测井曲线特征及识别岩性

测井曲线特征及识别岩性
测井曲线特征及识别岩性

1.1测井曲线特征

1.1.1电阻率曲线

曲线特点

双侧向是探测不同径向深度电阻率的测井方法。通常情况下,裂缝的存在使双侧向出现差异,模拟实验表明,低角度裂缝的双侧向值呈负差异,而高角度裂缝的双侧向值呈正差异,双侧向幅度差不仅与裂缝的产状有关,而且与裂缝的张开度有关,因此在一些裂缝段也可能无差异。

1.1.2声波曲线

曲线特点

裂缝在声波曲线上的反映与井筒周围裂缝的产状及发育程度有关。声波曲线对高角度裂缝没有反映,对低角度裂缝或网状裂缝,声波测井值将相应增大;当遇到大的水平裂缝或网状裂缝时,声波能量急剧衰减而产生“周波跳跃”现象。因此利用声波时差可以识别水平裂缝或网状裂缝,但不能用于识别垂直裂缝。声波曲线对裂缝的显示主要取决于裂缝的张开度、发育程度、充填物和流体的性质。

声波变密度测井对裂缝的探测是基于含流体裂缝面使声波波列发生畸变,出现波列的能量衰减、干扰和波列转换,形成声波幅度、相位和频率明显变化,出现“人”形或“V”形、扰动的锯齿形,以及条带变浅等。横波和斯通利波衰减的突出,可指示斜交的裂缝。纵波幅度的衰减多见于高角度直裂缝;而横波幅度的衰减则多出现在低角度或水平裂缝。裂缝在声波时差曲线上的反映与井筒周围裂缝的产状及发育程度。

1.1.3自然电位曲线

曲线特点

a.当地层、泥浆是均匀的,上下围岩岩性相同,自然电位曲线对地层中心对称;

b.在地层顶底界面处,自然电位变化最大,当地层较厚(大于四倍井径)时,可用曲线半幅点确定地层界面;

c.测量的自然电位幅度为自然电流在井内产生的电压降,它永远小于自然电流回路总的电动势;

d.渗透性砂岩的自然电位,对泥岩基线而言,当地层水矿化度大于泥浆滤液矿化度时,自然电位显示为负异常,当地层水矿化度小于泥浆滤液矿化度时,显示为正异常,如果泥浆滤液的矿化度与地层水矿化度大致相等时,自然电位偏转幅度很小,曲线无显示异常。

影响因素:

a.地层厚度、半径的影响:当h>4d时,自然电位异常幅度近似等于静自然电位,当h<4d时,自然电位异常幅度小于静自然电位,厚度越小,差别越大,异常顶部变窄,底部变宽,不能用半幅点确定地层界面;

b.地层电阻率、泥浆电阻率以及围岩电阻率的影响,Rt / Rm 比值增大(Rt增大或Rm减小),自然电位幅度值降低,Rs增大,其幅值也减小;

c.泥浆侵入带的影响:泥浆侵入带的纯在,相当于井径扩大,自然电位异常幅度值降低。

校正方法:

根据具体情况,认真分析影响自然电位异常幅度值变化的因素,采用相应的校正图版进行校正。

1.1.4微电极曲线

曲线特征:

在渗透性地层有幅度差,微电位值大于微梯度值。

影响因素:

a.测速测速过大会使曲线尖峰变得平滑,以致不能反映地层的真实情况;

b.绝缘微电极系或电缆绝缘不好会歪曲曲线形状;

c.绝缘板几何形状电极系系数K与电极间的尺寸及极板的形状大小有关,而测井过程中极板经常与井壁磨擦,因此,测几口井后就应该进行K值的校验。

1.1.5感应测井曲线

曲线特点:

a.上下围岩相同,单一低电导率地层,当地层厚度大于1.7 米时,曲线上可以看到过聚焦产生的局部极值,其厚度小于1.7米时,视电导率曲线呈现一尖峰。

b.上下围岩不同,单一低电导率地层,对于厚度大于2米的地层,地层中部的曲线呈倾斜状,地层中心对应于倾斜段的中点,对于厚度小于2米的地层,视电导率曲线偏向与地层电导率差别小的围岩一侧,这是在高低电导率地层,而在中间电导率地层的曲线,对于厚度大于2米的地层,呈比较清楚的台阶状。

影响因素:

感应测井的线圈虽然有纵向和径向的聚焦作用,可还是受到围岩、泥浆和侵入带的影响。

校正方法:

a.围岩校正

首先根据井径d、泥浆电导率σm和围岩电导率选出响应的图版,然后根据从感应测井曲线上读出的视电导率σa和地层厚度h(可配合其它测井曲线求出h),在图版纵横坐标上找出相应的点,通过此点曲线的模数,即为所求地层的电阻率,在制作图版时,已经考虑到传播效应的影响,因此利用选用图版进行厚度-围岩校正之后,就不需要进行传播效应的校正。

b.无限厚地层侵入影响校正

利用无限厚地层侵入影响校正图版,图版的参数为侵入带的直径D,曲线模数为侵入带电阻率。图版的纵坐标为视电导率σa ,当σm>100毫欧姆/米时,用图版右边的曲线族,当σa <100毫欧姆/米时,用图版左边的曲线族。在进行侵入影响校正时,首先需根据其它测井资料,求出侵入带电导率σi (或电阻率Ri )及侵入带直径D,再根据测井曲线求出σa 及h值,根据σa 值找出纵坐标,由纵坐标向右作水平线与相应的σi 曲线交点所对应的横坐标,即为所求地层的电导率σt 。

1.1.6中子测井曲线

曲线特点:

a.在砂泥岩剖面中,粘土(泥岩)的中子测井计数率最低,致密砂岩的中子测井计数率最高,粉砂岩、泥质砂岩、孔隙中充满液体的砂岩为中等数值;

b.气层的中子测井计数率是高值。

影响因素:

a.井径、泥浆和套管的影响

井径扩大使中子源周围的介质的含氢量大大增加,中子测井曲线幅度明显下降;当矿化度(含氯量)增高时,增强了泥浆对热中子的俘获作用,因此会使中子-热中子测井曲线幅度下降,而使中子伽马测井曲线幅度增高,在套管井中,曲线幅度下降。

b.侵入带的影响

由于泥浆侵入增大了侵入带的含氢量,使中子测井曲线幅度明显下降,对于划分含氯量不同的盐水层和油层时,往往造成盐水层和油层的中子测井曲线幅度没有明显差异。

1.1.7三侧向测井曲线

曲线特点

a.高阻层视电阻率曲线对围岩形成高阻异常,异常对称于高阻层中点,异常极大值为视电阻率代表值。如果地层较厚,岩性、电性不均匀,分段取值;

b. 高阻层界面在三侧向曲线上缺乏明显的特征,但靠近高阻异常的底部。

c. 深浅三侧向曲线形态相同,在储集层有幅度差;

