第七章 线性变换 习题答案

第七章 线性变换 习题答案
第七章 线性变换 习题答案

第七章 线性变换

3.在[]P x 中,()()f x f x '=A ,()()f x xf x =B ,证明:

-=A B BA =E .

『解题提示』直接根据变换的定义验证即可. 证明 任取()[]f x P x ∈,则有

()()()()(())(())f x f x f x xf x f x '-=-=-=A B BA A B BA A B

(())()()()xf x xf x f x f x ''=-==E ,

于是-=A B BA =

E . 4.设,A B 是线性变换,如果-=A B BA =

E ,证明: 1

,1k k k k k --=>A B BA A

『解题提示』利用数学归纳法进行证明.

证明 当2k =时,由于-=A B BA =

E ,可得 22()()2-=-+-=A B BA A A B BA A B BA A A ,

因此结论成立.

假设当k s =时结论成立,即1

s

s

s s --=A B BA

A

.那么,当1k s =+时,有

1

1

()()(1)s s s s s s s s s s ++-=-+-=+=+A

B BA

A A

B BA A B BA A A A A ,

即对1k s =+结论也成立.从而,根据数学归纳法原理,对一切1>k 结论都成立. 『特别提醒』由0

=A

E 可知,结论对1k =也成立.

5.证明:可逆映射是双射.

『解题提示』只需要说明可逆映射既是单射又是满射即可.

证明 设A 是线性空间V 上的一个可逆变换.对于任意的,V ∈αβ,如果=αβA A ,那么,用1

-A 作用左右两边,得到1

1()()--===ααββA

A A A ,因此A 是单射;另外,对于任意的V ∈β,存在

1V -=∈αβA ,使得1()-==αββA A A ,即A 是满射.于是A 是双射.

『特别提醒』由此结论可知线性空间V 上的可逆映射A 是V 到自身的同构.

6.设12,,,n εεε是线性空间V 的一组基,A 是V 上的线性变换,证明A 可逆当且仅当

12,,,n εεεA A A 线性无关.

证法1 若A 是可逆的线性变换,设1122n n k k k ++

+=0A A A εεε,即

1122()n n k k k ++

+=0A εεε.

而根据上一题结论可知A 是单射,故必有1122n n k k k +++=0εεε,

又由于12,,,n εεε是线性无关的,

因此120n k k k ==

==.从而12,,,n εεεA A A 线性无关.

反之,若12,,,n εεεA A A 是线性无关的,那么12,,

,n εεεA A A 也是V 的一组基.于是,根据

教材中的定理1,存在唯一的线性变换B ,使得()i i =B A εε,1,2,

,i n =.显然 ()i i =BA εε,()i i =A B A A εε,1,2,

,i n =.

再根据教材中的定理1知,==A B BA E .所以A 是可逆的.

证法2 设A 在基12,,

,n εεε下的矩阵为A ,即 121212(,,

,)(,,

,)(,,

,)n n n ==A A A A εεεεεεεεεA .

由教材中的定理2可知,A 可逆的充要条件是矩阵A 可逆.

因此,如果A 是可逆的,那么矩阵A 可逆,从而12,,,n εεεA A A 也是V 的一组基,即是线性无

关的.反之,如果12,,

,n εεεA A A 是线性无关,从而是V 的一组基,且A 是从基12,,

,n εεε到

12,,,n εεεA A A 的过渡矩阵,因此A 是可逆的.所以A 是可逆的线性变换.

『方法技巧』方法1利用了上一题的结论及教材中的定理1构造A 的逆变换;方法2借助教材中的定理2,将线性变换A 可逆转化成了矩阵A 可逆.

9.设三维线性空间V 上的线性变换A 在基123,,εεε下的矩阵为

11

121321

222331

32

33a a a a a a a a a ?? ?= ? ???

A . 1)求A 在基321,,εεε下的矩阵;

2)求A 在基123,,k εεε下的矩阵,其中k P ∈且0k ≠;

- 3 -

3)求A 在基1223,,+εεεε下的矩阵.

『解题提示』可以利用定义直接写出线性变换的矩阵,也可以借助同一个线性变换在两组不同基下的矩阵是相似的进行求解.

解 1)由于

3131232333333232131a a a a a a =++=++A εεεεεεε, 2121222323323222121a a a a a a =++=++A εεεεεεε, 1111212313313212111a a a a a a =++=++A εεεεεεε.

故A 在基321,,εεε下的矩阵为

333231123

222113

12

11a a a a a a a a a ?? ?= ? ???

B . 2)由于

11112123131112123131

a a a a a k a k

=++=++A εεεεεεε,

2121222323121222323k ka ka ka ka a k ka =++=++A εεεεεεε,

31312323331312323331

a a a a a k a k

=++=+

+A εεεεεεε. 故A 在基123,,k εεε下的矩阵为

11121322122

233132

331

1a ka a a a a k k a

ka a ??

? ?= ? ???

B . 3)由于从123,,εεε到1223,,+εεεε的过渡矩阵为

100110001??

?= ? ???

X ,

故A 在基1223,,+εεεε下的矩阵为

1

11

12131112

1213

321

222321112212

2212

231331

32

33313232

33100100110110001001a a a a a a a a a a a a a a a a a a a a a a a a a -+????????

? ???

?

==-+--- ? ??? ? ? ??? ?+???????

?

B .

『方法技巧』根据线性变换的矩阵的定义,直接给出了1)和2)所求的矩阵;3)借助了过渡矩阵,利用相似矩阵得到了所求矩阵.事实上,这三个题目都可以分别用两种方法求解.

10.设A 是线性空间V 上的线性变换,如果1

k -≠0A ξ,但k =0A ξ,求证:1

,,

,k -A A

ξξξ

(0k >)线性无关.

