点,它的渐近线与圆相切.过点作斜率为

的直线,使得和

交于

两点,和

轴交于点

,并且点

在线段

上,又满足.

(1)求双曲线的渐近线的方程; (2)求双曲线的方程;

(3)椭圆的中心在原点,它的短轴是的实轴.如果

中垂直于的平行弦的中点的轨迹恰好是

的渐近线截在

内的部分,求椭圆

的方程.

解:(1)设双曲线的渐近线的方程为:

则由渐近线与圆相切可得:

所以,

① ②

双曲线的渐近线的方程为:.

(2)由(1)可设双曲线的方程为:.

把直线的方程代入双曲线方程,整理得.

则(*)

∵,共线且在线段上,

∴,

即:,整理得:

将(*)代入上式可解得:.

所以,双曲线的方程为.

(3)由题可设椭圆的方程为:.下面我们来求出中垂直于的平行弦中点

的轨迹.

设弦的两个端点分别为,的中点为,则

两式作差得:

由于,

所以,,

所以,垂直于的平行弦中点的轨迹为直线截在椭圆S内的部分.

又由题,这个轨迹恰好是的渐近线截在内的部分,所以,.所以,,椭圆S的方程为:.

点评:解决直线与圆锥曲线的问题时,把直线投影到坐标轴上(也即化线段的关系为横坐标(或纵坐标)之间的关系)是常用的简化问题的手段;有关弦中点的问题,常常用到“设而不求”的方法;判别式和韦达定理是解决直线与圆锥曲线问题的常用工具).

【例6】设抛物线过定点,且以直线为准线.

(1)求抛物线顶点的轨迹的方程;

(2)若直线与轨迹交于不同的两点,且线段恰被直线平分,设弦MN的垂直平

解:(1)设抛物线的顶点为,则其焦点为.由抛物线的定义可知:

所以,.

所以,抛物线顶点的轨迹的方程为:.

(2)因为是弦MN 的垂直平分线与y 轴交点的纵坐标,由MN

所唯一确定.所以,要求的取

值范围,还应该从直线与轨迹相交入手.

显然,直线与坐标轴不可能平行,所以,设直线的方程为,代入椭圆方程得:

由于与轨迹交于不同的两点,所以,,即:

.(*)

又线段恰被直线平分,所以,.

所以,.

代入(*)可解得:.

下面,只需找到与的关系,即可求出的取值范围.由于为弦MN的垂直平分线,故可考虑弦MN 的中点.

在中,令,可解得:.

将点代入,可得:.

所以,.

从以上解题过程来看,求的取值范围,主要有两个关键步骤:一是寻求与其它参数之间的关系,二是构造一个有关参量的不等式.从这两点出发,我们可以得到下面的另一种解法:

解法二.设弦MN 的中点为,则由点为椭圆上的点,可知:

两式相减得:

又由于

B

NP

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

【2020届】高考数学圆锥曲线专题复习:圆锥曲线解答题12大题型解题套路归纳

【高考数学中最具震撼力的一个解答题!】注:【求解完第一问以后,】→WILL COME ACROSS圆锥曲线题10大题型:(1)弦长问题(2)中点问题(3)垂直问题(4)斜率问题(5)对称问题(6)向量问题(7)切线问题(8)面积问题(9)最值问题(10)焦点三角形问题。中的2-----4类;分门别类按套路求解; 1.高考最重要考:直线与椭圆,抛物线的位置关系。第一问最高频考(总与三个问题有关):(1)———————;(2)——————————;(3)—————————; 2.圆锥曲线题,直线代入圆锥曲线的“固定3步走”:---------------------------------------------------; ——————————————————————————————————————; 3.圆锥曲线题固定步骤前9步:-------------------;---------------------------------------------;————————————;—————————;——————————;—————————————————;———————————;——————————————; 4.STEP1:首先看是否属于3种特殊弦长:(1)圆的弦长问题;(2)中点弦长问题(3)焦点弦长问题;→(1)圆的弦长问题:(2法)首选方法:垂径定理+勾

