高压无功补偿示例

高压无功补偿示例
高压无功补偿示例

第6章高压无功补偿设计示例

第一部分设计任务书

一、高压无功补偿的设计内容

(1)根据负荷资料、变电所负荷位置计算补偿无功功率值。

(2)选择适当的无功电源设备及补偿位置。

(3)通过技术经济综合比较,确定无功补偿装置。

(4)评定无功补偿装置的补偿方案。

二、设计文件及图纸要求

(1)设计说明书一份。

(2)计算书一份。

(3)系统接线图一张。

三、原始资料

(1)35KV双电源变电站10KV供电变电站电缆供电负荷位置统计资料如图:

说明:数据单位(km)

表1

表2

表3

(3)变电站采用单母线分段接线电缆供电方式,变压器总容量为4000KVA (4)10KV电缆充电功率忽略不计

第二部分设计说明书

一、解题步骤说明

1、计算无功总负荷(明确无功性质:感性还是容性)

①用电设备负荷无功

②站用电负荷无功

③电力线路负荷无功

2、设计无功补偿方案

①无功功率补偿设备的设计方案

㈠无功功率电源的选择

①方案一:同步电动机

②方案二:并联电容器

③方案三:同步调相机

④方案四:静止无功发生器

⑤方案五:并联电抗器

㈡无功功率补偿装置容量的选择

①总容量

㈢无功电源容量的分区选择

①分区容量

㈣断路器(开关)的合理选择

②无功功率补偿装置位置的设计方案

㈠变电站高压(相对变压器而言)母线侧

㈡变电站低压(相对变压器而言)分段母线Ⅰ母

㈢变电站低压(相对变压器而言)分段母线Ⅱ母

㈣变电站低压(相对变压器而言)旁路母线上

3、各种方案之间的类比

①无功补偿设备

②无功补偿设备的位置

4、选定最恰当的方案组合

5、绘制变电站电气主接线图

二、对待设计无功补偿装置的位置说明

电力系统中针对无功补偿装置的安装位置来说,都是只管补偿后面的负荷,不管补偿装置前面的负荷。

无功补偿的节能只是降低了补偿点至发电机之间的供电损耗,所以高压侧的无功补偿不能减少低压网侧的损耗,也不能使低压供电变压器的利用率提高。根据最佳补偿理论,就地补偿的节能效果最为显著。

但是由本变电站采用的是集中补偿方式(装设在企业或地方总变电所6~35KV母线上,可减少高压线路的无功损耗,而且能提高本变电所的供电电压质量。),故无功补偿装置安装在10KV母线上。

三、无功补偿装置选择的说明

无功补偿装置的选择在电力系统中都是有固定的原则——择优选用。

1、保证供电的可靠性;

2、设备的经济性;

3、设备的操作维护的方便性。

四、无功补偿装置的容量组合

根据相关的设备容量分区而制定。具体的请参考计算书。

五、变电站主接线的确定

依据原始资料可知变电站的部分主接线方式为双电源供电,单母线分段送电。然后添加无功补偿装置电气装置即可。

第三部分 计算书

一、 负荷反馈资料中的最大有功负荷计算

依据最大有功功率的计算公式:

J P K P ?=max

式中:max P 为最大有功负荷,其国际单位为瓦(w )。 K 为同期启动系数(又名需用系数),其单位为1。

J P 为统计有功负荷,其国际单位为瓦(w )。

说明:

为计算方便令1,2,3,4,5字符分别代表矿机厂,电机厂,炼油厂,汽车厂,化工厂(下同,不再重复说明)。

)

(0

.77486.0900)(0.88088.01000)(5.91387.01050)(5.90295.0950)(0.124292.0135055max 544max 433max 322max 211max 1kw P K P kw P K P kw P K P kw P K P kw P K P J J J J J =?=?==?=?==?=?==?=?==?=?=

二、功率因数角的计算

依据功率因数利用反三角函数求出功率因数角,其计算公式为:

cos arccos A

A φφ==则

式中:?cos 为功率因数符号,单位为1。 A 为功率因数值,单位为1。 ?为功率因数角,单位为度。 a r c 为反三角函数的代号。

自然功率因数角:

∵ 82.0cos 76.0cos 74.0cos 76

.0cos 75.0cos 5

4

3

2

1=====????? ∴ 12345a r c c o s 0.750.723a r c c o s 0.760.707a r c c o s 0.740.738a r c c o s 0.760.707a r c c o s 0.82

0.609φφφφφ=≈=≈=≈=≈=≈ ∴ 698.0tan 855.0tan 909.0tan 855.0tan 882.0tan 54321=====?????

目标功率因数角: ∵ 95.0cos 93.0cos 92.0cos 91.0cos 92.0cos 5

432

1

='='='='='????? ∴ 318.095.0arccos 376.093.0arccos 403.092.0arccos 428.091.0arccos 403.092.0arccos 5

4

3

2

1

≈='≈='≈='≈='≈='????? ∴ 329.0tan 395.0tan 426.0tan 456.0tan 426.0tan 5

4

3

2

1

='='='='='?????

三、最大无功负荷的计算

依据最大无功负荷计算公式:

?tan max max ?=P Q

式中:max Q 为最大无功功率,其国际单位为乏(var )。 m a x P 为最大有功功率,其国际单位为瓦(w )。

?t a n 为功率因数角的正切值,其单位为1。

最大自然无功负荷:

1max 1max 12max 2max 23max 3max 34max 4max 45max 5max 5tan 1269.60.8821119.8()tan 883.50.855755.4()tan 887.40.909806.6

()tan 853.60.855729.8()tan 791.20.698552.Q P KVar Q P KVar Q P KVar Q P KVar Q P φφφφφ=?=?≈=?=?≈=?=?≈=?=?≈=?=?≈3

()

KVar

最大目标无功负荷:

1max

1max 12max

2max 23max

3max 34max

4max 45max

5max 5tan 1269.60.426540.8()tan 883.50.456402.9()tan 887.40.426378()tan 853.60.395337.2()tan 791.20.3Q P KVar Q P KVar Q P KVar Q P KVar Q P φφφφφ''=?=?≈''=?=?≈''=?=?≈''=?=?≈''=?=?29260.3()

KVar ≈

四、 电缆输电损耗(此处忽略不计)

依据功率损耗公式:

Z

Z Q j P jX U Q P R U Q P jX R U Q P Z U S S ?+?=?'+'+?'+'=+?'+'=?'=?2

222222

222)()~

(~

1222

22

222

22

2

212

2

==12

=0

12

y y P Q P R U P Q Q jX U Q BU G Y B

Q BU ''?