证明 由于k

=0A

ξ,故对于任意的非负整数i ,都有()k i

i k +==0A

A A ξξ.当0k >时,设

1

12k n x x x -++

+=0A A

ξξξ,

用1

k -A

作用于上式,得

1

1k x -=0A

ξ,

但1

k -≠0A

ξ,因此10x =.于是

1

2k n x x -+

+=0A A

ξξ,

再用2

k -A

作用上式,同样得到20x =.依此下去,可得120k x x x ==

==.从而1

,,

,k -A A

ξξξ线

性无关.

16.证明:

??????? ?

?n λλλ

2

1与??????

?

?

?n i i

i λλλ

2

1 相似,其中n i i i ,,,21 是1,2,

,n 的一个排列.

『解题提示』利用同一个线性变换在不同基下的矩阵是相似的或直接相似的定义. 证法1 设V 是一个n 维线性空间,且12,,

,n εεε是V 的一组基.另外,记

1

2

n λλλ??

?

?= ?

?

?

?

A ,1

2

n i i

i λλλ?? ?

?= ? ? ??

?

B . 于是,在基12,,

,n εεε下,矩阵A 对应V 的一个线性变换A

,即

- 5 -

12

121212

(,,,)(,,

,)(,,

,)n n n n λλλ??

?

?== ? ??

?

εεεεεεεεεA A .

从而i i i λ=εεA ,1,2,

,i n =.又因为12,,,n i i i εεε也是V 的一组基,且

1

2

121212(,,,)(,,

,)(,,,)n n n n i i

i i i i i i i i i i λλλ?? ? ?

==

? ? ??

?

εεεεεεεεεB A .

故A 与B 相似.

证法2 设

12

n λλλ??

?

?= ?

?

?

?

A 与 1

2

n i i

i λλλ?? ?

?= ? ? ??

?

B . 对A 交换,i j 两行,再交换,i j 两列,相当于对A 左乘和右乘初等矩阵1

(,)(,)i j i j -=P P 和(,)i j P ,而

1(,)(,)i j i j -P AP

即为将A 中的i λ和j λ交换位置得到的对角矩阵.于是,总可以通过这样的一系列的对调变换,将A 的主对角线上的元素12,,

,n λλλ变成12,,,n i i i λλλ,这也相当于存在一系列初等矩阵12,,

,s Q Q Q ,使得

1

112112

s s ---=Q Q Q AQ Q Q B ,

令12

s =Q Q Q Q ,则有1-=Q AQ B ,即A 与B 相似.

『方法技巧』证法1利用同一个线性变换在不同基下的矩阵是相似的这一性质;证法2利用了矩阵的相似变换,直接进行了证明.

17.如果A 可逆,证明AB 与BA 相似. 证明 由于A 可逆,故A

1

-存在.于是

11()()--==A AB A A A BA BA ,

因此,根据相似的定义可知AB 与BA 相似.

19.求复数域上线性变换空间V 的线性变换A 的特征值与特征向量.已知A 在一组基下的矩阵为:

1)3452??= ???A ; 4)563101121-?? ?=- ? ?-??A ;5)001010100??

?

= ? ?

??

A . 解 1)设A 在给定基1ε,2ε下的矩阵为A .由于A 的特征多项式为

23

4

|514(7)(2)52

λλλλλλλ---=

=--=-+--E A , 故A 的特征值为17λ=,22λ=-.

当17λ=时,方程组1()λ-=0E A X ,即为

1212

440,

550.x x x x -=??

-+=? 解得它的基础解系为???

?

??11.从而A 的属于特征值17λ=的全部特征向量为

112k k =+ξεε,

其中k 为任意非零常数.

当22λ=-时,方程组2()λ-=0E A X ,即为

1212540,

540.

x x x x --=??

--=? 解得它的基础解系为???

?

??-54,从而A 的属于特征值22λ=-的全部特征响向量为

21245l l =-ξεε,

其中l 为任意非零常数.

4)设A 在给定基123,,εεε下的矩阵为A ,由于A 的特征多项式为

56

3

11(2)(111

21

λλλ

λλλλ---=-=---+--+E A ,

故A 的特征值为12λ=

,21λ=

,31λ=

当12λ=时, 方程组1()λ-0E A X =,即为

- 7 -

1231231

233630,20,230.

x x x x x x x x x --+=??

+-=??--+=? 求得其基础解系为210-??

?

? ???

,故A 的属于特征值2的全部特征向量为

111122k k =-+ξεε

其中1k 为任意非零常数.

当21λ=时, 方程组2()0λ-E A X =,即为

123123123(4630,(10,2(20.

x x x x x x x x x ?-+-+=??

++-=??--++=?? 求得其基础解系为???

?

?

??--3213,故A

的属于特征值1

22122233(2k k k =-+ξεεε

其中2k 为任意非零常数.

当31λ=3()0λ-E A X =,即为

123123123(4630,

(10,2(20.

x x x x x x x x x ?---+=??

+--=??--+=?? 求得其基础解系为???

?

?

??+-3213,故A

的属于特征值1

33132333(2k k k =-+ξεεε

其中3k 为任意非零常数.

5)设A 在给定基123,,εεε下的矩阵为A ,由于A 的特征多项式为

201

1

0(1)(1)1

λ

λλλλλ

--=-=-+-E A ,

故A 的特征值为11λ=(二重),21λ=-.

当11λ=时,方程组1()λ-0E A X =,即为

1313

0,

0.x x x x -=??

-+=? 求得其基础解系为,

101???

?

?

??010?? ?

? ???

,故A 的属于特征值1的全部特征向量为 1112213k k k ++ξ=εεε

其中12,k k 为任意不全为零的常数.

当21λ=-时,方程组2()0λ-E A X =,即为

13213

0,20,0.x x x x x --=??

-=??--=? 求得其基础解系为101-?? ?

? ???

,故A 的属于特征值1-的全部特征向量为

213l l +ξ=-εε,

其中l 为任意非零常数.

『方法技巧』求解一个线性变换的特征值即求其矩阵的特征多项式的根,再对每个根求得所对应的特征向量,但一定要注意表达成基向量的线性组合形式.