股定理:图示:--------------------------------;公式为:-------------------------;其中求“点线距”的方法:———————;次选:弦长公式;→(2) 中点弦长问题:(2法)首选方法:“点差法” 椭圆:(公式一)--------------------------------;(公式二)--------------------------------;副产品:两直线永远不可能垂直!原因:___________;【两直线夹角的求法:(夹角公式)___________;】双曲线(公式一)--------------------------------;(公式二)--------------------------------;抛物线:形式一:___________;(公式一)--------------------------------;(公式二)--------------------------------;形式2:___________;(公式一)--------------------------------;(公式二)--------------------------------;附:“点差法”步骤:椭圆:“点”_______________________;___________________________;“差”__________________________________;“设而不求法”_______________________________;“斜率公式”+“中点公式”_____________________;___________;___________;→得公式:(公式一)-------------------;(公式二)---------------------;附:“点差法”步骤:抛物线;形式一___________;:“点”_______________________;_____________________;“差”_________________________;“设而不求法”___________________;“斜率公式”+“中点公式”_____________;___________;___________;→得公式:(公式一)---------------------;(公式二)--------------------;附:“点差法”步骤:

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值 为___ 2 __________。 2、(2013年江苏高考)双曲线19 162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为 )0,0(122 22>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆 C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C : y x 42=的焦点为F ,定点)0, 22(A ,若射线FA 及抛物线C 相交于点M ,及抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0) x y a b a b -=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线22 14x y m -=的渐近线方程为 2 y x =± ,则m = ▲

7、(盐城市 高三第三次模拟考试)若抛物线28y x =的焦点F 及双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近 线方程 为y =±3x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线22 15 x y m -=的右焦点及抛物线 212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线222(0)x y a a -=>的右焦点及抛物线 24y x =的焦点重合,则a = ▲ . 11、(南通市 高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是 12、(苏州市 高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为 13、(泰州市 高三上期末)双曲线12222=-b y a x 的右焦点到渐近线的距离是其 到左顶点距离的一半,则双曲线的离心率e = ▲ 14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线22 19x y m -=的一个焦点为(5,0),则实数 m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐 标系xOy 中,双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线及抛物线y 2=4x Y

高三文科数学圆锥曲线综合复习讲义

高三文科数学圆锥曲线综合复习讲义 一、基础知识【理解去记】 1.椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF 1|+|PF 2|=2a (2a>|F 1F 2|=2c). 第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0b>0), F 1(-c, 0), F 2(c, 0)是它的两焦点。若P(x, y)是椭圆上的任意一 点,则|PF 1|=a+ex, |PF 2|=a-ex. 5.补充知识点: 几个常用结论: 1)过椭圆上一点P(x 0, y 0)的切线方程为: 12020=+b y y a x x ; 2)斜率为k 的切线方程为222b k a kx y +±=;3)过焦点F 2(c, 0)倾斜角为θ的弦的长为 θ 2222 cos 2c a ab l -=。 6.双曲线的定义,第一定义: 满足||PF 1|-|PF 2||=2a(2a<2c=|F 1F 2|, a>0)的点P 的轨迹; 第二定义:到定点的距离与到定直线距离之比为常数e(>1)的点的轨迹。 7.双曲线的方程:中心在原点,焦点在x 轴上的双曲线方程为

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

全国名校高考数学专题训练圆锥曲线

全国名校高考专题训练——圆锥曲线选择填空100题 一、选择题(本大题共60小题) 1.(江苏省启东中学高三综合测试二)在抛物线y2=2px上,横坐标为4的点到焦点的距离为5,则p的值为( ) C. 2 D. 4 2.(江苏省启东中学高三综合测试三)已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于( ) 3.(江苏省启东中学高三综合测试四)设F1,F2是椭圆4x2 49 + y2 6 =1的两个焦 点,P是椭圆上的点,且|PF1|:|PF2|=4:3,则△PF1F2的面积为( ) 4.(安徽省皖南八校高三第一次联考)已知倾斜角α≠0的直线l过椭圆x2 a2+ y2 b2 =1(a>b>0)的右焦点F交椭圆于A,B两点,P为右准线上任意一点,则∠APB为( ) A.钝角 B.直角 C.锐角 D.都有可能 5.(江西省五校高三开学联考)从一块短轴长为2b的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是[3b2,4b2],则这一椭圆离心率e的取值范围是( ) A.[ 5 3 , 3 2 ] B.[ 3 3 , 2 2 ] C.[ 5 3 , 2 2 ] D. [ 3 3 , 3 2 ]

