卷积码编译码开题报告

卷积码编译码开题报告
卷积码编译码开题报告

毕业设计(论文)

开题报告

题目名称:卷积码编码与译码算法的仿真研究

院系名称:电子信息学院

班级:

学号:

学生姓名:

指导教师:

2010年4月

1课题背景及意义

通信的目的是要把对方不知道的消息及时可靠地传送给对方。这就要求一个

通信系统传输消息必须可靠和快速。在数字通信系统中可靠与快速往往是一对矛盾,若要求快速,则必然使得每个数据码元所占的时间缩短、波形变窄、能量减少,从而在受到干扰后产生错误的可能性增加,传送消息的可靠性减低。若要求可靠,则使得传送消息的速率变慢。因此,如何合理地解决可靠性与速度这一对矛盾,是正确设计一个通信系统的关键问题之一。

随着现代通信的发展,在高速信息传输和高可靠性传输成为信息传输的两个主要方面中,可靠性尤其重要。因为信道状况的恶劣,信号不可避免会受到干扰而出错。为实现可靠性通信,主要有两种途径:一种是增加发送信号的功率,提高接收端的信号噪声比;另一种是采用编码的方法对信道差错进行控制。前者常常受条件限制,不是所有情况都能采用。例如卫星通信系统以很远的距离传送数据,由于衰落、噪声和干扰等的影响,信号在传输过程中将产生严重的畸变。如果要求信号具有尽可能大的能量,卫星体积和载重就大大增加,会使成本相对于原来大大增加,所以不可能给信号提供太大的能量,建立在香浓基础上的编码理论正可以解决这个问题,使得成本降低,实用性增强。

1948年,美国贝尔实验室的Claude E. Shannon在贝尔技术杂志上发表了题为《通信的数学理论》的论文,这是一篇关于现代信息理论的奠基性论文,它的发表标志着信息与编码理论这一学科的创立。Claude E. Shannon在该文中指出,任一通信信道都有一个参数,称之为信道容量C,如果通信系统所要求的传输速率R小于C,则存在一种编码方法,当码长n充分长并应用最大似然译码时,系统的错误概率可以达到任意的小。这就是著名的信道编码理论。虽然Shannon给出的仅仅是一个编码的存在性定理,但却开创了信道编码理论这一新的研究领域。从此关于可靠性的数字通信系统的研究进入了一个崭新的天地一一通过信道编码来提过通信的可靠性,而编码是通过在发送符号之间引入冗余来实现的。自Shannon的著作发表以来,人们为了在有扰环境下控制差错,在设计有效的编译码方法方面作了大量的努力。差错控制编码的应用己成为现代通信系统和计算机设计中不可分割的一部分。

纠错编码的方法是:在发送端被传输的信息序列附上一些监督码元,这些多余的码元与信息码元之间以某种确定的规则相互约束。也就是说,序列中信息序列的诸码元与多余码元间是相关的。接受端则根据既定的规则校验信息码元与监督码元的关系。一旦传输发生错误,则信息码元与监督码元的关系就受到破坏,从而在接收端可以发现错误乃至纠正错误。随着今年来电子技术和集成电路技术的发展,纠错编码技术不但早已应用于实际的通信设备之中,而且不断的有更高

性能、更低功耗的译码器出现。正是这种实际应用与纠错码理论研究的相互促进,使得纠错编码技术不断呈现出蓬勃向上的活力。

卷积码的编码器是具有记忆的。在任何给定时刻编码器的n 个输出比特不仅和当前的K(bit)输入数据有关,而且和以前M个时刻的输入组有关,所以卷积码可用参数组(n, k, M)来描述卷积码用法简单,性能好。主要应用于FEC 系统纠错。卷积码是一种有效的信道编码方法,是当今无数数字通信系统的一个十分重要的组成部分,在实际中广泛应用,目前无线数字通信系统都采用某一种形式的卷积编码,由于其出色的纠错性能,一般在级联码中作为内码使用,为外码的有效工作而服务,以大大提高整个系统的纠错能力。Viterbi译码算法是对卷积码在加性高斯白噪声(AWGN)信道下的最佳概率译码算法,即寻找编码器输出和译码器的经过信道后输入的最大似然函数,在实现上,通过在编码器网格图上寻找最终幸存路径得到译码的输出。TCM编码调制系统也采用Viterbi算法译码,现在,Viterbi算法还被广泛使用在语音识别、多用户检测等领域。

卷积码是由埃里亚斯(Elias)在1955年首先提出来的,稍后1957伍成克拉夫特(Wozencraft)提出了卷积码的序贯译码法。1967年维特比(Viterbi) 提出最大似然译码算法,也就是Viterbi算法。现在Viterbi算法已被广泛地应用到通信和信号处理的各个领域。综上所述,本课题是基于纠错编码与最大译码而对卷积码结构进行分析和Viterbi译码算法的仿真研究,并研究卷积码在Rayleigh衰落和AWGN信道下的误码性能。

2主要研究内容

卷积码是Elias在1955年提出的。在分组码中,把k个信息比特序列编成n个比特的码组,每个码组中的(n-k)个校验位仅与本码组的k个信息位有关而与其它码组无关。为了达到一定的纠错能力和编码效率,分组码的码组长度一般比较大。编译码时必须把整个信息码组存储起来,由此产生的译码延迟会随着n的增加而增加。和分组码不同,卷积码前后各码之间具有相关性,即卷积码编码后的n个码元不仅与当前段的k个信息有关,而且还与前面(N-1)(N为编码约束度)段的信息有关。在卷积码中,k个信息比特也被编成n个比特的码组,但k和n通常很小,并且可以通过串行或并行的方式进行传输,而且时延很小。编码过程中互相关联的码元个数为Nn。