影响因素

主要为井眼、围岩-层厚、侵入三个方面。

1.1.8微球形聚焦测井

曲线特点

主要反映冲洗带电阻率,受泥饼和原状地层影响。

1.2如何用测井曲线识别岩性

自然电位:当地层、泥浆是均匀的,上下围岩岩性相同,自然电位曲线对渗透性地层中心对称;渗透层在地层顶底界面处,自然电位变化最大,当地层厚度(大于四倍井径)时,可用曲线半幅点确定地层界面;渗透性地层的自然电位,对泥岩基线而言,可向左或向右偏转,它主要取决于地层水和泥浆滤液的相对矿化度。岩性、地层水矿化度与泥浆滤液矿化度的比值、地层厚度、井径、地层电阻率、泥浆电阻率、围岩电阻率、泥浆侵入带都对自然电位曲线造成影响。

声波时差:在砂泥岩剖面,砂岩的速度一般很快,时差曲线数值较低,砂岩的胶结物性质、胶结类型和胶结含量影响时差的大小。通常硅质、钙质胶结物比泥质胶结的时差低,随着钙质增加时差下降,随着泥质含量的增加,时差升高。泥岩时差高,粉砂岩、页岩介于泥岩和砂岩之间。砾岩一般声波时差较低。含气的浅部地层有周波跳跃,或时差增大。主要受井径、岩层厚度、周波跳跃等因素的影响。

微电极:泥岩,微电极曲线幅度低,没有幅度差或有很小的正、负不规则的幅度差,曲线呈直线状,致密砂岩或钙质砂岩微电极曲线幅度特别高,常呈锯齿状或刺刀状,有幅度大小不等的正或负的幅度差,生物灰岩微电极幅度很高、正幅度差大,粉砂岩幅度值较低,有较小的正幅度差,孔隙性石灰岩幅度值比致密石灰岩低得多,一般有明显的正幅度差。

自然伽马:在砂泥岩剖面,纯砂岩GR最低,粘土最高,泥质砂岩较低,泥质粉砂岩和砂质泥岩较高,即自然伽马值随泥质含量的增加而升高。主要受地层厚度、井眼、放射性涨落误差以及测速。

1.3油气层的识别

常用方法:电阻率测井,声波时差法,低侵高侵法

电阻率测井:油层的电阻率一般比水层的高。如果R400》R250,则为油层,反之为水层。声波时差:如果测井曲线出现周波跳跃则可能为气层。

低侵高侵:

高侵为泥浆滤液电阻率大于原状地层电阻率时为泥浆高侵,高侵地层电阻率的剖面为高侵剖面,高侵一般出现在水层

低侵为泥浆滤液电阻率小于原状地层电阻率时为泥浆低侵,低侵地层电阻率的剖面为低侵剖面,低侵一般出现在油层。

1.4特殊现象的识别

1.裂缝

裂缝可分为张开缝(泥浆充填)、半充填缝、和充填缝。充填缝又分为泥质等低阻物质充填缝和方解石、硅质等高阻物质充填缝。

(1)张开缝和低阻物质充填缝

地层微电阻率扫描测井图像呈近似正弦曲线的暗色细线或断断续续但仍可追踪的暗色正弦(虚线)。

网状缝分割基块,图像上位清晰的暗色细脉交织在一起。

(2)高阻物质充填缝

若充填物质与基块电性差异小,则这种闭合缝难以区分。当存在较大差异时(如泥质灰岩中存在充填方解石的裂缝),则图像上出现依稀可辨的白色正弦曲线。

(3)微缝和微孔隙发育

这种孔、缝中充填泥浆,大大降低可电阻率,导致地层微电阻率扫描测井图像(静态)比无孔,缝层段灰暗些。显然,因孔隙缝之微小,由地层微电阻率扫描测井无法辨别出单个孔或缝。所以,在做判断时,必须有其他资料(如取芯、邻井资料以及常规测井资料等)做参考。

2.水淹层的判断

为提高油田采收率,在油田开发过程中,现在打都采用分片切割注水采油的方法。由于油层渗透率不同,注入推进的速度也不一样。如果以口井的某个油层井段出现了水,这个层叫做水淹层。水淹层在自然电位曲线显示特点较多,要根据每个地区的实际情况进行分析。对部分水淹层(油层基底部或顶部见水),自然电位曲线的基线在该层上下偏移,出现台阶,这是一种比较普遍的现象。这是由于注入水的矿化度与油田水不同造成的,该层射孔后,含水率为99%。

若R

1为泥岩地层水电阻率,R

2

为未水淹层地层电阻率,R

3

为水淹层地层

水电阻率,R

mf 为泥浆滤液电阻率,假定R

1

< R

2

3

< R

mf

,砂岩中无泥质夹层

且岩性均匀。

在井中,泥岩与为水淹层接触面上自然电流回路总电动势为

E

12=K

lg

(R

mf

/ R

2

在井中,未水淹层接触面上自然电流回路总电动势为

E

23=K

d

lg(R mf/R

3

)+ K

d

lg(R

3

/ R

2

)- K

d

lg(R

mf

/ R

2

)

= K

d

lg[(R mf/R

3

)*(R

3

/ R

2

)*

d

lg(R

mf

/ R

2

)]

=0

在井中,水淹层与泥岩接触面上自然电流回路总电动势为

E

31= Klg(R mf/R

3

)

其线偏移值的大小为

△E

sp = E

12

- E

23

- E

31

= K lg[(R mf/ R

2

)-(R mf/R

3

)]

=K lg(R mf/R

3

)

根据本基线偏移的大小,可以估算水淹程度。由统计资料得出,△E

sp

大于

8MV时,为高含水淹层;△E

sp 在5——8MV之间,为中含水层;△E

sp

小于5MV

时,为低含水层或岩性变化引起的基线偏移。

由于各地区的储集层特点不同,故水淹层在自然电位曲线上的特点不同,应当根据本地区的曲线变化规律判断水淹层。

1.5泥质含量,油气饱和度,孔隙度的计算

1.泥质含量的确定

(1)自然电位曲线法

自然电位曲线没有绝对零点,是以泥岩井段的自然电位曲线幅度作基线;自然电位曲线幅度△U

sp

的读数是基线到曲线极大值之间的宽度所代表的毫伏数。

在砂泥岩剖面中,以泥岩作为泥岩基线,C

w >C

mf

时,砂岩层段出现自然

电位负异常;C

w

mf

,砂岩井段出现自然电位正异常;C

w

=C

mf

,没有造成自然

电场的电动势产生,则没有自然电位异常出现。C

w 与C

mf

差别越大,造成的自然

电场的电动势越大。

在砂泥岩剖面中,自然电位曲线曲线以泥岩为基线,在自然电位曲线上出现异常变化的多为砂岩。含水纯砂岩层,自然电位幅度越大,△E

sp

=SSP。

测井曲线代码大全

测井曲线代码 RD、RS—深、浅侧向电阻率 RDC、RSC—环境校正后的深、浅侧向电阻率VRD、VRS—垂直校正后的深、浅侧向电阻率DEN—密度 DENC—环境校正后的密度 VDEN—垂直校正后的密度 CNL—补偿中子 CNC—环境校正后的补偿中子 VCNL—垂直校正后的补偿中子 GR—自然伽马 GRC—环境校正后的自然伽马 VGR—垂直校正后的自然伽马 AC—声波 V AC—垂直校正后声波 PE—有效光电吸收截面指数 VPE—垂直校正后的有效光电吸收截面指数SP—自然电位 VSP—垂直校正后的自然电位 CAL—井径 VCAL—垂直校正后井径 KTh—无铀伽马 GRSL—能谱自然伽马 U—铀 Th—钍 K—钾 WCCL—磁性定位 TGCN—套管中子 TGGR—套管伽马 R25—2.5米底部梯度电阻率 VR25—环境校正后的2.5米底部梯度电阻率DEV—井斜角 AZIM—井斜方位角 TEM—井温 RM—井筒钻井液电阻率 POR2—次生孔隙度 POR—孔隙度 PORW—含水孔隙度 PORF—冲洗带含水孔隙度 PORT—总孔隙度 PERM—渗透率 SW-含水饱和度 SXO—冲洗带含水饱和度