24.1)设21,λλ是线性变换A 的两个不同特征值,12,εε是分别属于21,λλ的特征向量,证明:12

+εε不是A 的特征向量;

2)证明:如果线性空间V 的线性变换A 以V 中每个非零向量作为它的特征向量,那么A 是数

乘变换.

证明 1)反证法.假设12+εε是A 属于特征值λ的特征向量,即

- 9 -

121212()()λλλ+=+=+A εεεεεε.

而由题设可知111222,λλ==A A εεεε,且12λλ≠,故

12121122()λλ+=+=+A A A εεεεεε.

比较两个等式,得到

1122()()λλλλ-+-=0εε.

再根据12,εε是属于不同特征值的特征向量,从而是线性无关性,因此021=-=-λλλλ,即12λλ=.这与12λλ≠矛盾.所以12+εε不是A 的特征向量.

2)设12,,,n εεε是V 的一组基,则它们也是A 的n 个线性无关的特征向量,不妨设它们分别属于

特征值12,,

,n λλλ,即

i i i λ=A εε,1,2,

,i n =.

根据1)即知12n λλλλ====.否则,若12λλ≠,那么12+≠0εε,且不是A 的特征向量,这与V

中每个非零向量都是它的特征向量矛盾.所以,对于任意的V ∈α,都有λ=A αα,即A 是数乘变换.

25.设V 是复数域上的n 维线性空间,,A B 是V 上的线性变换,且=A B BA .证明: 1)如果0λ是A 的一个特征值,那么0V λ是B 的不变子空间; 2),A B 至少有一个公共的特征向量.

证明 1)设0V λ∈α,则0λ=A αα,于是,由题设知

00()()()()()λλ=====A B A B BA B A B B αααααα,

因此0V λ∈B α.根据不变子空间的定义即知,0V λ是B 的不变子空间.

2)由1)可知0V λ是B 的不变子空间,若记0

0|V λ

=B B ,则0B 是复数域上线性空间0λV 的一个线性变

换,它必有特征值0μ及非零向量0V λ∈β,使得

00μ==B B βββ,

即β是B 的特征向量,从而β是A 和B 的公共特征向量.因此,,A B 存在公共的特征向量.

中南大学现代远程教育课程考试模拟复习试题.及参考答案 计算机图形学 一、名词解释 1.图形 2.像素图 3.参数图 4.扫描线 5.构造实体几何表示法 6.投影 7.参数向量方程 8.自由曲线 9.曲线拟合 10.曲线插值 11.区域填充 12.扫描转换 二、判断正误(正确写T,错误写F) 1.存储颜色和亮度信息的相应存储器称为帧缓冲存储器,所存储的信息被称为位图。() 2.光栅扫描显示器的屏幕分为m行扫描线,每行n个点,整个屏幕分为m╳n个点,其中每个点称为一个像素。―――――――――――――――――――――()3.点阵字符用一个位图来表示,位图中的0对应点亮的像素,用前景色绘制;位图中的1对应未点亮的像素,用背景色绘制。――――――――――――――――-()4.矢量字符表示法用(曲)线段记录字形的边缘轮廓线。―――――――――――()5.将矢量字符旋转或放大时,显示的结果通常会变得粗糙难看,同样的变换不会改变点阵字符的显示效果。―――――――――――――――――――――――――()6.在光栅图形中,区域是由相连的像素组成的集合,这些像素具有相同的属性值或者它们位于某边界线的内部。―――――――――――――――――――――――()7.多边形的扫描变换算法不需要预先定义区域内部或边界的像素值。――――――()8.齐次坐标表示法用n维向量表示一个n+1维向量。―――――――――――――()9.实体的边界由平面多边形或空间曲面片组成。―――――――――――――――()

10.平面多面体表面的平面多边形的边最多属于两个多边形,即它的表面具有二维流形的性质。―――――――――――――――――――――――――――――――()11.实体几何性质包括位置、长度和大小等。―――――――――――――――――()12.实体的拓扑关系表示实体之间的相邻、相离、方位、相交和包含等关系。―――()13.实体的扫描表示法也称为推移表示法,该表示法用一个物体和该物体的一条移动轨迹来描述一个新的物体。――――――――――――――――――――――――()14.如果投影空间为平面,投影线为直线,则称该投影为平面几何投影。――――-() 15.平面几何投影分为两大类:透视投影和平行投影。――――――――――――-() 16.当投影中心到投影面的距离为有限值时,相应的投影为平行投影。――――――()17.当投影中心到投影面的距离为无穷大时,相应的投影即为透视投影。―――――()18.在透视投影中,不平行于投影平面的平行线,经过透视投影后交汇到一个点,该点称为灭点。――――――――――――――――――――――――――――――()19.用DDA算法生成圆周或椭圆不需要用到三角运算,所以运算效率高。――――()20.主灭点的个数正好等于与投影面相交的坐标轴的个数,显然最多有四个主灭点。()21.透视投影按主灭点个数分为一点透视、二点透视和三点透视。―――――――()22.平行投影分为正(射)投影和斜(射)投影。―――――――――――――-()23.在正投影中,投影方向与投影面垂直。――――――――――――――――――()24.在斜投影中,投影线不垂直于投影面。―――――――――――――――――()25.当投影面与x,y和z垂直时所得到的投影分别称为正(主)视图、侧视图和俯视图,统称为三视图。―――――――――――――――――――――――――――()26.在斜投影中,当投影面与三个坐标轴都不垂直时,所形成的投影称为正轴测。-()27.投影面也称为观察平面。―――――――――――――――――――――――()28.观察空间位于前后裁剪面之间的部分称为裁剪空间或视见体。―――――――()29.找出并消除物体中的不可见部分,称为消隐。――――――――――――――()30.经过消隐得到的图形称为消隐图。―――――――――――――――――――() 三、填空 1.图形软件的建立方法包括提供图形程序包、和采用专用高级语言。 2.直线的属性包括线型、和颜色。