由于卷积码在编码过程中,充分地利用各码组之间的相关性,且k和n都比较小,因此,在与分组码同样的码率和设备复杂性条件下,从理论和实际两个

方面,均已证明卷积码的性能至少不比分组码差,且实现最佳和准最佳也较分组码容易。

Viterbi 算法是Viterbi 在1967年针对卷积码的译码而提出的一种概率译码算法,它是一种最大似然译码。由卷积码过程可以看出,码序列的个数是很大的。例如当码序列长度L=50,k=2时,则共有301001022?=KL 个码,对应于网格图上的KL 2条路径。若m=5,则(L+m )=55。如果在一秒钟内送出这KL=100个信息元,则信息传输速率只有1000bit/s ,这是很低的,但即使在如此低的信息速率下,也要求译码器在一秒中计算、比较3010个似然函数(或汉明距离、软距离),这相当于要求译码器计算每一似然函数的时间小于3010-秒,这根本无法实现。更何况通常情况下L 是成千上百的。因此,有必要寻找新的最大似然译码算法。

Viterbi 译码算法正是为了解决以上困难所引入的一种最大似然译码算法。它是由美国的Qualcomm 公司创始人Viterbi 在1967年提出的。 并不是在网格图上一次比较所有可能的KL 2条路径,而是接收一段,比较一段,选一段最可能的译码分支,从而达到整个码序列是一个有最大似然函数的序列。

3总体方案

在一个编译码系统中,如图所示,输入信息序列M 被编码为序列C ,假设C 序列经过有噪声的无记忆信道传送给译码器。译码器根据一套译码规则,由接受序列R 给出与发送的信息序列M 最接近的估值序列∧M 。由于M 与码字C 之间存在一一对应关系,所以这等价于译码器根据R 产生一个C 的估值序列∧C 。即当且仅当C C =∧时,M M =∧,这时译码器正确译码。如果译码器输出的C C ≠∧

,则译码器产生错误译码。

(1) 卷积码的编码器 ??????∧C {}}M {∧

}C {∧

卷积码是将发送的信息序列通过一个线性的,有限状态的移位寄存器而产生的编码。通常卷积码的编码器由K 级(每级K 比特)的移位寄存器和n 个线性代数函数发生器(这里是模2加法器)组成,如图1。

需要编码的二进制数据串行输入移位寄存器,每次移入K 比特数据。每个K 比特的输入序列对应一个 n 比特的输出序列。因此卷积码的编码效率定义为/c R k n 。参数K 被称作卷积码的约束长度,它表示当前的n 比特输出序列与多

少个K 比特输入序列有关系,同时也是一个决定编码复杂程度的重要参数。

(2)卷积码的译码 viterbi 译码算法是一种卷积码的解码算法。

Viterbi 译码流程主要有下面几个部分:(1)量化。将接收机的模拟信号转化为数字信号(2)码同步。检测码元帧的边界以及码元标志。(3)分支度量计算。计算各个状态的接受码元和本地码元的汉明距离。(4)状态度量更新。用各个状态新的路径度量代替前一时刻的路径度量。(5)幸存路径储存。将Viterbi 译码所需的网格图上所走过的路径记录下来。(6)输出判决。根据幸存路径存储的信息,产生译码序列的输出。

网格图以状态为纵轴,以时间(抽样周期T )为横轴,将平面分割成格

状。由网格图可见,沿路径每一级有4种状态a , b , c ,d 。每种只有两条路径可达,故4种状态共8条到达路径

1. 输入信息位为1101(0 …)时,网格图的编码路径如下

2. 输出编码序列是:111 110 010 100 011…

从众多的分支中找到一条最佳的路径为译码路径。

(3)对卷积码的纠错能力进行实验仿真

信码在传输过程中,由于信道不理想以及噪声的干扰,以致在接收端判决再生后的码元可能出现错误,这叫误码。误码率=传输中的误码/所传输的总码数*100%。

1)仿真研究卷积码在Rayleigh 衰落下的误码性能

如果输入01,输出为110100;然而在干扰下输出为111100,则通过网格图进行译码得出码与输入码比较。

2)仿真研究卷积码在AWGN 信道下的误码性能

通过)(数据量尽可能大总输入数据检测到的数据错误数

BER 对信号传输进行评估得出其在加

性高斯噪声信道中的性能。

4已完成设计

5问题总结、之后进度

6进度安排

图1 信道编译码系统模型

移动通信实验线性分组码卷积码实验

实验二抗衰落技术实验(4学时) 1.线性分组码实验 2.卷积码实验 姓名: 学号: 班级: 日期: 成绩:

1、线性分组码实验 一、实验目的 了解线性分组码在通信系统中的意义。 掌握汉明码编译码及其检错纠错原理,理解编码码距的意义。二、实验模块 主控单元模块 2号数据终端模块 4号信道编码模块 5号信道译码模块 示波器 三、实验原理

汉明码编译码实验框图 2、实验框图说明 汉明码编码过程:数字终端的信号经过串并变换后,数据进行了分组,分组后的数据再经过汉明码编码,数据由4bit变为7bit。 注:为方便对编码前后的数据进行对比观测,本实验中加入了帧头指示信号。帧头指示信号仅用于线性分组码编码时将输入信号的比特流进行分组,其上跳沿指示了分组的起始位置。 四、实验步骤 (注:实验过程中,凡是涉及到测试连线改变或者模块及仪器仪表的更换时,都需先停止运行仿真,待连线调整完后,再开启仿真进行后续调节测试。) 任务一汉明码编码规则验证 概述:本项目通过改变输入数字信号的码型,观测延时输出,编码输出及译码输出,验证汉明码编译码规则。 1、登录e-Labsim仿真系统,创建实验文件,选择实验所需模块和示波器。 2、按表格所示进行连线。 3、调用示波器观测2号模块的DoutMUX和4号模块的编码输出TH4编码数据,

6、此时系统初始状态为:2号模块提供32K编码输入数据,4号模块进行汉明码编码,无差错插入模式,5号模块进行汉明码译码。 7、实验操作及波形观测。 0000 0001 0010