+???

?

''+????

??=??=?

??=??有功功率()电缆功率损耗无功功率()线路始端电缆充电功率即

线路终端

五、负荷资料整理

依据负荷求和公式:

n

n

n

n

Q Q

Q Q P

P P P +++=+++=∑∑ (2)

1

~12

1

~1

式中:

∑n

P ~1为有功功率的求和公式符号

∑n

Q ~1为无功功率的求和公式符号

最大有功负荷为:

)

(0

.4712)

(0.7740.8805.9135.9020.1242)

(5

~1max

5

~1max

max 5max 4max 3max 2max 15

~1max

kw P

kw P

kw P P P P P P

=++++=++++=∑∑∑

最大自然无功负荷:

var)

(4

.4218var)

(3.5405.7523.8300.10003.1095var)(5

~1max

5

~1max

max 5max 4max 3max 2max 15

~1max

k Q

k Q

k Q Q Q Q Q Q

=++++=++++=∑∑∑

最大目标无功负荷:

var)

(7

.1931var)

(4.2548.3472.3892.4111.529var)(5

~1max

5

~1max

max 5max 4max 3max 2

max 15

~1max

k Q k Q k Q Q Q Q Q Q ='

++++='

'+'+'+'+'='

∑∑∑

变电站站用电负荷:

max 2max 12

()

cos 0.9

5.8

(var)P kw Q K ?==∴=

所以:max max max

4697.33969.7var 1924

var

P

kw Q k Q k ?=??

=?

?'

=??

∑∑∑

综上所述应该补偿感性的无功功率2292.6 kvar

六、设计方案

1、无功补偿装置方案

方案一:并联电容器

方案二:同步补偿机(同步电动机同步调相机)

方案三:静止无功补偿器

方案四:静止无功发生器

2、无功补偿装置位置方案

方案一:变压器高压侧

方案二:低压侧Ⅰ母

方案三:低压侧Ⅱ母

七、方案之间类比

1、无功补偿装置的类比:

2、无功补偿装置位置的类比:

八、方案的选定

综上所述,选定合理的方案为:并联电容器在变电站低压分段母线的两侧,且容量为均分方式。

九、电气主接线图

高压电压无功补偿-无功补偿的意义

无功补偿的意义 电网中的许多用电设备是根据电磁感应原理工作的。它们在能量转换过程中建立交变磁场,在一个周期内吸收的功率和释放的功率相等,这种功率叫无功功率。电力系统中,不但有功功率平衡,无功功率也要平衡。 有功功率、无功功率、视在功率之间的关系如图1所示 式中: S——视在功率,kV A P——有功功率,kW Q——无功功率,kvar φ角为功率因数角,它的余弦(cosφ)是有功功率与视在功率之比即cosφ=P/S称作功率因数。 由功率三角形可以看出,在一定的有功功率下,用电企业功率因数cosφ越小,则所需的无功功率越大。如果无功功率不是由电容器提供,则必须由输电系统供给,为满足用电的要求,供电线路和变压器的容量需增大。这样,不仅增加供电投资、降低设备利用率,也将增加线路损耗。为此,国家供用电规则规定:无功电力应就地平衡,用户应在提高用电自然功率因数的基础上,设计和装置无功补偿设备,并做到随其负荷和电压变动及时投入或切除,防止无功倒送。还规定用户的功率因数应达到相应的标准,否则供电部门可以拒绝供电。因此,无论对供电部门还是用电部门,对无功功率进行自动补偿以提高功率因数,防止无功倒送,从而节约电能,提高运行质量都具有非常重要的意义。 无功补偿的基本原理是:把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。 当前,国内外广泛采用并联电容器作为无功补偿装置。这种方法安装方便、建设周期短、造价低、运行维护简便、自身损耗小。 采用并联电容器进行无功补偿的主要作用:

1、提高功率因数 如图2所示图中: P——有功功率 S1——补偿前的视在功率 S2——补偿后的视在功率 Q1——补偿前的无功功率 Q2——补偿后的无功功率 φ1——补偿前的功率因数角 φ2——补偿后的功率因数角 由图示可以看出,在有功功率P一定的前提下,无功功率补偿以后(补偿量Qc=Q1-Q2),功率因数角由φ1减小到φ2,则cosφ2>cosφ1提高了功率因数。 2、降低输电线路及变压器的损耗 三相电路中,功率损耗ΔP的计算公式为 式中 P——有功功率,kW; U——额定电压,kV; R——线路总电阻,Ω。 由此可见,当功率因数cosφ提高以后,线路中功率损耗大大下降。 3、改善电压质量 线路中电压损失ΔU的计算公式 式中 P——有功功率,KW; Q——无功功率,Kvar; U——额定电压,KV; R——线路总电阻,Ω

无功补偿装置几种常见类型比较

无功补偿装置几种常见类型比较 常见的动态无功补偿装置有四种:调压式动态无功补偿装置、磁控式动态无功补偿装置、相控式(TCR型)动态无功补偿装置、SVG 动态无功发生器。 ① 调压式动态无功补偿装置 调压式动态补偿装置原理是:在普通的电容器组前面增加一台电压调节器,利用电压调节器来改变电容器端部输出电压。根据 Q=2πfCU2改变电容器端电压来调节无功输出,从而改变无功输出容量来调节系统功率因数,目前生产的装置大多可分九级输出。该装置为分级补偿方式,容易产生过补、欠补。由于调压变压器的分接头开关为机械动作过程,响应时间慢(约3~4s),虽能及时跟踪系统无功变化和电压闪变,但跟踪和补偿效果稍差。但比常规的电容器组的补偿效果要好的多;在调压过程中,电容器频繁充、放电,极大影响电容器的使用寿命。由于有载调压变压器的阻抗,使得滤波效果差。虽然价格便宜, 占地面积小,维护方便,一般年损耗在0.2%以下。 ② 磁控式(MCR型)动态无功补偿装置 磁控式动态无功补偿装置原理是:在普通的电容器组上并联一套磁控电抗器。磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,从而调节电抗器的输出容量,利用电抗器的容量和电容器的容量相互抵消,可实现无功功率的柔性补偿。 能够实现快速平滑调节,响应时间为100-300ms,补偿效果满足风场工况要求。