6.(安徽省淮南市高三第一次模拟考试)已知点A ,F 分别是椭圆x 2a 2+y 2 b 2=1(a >b >0)的右顶点和左焦点,点B 为椭圆短轴的一个端点,若BF →·BA →=0=0,则椭圆的离心率e 为( ) 7.(安徽省巢湖市高三第二次教学质量检测)以椭圆x 2a 2+y 2 b 2=1(a >b >0)的 右焦点为圆心的圆经过原点,且被椭圆的右准线分成弧长为2:1的两段弧,那么该椭圆的离心率等于( ) 8.(北京市朝阳区高三数学一模)已知双曲线C 1:x 2a 2-y 2 b 2=1(a >0,b >0)的 左,右焦点分别为F 1,F 2,抛物线C 2的顶点在原点,它的准线与双曲线C 1的左准线重合,若双曲线C 1与抛物线C 2的交点P 满足PF 2⊥F 1F 2,则双曲线 C 1的离心率为( ) A. 2 B. 3 C.233 2 9.(北京市崇文区高三统一练习一)椭圆x 2a 2+y 2 b 2=1(a >b >0)的中心,右焦 点,右顶点,右准线与x 轴的交点依次为O ,F ,A ,H ,则|FA | |OH |的最大值为 ( ) A.12 B.13 C.14 10.(北京市海淀区高三统一练习一)直线l 过抛物线y 2=x 的焦点F ,交抛物线于A ,B 两点,且点A 在x 轴上方,若直线l 的倾斜角θ≥ π 4 ,则|FA |

高考数学圆锥曲线综合题题库1 含详解

1、(广东省广州执信中学、中山纪念中学、深圳外国语学校三校期末联考)设1F 、2F 分别是 椭圆22 154 x y +=的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求21PF PF ?的最大值和最小值; (Ⅱ)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|?若存在,求直线l 的方程;若不存在,请说明理由. 解:(Ⅰ)易知)0,1(),0,1(,1,2,521F F c b a -=∴=== 设P (x ,y ),则1),1(),1(2 221-+=--?---=?y x y x y x PF 35 1 1544222+=-- +x x x ]5,5[-∈x , 0=∴x 当,即点P 为椭圆短轴端点时,21PF PF ?有最小值3; 当5±=x ,即点P 为椭圆长轴端点时,21PF PF ?有最大值4 (Ⅱ)假设存在满足条件的直线l 易知点A (5,0)在椭圆的外部,当直线l 的斜率不 存在时,直线l 与椭圆无交点,所在直线l 斜率存在,设为k 直线l 的方程为)5(-=x k y 由方程组22 22221(54)5012520054 (5)x y k x k x k y k x ?+ =?+-+-=??=-? ,得 依题意220(1680)0k k ?=-><< ,得 当5 5 55< <- k 时,设交点C ),(),(2211y x D y x 、,CD 的中点为R ),(00y x , 则4 5252,455022 2102221+=+=+=+k k x x x k k x x .4 520)54525()5(22200+-=-+=-=∴k k k k k x k y 又|F 2C|=|F 2D|122-=??⊥?R F k k l R F

全国卷高考数学圆锥曲线大题集大全

全国卷高考数学圆锥曲线大题集大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: (R); AG AD λλ=∈2; GE GF GH +=0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23 = e ,已知点)3,0(P 到 这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

新人家A版高考数学一轮复习:圆锥曲线的综合问题

圆锥曲线的综合问题 [知识能否忆起] 1.直线与圆锥曲线的位置关系 判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0). 若a ≠0,可考虑一元二次方程的判别式Δ,有: Δ>0?直线与圆锥曲线相交; Δ=0?直线与圆锥曲线相切; Δ<0?直线与圆锥曲线相离. 若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题 设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2),则弦长|AB |=1+k 2|x 1 -x 2|或 1+1 k 2|y 1-y 2|. [小题能否全取] 1.(教材习题改编)与椭圆x 212+y 2 16=1焦点相同,离心率互为倒数的双曲线方程是( ) A .y 2- x 23=1 B.y 23 -x 2 =1 C.34x 2-3 8 y 2=1 D.34y 2-3 8 x 2=1 解析:选A 设双曲线方程为y 2a 2-x 2 b 2=1(a >0,b >0), 则????? a 2+ b 2= c 2, c a =2,c =2, 得a =1,b = 3. 故双曲线方程为y 2- x 2 3 =1. 2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 2 4=1的位置关系是( ) A .相交 B .相切 C .相离 D .不确定 解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高考数学总复习圆锥曲线综合