0100 0101

0111 1000

哈夫曼编译码的设计与实现实验报告

哈夫曼编/译码的设计与实现实验报告 问题描述 利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数据进行译码(复原)。对于双工信道(即可以双向传输信息的信道),每端都需要一个完整的编/译码系统。试为这样的信息收发编写一个哈夫曼码的编/译码系统。 基本要求 (1)接收原始数据:从终端读入字符集大小n,以及n个字符和n个权值,建立哈夫曼树,并将它存于文件hfmtree.dat中。 (2)编码:利用已建好的哈夫曼树(如不在内存,则从文件hfmtree.dat中读入),对文件中的正文进行编码,然后将结果存入文件codefile.dat中。 (3)译码:利用已建好的哈夫曼树将文件codefile.dat中的代码进行译码,结果存入文件textfile.dat中。 (4)打印编码规则:即字符与编码的一一对应关系。 运行与调试 (1)利用教科书中的数据调试程序。

(2)用下表给出的字符集和频度的实际统计数据建立哈夫曼树,并实现以下报文的编码和译码:“THIS-PROGRAM-IS-MY-FA VORITE”。 字符 A B C D E F G H I J K L M 频度186 64 13 22 32 103 21 15 47 57 1 5 32 20 字符 频度57 63 15 1 48 51 80 23 8 18 1 16 1

实验小结 通过这次实验,让我对于树的应用多了认识,在读取文件时,遇到的一些困难,不过在和同学交流的过程中,解决了这个问题,我觉的自己对于树及文件的应用又有了一些进步。通过这次实验,感觉收获很大。

实验九 (2,1,5)卷积码编码译码技术

实验九 (2,1,5)卷积码编码译码技术 一、实验目的 1、掌握(2,1,5)卷积码编码译码技术 2、了解纠错编码原理。 二、实验内容 1、(2,1,5)卷积码编码。 2、(2,1,5)卷积码译码。 三、预备知识 1、纠错编码原理。 2、(2,1,5)卷积码的工作原理。 四、实验原理 卷积码是将发送的信息序列通过一个线性的,有限状态的移位寄存器而产生的编码。通常卷积码的编码器由K级(每级K比特)的移位寄存器和n个线性代数函数发生器(这里是模2加法器)组成。 若以(n,k,m)来描述卷积码,其中k为每次输入到卷积编码器的bit数,n 为每个k元组码字对应的卷积码输出n元组码字,m为编码存储度,也就是卷积编码器的k元组的级数,称m+1= K为编码约束度m称为约束长度。卷积码将k 元组输入码元编成n元组输出码元,但k和n通常很小,特别适合以串行形式进行传输,时延小。与分组码不同,卷积码编码生成的n元组元不仅与当前输入的k元组有关,还与前面m-1个输入的k元组有关,编码过程中互相关联的码元个数为n*m。卷积码的纠错性能随m的增加而增大,而差错率随N的增加而指数下降。在编码器复杂性相同的情况下,卷积码的性能优于分组码。 编码器 随着信息序列不断输入,编码器就不断从一个状态转移到另一个状态并同时输出相应的码序列,所以图3所示状态图可以简单直观的描述编码器的编码过程。因此通过状态图很容易给出输入信息序列的编码结果,假定输入序列为110100,首先从零状态开始即图示a状态,由于输入信息为“1”,所以下一状态为b并输出“11”,继续输入信息“1”,由图知下一状态为d、输出“01”……其它输入信息依次类推,按照状态转移路径a->b->d->c->b->c->a输出其对应的编码结果“110101001011”。 译码方法 ⒈代数 代数译码是将卷积码的一个编码约束长度的码段看作是[n0(m+1),k0(m+1)]线性分组码,每次根据(m+1)分支长接收数字,对相应的最早的那个分支上的信息数字进行估计,然后向前推进一个分支。上例中信息序列 =(10111),相应的码序列 c=(11100001100111)。若接收序列R=(10100001110111),先根据R 的前三个分支(101000)和码树中前三个分支长的所有可能的 8条路径(000000…)、(000011…)、(001110…)、(001101…)、(111011…)、(111000…)、(110101…)和(110110…)进行比较,可知(111001)与接收

卷积信号实验报告

信号与系统上机实验报告一连续时间系统卷积的数值计算 140224 班张鑫学号 14071002 一、实验原理 计算两个函数的卷积 卷积积分的数值运算实际上可以用信号的分段求和来实现,即: 如果我们只求当 t = n? t1 是r ( t )的值,则由上式可以得到: ?t足够小时,r(t2)就是e(t)和f(t)卷积积分的数值近似值由上面的公式可 当1 以得到卷积数值计算的方法如下: (1)将信号取值离散化,即以为周期,对信号取值,得到一系列宽度间隔为 的矩形脉冲原信号的离散取值点,用所得离散取值点矩形脉冲来表示原来的连续时间信号; (2)将进行卷积的两个信号序列之一反转,与另一信号相乘,并求积分,所得为t=0时的卷积积分的值。以为单位左右移动反转的信号,与另一信号相乘求积 分,求的t<0和t>0时卷积积分的值; (3)将所得卷积积分值与对应的t标在图上,连成一条光滑的曲线,即为所求卷积积分的曲线。 1

信号与系统上机实验报告一二、处理流程图 三、C程序代码 #include"stdafx.h" #include"stdio.h" //#include "stdilb.h" float u(float t) { while (t>= 0) return(1); while (t<0) return(0); } float f1(float t) { return(u(t+2)-u(t-2)); } float f2(float t) { return(t*(u(t)-u(t-2))+(4-t)*(u(t-2)-u(t-4))); } int_tmain(int argc, _TCHAR* argv[]) {