磁控电抗器采用低压晶闸管控制,其端电压仅为系统电压的1%~2%,无需串、并联,不容易被击穿,安全可靠。设备自身谐波含量少,不会对系统产生二次污染。占地面积小,安装布置方便。装置投运后功率因数可达0.95以上,可消除电压波动及闪变,三相平衡符合国际标准。免维护,损耗较小,年损耗一般在0.8%左右。 ③相控式动态无功补偿装置(TCR) 相控式动态无功补偿装置(TCR)原理是:在普通的电容器组上并联一套相控电抗器(相控电抗器一般由可控硅、平衡电抗器、控制设备及相应的辅助设备组成)。相控式原理的可控电抗器的调节原理见下图 所示。 通过对可控硅导通时间进行控制,控制角(相位角)为α,电流基波分量随控制角α的增大而减小,控制角α可在0°~90°范围内变化。控制角α的变化,会导致流过相控电抗器的电流发生变化,从而改变电抗器输出的感性无功的容量。 普通的电容器组提供固定的容性无功,感性无功和容性无功相抵消,从而实现总的输出无功的连续可调。 i 相控式原理图 优点: 响应速度快,≤40ms。适合于冶金行业。 一般年损耗在0.5%以下。缺点:晶闸管要长期运行在高电压和大电流工况下,容易被

无功补偿及电能计算

北极星主页 | 旧版 | 电力运营 | 电信运营 | 工业控制 | 电子技术 | 仪器仪表 | 大学院校 | 科研院所 | 协会学会新闻中心| 技术天地| 企业搜索| 产品中心| 商务信息| 人才招聘| 期刊媒体| 行业展会| 热点专题| 论坛| 博客| 高级搜索 帐号 密码 个人用户注册企业免费注册 能源工程 ENERGY ENGINEERING 2003年第1卷第1期 工矿企业无功补偿技术及其管理要求 方云翔 (浙江信息工程学校,湖州 313000)

摘要:分析了工矿企业采用无功补偿技术的必要性,介绍了无功补偿方式的确定及补偿容量的计算方法,并论述了加强无功补偿装置管理、提高运行效率应注意的问题。 关键词:无功补偿;技术管理;工矿企业 1 前言 供电部门在向用电单位(以下简称用户)输送的三相交流功率中,包括有功功率和无功功率两部分。将电能转换成机械能、热能、光能等那一部分功率叫有功功率,用户应按期向供电部门交纳所用有功电度的电费;无功功率为建立磁场而存在并未做功,所以供电部门不能向用户收取无功电度电费,但无功功率在输变电过程中要造成大量线路损耗和电压损失,占用输变电设备的容量,降低了设备利用率。因此,供电部门对输送给用户的无功功率实行限制,制订了功率因数标准,采用经济手段———功率因数调整电费对用户进行考核。用户功率因数低于考核标准,调整电费是正值,用户除了交纳正常电费之外,还要增加支付调整电费(功率因数罚款);用户功率因数高于考核标准,调整电费是负值,用户可以从正常电费中减去调整电费(功率因数奖励)。 用电设备如变压器、交流电动机、荧光灯电感式镇流器等均是电感性负荷,绝大多数用户的自然功率因数低于考核标准,都要采取一些措施进行无功补偿来提高功率因数。安装移相电力电容器是广大用户无功补偿的首选方案。 2 无功补偿的经济意义 2.1 提高输变电设备的利用率 有功功率

无功补偿控制器说明书

目录 1产品功能简介 (1) 2产品型号及含义 (3) 3使用条件 (3) 4技术参数 (4) 5面板图示 (6) 6投切判定 (8) 7基本操作 (9) 7.1初始运行 (10) 7.2自动运行 (11) 7.3参数设置 (15) 7.4手动投切 (24) 7.5其它 (25) 8超限及警报信息 (26) 9设备通讯 (27) 10注意事项 (28) 11接线图示 (29)

12外形及开孔尺寸 (30) 1产品功能简介 JKW-18J无功补偿与配电监测控制器,是依据JB/T9663—1999标准及城乡电网改造的技术条件而设计开发的一种新型控制器,具有无功补偿、数据采集、通讯、电网参数分析等功能,适用于交流50Hz、0.4kV低压配电系统的监测及无功补偿控制。 本产品具有以下功能: (1)数据采集 ●电压;电流;功率因数 ●有功功率;无功功率 ●有功电度;无功电度 ●频率;电压谐波;电流谐波 ●日电压、电流最大值、最小值; ●有关数据存储多达60天 (2)数据通讯 具有RS232通讯接口,通讯方式可采用现场采集或远程采集,配备无线转接模块可近距离(50米以内)无线抄收数据。

(3) 数据管理 基于WINDOWS2000/XP 操作平台,通讯数据自动生成各种报表、曲线及棒图。 (4) 无功补偿 ● 取样物理量为无功功率,无投切振荡、无补偿呆区; ● 输出多达18路; ● 电容器投切执行元件采用固态继电器。 (5) 运行保护 ● 两相失电时,不影响数据的采集、存储、通讯。 ● 对过压、欠压、缺相及谐波、零序进行报警并做出相应动作。 (6) 显 示 ● 采用128×64背光液晶显示器 ● 全中文人机对话界面 ● 实时显示电网有关参数 ● 直观显示预置参数 2产品型号及含义 3使用条件 板前接线型 JK W —18 J Q