SH—泥质含量 CAL0—井径差值 HF—累计烃米数 PF—累计孔隙米数 DGA—视颗粒密度 SAND,LIME,DOLM,OTHR—分别为砂岩,石灰岩,白云岩,硬石膏含量 VPO2—垂直校正次生孔隙度 VPOR—垂直校正孔隙度 VPOW—垂直校正含水孔隙度 VPOF—垂直校正冲洗带含水孔隙度 VPOT—垂直校正总孔隙度 VPEM—垂直校正渗透率 VSW-垂直校正含水饱和度 VSXO—垂直校正冲洗带含水饱和度 VSH—垂直校正泥质含量 VCAO—垂直校正井径差值 VDGA—垂直校正视颗粒密度 VSAN,VLIM,VDOL,VOTH—分别为垂直校正砂岩,石灰岩,白云岩,硬石膏含量岩石力学参数 PFD1—破裂压力梯度 POFG—上覆压力梯度 PORG—地层压力梯度 POIS—泊松比 TOUR—固有剪切强度 UR—单轴抗压强度 YMOD—杨氏模量 SMOD—切变模量 BMOD—体积弹性模量 CB—体积压缩系数 BULK—出砂指数 MAC MAC—偶极子阵列声波 XMAC-Ⅱ—交叉偶极子阵列声波 DTC1—纵波时差 DTS1—横波时差 DTST1—斯通利波时差 DTSDTC-纵横波速度比 TFWV10-单极子全波列波形 TXXWV10-XX偶极子波形 TXYWV10- XY偶极子波形 TYXWV10- YX偶极子波形 TYYWV10- YY偶极子波形 WDST-计算各向异性开窗时间 WEND-计算各向异性关窗时间

测井曲线代码一览表

测井曲线代码一览表 测井类资料2009-08—0716:01阅读437 评论0 字号: 大大中中小小 from石油科技论坛 常用测井曲线名称 测井符号英文名称中文名称 Rt true formation resistivity。地层真电阻率 Rxo flushed zone formation resistivity 冲洗带地层电阻率 Ild deep investigate induction log 深探测感应测井 Ilm medium investigate induction log 中探测感应测井 Ils shallowinvestigateinductionlog 浅探测感应测井 Rd deepinvestigate double lateral resistivity log 深双侧向电阻率测井 Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井 RMLL microlateral resistivitylog 微侧向电阻率测井CON induction log感应测井 AC acoustic声波时差 DEN density 密度 CN neutron 中子 GR natural gammaray自然伽马 SP spontaneous potential 自然电位 CAL borehole diameter 井径 K potassium 钾 TH thorium钍 U uranium铀 KTH gammaray without uranium无铀伽马 NGR neutrongamma ray 中子伽马 5700系列得测井项目及曲线名称 StarImager微电阻率扫描成像 CBIL 井周声波成像 MAC 多极阵列声波成像 MRIL核磁共振成像 TBRT 薄层电阻率 DAC 阵列声波 DVRT 数字垂直测井 HDIP 六臂倾角 MPHI 核磁共振有效孔隙度 MBVM 可动流体体积 MBVI 束缚流体体积 MPERM 核磁共振渗透率 Echoes 标准回波数据

测井曲线解释

主要测井曲线及其含义 主要测井曲线及其含义 一、自然电位测井: 测量在地层电化学作用下产生的电位。 自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。Rmf ≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。 自然电位测井 SP曲线的应用:①划分渗透性地层。②判断岩性,进行地层对比。③估计泥质含量。④确定地层水电阻率。 ⑤判断水淹层。⑥沉积相研究。 自然电位正异常 Rmf<Rw时,SP出现正异常。 淡水层Rw很大(浅部地层) 咸水泥浆(相对与地层水电阻率而言) 自然电位测井 自然电位曲线与自然伽马、微电极曲线具有较好的对应性。 自然电位曲线在水淹层出现基线偏移 二、普通视电阻率测井(R4、R2.5) 普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。 视电阻率曲线的应用:①划分岩性剖面。②求岩层的真电阻率。③求岩层孔隙度。④深度校正。⑤地层对比。 电极系测井 2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。 底部梯度电极系分层: 顶:低点; 底:高值。 三、微电极测井(ML) 微电极测井是一种微电阻率测井方法。其纵向分辨能力强,可直观地判断渗透层。 主要应用:①划分岩性剖面。②确定岩层界面。③确定含油砂岩的有效厚度。④确定大井径井段。⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。 微电极确定油层有效厚度 微电极测井 微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。 四、双感应测井 感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。 感应测井曲线的应用:①划分渗透层。②确定岩层真电阻率。③快速、直观地判断油、水层。 油层: RILD>RILM>RFOC

测井曲线典型形态

测井曲线的形态代表了地层特征,如自然电位曲线分为钟型,漏斗型,锯齿型,指型等,他们分别代表了各种信息。但是其中SP曲线幅度又分为高幅,中幅,低幅。请问一下这些幅度是怎样定义的。是用公式算的还是直接看曲线的。还有双测向曲线,声波时差,微电极曲线齿型是什么意思。 电位的形状确实可以指示出一定的沉积环境,,比如“漏斗”:有口向上的漏斗,有口向下的漏斗,这就能分出沉积顺序,逆序还是正序。 不同测井曲线的形态以及变化关系,都反映了不同的沉积环境,是沉积相的指相标志,也是层析地层划分识别的标志之一,你随便找一本层序地层学的书都有介绍幅度一般代表了当时的沉积能量; 一般都指的是电位或者伽马曲线. 至于曲线形态: 1)钟型;底部突变接触,代表三角洲水下分流河道; 2)漏斗型:顶部突变接触,代表三角洲前缘,河口坝微相; 3)箱型:顶底界面均为突变接触,表示水动力条件稳定,代表潮汐砂体或者废弃水下分流河道; 4)齿形:反映沉积过程中能量快速变化,一般代表河道侧翼,席状砂,分流间湾微相. 1、曲线幅度 高幅度:反映海湖岸的滩、坝砂岩体,由于波浪的作用淘冼、冲刷干净泥质含量少,改造彻底、分选好,中━细砂岩渗透性好, 故高幅度。 中幅度:反映河道砂岩,水流冲刷强、物源丰富,分选差。 低幅度:反映河漫滩相,水流冲刷弱沉积物以细粒为主故以低幅度为主。 2、曲线形态 钟形:下粗上细,反映水流能量逐渐减弱,物源供应的不断减少。其代表相是蛇曲河点砂坝。曲线反映底为冲刷面,上面为河道 6, 砾石堆积,再上为河道砂,最上是河道侧向迁移后形成的堤岸砂,漫滩泥,沉积序列为河道的正粒序结构特征。 漏斗形:下细上粗反映向上水流能量加强,分选逐渐变好。代表相为海相滩坝砂岩体;另外