差分编译码实验报告

实验十三差分编译码实验 一、实验目的 掌握差分编码/译码原理 二、实验内容 1、学习差分编译码原理 2、用示波器观察差分编码结果和译码结果 三、基本原理 差分码是一种把符号‘0’和‘1’反映在相邻码元的相对变化上的波形。比如,若以相邻码元的电位改变表示符号‘1’,而以电位不改变表示符号‘0’,如图13-1所示。当然,上述规定也可以反过来。由图可见,这种码波形在形式上与单极性或双极性码波形相同,但它代表的信息符号与码元本身电位或极性无关,而仅与相邻码元的电位变化有关。差分波形也称相对码波形,而相应地称单极性或双极性波形为绝对码波形。差分码波形常在相位调制系统的码变换器中使用。 图13-1差分码波形 组成模块如下图所示: cclk d_out 端口说明: CCLK:编码时钟输入端 DIN:编码数据输入端 Diff-OUT:差分编码结果输出端 DCLK:译码时钟输入端

Diff-IN:差分译码数据输入端 DOUT:译码结果输出端 四、实验步骤 1、实验所用模块:数字编解码模块、数字时钟信号源模块。 实验连线: CCLK:从数字时钟信号源模块引入一高频时钟,如512K。 DIN:从数字时钟信号源模块引入一低频时钟,如16K。 DIFF-OUT与DIFF-IN短接。 DCLK与CCLK短接。 2、用示波器两探头同时观测DIN与DIFF-OUT端,分析差分编码规则。 3、用示波器两探头同时观测DIN与DOUT端,分析差分译码结果。 五、实验报告要求 设信息代码为1001101,码速率为128K,差分码的编码时钟为码速率的四倍,根据实验观察得到的规律,画出差分码波形。

卷积编码实验报告

实验名称:___ 卷积编码_______ 1、使用MATLAB进行卷积编码的代码编写、运行、仿真等操作; 2、熟练掌握MATLAB软件语句; 3、理解并掌握卷积编码的原理知识。 二、实验原理 卷积码是由Elias于1955 年提出的,是一种非分组码,通常它更适用于前向纠错法,因为其性能对于许多实际情况常优于分组码,而且设备较简单。 卷积码的结构与分组码的结构有很大的不同。具体地说,卷积码并不是将信息序列分成不同的分组后进行编码,而是将连续的信息比特序列映射为连续的编码器输出符号。卷积码在编码过程中,将一个码组中r 个监督码与信息码元的相关性从本码组扩展到以前若干段时刻的码组,在译码时不仅从此时刻收到的码组中提取译码信息,而且还可从与监督码相关的各码组中提取有用的译码信息。这种映射是高度结构化的,使得卷积码的译码方法与分组译码所采用的方法完全不同。可以验证的是在同样复杂度情况下,卷积码的编码增益要大于分组码的编码增益。对于某个

特定的应用,采用分组码还是卷积码哪一种更好则取决于这一应用的具体情况和进行比较时可用的技术。 (一)卷积编码的图形表示 卷积码的编码器是由一个有k 个输人位,n 个输出位,且有m 个移位寄存器构成的有限状态的有记忆系统,其原理如图1所示。 图1 卷积码编码器的原理图 描述这类时序网络的方法很多,它大致可分为两大类型:解析表示法与图形表示法。在解析法中又可分为离散卷积法、生成矩阵法、码多项式法等;在图形表示法中也可分为状态图法、树图法和网络图法等。 图2给出的是一个生成编码速率为1/2 卷积码的移位寄存器电路。输人比特在时钟触发下从左边移人到电路中,每输入一位,分别去两个模2加法器的输出值并复用就得到编码器的输出。对这一编码,每输入一比特就产生两个输出符号,故编码效率为

Pcm编译码实验报告

Pcm编译码实验报告 学院:信息学院 :靳家凯 专业:电科 学号:20141060259

一、实验目的 1、掌握脉冲编码调制与解调的原理。 2、掌握脉冲编码调制与解调系统的动态围和频率特性的定义及测量方法。 3、了解脉冲编码调制信号的频谱特性。 4、熟悉了解W681512。 二、实验器材 1、主控&信号源模块、3号、21号模块 2、双踪示波器 3、连接线 三、实验原理 1、实验原理框图

图1 21号模块w68 1 5 1 2芯片的PCM编译码实验 图2 3号模块的PCM编译码实验 图3 ~μ律编码转换实验 2、实验框图说明 图1中描述的是信号源经过芯片W6815 12经行PcM编码和译码处理。 w681512的芯片工作主时钟为2o48KHz, 根据芯片功能可选择不同编码时钟进行编译码。在本实验的项目一中以编码时钟取64K为基础进行芯片的幅频特性测试实验。图2中描述的是采用软件方式实现PcM编译码, 并展示中间变换的过程。 PcM 编码过程是将音乐信号或正弦波信号, 经过抗混叠滤波 (其作用是滤波 3.4kHz 以外的频率, 防止A/D转换时出现混叠的现象) 。抗混滤波后的信号经A/D转换,

然后做PcM编码,之后由于G.711协议规定A律的奇数位取反, μ律的所有位都取反。因此, PcM编码后的数据需要经G.711协议的变换输出。 PcM译码过程是PcM编码逆向的过程,不再赘述。 A/μ律编码转换实验中,如实验框图3所示,当菜单选择为 A律转μ律实验时,使用3 号模块做 A律编码, A律编码经 A转μ律转换之后, 再送至21号模块进行μ律译码。同理, 当菜单选择为μ律转 A律实验时,则使用3号模块做μ律编码,经l,转A律变換后,再送入21号模块进行 A律译码。 四、实验步骤 实验项目一测试 w68l512的幅频特性 概述:该项目是通过改变输入信号频率,观测信号经 w681512编译码后的输出幅频特性, 了解芯片 w681512的相关性能。 1、关电,按图1所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【PCM编码】→【A 律编码观测实验】。调节 w1主控&信号源使信号 A_0UT输出峰峰值为3V左右。将模块21的开关 Sl 拨至“A-Law”, 即完成 A律PCM编译码。 3、此时实验系统初始状态为:设置音频输入信号为峰峰值3V,频率1KHz正弦波; PCM编码及译码时钟 CLK为64KHz方波;编码及译码帧同步信号 FS为8KHz。 4、实验操作及波形观测。 (1)调节模拟信号源输出波形为正弦波,输出频率为50Hz,用示波器观测A-out,设置A_out峰峰值为3V。 (2)将信号源频率从50Hz增加到4oooHz,用示波器接模块21的音频输出,观测信