微观第七章习题 一、名词解释 完全垄断市场垄断竞争市场寡头市场价格歧视博弈纳什均衡 占优策略均衡 二、选择题 1、对于垄断厂商来说,()。 A、提高价格一定能够增加收益; B、降低价格一定会减少收益; C、提高价格未必会增加收益,降低价格未必会减少收益; D、以上都不对。 2、完全垄断的厂商实现长期均衡的条件是()。 A、MR=MC; B、MR=SMC=LMC; C、MR=SMC=LMC=SAC; D、MR=SMC=LMC=SAC=LAC。 3、完全垄断厂商的总收益与价格同时下降的前提条件是()。 A、Ed>1; B、Ed<1; C、Ed=1; D、Ed=0。 4、完全垄断厂商的产品需求弹性Ed=1时()。 A、总收益最小; B、总收益最大; C、总收益递增; D、总收益递减。 5、完全垄断市场中如果A市场的价格高于B市场的价格,则() A、A市场的需求弹性大于B市场的需求弹性; B、A市场的需求弹性小于B市场的需求弹性; C、A市场的需求弹性等于B市场的需求弹性; D、以上都对。 6、以下关于价格歧视的说法不正确的是()。 A、价格歧视要求垄断者能根据消费者的支付意愿对其进行划分; B、一级价格歧视引起无谓损失; C、价格歧视增加了垄断者的利润; D、垄断者进行价格歧视,消费者就必定不能进行套利活动。 7、垄断竞争的厂商短期均衡时,()。 A、一定能获得差额利润; B、一定不能获得经济利润; C、只能得到正常利润; D、取得经济利润、发生亏损和获得正常利润都有可能。 8、垄断竞争厂商长期均衡点上,长期平均成本曲线处于(B)

A、上升阶段 B、下降阶段 C、水平阶段 D、以上三种情况都有可能 9、垄断竞争厂商实现最大利润的途径有:(D) A、调整价格从而确定相应产量 B、品质竞争 C、广告竞争 D、以上途径都可能用 10、按照古诺模型下列哪一说法不正确,()。 A、双头垄断者没有认识到他们的相互依耐性; B、每一个寡头都认定对方的产量保持不变; C、每一个寡头垄断者都假定对方价格保持不变; D、均衡的结果是稳定的。 11、斯威齐模型是() A、假定一个厂商提高价格,其他厂商就一定跟着提高价格; B、说明为什么每个厂商要保持现有的价格,而不管别的厂商如何行动; C、说明为什么均衡价格是刚性的(即厂商不肯轻易的变动价格)而不是说明价格如 何决定; D、假定每个厂商认为其需求曲线在价格下降时比上升时更具有弹性。 12、在斯威齐模型中,弯折需求曲线拐点左右两边的弹性是()。 A、左边弹性大,右边弹性小; B、左边弹性小,右边弹性大; C、两边弹性一样大; D、以上都不对。 13、与垄断相关的无效率是由于()。 A、垄断利润 B、垄断亏损 C、产品的过度生产 D、产品的生产不足。 三、判断题 1、垄断厂商后可以任意定价。 2、完全垄断企业的边际成本曲线就是它的供给曲线。 3、一级价格歧视是有市场效率的,尽管全部的消费者剩余被垄断厂商剥夺了。 4、寡头之间的串谋是不稳定的,因为串谋的结果不是纳什均衡。 5、垄断厂商生产了有效产量,但它仍然是无效率的,因为它收取的是高于边际成本的价格,获取的利润是一种社会代价。 6、完全垄断厂商处于长期均衡时,一定处于短期均衡。 7、垄断竞争厂商的边际收益曲线是根据其相应的实际需求曲线得到的。 8、由于垄断厂商的垄断地位保证了它不管是短期还是长期都可以获得垄断利润。 四、计算题 1、已知某垄断者的成本函数为TC=0.5Q2+10Q,产品的需求函数为P=90-0.5Q, (1)计算利润最大化时候的产量、价格和利润;

第7章 线性变换 §1 线性变换的定义 线性空间V 到自身的映射,通常叫做V 的一个变换,现在讨论的线性变换是线性空间的最简单也是最重要的一种变换。 一、线性变换的定义 定义7.1 设V 为线性空间,若对于V 中的任一向量α,按照一定的对应规则T ,总有V 中的一个确定的向量β与之对应,则这个对应规则T 称为线性空间V 中的一个变换,记为 βα=)(T 或 )(,V T ∈=αβα, β称为α的象,α称为β的原象。象的全体所构成的集合称为象集,记作T (V ),即 T (V )={}V T ∈=ααβ|)(。 由此定义可见,变换类似于微积分中的函数,不过微积分中的函数是两个实数集合间的对应,而这里的变换则是线性空间中的向量与向量之间的对应。 定义7.2 线性空间V 中的变换T ,若满足条件 (1) 对任意V ∈βα,有 (2) )()()(βαβαT T T +=+; (3) 对任意V ∈α及数域P 中任意数k 有 )()(ααkT k T =,

则称变换T 为V 中的线性变换。 例7.1 线性空间V 中的恒等变换或称单位变换E ,即 E )()(V ∈=αα α 以及零变换?,即 ?)(0 )(V ∈=αα 都是线性变换. 例7.2 设V 是数域P 上的线性空间,k 是P 中的某个数,定义V 的变换如下: V k ∈→ααα,. 这是一个线性变换,称为由数k 决定的数乘变换,可用K 表示.显然当1=k 时, 便得恒等变换,当0=k 时,便得零变换. 例7.3 在线性空间][x P 或者n x P ][中,求微商是一个线性变换.这个变换通常用D 代表,即 D ()(x f )=)(x f '. 例7.4 定义在闭区间[]b a ,上的全体连续函数组成实数域上一线性空间,以),(b a C 代表.在这个空间中变换 ?()(x f )=?x a dt t f )( 是一线性变换.