第8章 密度测井和岩性密度测井

第八章 密度测井和岩性密度测井 此两种测井方法是由伽马源向地层发射伽马射线,经与地层介质相互作用后,再由伽马探测器接收(即为伽马-伽马测井),地层不同,探测器记录的读数不同,从而被用来研究地层性质。 §1 密度测井、岩性密度测井的地质物理基础 一、岩石的体积密度b ρ(即真密度): V G b =ρ (单位体积岩石的质量) 对含水纯岩石: φρφρρρρφ ?+-=?+?=+=f ma f ma ma f ma b V V V V G G )1( 单位:(g/cm 3) 其中:V V V ma =+φ (1)组成岩石的骨架矿物不同,ρma 不同,如石英为2.65,方解石为2.71,白云石为2.87,对于相同孔隙度得到的体积密度也就不同,由此可判断岩性;另一方面,利用体积密度计算孔隙度时,必须得先确定岩性。 (2)孔隙性地层的密度小于致密地层,且随着φ的增加ρb 减小,由此可求φ。 且(盐水泥浆)(淡水泥浆)1.10 .1=f ρ 二、康普顿散射吸收系数∑ 中等能量γ射线与介质发生康普顿散射康普顿散射而使其强度减小的参数(康普顿减弱系数---由康普顿效应引起的伽马射线通过单位距离物质减弱程度): A N z b A e ρσ??=∑ 沉积岩中大多数核素A z 均接近于0.5(见表8-1, P 138),常见的砂岩、石灰岩、白云

岩的A z 的平均值也近似为0.5(见表8-2), 所以对于一定能量范围的伽马射线(e σ为常数),∑只与b ρ有关。 密度测井利用此关系,通过记录康普顿散射的γ射线的强度来测量岩石的密度。 三、岩石的光电吸收截面 1、线性光电吸收系数:当γ的能量大于原子核外电子的结合能时,发生光电效应的概率。 n A Z λρτ1.40089 .0= 2、岩石的光电吸收截面指数Pe 它是描述发生光电效应时物质对伽马光子吸收能力的一个参数,即伽马光子与岩石中一个电子发生光电效应的平均光电吸收截面,单位b/电子。而它与原子序数关系为: Pe=aZ 3.6 a 为常数,地层岩性不同,Pe 有不同的值,也就是说Pe 对岩性敏感,可以以来确定岩性,Pe 是岩性密度测井测量的一个参数。 3、体积光电吸收截面 体积光电吸收截面也是描述发生光电效应时物质对伽马光子吸收能力的一个参数,它是指每立方米物质的光电吸收截面,以U 来表示,单位b/cm 3。地层岩性不同,其体积光电吸收截面不同(表8-2,139页)。U 对岩性敏感,也是岩性密度测井所要确定的一个参数。岩石的体积光电吸收截面为: ∑==n i i i V U U 1 Ui 、Vi 分别为组成岩石各部分的光电吸收截面和相对体积。如孔隙度为φ的纯砂岩的光电吸收截面为: f ma U U U ??+-=)1( 体积光电吸收截面U 与光电吸收截面指数Pe 有近似关系: b U Pe ρ/≈ 故可由Pe 求得U 。 §2 地层密度测井

常用测井曲线代码

测井符号英文名称中文名称 Rt trueformation resistivity. 地层真电阻率 Rxo flushed zone formation resistivity 冲洗带地层电阻率 Ild deep investigate induction log 深探测感应测井 Ilm medium investigate induction log 中探测感应测井 Ils shallow investigate induction log 浅探测感应测井 Rd deep investigate double lateral resistivity log深双侧向电阻率测井Rs shallow investigate double lateral resistivity log浅双侧向电阻率测井 RMLL micro lateral resistivity log 微侧向电阻率测井 CON induction log 感应测井 AC acoustic 声波时差 DEN density 密度CN neutron 中子GR natural gamma ray 自然伽马SP spontaneous potential 自然电位CAL borehole diameter 井径K potassium 钾 TH thorium 钍U uranium 铀KTH gamma ray without uranium 无铀伽马NGR neutron gamma ray 中子伽马 5700系列的测井项目及曲线名称 Star Imager 微电阻率扫描成像 CBIL 井周声波成像 MAC 多极阵列声波成像 MRIL 核磁共振成像 TBRT 薄层电阻率 DAC 阵列声波 DVRT 数字垂直测井 HDIP 六臂倾角

测井曲线代码-整理版

原始测井曲线代码 代码名称 A1R1 T1R1声波幅度 A1R2 T1R2声波幅度 A2R1 T2R1声波幅度 A2R2 T2R2声波幅度AAC 声波附加值 AA VG 第一扇区平均值AC 声波时差 AF10 阵列感应电阻率AF20 阵列感应电阻率AF30 阵列感应电阻率AF60 阵列感应电阻率AF90 阵列感应电阻率AFRT 阵列感应电阻率AFRX 阵列感应电阻率AIMP 声阻抗 AIPD 密度孔隙度 AIPN 中子孔隙度 AMA V 声幅 AMAX 最大声幅 AMIN 最小声幅 AMP1 第一扇区的声幅值AMP2 第二扇区的声幅值AMP3 第三扇区的声幅值AMP4 第四扇区的声幅值AMP5 第五扇区的声幅值AMP6 第六扇区的声幅值AMVG 平均声幅 AO10 阵列感应电阻率AO20 阵列感应电阻率AO30 阵列感应电阻率AO60 阵列感应电阻率AO90 阵列感应电阻率AOFF 截止值 AORT 阵列感应电阻率AORX 阵列感应电阻率APLC 补偿中子 AR10 方位电阻率 AR11 方位电阻率 AR12 方位电阻率 ARO1 方位电阻率 ARO2 方位电阻率 ARO3 方位电阻率ARO4 方位电阻率 ARO5 方位电阻率 ARO6 方位电阻率 ARO7 方位电阻率 ARO8 方位电阻率 ARO9 方位电阻率 AT10 阵列感应电阻率 AT20 阵列感应电阻率 AT30 阵列感应电阻率 AT60 阵列感应电阻率 AT90 阵列感应电阻率 ATA V 平均衰减率 ATC1 声波衰减率 ATC2 声波衰减率 ATC3 声波衰减率 ATC4 声波衰减率 ATC5 声波衰减率 ATC6 声波衰减率 ATMN 最小衰减率 ATR T 阵列感应电阻率 ATRX 阵列感应电阻率 AZ 1号极板方位 AZ1 1号极板方位 AZI 1号极板方位 AZIM 井斜方位 BGF 远探头背景计数率 BGN 近探头背景计数率 BHTA 声波传播时间数据 BHTT 声波幅度数据 BLKC 块数 BS 钻头直径 BTNS 极板原始数据 C1 井径 C2 井径 C3 井径 CAL 井径 CAL1 井径 CAL2 井径 CALI 井径 CALS 井径 CASI 钙硅比 CBL 声波幅度 CCL 磁性定位 CEMC 水泥图 CGR 自然伽马 CI 总能谱比 CMFF 核磁共振自由流体体积 CMRP 核磁共振有效孔隙度 CN 补偿中子 CNL 补偿中子 CO 碳氧比 CON1 感应电导率 COND 感应电导率 CORR 密度校正值 D2EC 200兆赫兹介电常数 D4EC 47兆赫兹介电常数 DAZ 井斜方位 DCNT 数据计数 DEN 补偿密度 DEN_1 岩性密度 DEPTH 测量深度 DEV 井斜 DEVI 井斜 DFL 数字聚焦电阻率 DIA1 井径 DIA2 井径 DIA3 井径 DIFF 核磁差谱 DIP1 地层倾角微电导率曲线1 DIP1_1 极板倾角曲线 DIP2 地层倾角微电导率曲线2 DIP2_1 极板倾角曲线 DIP3 地层倾角微电导率曲线3 DIP3_1 极板倾角曲线 DIP4 地层倾角微电导率曲线4 DIP4_1 极板倾角曲线 DIP5 极板倾角曲线 DIP6 极板倾角曲线 DRH 密度校正值 DRHO 密度校正值 DT 声波时差 DT1 下偶极横波时差 DT2 上偶极横波时差 DT4P 纵横波方式单极纵波时 差 DT4S 纵横波方式单极横波时 差 DTL 声波时差