10kv高压无功补偿装置技术规范书

10kV高压无功自动补偿装置书范规技术

月○二一年○三 目录 1. 总则 ....................................... 错误!未定义书签。 2. 引用标准 ................................... 错误!未定义书签。 3. 设备的运行环境条件 ......................... 错误!未定义书签。 4. 功能规范 ................................... 错误!未定义书签。 5. 设备规范 ................................... 错误!未定义书签。 6. 控制器的主要技术指标 ....................... 错误!未定义书签。 7、微机保护单元的主要技术参数及性能要求 ....... 错误!未定义书签。 8、电容器组投切专用永磁真空开关主要技术参数及性能要求错误!未定义书签。9.电容器主要技术参数及性能要求: ............. 错误!未定义书签。10.电抗器的主要技术参数及性能要求: .......... 错误!未定义书签。11.放电线圈的主要技术参数及性能要求: ........ 错误!未定义书签。12.避雷器的主要技术参数及性能要求: .......... 错误!未定义书签。13.成套装置的其他技术要求: .................. 错误!未定义书签。 14. 质量保证和试验 ............................ 错误!未定义书签。 15. 工作及供货范围 ............................ 错误!未定义书签。 16. 技术文件及技术图纸 ........................ 错误!未定义书签。 17. 包装、运输和贮存 .......................... 错误!未定义书签。 18. 现场服务 .................................. 错误!未定义书签。 19. 其它 ...................................... 错误!未定义书签。 1 1. 总则

无功补偿的意义及原理

四、无功补偿的意义及原理 人们对有功功率的理解非常容易,而要深刻认识无功功率却并不轻而易举的。在正弦电路中,无功功率的概念是清楚的,而在含有谐波时,至今尚无公认的无功功率定义。但是,对无功功率这一概念的重要性和无功补偿重要性的认识,却是一致的。无功功率应包含对基波无功功率的补偿和对谐波无功功率的补偿。 无功功率对供电系统和负荷的运行都是十分重要的。电力系统网络元件的阻抗主要是电感性的。因此,粗略地说,为了输送有功功率,就要求送电端和受电端有一相位差,这在相当宽的范围内可以实现。而为了输送无功功率,则要求两端电压有一幅值差,这只能在很窄的范围内实现。不仅大多网络元件消耗无功功率,大多数负载也需要消耗无功功率。网络元件和负载所需要的无功功率必须从网络中某个地方获得。显然,这些无功功率如果都要由发电机提供并经过长距离传送是不合理的,通常也是不可能的。合理的方法应是在需要消耗无功功率的地方产生无功功率,这就是无功补偿。 无功补偿的作用主要有以下几点: (1)提高供用电系统及负载的功率因数,降低设备容量,减少功率损耗; (2)稳定受电端及电网的电压,提高供电质量。在长距离输电线路合适的地点设置动态无功补偿装置,还可以改善输系统的稳定性,提高输电能力; (3)在电气化铁道等三相负载不平衡的场合,通过适当的无功补偿可以平衡三相的有功及无功负载。 (一).无功补偿的物理意义 无功功率只是描述了能量交换的幅度,而并不消耗功率。图中的单相电路就是这

方面的一个例子,其负载为一阻感负载。电阻消耗有功功率,而电感则在一周期内的一部分时间把从电源吸收的能量储存起来,另一部分时间再把储存的能量向电源和负载释放,并不消耗能量。无功功率的大小表示了电源和负载电感之间交换能量的幅度。电源向负载提供这种功率是阻感负载内在的需要,同时也对电源的输出带来一定的影响。 下图是带有阻感负载的三相电路,为了和上图对照,假设u、R、L的参数均和上图相同,且为对称三相电路。这时无功功率的大小当然也表示了电源和负载电感之间能量交换的幅度。无功能量在电源和负载之间来回流动。

高低压无功补偿装置的选择

高低压无功补偿装置的选择 KYLB低压滤波补偿装置 由于现代半导体器件应用愈来愈普遍,功率也更大,但它的负面影响就是产生很大的非正弦电流。使电网的谐波电压升高,畸变率增大,电网供电质量变坏。如果供电线路上有较大的谐波电压,尤其5次以上,这些谐波将被补偿装置放大。电容器组与线路串联谐振,使线路上的电压、电流畸变率增大,还有可能造成设备损坏,再这种情况下无功功率补偿装置是不可使用的。最好的解决方法就是在电容器组串接电抗器来组成谐波滤波器。滤波器的设计要使在工频情况下呈容性,以对线路进行无功补偿,对于谐波则为感性负载,以吸收部分谐波电流,改善线路的畸变率。增加电抗器后,要考虑电容端电压升高的问题。 KYLB低压滤波补偿装置即补偿了无功损耗又改善了线路质量,虽然成本提高较多,但对于谐波成分较大的线路还是应尽量考虑采用,不能认为装置一时不出问题就认为没有问题存在。很多情况下,采用五次、七次、十一次或高通滤波器可以在补偿无功功率的同时,对系统中的谐波进行消除。 KYYLB动态无功补偿装置工作原理与结构特点: KYYLB动态无功补偿装置由控制器、晶闸管、并联电容器、电抗器、过零触发模块、放电保护器件等组成。KYYLB动态无功补偿装置实时跟踪测量负荷的电压、电流、无功功率和功率因数,通过微机进行分析,计算出无功功率并与预先设定的数值进行比较,自动选择能达到最佳补偿效果的补偿容量并发出指令,由过零触发模块判断双向可控硅的导通时刻,实现快速、无冲击地投入并联电容器组。无功补偿装置举例: (一)、KYYLB低压动态无功补偿装置: KYYLB低压动态无功补偿装置适用于交流50HZ、额定电压在660V以下,负载功率变化较大,对电压波动和功率因数有较高要求的电力、汽车、石油、化工、冶金、铁路、港口、煤矿、油田等行业。 基本技术参数及工作环境: 环境温度:-25OC~+40OC(户外型);-5OC~+40OC(户内型),最大日平均温度30OC 海拔高度:1000M 相对湿度:《85%(+25OC) 最大降雨:50MM/10MIN 安装环境:周围介质无爆炸及易燃危险、无足以损坏绝缘及腐蚀金属的气体、无导电尘埃。无剧烈震动和颠簸,安装倾斜度《5%。 技术指标:额定电压:220V、380V(50HZ) 判断依据:无功功率、电压 响应时间:《20MS 补偿容量:90KVAR~900KVAR 允许误差:0~10% (二)、KYTBB高压无功自动补偿装置: KYTBB高压无功自动补偿装置适用于6KV~10KV变电站,可在I段和II段母线上任意配置1~4组电容器,适应变电站的各种运行方式。 基本技术参数及工作环境:

10kV高压谐波治理兼无功补偿治理方案(模板示例)

10kV高压谐波治理兼无功补偿治理方案 1 系统概述 根据某铜业厂提供的现有配电系统情况可知,工厂现有35KV进线一条,该线非该厂专线。厂内主要负荷为电解铜生产线及大功率电机等用电设备。因电解铜生产线采用的是可控硅整流装置。由于可控硅整流装置的六脉及12脉整流特性,在运行过程中将产生以6N±1和12N±1(N为正整数)为主的谐波电流注入电网,危及到其它用电设备及电网的用电安全。同时因系统功率因数比较低,故用户在10KV母线上安装了一套高压电容补偿柜,但由于电解铜等用电设备在运行时产生了较大的谐波注入系统,而电容补偿柜在投入后又与系统发生并联谐振,对系统谐波进一步放大,造成电容补偿装置在谐波环境下运行因过载而发生较大的异常声音,甚至造成部分电容柜无法正常投入,经常造成高压补偿电容器的熔丝爆炸烧毁。 用户配电系统一次示意图如图1所示。 图1用户配电系统示意图 2系统用电参数分析 根据对厂内变电站10KV I段母线的谐波测试数据分析,可将运行时有功功率、无功功率、功率因数及谐波的变化可归纳为: (1)10KV母线平均功率因数约为0.92左右, (2)母线协议容量10MVA, (3)主要谐波源类型:热电解铜及大功率电机等, (4)10KV线路三相功率数据分析 段10KV I段母线正常运行时负荷基本相等,且负载相对较稳定。有功功率基本都8000kW左右,功率因数相对较低,约0.92左右,无功功率也基本在2800kVar~3300kVar之间变化。 3谐波分析 因负载大部分采用的是六脉波及12脉波整流,产生的主要谐波为:6N±1次及12N±1(N为工频频率倍数)。故10KV段谐波的特征次为5、7、11、13......。其中5、7、11次谐波相对较大,故滤波装置应考虑以滤除5、7、11次谐波为主的滤波方式。根据我司于2007/09/21日对配电系统10KV母线 I段的谐波测试数据分析,将设备运行时产生的各次谐波值分析如下: 35kV侧用户协议容10MVA,设备容量90MVA,正常方式下短路容量为689MVA。 为了对滤波装置的滤波效果要求更为严格,故各次谐波电流注入允许值可按最小短路容量为689MVA的标准来考核,见表1。

无功功率补偿投切原理

无功功率(reactive power ):无功功率是按电磁感应原理工作的某个交流供用电设备和交流电源之间的能量交换,这种能量互换的最大值称为无功功率。这部分能量是用电器工作所必须的,但不能转换为我们所需要的能量,如机械能和热能。为了形象的描述电源利用的程度,我们提出了功率因数的概念,功率因数就是电路中有用功率和视在功率(电源总功率)的比值。由此可见,提高电网的功率因数对国民经济发展的重要意义。功率因数的提高,能使发电设备的容量得到充分利用,减少线路电流和功率损失。 无功补偿原理:通常我们用来提高功率因数的方法就是补偿法。即采用能够提供无功功率的装置来补偿用电设备所需的无功功率,降低电源的功率损失,提高功率因数,采用电力电容器来补偿用电设备所需无功功率的方法,称为电容无功补偿法。 这是由于理想的电容器在电路里是不消耗电能的,它只是从电源吸收电能转换成电场能,再把电场能转换成电能还给电源,完成它与电源之间的能量互换,因此电容上的功率也是无功功率,它的无功功率是由于电容上的电流I超前电压90°引起的,而我们的用电设备大多数都是感性负载,其工作时由于电流滞后引起的无功功率刚好与电容引起的无功功率相反。所以我们可以利用电容工作时产生的无功功率来补偿用电设备在工作时消耗的无功功率。 电容投切无功补偿简介:通过以上分析我们知道在电路中接入电容可以为设备提供无功功率,提高功率因数。由于我们的设备不可能是纯容性或纯感性的,且设备运行的状态也是不可预知的,如开、关机,或开机时不同工作状态所需要的无功功率都不相同。当补偿器提供的无功功率大于设备所需时,也会对电网造成极大影响。所以我们需要适时的调整无功功率的补偿来匹配设备所需的无功功率,即电容组投切方式。电容组投切的时机和数量则由专用控制器决定,而电容组容量一般选择系统额定容量的15%~40%。 电容投切无功补偿装置组成及其技术要点: 电容器:选用优质自愈式并联电容器,可按不同容量灵活编码组合,投切级数多,大容量补偿可一次到位。 控制器:选用快速DSP芯片,能够准确快速的检测出电路当前的功率因数,并根据当前功率因数选择合适的电容组数量投入到电路中,或在过补偿时及时投入感性电抗消除影响。 投切开关:触点式:功耗较小,但不适合频繁开启的场合。 晶闸管式:开关频率高,但功耗较高,容易损坏。 复合式:开关时采用晶闸管,导通后切换到触点式,开关频率高,功耗小,但是结构复杂 电抗器(装置中多为感性):多用在高压系统中,用来消除过补偿功率,滤除谐波。

无功补偿常用计算方法

按照不同的补偿对象,无功补偿容量有不同的计算方法。 (1)按照功率因数的提高计算 对需要补偿的负载,补偿前后的电压、负载从电网取用的电流矢量关系图如图3.7所示: I 2r I 1 补偿前功率因数1cos ?,补偿后功率因数2cos ?,补偿前后的平均有功功率为 P ,则需要补偿的无功功率容量 )t a n (t a n 21? ?-=P Q 补偿 (3.1) 由于负载功率因数的增加,会使电网给负载供电的线路上的损耗下降, 线损的下降率 %100)cos (3)cos (3)cos ( 3%21 122 2211?-= ?R I R I R I P a a a ???线损 %100)c o s c o s (1221??? ? ???-=?? (3.2) 式中R 为负载侧等值系统阻抗的电阻值。 (2)按母线运行电压的提高计算 ①高压侧无功补偿 无功补偿装置直接在高压侧母线补偿,系统等值示意图如图3.8所示: 图3.7 电流矢量图