第七章氧化还原滴定 1.条件电位和标准电位有什么不同影响电位的外界因素有哪些 答:标准电极电位E′是指在一定温度条件下(通常为25℃)半反应中各物质都处于标准状态,即离子、分子的浓度(严格讲应该是活度)都是1mol/l(或其比值为1)(如反应中有气体物质,则其分压等于×105Pa,固体物质的活度为1)时相对于标准氢电极的电极电位。 电对的条件电极电位(E0f)是当半反应中氧化型和还原型的浓度都为1或浓度比为,并且溶液中其它组分的浓度都已确知时,该电对相对于标准氢电极电位(且校正了各种外界因素影响后的实际电极电位,它在条件不变时为一常数)。由上可知,显然条件电位是考虑了外界的各种影响,进行了校正。而标准电极电位则没有校正外界的各种外界的各种因素。 影响条件电位的外界因素有以下3个方面; (1)配位效应; (2)沉淀效应; (3)酸浓度。 2.是否平衡常数大的氧化还原反应就能应用于氧化还原中为什么 答:一般讲,两电对的标准电位大于(K>106),这样的氧化还原反应,可以用于滴定分析。 实际上,当外界条件(例如介质浓度变化、酸度等)改变时,电对的标准电位是要改变的,因此,只要能创造一个适当的外界条件,使两电对的电极电位超过,那么这样的氧化还原反应也能应用于滴定分析。但是并不是平衡常数大的氧化还原反应都能应用于氧化还原滴定中。因为有的反应K虽然很大,但反应速度太慢,亦不符合滴定分析的要求。 3.影响氧化还原反应速率的主要因素有哪些 答:影响氧化还原反应速度的主要因素有以下几个方面:1)反应物的浓度;2)温度;3)催化反应和诱导反应。 4.常用氧化还原滴定法有哪几类这些方法的基本反应是什么 答:1)高锰酸钾法.2MnO4+5H2O2+6H+==2Mn2++5O2↑+8H2O. MnO2+H2C2O4+2H+==Mn2++2CO2+2H2O 2) 重铬酸甲法. Cr2O72-+14H++Fe2+===2Cr3++Fe3++7H2O

第一章绪论 概念:计算机图形学、图形、图像、点阵法、参数法、 图形的几何要素、非几何要素、数字图像处理; 计算机图形学和计算机视觉的概念及三者之间的关系; 计算机图形系统的功能、计算机图形系统的总体结构。 第二章图形设备 图形输入设备:有哪些。 图形显示设备:CRT的结构、原理和工作方式。 彩色CRT:结构、原理。 随机扫描和光栅扫描的图形显示器的结构和工作原理。 图形显示子系统:分辨率、像素与帧缓存、颜色查找表等基本概念,分辨率的计算 第三章交互式技术 什么是输入模式的问题,有哪几种输入模式。 第四章图形的表示与数据结构 自学,建议至少阅读一遍 第五章基本图形生成算法 概念:点阵字符和矢量字符; 直线和圆的扫描转换算法; 多边形的扫描转换:有效边表算法; 区域填充:4/8连通的边界/泛填充算法;

内外测试:奇偶规则,非零环绕数规则; 反走样:反走样和走样的概念,过取样和区域取样。 5.1.2 中点 Bresenham 算法(P109) 5.1.2 改进 Bresenham 算法(P112) 习题答案

习题5(P144) 5.3 试用中点Bresenham算法画直线段的原理推导斜率为负且大于1的直线段绘制过程(要求写清原理、误差函数、递推公式及最终画图过程)。(P111) 解: k<=-1 |△y|/|△x|>=1 y为最大位移方向 故有 构造判别式: 推导d各种情况的方法(设理想直线与y=yi+1的交点为Q): 所以有: y Q-kx Q-b=0 且y M=y Q d=f(x M-kx M-b-(y Q-kx Q-b)=k(x Q-x M) 所以,当k<0, d>0时,M点在Q点右侧(Q在M左),取左点 P l(x i-1,y i+1)。 d<0时,M点在Q点左侧(Q在M右),取右点 Pr(x i,y i+1)。 d=0时,M点与Q点重合(Q在M点),约定取右点 Pr(x i,y i+1) 。 所以有 递推公式的推导: d2=f(x i-1.5,y i+2) 当d>0时, d2=y i+2-k(x i-1.5)-b 增量为1+k =d1+1+k

第七章练习题与答案 (一)单项选择题 1.社会主义国家改革的性质应该是() A.社会主义基本制度的变革B.社会主义经济运行方式的改革 C.社会主义原有体制的修补D.社会主义制度的自我完善和发展 2.江泽民指出,正确处理改革、发展、稳定关系的结合点是() A.改革是动力B.发展是目的 C.稳定是前提D.把人民群众的根本利益实现好、维护好、发展好 3.社会主义国家发展对外经济关系的必要性,从根本上说是()()) A.发展社会主义公有制经济的要求B.实现社会主义生产目的的要求 C.解放和发展生产力的要求D.生产社会化和发展商品经济的要求 4.进入20世纪90年代,我国对外开放已初步形成() A.全方位、多形式、多渠道的对外开放格局 B.全方位、多渠道、多层次的对外开放格局 C.全方位、多领域、多层次的对外开放格局 D.全方位、多层次、宽领域的对外开放格局 5.实行对外开放的基础和前提是() A、互相帮助,互惠互利 B、公平、公正、公开 C、相互平等,合作共事 D、独立自主,自力更生 6、对社会主义社会的基本矛盾第一个全面阐述的是() A、马克思 B、列宁 C、斯大林 D、毛泽东 7、我国实行对外开放是() A、一项长期的基本国策 B、一项权宜之计 C、在现代化建设中实行的政策 D、实现现代化后就不必实行对外开放政策 8、把对外开放确定为我国的基本国策,是在() A、党的十一届六中全会 B、党的十二大 C、党的十二届三中全会 D、党的十三大 9.我国加入世界贸易组织是在() A.1999年12月B.2000年12月C.2001年12月D.2002年12月10.改革的性质是() A.一场新的革命 B.社会主义制度的自我完善与发展 C.社会主义经济体制的自我完善和发展 D.社会主义制度和体制的自我完善与发展 11.中国的改革是全面的改革,这是由() A.改革的性质决定的B.改革的艰巨性决定的 C.改革的任务决定的D.改革的长期性决定的 (二)多项选择题 1.“改革是中国的二次革命”这一论断的基本含义是( ) A.改革与第一次革命具有相同的内容B.改革也是解放生产力 C.改革是对原有经济体制的根本性变革 D.改革引起社会生活各方面深刻的变化E.改革是社会主义发展的动力 2.我们在处理改革、发展和稳定的关系时,必须做到( )