测井复杂岩性CRA解释参数说明

CRA解释参数说明 PORX:由XFG所确定的测井曲线的流体孔隙度数值隐含值=100(CNL)或=189(AC)PORY:由YFG所确定的曲线的流体孔隙度数值,隐含值1(DEN) C1X:由XFG确定测井曲线的C1矿物的测井值 C1Y:由YFG确定测井曲线的C1矿物的测井值 C2X:由XFG确定测井曲线的C2矿物的测井值 C2Y:由YFG确定测井曲线的C2矿物的测井值 C3X:由XFG确定测井曲线的C3矿物的测井值 C3Y:由YFG确定测井曲线的C3矿物的测井值 C4X:由XFG确定测井曲线的C4矿物的测井值 C4Y:由YFG确定测井曲线的C4矿物的测井值 SHFG:求泥质含量使用量法的选择标志 如果SHFG=1 使用GR和GMN1,GMX1 如果SHFG=2 使用CNL和GMN2,GMX2 如果SHFG=3 使用SP和GMN3,GMX3 如果SHFG=4 使用NLL和GMN4,GMX4 如果SHFG=5 使用RT和GMN5,GMX5 如果SHFG=6 使用SH=(PORA—PORD)/PORA SHFG的隐含值为1 GMN1,GMX1:为纯砂岩(灰岩)纯泥岩的GR测井值。隐含值为0,100 GMN2,GMX2:为对应纯砂岩(纯灰岩)和纯泥岩的CNL测井值。隐含值0,100 GMN3,GMX3:为SP曲线上纯砂岩(灰岩)与纯泥岩的相应值,隐含值为0,100 GMN4,GMX4:为NLL曲线上纯砂岩(灰岩)与纯泥岩的相应值,隐含值为0,100 GMN5,GMX5:为RT曲线上纯砂岩(或灰岩)与泥岩的相应值,隐含数为0,100 XFG,YFG:为岩性交绘图轴坐标的选择标志 如果XFG=1 使用CNL 如果XFG=2 使用AC 如果YFG=1 使用DEN 如果YFG=2 使用AC 如果XFG,YFG参数不填则隐含值为1,1 DSH,NSH,TSH:为泥岩的密度、中子和声波的响应数值,隐含值为2.5,35,100 SIRR:为迪门(TIMUR)渗透率公式中的束缚水饱和度,隐含值为50 RW,RMF,RSH:为地层水,泥浆滤液和泥岩的电阻率。隐含值=1,0.06,5 A,M:计算地层因素公式中的系数隐含值=1,2 N:含水饱和度指数,隐含值为2 GCUR:自然伽玛校正公式的标志。对第三系岩层用GCUR=1,对于较老地层GCUR=2。隐含值=2 BITS:钻头直径 SWOP:选用含水饱和度方程式的标志 SWOP=1使用SIMENDEAUX公式 SWOP=2 使用壳牌的坚硬岩石的方程式 SWOP=3 使用阿尔奇方程式 当SWOP不赋值时,隐含数为3 DG颗粒密度,隐含=2.65 DF流体密度,隐含值=1 TM,TF,CP:骨架、流体的声波值,CP是岩石的压实校正系数。它们的隐含值是55.5,189,1 使用RT的标志

各种测井曲线代码

各种测井曲线代码 附录33 测井曲线名称代码 名称代码名称代码名称代码 0、4米电位电阻率 R04 井径1 C1 阵列感应4英尺分辨率及60英寸探测深度电阻率 AF60 0、45米电位电阻率 R045 井径2 C2 阵列感应4英尺分辨率及90英寸探测深度电阻率 AF90 0、5米电位电阻率 R05 井径3 C3 阵列感应4英尺分辨率侵入带真电阻率 AFRX 1米底部梯度电阻率 R1 井斜 DEV 补偿声波时差 AC 2、5米底部梯度电阻率 R25 井斜方位 AZIM 井径CAL 4米底部梯度电阻率 R4 高分辨率侧向电阻率 LLHR 长源距声波时差 DT 6米底部梯度电阻率 R6 方位电阻率曲线1 ARO1 纵横波速度比 VPVS 8米底部梯度电阻率 R8 方位电阻率曲线10 AR10 纵横波方式单极横波时差 DT4S 深侧向电阻率 RD 方位电阻率曲线11 AR11 纵横波方式单极纵波时差 DT4P 浅侧向电阻率 RS 方位电阻率曲线12 AR12 泊松比PR 邻近侧向电阻率 RPRX 方位电阻率曲线2 ARO2 上偶极横波时差 DT2 微侧向电阻率 RMLL 方位电阻率曲线3 ARO3 下偶极横波时差 DT1 微球型聚焦电阻率 MSFL 方位电阻率曲线4 ARO4 斯通利波时差 DTST 深感应电阻率 RILD 方位电阻率曲线5 ARO5 全波列波形 WF