P+jQ 补偿 图中, S U、U分别是系统电压和负载侧电压;jX R+是系统等值阻抗(不 含主变压器高低压绕组阻抗);jQ P+是负载功率, 补偿 jQ是高压侧无功补偿容 量; 1 U、 2 U分别是补偿装置投入前后的母线电压。 无功补偿装置投入前后,系统电压、母线电压的量值存在如下关系: 无功补偿装置投入前 1 1U QX PR U U S + + ≈ 无功补偿装置投入后 2 2 ) ( U X Q Q PR U U S 补偿 - + + ≈ 所以 2 1 2U X Q U U补偿 ≈ -(3.3) 所以母线高压侧无功补偿容量 ) ( 1 2 2U U X U Q- = 补偿 (3.4) ②主变压器低压侧无功补偿 无功补偿装置在主变压器的低压侧进行无功补偿,系统等值示意图如图3.9所示: P+jQ 补偿 图3.8 系统等值示意图

10kV高压谐波治理兼无功补偿治理方案(模板示例)

10kV高压谐波治理兼无功补偿治理方案(模板示例)

10kV高压谐波治理兼无功补偿治理方案 1 系统概述 根据某铜业厂提供的现有配电系统情况可知,工厂现有35KV进线一条,该线非该厂专线。厂内主要负荷为电解铜生产线及大功率电机等用电设备。因电解铜生产线采用的是可控硅整流装置。由于可控硅整流装置的六脉及12脉整流特性,在运行过程中将产生以6N±1和12N±1(N为正整数)为主的谐波电流注入电网,危及到其它用电设备及电网的用电安全。同时因系统功率因数比较低,故用户在10KV母线上安装了一套高压电容补偿柜,但由于电解铜等用电设备在运行时产生了较大的谐波注入系统,而电容补偿柜在投入后又与系统发生并联谐振,对系统谐波进一步放大,造成电容补偿装置在谐波环境下运行因过载而发生较大的异常声音,甚至造成部分电容柜无法正常投入,经常造成高压补偿电容器的熔丝爆炸烧毁。 用户配电系统一次示意图如图1所示。

因负载大部分采用的是六脉波及12脉波整 流,产生的主要谐波为:6N ±1次及12N ±1(N 为工频频率倍数)。故10KV 段谐波的特征次为5、7、11、13......。其中5、7、11次谐波相对较大,故滤波装置应考虑以滤除5、7、11次谐波为主的滤波方式。根据我司于2007/09/21日对配电系统10KV 母线 I 段的谐波测试数据分析,将设备运行时产生的各次谐波值分析如下: 35kV 侧用户协议容10MVA ,设备容量90MVA ,正常方式下短路容量为689MVA 。 为了对滤波装置的滤波效果要求更为严格,故各次谐波电流注入允许值可按最小短路容量为689MVA 的标准来考核,见表1。 表1注入35kV PCC 点各次谐波 电流限值 2次 3次 4次 5次 6次 7次 8次 9次 10次 11次 12次 13 次 13.78 4.49 7.07 5.30 4.69 5.05 3.49 3.77 2.85 4.55 2.39 4.08 14次 15次 16次 17次 18次 19次 20次 21次 22次 23次 24次 25次 2.0 4.1 1.7 3.3 1.5 2.9 1.3 1.6 1.2 2.4 1.1 2.3

电力电容器的补偿原理

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 2.1优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的0.4 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 2.2缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 3.1高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 3.2高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 3.3低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 3.4低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

工厂供电课程设计示例.doc

工厂供电课程设计示例 一、设计任务书(示例) (一)设计题目 X X机械厂降压变电所的电气设计 (二)设计要求 要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并适当考虑到工厂的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置和型式,确定变电所主变压器的台数、容量与类型,选择变电所主接线方案及高低压设备和进出线,确定二次回路方案,选择整定继电保护,确定防雷和接地装置。最后按要求写出设计说明书,绘出设计图纸。 (三)设计依据 1、工厂总平面图,如图11-3所示 2、工厂负荷情况本厂多数车间为两班制,年最大负荷利用小时为4600 h ,

日最大负荷持续时间为6 h 。该厂除铸造车间、电镀车间和锅炉房属于二级负荷外,其余均属于三级负荷。低压动力设备均为三相,额定电压为380伏。电气照明及家用电器均为单相,额定电压为220伏。本厂的负荷统计资料如表11-3所示。 表11-3 工厂负荷统计资料(示例) 3、供电电源情况按照工厂与当地供电部门签定的供用电合同规定,本厂可由附近一条10KV的公用电源干线取得工作电源。该干线的走向参看工厂总平面图。该干线的导线型号为LGJ-150 ,导线为等边三角形排列,线距为 2 m;干线首端(即电力系统的馈电变电站)距离本厂约8 km。干线首端所装设的高压断路器断流容量为500 MV A。此断路器配备有定时限过电流保护和电流速断保护,

定时限过电流保护整定的动作时间为 1.7 s。为满足工厂二级负荷的要求,可采用高压联络线由邻近单位取得备用电源。已知与本厂高压侧有电气联系的架空线路总长度为80 km,电缆线路总长度为25 km 。 4、气象资料本厂所在地区的年最高气温为38°C,年平均气温为23°C,年最低气温为-8°C,年最热月平均最高气温为33°C,年最热月平均气温为26 °C,年最热月地下0.8m处平均温度为25°C,当地主导风向为东北风,年雷暴日数为20 。 5、地质水文资料本厂所在地区平均海拔500 m,地层土质以砂粘土为主,地下水位为2 m。 6、电费制度本厂与当地供电部门达成协议,在工厂变电所的高压侧计量电能,设专用计量柜,按两部电费制交纳电费。每月基本电费按主变压器容量计为18元/KV A,动力电费为0.2 元/KW·h.,照明(含家电)电费为0.5 元/KW·h.。工厂最大负荷时的功率因数不得低于0.9 。此外,电力用户需按新装变压器容量计算,一次性地向供电部门交纳供电贴费:6~10KV为800元/KV A。 (四)设计任务 1、设计说明书需包括: 1)前言 2)目录 3)负荷计算和无功补偿 4)变电所位置和型式的选择 5)变电所主变压器台数、容量与类型的选择 6)变电所主接线方案的设计 7)短路电流的计算 8)变电所一次设备的选择与校验 9)变电所进出线的选择与校验 10)变电所二次回路方案的选择及继电保护的整定