MATLAB实现卷积码编译码-

本科生毕业论文(设计) 题目:MATLAB实现卷积码编译码 专业代码: 作者姓名: 学号: 单位: 指导教师: 年月日

目录 前言----------------------------------------------------- 1 1. 纠错码基本理论---------------------------------------- 2 1.1纠错码基本理论 ----------------------------------------------- 2 1.1.1纠错码概念 ------------------------------------------------- 2 1.1.2基本原理和性能参数 ----------------------------------------- 2 1.2几种常用的纠错码 --------------------------------------------- 6 2. 卷积码的基本理论-------------------------------------- 8 2.1卷积码介绍 --------------------------------------------------- 8 2.1.1卷积码的差错控制原理----------------------------------- 8 2.2卷积码编码原理 ---------------------------------------------- 10 2.2.1卷积码解析表示法-------------------------------------- 10 2.2.2卷积码图形表示法-------------------------------------- 11 2.3卷积码译码原理---------------------------------------------- 15 2.3.1卷积码三种译码方式------------------------------------ 15 2.3.2V ITERBI译码原理---------------------------------------- 16 3. 卷积码编译码及MATLAB仿真---------------------------- 18 3.1M ATLAB概述-------------------------------------------------- 18 3.1.1M ATLAB的特点------------------------------------------ 19 3.1.2M ATLAB工具箱和内容------------------------------------ 19 3.2卷积码编码及仿真 -------------------------------------------- 20 3.2.1编码程序 ---------------------------------------------- 20 3.3信道传输过程仿真-------------------------------------------- 21 3.4维特比译码程序及仿真 ---------------------------------------- 22 3.4.1维特比译码算法解析------------------------------------ 23 3.4.2V ITERBI译码程序--------------------------------------- 25 3.4.3 VITERBI译码MATLAB仿真----------------------------------- 28 3.4.4信噪比对卷积码译码性能的影响 -------------------------- 28

卷积码实验报告

苏州科技大学天平学院电子与信息工程学院 信道编码课程设计报告 课设名称卷积码编译及译码仿真 学生姓名圣鑫 学号1430119232 同组人周妍智 专业班级通信1422 指导教师潘欣欲 一、实验名称 基于MAATLAB的卷积码编码及译码仿真 二、实验目的 卷积码就是一种性能优越的信道编码。它的编码器与译码器都比较容易实现,同时它具有较强的纠错能力。随着纠错编码理论研究的不断深入,卷积码的实际应用越来越广泛。本实验简明地介绍了卷积码的编码原理与Viterbi译码原理。并在SIMULINK模块设计中,完成了对卷积码的编码与译码以及误比特统计整个过程的模块仿真。最后,通过在仿真过程中分别改变卷积码的重要参数来加深理解卷积码的这些参数对卷积码的误码性能的影响。经过仿真与实测,并对测试结果作了分析。 三、实验原理

1、卷积码编码原理 卷积码就是一种性能优越的信道编码,它的编码器与解码器都比较易于实现,同时还具有较强的纠错能力,这使得它的使用越来越广泛。卷积码一般表示为(n,k,K)的形式,即将 k个信息比特编码为 n 个比特的码组,K 为编码约束长度,说明编码过程中相互约束的码段个数。卷积码编码后的 n 各码元不经与当前组的 k 个信息比特有关,还与前 K-1 个输入组的信息比特有关。编码过程中相互关联的码元有 K*n 个。R=k/n 就是编码效率。编码效率与约束长度就是衡量卷积码的两个重要参数。典型的卷积码一般选 n,k 较小,K 值可取较大(>10),但以获得简单而高性能的卷积码。 卷积码的编码描述方式有很多种:冲激响应描述法、生成矩阵描述法、多项式乘积描述法、状态图描述,树图描述,网格图描述等。 2、卷积码Viterbi译码原理 卷积码概率译码的基本思路就是:以接收码流为基础,逐个计算它与其她所 有可能出现的、连续的网格图路径的距离,选出其中可能性最大的一条作为译码估值输出。概率最大在大多数场合可解释为距离最小,这种最小距离译码体现的正就是最大似然的准则。卷积码的最大似然译码与分组码的最大似然译码在原理上就是一样的,但实现方法上略有不同。主要区别在于:分组码就是孤立地求解单个码组的相似度,而卷积码就是求码字序列之间的相似度。基于网格图搜索的译码就是实现最大似然判决的重要方法与途径。用格图描述时,由于路径的汇聚消除了树状图中的多余度,译码过程中只需考虑整个路径集合中那些使似然函数最大的路径。如果在某一点上发现某条路径已不可能获得最大对数似然函数,就放弃这条路径,然后在剩下的“幸存”路径中重新选择路径。这样一直进行到最后第 L 级(L 为发送序列的长度)。由于这种方法较早地丢弃了那些不可能的路径,从而减轻了译码的工作量,Viterbi 译码正就是基于这种想法。对于(n, k, K )卷积码,其网格图中共 2kL 种状态。由网格图的前 K-1 条连续支路构成的路径互不相交,即最初 2k_1 条路径各不相同,当接收到第 K 条支路时,每条路径都有 2 条支路延伸到第 K 级上,而第 K 级上的每两条支路又都汇聚在一个节点上。在Viterbi译码算法中,把汇聚在每个节点上的两条路径的对数似然函数累加