第六节 圆锥曲线综合 考纲解读 1.掌握与圆锥曲线有关的最值、定值和参数范围问题. 2.会处理动曲线(含直线)过定点的问题. 3.会证明与曲线上的动点有关的定值问题. 4.会按条件建立目标函数,研究变量的最值及取值范围问题,注意运用数形结合法和几何法求某些量的最值. 命题趋势研究 从内容上看,预测2015年高考主要考查两大类问题:一是根据条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质,其热点有:①以客观题的形式考查圆锥曲线的基本概念和性质;②求平面曲线的方程和轨迹;③圆锥曲线的有关元素计算、关系证明或范围确定;④涉及圆锥曲线对称变换、最值或位置关系的有关问题. 从形式上看,以解答题为主,难度较大. 从能力要求上看,要求学生具备一定的数形结合、分析问题和解决问题及运算能力. 知识点精讲 一、定值问题 解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量—函数—定值”,具体操作程序如下: (1)变量----选择适当的量为变量. (2)函数----把要证明为定值的量表示成变量的函数. (3)定值----化简得到的函数解析式,消去变量得到定值. 求定值问题常见的方法有两种: (1)从特殊情况入手,求出定值,再证明该定值与变量无关; (2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值. 二、求最值问题常用的两种方法 (1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形性质来解决,这是几何法. (2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求该函数的最值.求函数的最值常见的方法有基本不等式法、单调性法、导数法和三角换元法等,这就是代数法. 三、求定值、最值等圆锥曲线综合问题的“三重视” (1)重视定义在解题中的作用(把定义作为解题的着眼点). (2)重视曲线的几何特征特别是平面几何性质与方程的代数特征在解题中的作用. (3)重视根与系数的关系在解题中的作用(涉及弦长、中点要用根与系数的关系). 四、求参数的取值范围 据已知条件及题目要求等量或不等量关系,再求参数的范围. 题型归纳及思路提示 题型150 平面向量在解析几何中的应用 思路提示 解决平面向量在解析几何中的应用要把几何特征转化为向量关系,并把向量用坐标表示.常见的应用有如下两个方面. (1)用向量的数量积解决有关角的问题.直角?0a b =,钝角?0a b <(且,a b 不反向),

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线11与12是同一平面两条互相垂直的直线, 交点是A ,点B 、D 在直线11上(B 、 D 位于点A 右侧),且|AB|=4 , |AD|=1 , M 是该平面上的一个动点, M 在l i 上的射影点 是 N ,且 |BN|=2|DM|. (I )建立适当的坐标系,求动点 M 的轨迹C 的方程. (II )过点D 且不与11、12垂直的直线1交(I )中的轨迹C 于E 、F 两点;另外平面上的点 G 、 求点G 的横坐标的取值围. M ___ B ___________________ A D N B 11 、3 e 2. 设椭圆的中心是坐标原点,焦点在 x 轴上,离心率 2,已知 点P(0,3) 到这个椭圆 上的点的最远距离是 4,求这个椭圆的方程. H 满足: AD( R); G E G F 2G H ; G H E F 0. 12

2 2 C x y 1( b 0) 3. 已知椭圆/ b2的一条准线方程是25 , 4其左、右顶点分别

(I) 求椭圆C i的方程及双曲线C2的离心率; (H)在第一象限取双曲线C2上一点P,连结AP交椭圆C i于点M,连结PB并延长交椭 圆C i于点N,若AM MP.求证:MN ?AB 0. 4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45。的直线交 椭圆于A, B两点.设AB中点为M,直线AB与OM的夹角为 a. (1) 用半焦距c表示椭圆的方程及tan ; (2) 若2b>0)的离心率 3 ,过点A (0, -b)和B (a, 0)的直线 ,3 与原点的距离为 2 (1)求椭圆的方程 (2)已知定点E (-1, 0),若直线y= kx + 2 (k乒0与椭圆交于C D两点问:是否存在k的值,使以CD 为直径的圆过E点?请说明理由 2 2 C x y 是A、B;双曲线, a2b2 1 的一条渐近线方程为3x- 5y=0. 2 x 2 5.已知椭圆a

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上 (B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23 = e ,已知点)3,0(P 到这个椭圆 上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若MP AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

历年高考数学圆锥曲线第二轮专题复习

高考数学试题圆锥曲线 一. 选择题: 1.又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 41 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它 到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C . D . 6.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A )

高考数学圆锥曲线及解题技巧

椭圆与双曲线的性质 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线 方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆 的焦点角形的面积为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应 于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除 去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)

数学高考圆锥曲线压轴题

数学高考圆锥曲线压轴 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学高考圆锥曲线压轴题经典预测一、圆锥曲线中的定值问题 ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的离心率e= 3 2,a+b=3. (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值. ★★如图,椭圆C:x2 a2+ y2 b2=1(a>b>0)经过点P(1, 3 2),离心率e= 1 2,直 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3若存在,求λ的值;若不存在,说明理由. ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的左右焦点分别是F1,F2,离心率为 3 2,过 F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只 有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明 1 kk1+ 1 kk2 为定值,并求出这个定值. - 2 -

二、圆锥曲线中的最值问题 +y2 b2=1( a>b>0)的离心率为 (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. - 3 -

相关文档
最新文档