浅谈无功补偿原理及无功补偿率

浅谈无功补偿原理及无功补偿率 无功补偿原理 电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。 简介编辑 无功补偿原理 当电网电压的波形为正弦波,且电压与电流同相位时,电阻性电气设备如白炽灯、电热器等从电网上获得的功率P等于电压U和电流I的乘积,即:P=U×I。 电感性电气设备如电动机和变压器等由于在运行时需要建立磁场,此时所消耗的能量不能转化为有功功率,故被称为无功功率Q。此时电流滞后电压一个角度φ。在选择变配电设备时所根据的是视在功率S,即有功功率和无功功率的矢量和:  无功功率为: 有功功率与视在功率的比值为功率因数: cosf=P/S 无功功率的传输加重了电网负荷,使电网损耗增加,系统电压下降。故需对其进行就近和就地补偿。并联电容器可补偿或平衡电气设备的感性无功功率。当容性无功功率QC等于感性无功功率QL时,电网只传输有功功率P。根据国家有关规定,高压用户的功率因数应达到0.9以上,低压用户的功率因数应达到0.85以上。 如果选择电容器功率为Qc,则功率因数为: cosφ= P/ (P2 + (QL-Qc)2)1/2 在实际工程中首先应根据负荷情况和供电部门的要求确定补偿后所需达到的功率因数值,然后再计算电容器的安装容量: Qc = P(tanf1 - tanf2)=P〔(1/cos2f1-1)1/2-(1/cos2f2-1)1/2〕 式中:

无功补偿器用户手册

智能无功补偿器用户手册 青岛盘古电气有限公司 2009年10月20日

智能无功补偿器用户手册 1.产品概述 PGC / PGZ系列低压无功补偿控制器是本公司最新研制成功的高新技术产品,其采用了新型控制技术和高速微处理芯片,具有体积小、外形合理美观、功能完善、抗干扰能力强、运行稳定可靠、补偿精度高等优点,是目前国内同类无功补偿控制器中,性价比较高的产品之一。产品可配套无功补偿装置,用于补偿电网无功功率,提高功率因数,降低线路损耗,提高电网的供电质量和负载能力。 根据用户需求,产品从功能上分为共补型(PGC)和混补型(PGZ)两种型号。从控制投切路数上分为:4路、8路、12路、16路四种规格。 2.执行标准 装置中的所有电器元件均符合以下国家标准或行业标准: JB/T9663-1999 低压无功功率自动补偿控制器 DL/T 842-2003 低压并联电容器装置使用技术条件 DL/T 597-1996 低压无功补偿控制器订货技术条件 3.使用条件及适用范围 1 本产品适用于220V/380V低压配电网络,户内使用。 2 海拔不超过2500米。 3 环境温度-40℃~+60℃。 4 相对湿度 40℃时不超过95%。 5 工作周围环境无明显导电性尘埃及无易燃、易爆介质及腐蚀性气体。 6 安装地点无剧烈振动,不受阳光直接照射,无雨雪侵蚀。 7 工作电源工频为50Hz,电压幅度波动不超过额定值的±20%。 4.技术参数及说明 额定工作电压: 220V±20% 50Hz 额定工作电流:≤ 5A 50Hz 输出继电器容量: AC220V 10A 功率因数测量精度: 0.5级 投切延时: 1秒~9999秒 控制回路:可设定(最大16路) 外壳防护等级: IP40 5.主要功能及特点 功能: □电容组投切状态指示。 □电容预投入、预切除;电网过压、欠流故障指示。 □电力参数可选择显示(功率因数、电压、电流、有功功率、无功功率)。 □控制器补偿类型:

TBB高压无功补偿柜说明书

编号: TBB系列高压电容 补偿柜

目录 1.目录 (2) 2.概述 (3) 3.可解决的问题 (4) 4.性能特点 (5) 5.快速选型 (6) 6.容量确定 (6) 7.技术参数 (9) 8.外形图 (10) 9.订货规范 (11) 10.使用环境 (11) 11.现场安装 (12) 11.安全操作注意事项 (13)

概述 TBB系列高压电容补偿柜主要用于6kV~10kV电力系统中,是一种改善功率因数、调整电压、降低网络损耗的容性无功功率补偿装置。 电力系统中的负载大部分是感性的,加上各工矿企业越来越多的使用电力电子设备,使电网功率因数很低。较低的功率因数降低了设备利用率,增加了供电投资,有损电压质量,降低了设备使用寿命,增加了线损。 为了改善电网功率因数很低带来的这些不利于生产的因素,必须使电网功率因数得到有效提高。显然这些无功功率如果都要由发电机提供并远距离传送是不合理的,通常也是不可能的。合理的办法是在需要无功功率的地方产生无功功率。在实际电力系统中,大部分负载为异步电动机。其等效电路可看作电阻和电感的串联电路,其电压与电流的相位差较大,功率因数较低。并联电容器后电压与电流的相位差变小,使功率因数提高。 TBB系列高压电容补偿柜的应用范围极为广泛,适用于冶金、矿山、建材、石化、机械等大功率高压电动机就地补偿和配电系统集中补偿。

可解决的问题 当您遇到下述问题时,我公司生产的TBB系列高压电容补偿柜能为您很好地解决,使您获得满意的效果。 1、企业电网中功率因数低,甚至被供电部门罚款,需提高 功率因数。 2、企业变电所电压低,需提高电网电压。 3、输电线路线损过大,需减小线损,节约输送电线路成本, 降低变压器损耗,节省电能。 4、新投入用电设备,需配套补偿无功功率。 5、功率因数低,设备出力达不到额定功率。 6、原有补偿装置老化,达不到生产要求。 7、负载增加,而原有变压器容量或原有输配电线路因无功 消耗过大无法满足要求,需降低供电的视在功率,增加供 电能力。 8、电网电压出现时高、时低的情况,影响用电设备的运行。 9、变压器输电系统中感性负荷(如电机)较多,需补偿设 备。 10、企业电网中功率因数低,需提高功率因数,降低线路电流, 延长电气设备寿命,减少所用导线截面规格,节约投资。