中感应电阻率 RILM 方位电阻率曲线6 ARO6 声波成象ACI 八侧向电阻率 RFOC 方位电阻率曲线7 ARO7 自然伽马GR 球型聚焦电阻率 SFLU 方位电阻率曲线8 ARO8 无铀自然伽马 CGR 数字聚焦电阻率 DFL 方位电阻率曲线9 ARO9 钾 K 感应电导率 COND 阵列感应1英尺分辨率地层真电阻率AORT 钍 TH 微电位电阻率 ML1 阵列感应1英尺分辨率及10英寸探测深度电阻率 AO10 铀 U 微梯度电阻率 ML2 阵列感应1英尺分辨率及20英寸探测深度电阻率 AO20 补偿中子 CNL 钻井液电阻率 RM 阵列感应1英尺分辨率及30英寸探测深度电阻率 AO30 井壁中子 SNL 井温 TEMP 阵列感应1英尺分辨率及60英寸探测深度电阻率AO60 中子伽马 NGR 钻头直径 BS 阵列感应1英尺分辨率及90英寸探测深度电阻率 AO90 补偿密度 DEN 200兆赫兹电阻率 R4SL 阵列感应1英尺分辨率侵入带真电阻率 AORX 岩性密度 LDL 200兆赫兹幅度比 R4AT 阵列感应2英尺分辨率地层真电阻率ATRT 密度校正值 DRH 200兆赫兹介电常数 D2EC 阵列感应2英尺分辨率及10英寸探测深度电阻率 AT10 光电吸收截面指数 PE 200兆赫兹相位角 P2HS 阵列感应2英尺分辨率及20英寸探测深度电阻率 AT20 核磁共振总孔隙度 TPOR 47兆赫兹电阻率 R4SL 阵列感应2英尺分辨率及30英寸探测深度电阻率 AT30 核磁共振渗透率 KCMR 47兆赫兹幅度比 R4AT 阵列感应2英尺分辨率及60英寸探测深度电阻率 AT60 核磁共振束缚流体体积 MBVI

测井曲线解释

测井曲线基本原理及其应用 一. 国产测井系列 1、标准测井曲线 2、5m底部梯度视电阻率曲线。地层对比,划分储集层,基本反映地层真电组率。恢复地层剖面。 自然电位(SP)曲线。地层对比,了解地层的物性,了解储集层的泥质含量。 2、组合测井曲线(横向测井) 含油气层(目的层)井段的详细测井项目。 双侧向测井(三侧向测井)曲线。深双侧向测井曲线,测量地层的真电组率(RT),试双侧向测井曲线,测量地层的侵入带电阻率(RS)。 0、5m电位曲线。测量地层的侵入带电阻率。0、45m底部梯率曲线,测量地层的侵入带电阻率,主要做为井壁取蕊的深度跟踪曲线。 补偿声波测井曲线。测量声波在地层中的传输速度。测时就是声波时差曲线(AC) 井径曲线(CALP)。测量实际井眼的井径值。 微电极测井曲线。微梯度(RML),微电位(RMN),了解地层的渗透性。 感应测井曲线。由深双侧向曲线计算平滑画出。[L/RD]*1000=COND。地层对比用。 3、套管井测井曲线 自然伽玛测井曲线(GR)。划分储集层,了解泥质含量,划分岩性。 中子伽玛测井曲线(NGR)划分储集层,了解岩性粗细,确定气层。校正套管节箍的深度。套管节箍曲线。确定射孔的深度。固井质量检查(声波幅度测井曲线) 二、3700测井系列 1、组合测井 双侧向测井曲线。深双侧向测井曲线,反映地层的真电阻率(RD)。浅双侧向测井曲线,反映侵入带电阻率(RS)。微侧向测井曲线。反映冲洗带电阻率(RX0)。 补偿声波测井曲线(AC),测量地层的声波传播速度,单位长度地层价质声波传播所需的时间(MS/M)。反映地层的致密程度。 补偿密度测井曲线(DEN),测量地层的体积密度(g/cm3),反映地层的总孔隙度。 补偿中子测井曲线(CN)。测量地层的含氢量,反映地层的含氢指数(地层的孔隙度%) 自然伽玛测蟛曲线(GR),测量地层的天然放射性总量。划分岩性,反映泥质含量多少。 井径测井曲线,测量井眼直径,反映实际井径大砂眼(CM)。 2、特殊测井项目 地层倾角测井。测量九条曲线,反映地层真倾角。 自然伽玛能谱测井。共测五条曲线,反映地层的岩性与铀钍钾含量。 重复地层测试器(MFT)。一次下井可以测量多点的地层压力,并能取两个地层流体样。 三、国产测井曲线的主要图件几个基本概念: 深度比例:图的单位长度代表的同单位的实际长度,或深度轴长度与实际长度的比例系数。如,1:500;1:200等。 横向比例:每厘米(或每格)代表的测井曲线值。如,5Ω,m/cm,5mv/cm等。 基线:测井值为0的线。 基线位置:0值线的位置。 左右刻度值:某种曲线图框左右边界的最低最高值。 第二比例:一般横向比例的第二比例,就是第一比例的5倍。如:一比例为5ΩM/cm;二比例则为25m/cm。 1、标准测井曲线图 2、2、5米底部梯度曲线。以其极大值与极小值划分地层界面。它的极大值或最佳值基本反映地层的真电阻率(如图) 自然电位曲线。以半幅点划分地层界面。一般砂岩层为负异常。泥岩为相对零电位值。 标准测井曲线图,主要为2、5粘梯度与自然电位两条曲线。用于划分岩层恢复地质录井剖面,进行井间的地层对比,粗略的判断油气水层。 3、回放测井曲线图(组合测井曲线) 深浅双侧向测井曲线。深双侧向曲线的极度大值反映地层的真电阻率(RT),浅双侧向的极大值反映浸入带电阻率(RS)。以深浅双侧向曲线异常的根部(异常幅度的1/3处)划分地层界面。