PCM编译码的实验报告

PCM编译码的实验报告 篇一:实验十一:PCM编译码实验报告 实验报告 哈尔滨工程大学教务处制 实验十一PCM编译码实验 一、实验目的 1. 掌握PCM编译码原理。 2. 掌握PCM基带信号的形成过程及分接过程。 3. 掌握语音信号PCM编译码系统的动态范围和频率特性的定义及测量方法。 二、实验仪器 1. 双踪示波器一台 2. 通信原理Ⅵ型实验箱一台 3. M3:PCM与ADPCM编译码模块和M6数字信号源模块 4. 麦克风和扬声器一套 三、实验步骤 1.实验连线 关闭系统电源,进行如下连接: 非集群方式 2. 熟悉PCM编译码模块,开关K1接通SL1,打开电源开关。3.用示波器观察STA、STB,将其幅度调至2V。 4. 用示波器观察PCM编码输出信号。 当采用非集群方式时:

测量A通道时:将示波器CH1接SLA(示滤波器扫描周期不超过SLA的周期, 以便观察到一个完整的帧信号),CH2接PCM A OUT,观察编码后的数据与时隙同步信号的关系。 测量B通道时:将示波器CH1接SLB,(示滤波器扫描周期不超过SLB的周期, 以便观察到一个完整的帧信号),CH2接PCM B OUT,观察编码后的数据与时隙同步信号的关系。 当采用集群方式时:将示波器CH1接SL0,(示滤波器扫描周期不超过SL0的周期, 以便观察到一个完整的帧信号),CH2分别接SLA、PCM A OUT、SLB、PCM B OUT以及PCM_OUT,观察编码后的数据所处时隙位置与时隙同步信号的关系以及PCM信号的帧结构(注意:本实验的帧结构中有29个时隙是空时隙,SL0、SLA及SLB的脉冲宽度等于一个时隙宽度)。开关S2分别接通SL1、SL2、SL3、SL4,观察PCM基群帧结构的变化情况。 5. 用示波器观察PCM译码输出信号 示波器的CH1接STA,CH2接SRA,观察这两个信号波形是否相同(有相位差)。 示波器的CH1接STB,CH2接SRB,观察这两个信号波形是否相同(有相位差)。 6. 用示波器定性观察PCM编译码器的动态范围。

信 卷积实验报告

信号与系统实验报告学院:电子信息与电气工程学院 班级: 13级电信<1>班 学号: 20131060104 姓名:李重阳

实验三 信号卷积实验 一、实验目的 1、理解卷积的概念及物理意义; 2、通过实验的方法加深对卷积运算的图解方法及结果的理解。 二、实验原理说明 卷积积分的物理意义是将信号分解为冲激信号之和,借助系统的冲激响应,求解系统对任意激励信号的零状态响应。设系统的激励信号为x (t ),冲激响应为h (t ),则系统的零状态响应为()()()*y t x t h t ==()()x t h t d ττ∞-∞-?。 1、两个矩形脉冲信号的卷积过程 两信号x (t )与h (t )都为矩形脉冲信号,如图3-1所示。下面由图解的方法(图3-1)给出两个信号的卷积过程和结果,以便与实验结果进行比较。 图3-1 两矩形脉冲的卷积积分的运算过程与结果 2、矩形脉冲信号与锯齿波信号的卷积 信号f1(t )为矩形脉冲信号, f2(t )为锯齿波信号,如图3-2所示。根据卷积积分的运算方法得到f1(t )和f2(t )的卷积积分结果f (t ),如图3-2(c )所示。 图3-2 矩形脉冲信号与锯齿脉冲信号的卷积积分的结果 3、本实验进行的卷积运算的实现方法 在本实验装置中采用了DSP 数字信号处理芯片,因此在处理模拟信号的卷积积分运算时,是先通过A/D 转换器把模拟信号转换为数字信号,利用所编写的相应程序控制DSP 芯片实现数字信号的卷积运算,再把运算结果通过D/A 转换为模拟信号输出。结果与模拟信号的直接运算结果是一致的。数字信号处理系统逐步和完全取代模拟信号处理系统是科学技术发展的必然趋势。图3-3为信号卷积的流程图。 图3-3 信号卷积的流程图 三、实验内容 1、检测矩形脉冲信号的自卷积结果。 用双踪示波器同时观察输入信号和卷积后的输出信号,把输入信号的幅度峰峰值调节为4V ,再调节输入信号的频率或占空比使输入信号的时间宽度满足表中的要求,观察输出信号有何变化,判断卷积的结果是否正确,并记录表3-1。 实验步骤如下: ①将函数发生器的SW702置于“方波”上。 ②连接函数发生器H701与数字滤波器的PB01,在TPB01上可观察到输入波形。将示波器接在TPB01上观测输入波形,并调节函数发生器模块上的频率旋钮与幅度旋钮,使信号频率为1KHz ,幅度为4V 。(注意:输入波形的频率幅度要在H701与PB01连接后,在TPB01上测试。) ③将红色拨动开关SWB01调整为“0001”。 ④按下复位键S1。 ⑤将示波器的CH1接于TP901;CH2接于TP903。可分别观察到输入信号的波形与卷积后的输出信号的波形。 表3-1 输入信号卷积后的输出信号

PCM编译码的实验报告范本

Record the situation and lessons learned, find out the existing problems and form future countermeasures. 姓名:___________________ 单位:___________________ 时间:___________________ PCM编译码的实验报告

编号:FS-DY-20764 PCM编译码的实验报告 篇一:实验十一:PCM编译码实验报告 实验报告 哈尔滨工程大学教务处制 实验十一PCM编译码实验 一、实验目的 1. 掌握PCM编译码原理。 2. 掌握PCM基带信号的形成过程及分接过程。 3. 掌握语音信号PCM编译码系统的动态范围和频率特性的定义及测量方法。 二、实验仪器 1. 双踪示波器一台 2. 通信原理Ⅵ型实验箱一台 3. M3:PCM与ADPCM编译码模块和M6数字信号源模块 4. 麦克风和扬声器一套 三、实验步骤