第 7章 线性变换 7.1知识点归纳与要点解析 一.线性变换的概念与判别 1.线性变换的定义 数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。 注:V 的线性变换就是其保持向量的加法与数量乘法的变换。 2.线性变换的判别 设σ为数域P 上线性空间V 的一个变换,那么: σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈ 3.线性变换的性质 设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈。 性质1. ()()00,σσαα==-; 性质2. 若12s ,, ,ααα线性相关,那么()()()12s ,, ,σασασα也线性相关。 性质3. 设线性变换σ为单射,如果12s ,, ,ααα线性无关,那么()()()12s ,, ,σασασα 也线性无关。 注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组, 如果: 11111221221122221122s s s s m m m ms s c c c c c c c c c βγγγβγγγβγγγ=+++=+++=++ + 记:

()()112111222 2121212,,,,, ,m m m s s s ms c c c c c c c c c βββγγγ?? ? ? = ? ??? 于是,若()dim V n =,12,, ,n ααα是V 的一组基,σ是V 的线性变换, 12,, ,m βββ是 V 中任意一组向量,如果: ()()()11111221221122221122n n n n m m m mn n b b b b b b b b b σβααασβααασβααα=+++=+++=++ + 记: ()()()()()1212,,,,m m σβββσβσβσβ= 那么: ()()1121 112222121212,,,,, ,m m m n n n mn b b c b b c b b c σβββααα?? ? ? = ? ??? 设112111222212m m n n mn b b c b b c B b b c ?? ? ? = ? ??? ,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是 12,, ,m ηηη的一个极大线性无关组,那么()()() 12 ,r i i i σβσβσβ就是 ()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的 秩等于秩()B 。 4. 线性变换举例 (1)设V 是数域P 上的任一线性空间。 零变换: ()00,V αα=?∈; 恒等变换:(),V εααα=?∈。 幂零线性变换:设σ是数域P 上的线性空间V 的线性变换,如果存在正整数m ,使 得σ =m 0,就称σ为幂零变换。

第三章习题答案 3.1 计算机图形系统的主要功能是什么? 答:一个计算机图形系统应具有计算、存储、输入、输出、交互等基本功能,它们相互协作,完成图形数据的处理过程。 1. 计算功能 计算功能包括: 1)图形的描述、分析和设计;2)图形的平移、旋转、投影、透视等几何变换; 3)曲线、曲面的生成;4)图形之间相互关系的检测等。 2. 存储功能 使用图形数据库可以存放各种图形的几何数据及图形之间的相互关系,并能快速方便地实现对图形的删除、增加、修改等操作。 3. 输入功能 通过图形输入设备可将基本的图形数据(如点、线等)和各种绘图命令输入到计算机中,从而构造更复杂的几何图形。 4. 输出功能 图形数据经过计算后可在显示器上显示当前的状态以及经过图形编辑后的结果,同时还能通过绘图仪、打印机等设备实现硬拷贝输出,以便长期保存。 5. 交互功能 设计人员可通过显示器或其他人机交互设备直接进行人机通信,对计算结果和图形利用定位、拾取等手段进行修改,同时对设计者或操作员输入的错误给以必要的提示和帮助。 3.2 阴极射线管由哪些部分组成?它们的功能分别是什么? 答:CRT主要由阴极、电平控制器(即控制极)、聚焦系统、加速系统、偏转系统和阳极荧光粉涂层组成,这六部分都在真空管内。 阴极(带负电荷)被灯丝加热后,发出电子并形成发散的电子云。这些电子被电子聚集透镜聚焦成很细的电子束,在带正高压的阳极(实际为与加速极连通的CRT屏幕内侧的石墨粉涂层,从高压入口引入阳极高电压)吸引下轰击荧光粉涂层,而形成亮点。亮点维持发光的时间一般为20~40mS。 电平控制器是用来控制电子束的强弱的,当加上正电压时,电子束就会大量通过,在屏幕上形成较亮的点,当控制电平加上负电压时,依据所加电压的大小,电子束被部分或全部阻截,通过的电子很少,屏幕上的点也就比较暗。所以改变阴极和 控制电平之间的电位差,就可调节电子 束的电流密度,改变所形成亮点的明暗 程度。 利用偏转系统(包括水平方向和 垂直方向的偏转板)可将电子束精确定 位在屏幕的任意位置上。只要根据图形 的几何坐标产生适当的水平和垂直偏转磁场(或水平和垂直偏转板静电场),图 2.2CRT原理图