无功补偿怎么计算

没目标数值怎么计算? 若以有功负载1KW,功率因数从0.7提高到0.95时,无功补偿电容量: 功率因数从0.7提高到0.95时: 总功率为1KW,视在功率: S=P/cosφ=1/0.7≈1.4(KVA) cosφ1=0.7 sinφ1=0.71(查函数表得) cosφ2=0.95 sinφ2=0.32(查函数表得) tanφ=0.35(查函数表得) Qc=S(sinφ1-cosφ1×tanφ)=1.4×(0.71-0.7×0.35)≈0.65(千乏) 电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理. 计算示例 例如:某配电的一台1000KVA/400V的变压器,当前变压器满负荷运行时的功率因数cosφ =0.75, 现在需要安装动补装置,要求将功率因数提高到0.95,那么补偿装置的容量值多大?在负荷不变的前提下安装动补装置后的增容量为多少?若电网传输及负载压降按5%计算,其每小时的节电量为多少? 补偿前补偿装置容量= [sin〔1/cos0.75〕-sin〔1/cos0.95〕]×1000=350〔KVAR〕安装动补装置前的视在电流= 1000/〔0.4×√3〕=1443〔A〕 安装动补装置前的有功电流= 1443×0.75=1082〔A〕 安装动补装置后视在电流降低=1443-1082/0.92=304 〔A〕 安装动补装置后的增容量= 304×√3×0.4=211〔KVA〕 增容比= 211/1000×100%=21% 每小时的节电量〔304 ×400 ×5% ×√3 ×1 〕 /1000=11 (度) 每小时的节电量(度)

高压无功补偿成套装置形式试验报告ZRTBBX

资 质 证 书 ISO9001质量认证企业 乐清市中容电力补偿设备有限公司ZhongRong Compensation Power Equipment Co.,Ltd

目录 1.公司简介 6.质量管理体系认证 7.高压无功补偿成套装置试验报告 8. 低压动态无功补偿成套装置3C证书 9.产品质量及售后服务承诺书

1.公司简介 中容电力补偿设备有限公司是一家以提供电力系统电能质量监测控制、无功补偿、谐波治理和电力安全保护设备为核心事业的高科技企业。自创建以来,一直秉承“节能创造价值、保护构建和谐”的理念,致力于为各领域的用户提升电能质量、优化控制、节能降耗和保护电网安全提供优质的产品和完善的解决方案。 公司座落于温州市柳市镇。拥有现代化的办公楼、标准厂房、整机设备生产线等设施。目前中容旗下拥有电能质量和电力安全保护两个事业部,分别致力于电能质量系列产品(高、低压无功动态补偿装置SVG,SVC/TCR/TSC/MCR,电力有源滤波器APF,高、低压无功自动补偿装置,高压调压式无功补偿,高压无功就地补偿装置、高压无功集中补偿装置、高、低压电力系统谐波滤波装置、,智能电容器一体式投切模块,高压综合测控仪、低压综合测控仪)和电力安全保护系列产品(动态消弧装置、高速限流熔断装置、配电聚优柜,过电压仰制柜,微机消谐器、)的研发、生产与销售。 多年来,形成了集科研、培训、开发为一体的“科技链”,掌握行业最新科研发展动态,不断提升产品的科技含量与应用效率。 公司拥有先进的电能质量测试仪美国FLUKE434,德国GMC30。 中容电力补偿设备有限公司拥有专业的研发团队,经验丰富的管理、技术支持和营销团队。我们已通过了IS09001:2008质量体系认证,并确保其有效运行,为进一步保证产品质量奠定了坚实的基础。公司产品分别通过了电力工业电气设备质量检测中心、国家高压电器质量监督检验中心、苏州电器科学研究所等机构的专业检测。目前我公司产品,已广泛应用于电力、冶金、建材、能源等行业。产品运行稳定,质量状态良好,深受用户好评。 “节能创造价值,保护构建和谐”,中容将以为客户创造价值和保护电力安全为己任,全心打造行业最有价值品牌!

xyJKFG智能无功补偿控制器使用说明书

xyJKFG智能无功补偿控制器使用说明书 您的位置:首页>> 产品展示>> 详细介绍 产品编号:产品名称:规格:产品备注: xyJKFG智能无功补偿控制器 台 xyJKG智能无功补偿控制器 产品类别: 低压产品 产品说明 成都星宇节能技术股份有限公司 非常感您选择了我们的产品! 使用之前请仔细阅读并妥善保管本说明书 目录一简述1 二技术指标1 三型号说明2 四面板功能及显示说明2 五操作说明3 六接线说明7 七调试说明9 八安装说明9 九产品目录10 注意事项10 一简述 xyJK系列智能无功补偿控制器是将人工智能成功运用于低压配电设备控制系统中,于是无功型的控制器,其控制功能的完备,使补偿效果达到了最佳的状态。当控制物理量

为无功功率(Q)时能兼顾功率因数,较完善的解决了功率因数型控制器的缺陷,在运行中既能保证线路系统稳定、无振荡现象出现,又能兼顾补偿效果,将补偿装置的效果发挥得淋漓尽致;当线路在重负荷时,如果cosφ已达到,只要再投一组电容器不发生过补,也还会再投入一组电容器。当线路无电流互感器时,控制物理量转为电压(U),此时能根据当地的电压高低自动调节电压。 二技术指标 2.1 产品引用标准 GB/T15576-1995 低压无功功率静态补偿装置总技术条件 DL/T597-1996 低压无功补偿控制器订货技术条件JB/T9663-1999 低压无功功率自动补偿控制器 2.2 环境条件 环境温度:工作时-25℃~70℃;极限、运输、储存时-40℃~80℃ 相对湿度:40℃时20%~90%;50℃时90% 大气压力:kPa~ 2.3 电源工作电压:220V±20%;频率50Hz±5%;正弦波形总畸变率≤5% 2.4 电压输入模拟量:380V 2.5 测量精度

相关文档
最新文档