测井曲线解释

测井曲线基本原理及其应用 一.国产测井系列 1、标准测井曲线 2.5m底部梯度视电阻率曲线。地层对比,划分储集层,基本反映地层真电组率。恢复地层剖面。 自然电位(SP)曲线。地层对比,了解地层的物性,了解储集层的泥质含量。 2、组合测井曲线(横向测井) 含油气层(目的层)井段的详细测井项目。 双侧向测井(三侧向测井)曲线。深双侧向测井曲线,测量地层的真电组率(RT),试双侧向测井曲线,测量地层的侵入带电阻率(RS)。 0.5m电位曲线。测量地层的侵入带电阻率。0.45m底部梯率曲线,测量地层的侵入带电阻率,主要做为井壁取蕊的深度跟踪曲线。 补偿声波测井曲线。测量声波在地层中的传输速度。测时是声波时差曲线(AC) 井径曲线(CALP)。测量实际井眼的井径值。 微电极测井曲线。微梯度(RML),微电位(RMN),了解地层的渗透性。 感应测井曲线。由深双侧向曲线计算平滑画出。[L/RD]*1000=COND。地层对比用。 3、套管井测井曲线 自然伽玛测井曲线(GR)。划分储集层,了解泥质含量,划分岩性。 中子伽玛测井曲线(NGR)划分储集层,了解岩性粗细,确定气层。校正套管节箍的深度。套管节箍曲线。确定射孔的深度。固井质量检查(声波幅度测井曲线) 二、3700测井系列 1、组合测井 双侧向测井曲线。深双侧向测井曲线,反映地层的真电阻率(RD)。浅双侧向测井曲线,反映侵入带电阻率(RS)。微侧向测井曲线。反映冲洗带电阻率(RX0)。 补偿声波测井曲线(AC),测量地层的声波传播速度,单位长度地层价质声波传播所需的时间(MS/M)。反映地层的致密程度。 补偿密度测井曲线(DEN),测量地层的体积密度(g/cm3),反映地层的总孔隙度。 补偿中子测井曲线(CN)。测量地层的含氢量,反映地层的含氢指数(地层的孔隙度%) 自然伽玛测蟛曲线(GR),测量地层的天然放射性总量。划分岩性,反映泥质含量多少。 井径测井曲线,测量井眼直径,反映实际井径大砂眼(CM)。 2、特殊测井项目 地层倾角测井。测量九条曲线,反映地层真倾角。 自然伽玛能谱测井。共测五条曲线,反映地层的岩性和铀钍钾含量。 重复地层测试器(MFT)。一次下井可以测量多点的地层压力,并能取两个地层流体样。 三、国产测井曲线的主要图件几个基本概念: 深度比例:图的单位长度代表的同单位的实际长度,或深度轴长度与实际长度的比例系数。如,1:500;1:200等。 横向比例:每厘米(或每格)代表的测井曲线值。如,5Ω,m/cm,5mv/cm等。 基线:测井值为0的线。 基线位置:0值线的位置。 左右刻度值:某种曲线图框左右边界的最低最高值。 第二比例:一般横向比例的第二比例,是第一比例的5倍。如:一比例为5ΩM/cm;二比例则为25m/cm。 1、标准测井曲线图 2、2.5米底部梯度曲线。以其极大值和极小值划分地层界面。它的极大值或最佳值基本反映地层的真电阻率(如图) 自然电位曲线。以半幅点划分地层界面。一般砂岩层为负异常。泥岩为相对零电位值。 标准测井曲线图,主要为2.5粘梯度和自然电位两条曲线。用于划分岩层恢复地质录井剖面,进行井间的地层对比,粗略的判断油气水层。 3、回放测井曲线图(组合测井曲线) 深浅双侧向测井曲线。深双侧向曲线的极度大值反映地层的真电阻率(RT),浅双侧向的极大值反映浸入带电阻率(RS)。以深浅双侧向曲线异常的根部(异常幅度的1/3处)划分地层界面。

测井资料交会图法在火山岩岩性识别中的应用

文章编号 1004Ο5589(2003)02Ο0136Ο05 测井资料交会图法在火山岩岩性识别中的应用 赵 建 高福红 吉林大学地球科学学院,长春130026 摘 要 在火山岩储层研究中,岩性识别显得越来越重要。在评述目前常用的岩性识别方法后,重点以测井资料交会图法为例,以松辽盆地徐家围子断陷升平气田深层白垩系营城组火山岩为对象,优选出密度测井、自然伽玛测井、声波测井、电阻率、钍铀等测井项目的数据进行交会,编制出测井曲线交会图版,并以此为依据识别出该区的火山岩主要岩性有:安山岩、玄武岩、流纹岩和凝灰岩等。识别结果与实际情况相吻合。 关键词 火山岩 岩性识别 交会图 中图分类号 P588.1 文献标识码 A 收稿日期 2002Ο11Ο04;改回日期 2003Ο03Ο20 作者简介 赵 建(1976-),男,河南周口人,硕士研究生,从事含油气盆地研究. 通讯作者简介 高福红(1962-),女,辽宁朝阳人,副教授,从事沉积学和含油气盆地研究. Application of Crossplots B ased on Well Log Data in Identifying Volcanic Lithology Jian Zhao ,Fuhong G ao College of Earth Sciences ,Jili n U niversity ,Changchun ,130061Chi na Abstract Lithologyical identification is becoming increasingly important in the study of volcanic rock reser https://www.360docs.net/doc/ed4315623.html,mon methods in identifying volcanic lithology are introduced briefly here.The volcanic rocks of Y ingcheng Formation in Shengping G as Field are used as examples and well log crossplots are compiled based on the following data :density log ,gamma 22ray log ,acoustic log ,resistivity log ,thorium and uranium log.By this means ,andesite ,basalt ,rhyolite and tuff are identified.The identification result is well coincident with the lithological fact in the area. K ey w ords volcanic rock ,lithology identification ,crossplot 1 概 述 火成岩油气藏目前已成为世界油气田勘探开发的一个新领域。在美国、前苏联、古巴和墨西哥等很多国家都有这类油气藏被发现[1]。我国大多数油田也相继发现有这类储层。例如在准噶尔盆地西北缘的石炭系和二叠系中发现了一批火山岩油藏,而且探明的地质储量相当可观;二连盆地白垩系地层中、黄骅凹陷北堡地区、苏北地区等相继发现了火山岩储层油气藏。目前,在松辽盆地北部营城组火山岩地层油气勘探也取得了较好的效果。所有这些都 展示了火山岩良好的勘探前景。对这类特殊的储层 进行研究时,要进行火山岩岩性识别。识别含油气盆地中的火山岩岩性最直接有效的方法是岩心分析,但是考虑到油田上的生产效益,深层钻井取心成本很高,因此不可能在每口井中都取心,加上过去的老井在钻探过程中,遇到火山岩层时常常又不够重视,所以取心更是很少。因此利用间接的方法进行岩性识别成了必然。 在不同的地区,由于喷发方式和所处的构造不同,火山岩的岩性具有很大差异,岩石类型多样化,结构、构造复杂化。比如在我国中部的石西地区火 世界地质 G lobal G eology ,2003,22(2):136~140

油、气、水层在测井曲线上显示不同的特征

油、气、水层在测井曲线上显示不同的特征: (1)油层: 声波时差值中等,曲线平缓呈平台状。 自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。 微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。 长、短电极视电阻率曲线均为高阻特征。 感应曲线呈明显的低电导(高电阻)。 井径常小于钻头直径。 (2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。 (3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。 2、定性判断油、气、水层 油气水层的定性解释主要是采用比较的方法来区别它们。在定性解释过程中,主要采用以下几种比较方法: (1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。一般油气层的电阻率是水层的3倍以上。纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。 (2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。 (3)邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。这种对比要注意储集层的岩性、物性和地层水矿化度等在横向上的变化,如下图所示。(4)最小出油电阻率法:对某一构造或断块的某一层组来说,地层矿化度一般比较稳定,纯水层的电阻率高低主要与岩性、物性有关,所以若地层的岩性物性相近,则水层的电阻率相同,当地层含油饱和度增加,地层电阻率也随之升高。比较测井解释的真电阻率与试油结果,就要以确定一个电性标准(最小出油电阻率),高于电性标准是油层,低于电性标准的是水层。从而利用地层真电阻率(感应曲线所求的电阻率)和其它资料,可划分出油(气)、水层。但是应用这种方法时,必须考虑到不同断块、不同层系的电性标准不同,当岩性、物性、水性变化,则最小出油电阻也随之变化。 (5)判断气层的方法:气层与油层在许多方面相似,利用一般的测井方法划分不开,只能利用气层的“三高”特点进行区分。所谓“三高”即高时差值(或出现周波跳跃);高中子伽马值;高气测值(甲烷高,重烃低)。 根据油、气、水层的这些曲线特征和划分油、气、水层的方法,就可以把一般岩性、简