第7章习题 一、单项选择题 1.在无向图中定义顶点的度为与它相关联的()的数目。 A. 顶点 B. 边 C. 权 D. 权值 2.在无向图中定义顶点 v i与v j之间的路径为从v i到达v j的一个()。 A. 顶点序列 B. 边序列 C. 权值总和 D. 边的条数 3.图的简单路径是指()不重复的路径。 A. 权值 B. 顶点 C. 边 D. 边与顶点均 4.设无向图的顶点个数为n,则该图最多有()条边。 A. n-1 B. n(n-1)/2 C. n(n+1)/2 D. n(n-1) 5.n个顶点的连通图至少有()条边。 A. n-1 B. n C. n+1 D. 0 6.在一个无向图中,所有顶点的度数之和等于所有边数的 ( ) 倍。 A. 3 B. 2 C. 1 D. 1/2 7.若采用邻接矩阵法存储一个n个顶点的无向图,则该邻接矩阵是一个 ( )。 A. 上三角矩阵 B. 稀疏矩阵 C. 对角矩阵 D. 对称矩阵 8.图的深度优先搜索类似于树的()次序遍历。 A. 先根 B. 中根 C. 后根 D. 层次 9.图的广度优先搜索类似于树的()次序遍历。 A. 先根 B. 中根 C. 后根 D. 层次 10.在用Kruskal算法求解带权连通图的最小(代价)生成树时,选择权值最小的边的原则是该边不能在 图中构成()。 A. 重边 B. 有向环 C. 回路 D. 权值重复的边 11.在用Dijkstra算法求解带权有向图的最短路径问题时,要求图中每条边所带的权值必须是()。 A. 非零 B. 非整 C. 非负 D. 非正 12.设G1 = (V1, E1) 和G2 = (V2, E2) 为两个图,如果V1 ? V2,E1 ? E2,则称()。 A. G1是G2的子图 B. G2是G1的子图 C. G1是G2的连通分量 D. G2是G1的连通分量 13.有向图的一个顶点的度为该顶点的()。 A. 入度 B. 出度 C. 入度与出度之和 D. (入度﹢出度))/2 14.一个连通图的生成树是包含图中所有顶点的一个()子图。 A. 极小 B. 连通 C. 极小连通 D. 无环 15.n (n>1) 个顶点的强连通图中至少含有()条有向边。 A. n-1 B. n n(n-1)/2 D. n(n-1) 16.在一个带权连通图G中,权值最小的边一定包含在G的()生成树中。 A. 某个最小 B. 任何最小 C. 广度优先 D.深度优先 17.对于具有e条边的无向图,它的邻接表中有()个结点。 A. e-1 B. e C. 2(e-1) D. 2e 18.对于如图所示的带权有向图,从顶点1到顶点5的最短路径为()。 A.1, 4, 5 B. 1, 2, 3, 5 C. 1, 4, 3, 5 D. 1, 2, 4, 3, 5

第七章 参数估计习题参考答案 1.设,0 ()0, 0x e x f x x θθ-?>=?≤?,求θ的矩估计。 解 ,0 dx xe EX x ?+∞ -=θθ设du dx u x x u θ θ θ1 ,1 ,= = = 则0 0011 1()0()u u u EX ue du ue e du e θθθθ+∞+∞--+∞--+∞ ????==-+=+-??? ?????=θ 1 故1EX θ= ,所以x 1?=θ 。 2. 设总体X 在[]b a ,上服从均匀分布,求a 和b 的矩估计。 解 由均匀分布的数学期望和方差知 1 ()()2 E X a b =+ (1) 21()()12 D X b a =- (2) 由(1)解得a EX b -=2,代入(2)得2)22(12 1 a EX DX -= , 整理得2)(3 1 a EX DX -=,解得 ()()a E X b E X ?=-?? =?? 故得b a ,的矩估计为 ??a x b x ?=??=+??其中∑=-=n i i x x n 1 22 )(1?σ 。 3.设总体X 的密度函数为(;)! x e f x x θ θθ-= ,求θ的最大似然估计。 解 设)!)...(!)(!(),()(2111n n x n i i x x x e x f L n i i θ θ θθ-=∑===∏,则

1 1 ln ()()ln ln(!)n n i i i i L x n x θθθ===--∑∑ 11 ln ()11?0, n n i i i i d L x n x x d n θθθθ===-===∑∑ 4.设总体X 的密度函数为 , 其中 (θ>0), 求θ的 极大似然估计量. 解. 设(X 1, X 2,…, X n )是来自X 的一样本. 由极大似然估计原理,参数θ的似然函数为: , 上式两边取对数 似然方程为 解似然方程得θ的极大似然估计量是 . 5.设总体X 的密度函数1(,)()(a a x f x a x e a θθθ--=已知),求参数θ的最大似然估计。 解 1 1121 ()(,)(...)n a i i n x n n a i n i L f x a x x x e θ θθθ=--=∑==∏ 1 1 ln ()ln ln (1)ln n n a i i i i L n n a a x x θθθ===++--∑∑ 1 ln ()0n a i i d L n x d θθθ==-=∑ 解得 ∑==n i a i x n 1 1θ。

第七章线性变换 计划课时:24学时.( P 307—334) §7.1 线性变换的定义及性质(2学时) 教学目的及要求:理解线性变换的定义,掌握线性变换的性质 教学重点、难点:线性变换的定义及线性变换的性质 本节内容可分为下面的两个问题讲授. 一. 线性变换的定义(P307) 注意:向量空间V到自身的同构映射一定是V上的线性变换,反之不然。 二. 线性变换的性质 定理7.1.1(P309) 定理7.1.2 (P309) 推论7.1.3 (P310) 注意:1.定理7.1.2给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基向量的作用所决定。 2.两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论7.1.3 (P310)告诉我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。 作业:习题七P330 1,2,3. §7.2 线性变换的运算(4学时) 教学目的及要求:掌握线性变换的运算及线性变换可逆的条件 教学重点、难点:线性变换的运算及线性变换可逆的条件 本节内容分为下面四个问题讲授: 一. 加法运算 定义1 (P310) 注意:σ+τ是V的线性变换. 二. 数乘运算 定义2(P311) 显然kσ也是V的一个线性变换. 定理7.2.1 L(V)对于线性变换的加法与数乘运算构成数域F上的一个向量空间. 三. 乘法运算 (1). 乘法运算 定义3 (P311-312) 注意:线性变换的乘法适合结合律,但不适合交换律及消去律. 两个非零线性变换的乘积可