1.实验连线 关闭系统电源,进行如下连接: 非集群方式 2. 熟悉PCM编译码模块,开关K1接通SL1,打开电源开关。3.用示波器观察STA、STB,将其幅度调至2V。 4. 用示波器观察PCM编码输出信号。 当采用非集群方式时: 测量A通道时:将示波器CH1接SLA(示滤波器扫描周期不超过SLA的周期, 以便观察到一个完整的帧信号),CH2接PCM A OUT,观察编码后的数据与时隙同步信号的关系。 测量B通道时:将示波器CH1接SLB,(示滤波器扫描周期不超过SLB的周期, 以便观察到一个完整的帧信号),CH2接PCM B OUT,观察编码后的数据与时隙同步信号的关系。 当采用集群方式时:将示波器CH1接SL0,(示滤波器扫描周期不超过SL0的周期, 以便观察到一个完整的帧信号),CH2分别接SLA、PCM

14卷积码编解码

实验四 卷积码的编解码 一、实验目的 1、掌握卷积码的编解码原理。 2、掌握卷积码的软件仿真方法。 3、掌握卷积码的硬件仿真方法。 4、掌握卷积码的硬件设计方法。 二、预习要求 1、掌握卷积码的编解码原理和方法。 2、熟悉matlab 的应用和仿真方法。 3、熟悉Quatus 的应用和FPGA 的开发方法。 三、实验原理 1、卷积码编码原理 在编码器复杂度相同的情况下,卷积码的性能优于分组码,因此卷积码几乎被应用在所有无线通信的标准之中,如GSM , IS95和CDMA 2000 的标准中。 卷积码通常记作( n0 , k0 , m) ,它将k 0 个信息比特编为n 0 个比特, 其编码效率为k0/ n0 , m 为约束长度。( n0 , k0 , m ) 卷积码可用k0 个输入、n0 个输出、输入存储为m 的线性有限状态移位寄存器及模2 加法计数器来实现。 本实验以(2,1,3)卷积码为例加以说明。图1就是卷积码编码器的结构。 图1 (2,1,3)卷积码编码器 其生成多项式为: 21()1G D D D =++; 2 2()1G D D =+; 如图1 所示的(2,1,3)卷积码编码器中,输入移位寄存器用转换开关代替,每输入一个信息比特经编码产生二个输出比特。假设移位寄存器的初始状态为全0,当第一个输入比特为0时,输出比特为00;若输入比特为1,则输出比特为11。随着第二个比特输入,第一个比特右移一位,此时输出比特同时受到当前输入比特和前一个输入比特的影响。第三个比特输入时,第一、二个比特分别右移一位,同时输出二个由这三位移位寄存器存储内容所共同决定的比特。依次下去就完成了编码过程。 下面是卷积码的网格图表示。他是比较清楚而又紧凑的描述卷积码的一种方式,它是最常用的描述方

实验四Δm及CVSD编译码实验

实验四Δm及CVSD编译码实验 一、实验目的 1、掌握简单增量调制的工作原理。 2、理解量化噪声及过载量化噪声的定义,掌握其测试方法。 3、了解简单增量调制与CVSD工作原理不同之处及性能上的差别。 二、实验器材 1、主控&信号源模块、21号、3号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、Δm编译码 (1)实验原理框图 信号源 music/A-out CLK 抗混叠滤波器 LPF LPF-IN LPF-OUT Δm 编码 编码输入 门限 判决 时钟 Δm译码 时钟 译码输入 译码输出 3# 信源编译码模块 比较 量化 延时 极性 变换 量阶 编码输出 延时 本地译码 音频输入 图一Δm编译码框图 (2)实验框图说明 编码输入信号与本地译码的信号相比较,如果大于本地译码信号则输出正的量阶信号,如果小于本地译码则输出负的量阶。然后,量阶会对本地译码的信号进行调整,也就是编码部分“+”运算。编码输出是将正量阶变为1,负量阶变为0。 Δm译码的过程实际上就是编码的本地译码的过程。 2、CVSD编译码 (1)实验原理框图

信号源 music/A-out CLK 抗混叠滤波器 LPF LPF-IN LPF-OUT Δm 编码 编码输入 门限判决 时钟 Δm 译码 时钟 译码输入 译码输出 比较 延时 极性变换 量阶调整 编码输出 延时 本地译码 量阶调整 一致脉冲量阶 3# 信源编译码模块 音频输入 图二 CVSD 编译码框图 (2)实验框图说明 与Δm 相比,CVSD 多了量阶调整的过程。而量阶是根据一致脉冲进行调整的。一致性脉冲是指比较结果连续三个相同就会给出一个脉冲信号,这个脉冲信号就是一致脉冲。其他的编译码过程均与Δm 一样。 四、实验步骤 项目一:△M 编码规则实验 项目二:量化噪声观测 项目三:不同量阶△M 编译码的性能 项目四:△M 编译码语音传输系统 项目五:CVSD 量阶观测 项目六:CVSD 一致脉冲观测 项目七;CVSD 量化噪声观测 项目八:CVSD 码语音传输系统 五、 实验记录 TP4(信源延时)和TH14(编码输出) TP4(信源延时)和TP3(本地译码)

34卷积码编码原理分析与建模仿真

3/4卷积码编码原理分析与建模仿真 一、摘要 卷积码是一种性能优越的信道编码。它的编码器和译码器都比较容易实现,同时它具有较强的纠错能力。随着纠错编码理论研究的不断深入,卷积码的实际应用越来越广泛。本文简明地介绍了卷积码的编码原理和Viterbi译码原理。并在SIMULINK模块设计中,完成了对卷积码的编码和译码以及误比特统计整个过程的模块仿真。最后,通过在仿真过程中分析了卷积码误比特率与信噪比之间的关系,及卷积码与非卷积码的对比。经过仿真和实测,并对测试结果作了分析。 关键词:卷积码编码建模 SIMULINK仿真