测井曲线的识别及应用

第一讲测井曲线的识别及应用 钻井取芯、岩屑录井、地球物理测井是目前比较普及的三种认识了解地层的方法。钻井获取的岩芯资料直观、准确,但成本高、效率低。岩屑录井简便、及时,但干扰因素多,深度有误差,岩屑易失真。测井是一种间接的录井手段,它是应用地球物理方法,连续地测定岩石的物理参数,以不同的岩石存在着一定物性差别,在测井曲线上有不同的变化特征为基础,利用各种测井曲线显示的特征、变化规律来划分钻井地质剖面、认识研究储层的一种录井方法;具有经济实用、收获率高、易保存的优势,是目前我们认识地层的主要途径。 鄂尔多斯盆地常规测井系列分为综合测井和标准测井两种。 综合测井系列:重点反映目的层段钻井剖面的地层特征。测量井段由井底到直罗组底部,比例尺1:200。由感应、八侧向、四米电阻、微电极、声速、井径、自然电位、自然咖玛八种测井方法组成。探井、评价井为了提高储层物性解释精度,加测密度和补偿中子两条曲线。 标准测井系列:全面反映钻井剖面地层特征,测量井段由井底到井口(黄土层底部),比例尺1:500,多用于盆地宏观地质研究。过去标准测井系列较单一,仅有视电阻率、自然咖玛测井等两三条曲线。近几年完钻井的标准测井系列曲线较完善,只比综合测井系列少了微电极测井一项。 一、测井曲线的识别 微电极系测井、四米电阻测井、感应—八侧向测井、都是以测定岩石的电阻率为物理前提,但曲线的指向意义各异。微电极常用于判断砂岩渗透性和薄层划分。感应—八侧向测井用于判定砂岩的含油水层性能。四米电阻、声速、井径、自然电位、自然咖玛用于砂泥岩性划分。它们各有特定含义,又互相印证,互为补充,所以,我们使用时必须综合考虑。 1、微电极测井 大家知道,油井完钻后由井眼向外围依次是:泥饼、冲洗带、侵入带、地层。泥饼是泥浆中的水分进入地层后,吸附、残留在砂岩壁上的泥浆颗粒物。冲洗带是紧靠井壁附近,地层中的流体几乎被钻井液全部赶走了的部分;其深入地层的范围一般约7—8厘米。侵入带是钻井液与地层中流体的混合部分。

测井曲线代码一览表

测井曲线代码一览表 测井类资料2009-08-07 16:01 阅读437 评论0 字号:大大中中小小 from 石油科技论坛 常用测井曲线名称 测井符号英文名称 中文名称 Rt true formation resistivity. 地层真电阻率 Rxo flushed zone formation resistivity 冲洗带地层电阻率 Ild deep investigate induction log 深探测感应测井 Ilm medium investigate induction log 中探测感应测井 Ils shallow investigate induction log 浅探测感应测井 Rd deep investigate double lateral resistivity log 深双侧向电阻率测井 Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井 RMLL micro lateral resistivity log 微侧向电阻率测井CON induction log 感应测井 AC acoustic 声波时差 DEN density 密度 CN neutron 中子 GR natural gamma ray 自然伽马 SP spontaneous potential 自然电位

CAL borehole diameter 井径 K potassium 钾 TH thorium 钍 U uranium 铀

KTH gamma ray without uranium 无铀伽马 NGR neutron gamma ray 中子伽马 5700系列的测井项目及曲线名称 Star Imager 微电阻率扫描成像 CBIL 井周声波成像 MAC 多极阵列声波成像 MRIL 核磁共振成像 TBRT 薄层电阻率 DAC 阵列声波 DVRT 数字垂直测井 HDIP 六臂倾角 MPHI 核磁共振有效孔隙度 MBVM 可动流体体积 MBVI 束缚流体体积 MPERM 核磁共振渗透率 Echoes 标准回波数据 T2 Dist T2分布数据 TPOR 总孔隙度 BHTA 声波幅度 BHTT 声波返回时间 Image DIP 图像的倾角 COMP AMP 纵波幅度 Shear AMP 横波幅度 COMP ATTN 纵波衰减 Shear ATTN 横波衰减 RADOUTR 井眼的椭圆度 Dev 井斜 原始测井曲线代码 AMP5 第五扇区的声幅值 AMP6 第六扇区的声幅值 AMVG 平均声幅 AO10 阵列感应电阻率

测井曲线的识别与应用

一、测井曲线资料应用的意义 测井资料在油、气田的勘探与开发中有广泛的的用途,大体可分为在裸眼井中的应用和套管井中的应用,及其它一些专门目的的应用。在裸眼井中,测井资料主要用于寻找油、气层,并对储集层的孔隙性、渗透性和含油性作出评价,为油、气田的开发决策提供信息;在套管井中,测井资料主要用于开发过程中油、气层的动态分析,为油、气田开发的合理调整提供资料。 二、常用的测井曲线的类型 常用的测井曲线有:自然电位曲线、自然伽玛测井曲线、微电位测井曲线、微梯度测井曲线、深感应测井曲线、中感应测井曲线、4米电阻测井曲线、声波时差测井曲线、井径测井曲线等。 三、常用测井曲线识别 第一节自然电位测井 在钻开岩层时,井壁附近产生的电化学活动能形成一电场,该场产生的电位就叫自然电位,其产生的原因是地层水矿化度和泥浆滤液矿化度压力不同,以及泥浆压力与地层压力不同。 在砂泥岩剖面中,自然电位曲线以泥岩为基线,只在砂质渗透性岩层处,才出现自然电位曲线异常,所以我们可以利用它来划分渗透性岩层。纯砂岩井段出现最大的负异常,含泥质的砂岩负异常幅度较低,

而且随泥质含量的增多负异常幅度下降。此外通过自然电位曲线幅度还可判断渗透层孔隙中所含流体的性质,一般含水砂岩的自然电位幅度比含油砂岩的自然电位幅度要高。 自然电位曲线的应用仅限于淡水泥浆钻的井,因为自然电位曲线幅度(偏离泥岩基线的幅度)与地层水含盐量和井中流体含盐量之差有关。对于淡水泥浆,纯砂岩的负向偏移幅度最大,当砂岩含泥时,幅度减小。而当采用盐水泥浆时,含盐水地层的SP曲线,偏移很小或没有偏移,甚至出现反转。自然电位曲线在含盐水纯砂岩部位最高,而当地层含有烃类时,自然电位幅度有所降低,当砂层厚度小于3m 或更薄时,其幅度大大降低;当砂岩胶结作用较强时,其幅度可显著降低。 应用:1、自然电位曲线,对于厚岩层可用由线半幅点划分岩层界面,对于薄岩层必须与视电阻率曲线配合,才能获得准确结果。 2、可以很清楚地划分渗透层与非渗透层。而且可以运用自然电位曲线观察岩性的变化,如当砂岩岩性变细,含泥量增加时,常表现为自然电位幅度的降低等。 3、判断水淹层:利用自然电位曲线上出现的基线偏移确定水淹程度,并根据偏移量的大小估计水淹程度。 第二节自然伽玛测井 自然伽玛测井是在井内测量岩层中自然存在的放射性核素核衰变过 程中放射出来的γ射线的强度来研究地质问题的一种测井方法。

相关文档
最新文档