目录 一、摘要 ................................................................................................................................................................. - 1 - 二、设计目的和意义 ............................................................................................................................................. - 2 - 三、设计原理 ......................................................................................................................................................... - 3 - 3.1 卷积码基本概念 ...................................................................................................................................... - 3 - 3.2 卷积码的结构 .......................................................................................................................................... - 3 - 3.3 卷积码的解析表示 .................................................................................................................................. - 4 - 3.4 卷积码的译码 .......................................................................................................................................... - 4 - 3.4.1 卷积码译码的方式........................................................................................................................ - 4 - 3.5.2 卷积码的Viterbi译码 .................................................................................................................. - 5 - 四、详细设计步骤 ................................................................................................................................................. - 6 - 4.1 卷积码的仿真 .......................................................................................................................................... - 6 - 4.1.1 SIMULINK仿真模块的参数设置及意义 ................................................................................. - 6 - 五、设计结果及分析 ........................................................................................................................................... - 11 - 5.1不同信噪比对卷积码的影响.................................................................................................................. - 11 - 5.2卷积码的对比 ........................................................................................................................................ - 12 - 六、总结 ............................................................................................................................................................... - 14 - 七、体会 ............................................................................................................................................................... - 14 - 八、参考文献 ....................................................................................................................................................... - 14 - 二、设计目的和意义 因为信道中信号不可避免会受到干扰而出错。为实现可靠性通信,主要有两种途径:一种

MATLAB实验报告卷积

实验报告 学院:机电班级:姓名:学号: 实验名称:连续时间信号卷积运算的MATLAB实现 1.实验目的:掌握卷积的概念及计算方法 2.熟悉通过调用conv()函数求解连续时间信号卷积的数值分析 法 实验环境:MATLAB 6.5.1软件 实验要求: 1、已知信号f1(t)=t/2*[ε(t)- ε(t-2)], f2(t)= [ε (t)- ε(t-1)],通过调用conv()函数编程实现卷积计算y(t)= f1(t)* f2(t),画出波形。 2、已知信号f(t)=e-t *ε(t), h(t)= t2 *e-2t *ε(t),y(t)= f(t)* h(t) (1)用符号分析法编程实现计算y(t)的理论解; (2)过调用conv()函数编程实现卷积计算y(t)的数值解并画图 实验程序及结果: 第一题: M文件 (1) function f=uCT(t) f=(t>=0); 主程序:

k1=0:p:2; k2=0:p:1; f1=k1/2.*[uCT(k1)-uCT(k1-2)]; f2=uCT(k2)-uCT(k2-1); y=conv(f1,f2)*p; k0=k1(1)+k2(1); k3=length(f1)+length(f2)-2; k=k0:p:k3*p+k0; subplot(311) plot(k1,f1); xlabel('t') ylabel('f1(t)') axis([-0.5 2.5 -0.5 1.5]) grid on subplot(312); plot(k2,f2) grid on axis([-0.5 2.5 -0.5 1.5]) xlabel('t') ylabel('f2(t)') subplot(313)

实验二差分编译码系统systemview仿真

大连理工大学实验报告 学院(系):电子信息与电气工程学部专业:电子信息工程班级: 姓名:学号:组:_ 实验时间:实验室:大黑楼C221 实验台: 指导教师签字:成绩: 实验二差分编码、译码 一、实验目的和要求 目的:熟悉系统仿真软件systemview,通过分析理解差分编码/译码的基本工作原理。要求:自己构建一个差分编码译码系统,进行系统性能的测试。 二、实验原理和内容 实验内容:创建一对二进制差分编码/译码器,以PN码作为二进制绝对码,码速率Rb =100bit/s。分别观测绝对码序列、差分编码序列、差分译码序列,并观察差分编码是如何克服绝对码全部反相的,以便为分析2DPSK原理做铺垫。 实验原理:二进制差分编码器和译码器组成如下图所示,其中:{an}为二进制绝对码序列,{dn}为差分编码序列,D触发器用于将序列延迟一个码元间隔,在 SystemView中此延迟环节一般可不使用 D触发器,而是使用操作库中的“延迟图符块”。 (a)发送差分编码器(b)接收差分译码器三、主要仪器设备 计算机、SystemView仿真软件 四、实验步骤与操作方法dn-1 dn Q D CLK D Q CLK 位同步时钟 an an dn-1 发送码时钟 dn

第1步:进入SystemView系统视窗,设置“时间窗”参数: 1)运行时间:Start Time: 0秒;Stop Time: 0.3秒; 2)采样频率:Sample Rate=10000Hz。 第2步:调用图符块创建仿真分析系统,分别用延时器和D触发器实现系统功能,各模块参数设置如下: 延时器模块: 编号图符块属性类型参数 0 Source PN Seq Amp=1v,Offset=0v,Rate=100Hz,Levels=2, Phase=0 deg 1,4 Operator Smpl Delay Delay=100Samples Initial Condition=0v Fill Last Register 2,3 Operator XOR Threshold=0.5 Ture=1 False=0 5 Operator Sampler Interpolating,Rate=100Hz,Aperture=0 sec, Aperture Jitter=0 sec, 6 Operator Hold Last Value ,Gain=2 7,8,9 Sink Analysis Input from t0 Output Port0 10 Operator NOT Threshold=0.5 Ture=1 False=0 D触发器模块: 10,11 Logic FF-D-1 Threshold=0.5 Ture=1 False=0 12,13 Source Pluse Train Offset=0v,Freq=100Hz,Amp=1v 14 Logic XOR Threshold=0.5 Ture=1 False=0 Gate Delay=0 15,16 Source Step Fct Offset=0v,Amp=1v,start=0sec 表2-1 实验二图符块参数设置 第3步:观察编、译码结果。在分析窗下,绘制差分编码器输入(绝对码)、差分编码输出及差分译码输出序列信号输出仿真波形,比较并分析; 第4步:得到仿真结果后,将差分编码器与差分译码器之间插入一个非门,看仿真结果。 五、实验数据记录和处理

相关文档
最新文档