能是零变换. (2). 线性变换σ 的方幂 四. 可逆线性变换 定义4 (P 313) 线性变换可逆的充要条件 例2 (P 314) 线性变换的多项式的概念 (阅读内容). 作业:P 330 习题七 4,5. §7.3 线性变换的矩阵(6学时) 教学目的及要求:理解线性变换关于一个基的矩阵的定义,掌握ξ 与σ (ξ)关于同一个基的坐标 之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、 同一个线性变换在不同基下的矩阵是相似的理论,掌握L (V )与M n (F )的同构理 论。 教学重点、难点: 1. 线性变换关于一个基的矩阵的定义。 2. L (V )与M n (F )的同构理论,线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系。 本节内容分为下面四个问题讲授: 一. 线性变换σ关于基的矩阵 定义 (P 316) 。 注意:取定n 维向量空间V 的一个基之后,对于V 的每一个线性变换,有唯一确定的n 阶矩阵与它对应. 例1 (P 316) 注意:一个线性变换在不同基下的矩阵通常是不同的. 例2 (P 317) 例3 (P 317) 二. ξ与σ (ξ)关于同一个基的坐标之间的关系. 定理7.3.1 例4 (P 318) 三. L (V )与M n (F )的同构 定理7.3.2 (P 320) 定理7.3.3 (P 320) 注意:1. 定理7.3.2 (P 320)的证明是本章的难点,在证明之前应复习证明所用到的知识点。 2.由于L (V ) 同构于)(F M n ,所以就把研究一个很复杂的向量空间L (V )的问题转化成研究一个很直观具体的向量空间)(F M n 的问题。同构是高等代数课程的一个基本概念。 3. 定理7.3.3不仅给出了在有限维向量空间判定一个线性变换可逆的方法,而且给出了求

第7章习题及参考答案 命名下列化合物。 ^ OH OH OH O C H 3CH 3 Ph CHCH 2CH 2CH 3OH C 2H 5OCH 2CH 2O C 2H 5 (7) (8) (9)(10) CH 3OH NO 2 O CH 2OH CH 3O CH 2CH 3 CH 3 CH 3 H O H O CH 3(11) (12) (13) (14) 解:(1) 4-丙基-4-庚醇 (2) 2-甲基-3-戊炔-2-醇 (3) 3-氯-2-溴-1-丁醇 (4) (E )-2,3-二甲基-4-溴-2-戊烯-1-醇 (5) (2R ,3R )-3-甲基-4-戊烯-2-醇 (6) (E )-2-丁烯-1,4-二醇 (7) 4-环戊烯-1,3-二醇 (8) 3-甲基-5-甲氧基苯酚 (9) 1-苯基-1-丁醇 (10) 乙二醇二乙醚 (11) 2-硝基-1-萘酚 (12) 4-甲氧基环己基甲醇 (13) 1,2-环氧丁烷 (14) (2S ,3R )-2,3-二甲氧基丁烷 ~

写出下列化合物的结构式。 (1) 3,3-二甲基环戊醇 (2) 肉桂醇 (3) 环戊基叔丁基醚 (4) 3-环己烯基异丙基醚 (5) 顺-1,2-环己二醇 (6) 2,3-二巯基-1-丙醇 (7) 4-丁基-1,3-苯二酚 (8) 二苯并-18-冠-6 解: CH CH CH 2OH OH C H 3C H 3(1) (2) O O C(CH 3)3 CH(CH 3)2 (3) (4) ~ SH SH CH 2CH CHOH (5) (6) OH OH C(CH 3)3 O O O O O (7) (8) 将下列化合物按沸点降低的顺序排列成序。 (1)丙三醇,乙二醇二甲醚,乙二醇,乙二醇单甲醚 (2)3-己醇,正己醇,正辛醇,2-甲基-2-戊醇 解:(1)丙三醇>乙二醇>乙二醇单甲醚>乙二醇二甲醚 (2)正辛醇>正己醇>3-己醇>2-甲基-2-戊醇 将下列各组化合物按与卢卡斯试剂作用的速率快慢排列成序。 (1)1-丁醇,2-丁烯-1-醇,3-丁烯-2-醇,2-丁醇 , (2)叔丁醇,正丁醇,环己醇 (3)对甲氧基苄醇,对硝基苄醇,苄醇 解:(1)3-丁烯-2-醇>2-丁烯-1-醇>2-丁醇>1-丁醇 (2)叔丁醇>环己醇>正丁醇 (3)对甲氧基苄醇>苄醇>对硝基苄醇

计算机图形学作业答案 第一章序论 第二章图形系统 1.什么是图像的分辨率? 解答:在水平和垂直方向上每单位长度(如英寸)所包含的像素点的数目。 2.计算在240像素/英寸下640×480图像的大小。 解答:(640/240)×(480/240)或者(8/3)×2英寸。 3.计算有512×512像素的2×2英寸图像的分辨率。 解答:512/2或256像素/英寸。 第三章二维图形生成技术 1.一条直线的两个端点是(0,0)和(6,18),计算x从0变到6时y所对应的值,并画出结果。 解答:由于直线的方程没有给出,所以必须找到直线的方程。下面是寻找直线方程(y =mx+b)的过程。首先寻找斜率: m =⊿y/⊿x =(y 2-y 1 )/(x 2 -x 1 )=(18-0)/(6-0) = 3 接着b在y轴的截距可以代入方程y=3x+b求出 0=3(0)+b。因此b=0,所以直线方程为y=3x。 2.使用斜截式方程画斜率介于0°和45°之间的直线的步骤是什么? 解答: (1)计算dx:dx=x 2-x 1 。 (2)计算dy:dy=y 2-y 1 。 (3)计算m:m=dy/dx。 (4)计算b: b=y 1-m×x 1 (5)设置左下方的端点坐标为(x,y),同时将x end 设为x的最大值。如果 dx < 0,则x=x 2、y=y 2 和x end =x 1 。如果dx > 0,那么x=x 1 、y=y 1 和x end =x 2 。 (6)测试整条线是否已经画完,如果x > x end 就停止。 (7)在当前的(x,y)坐标画一个点。 (8)增加x:x=x+1。 (9)根据方程y=mx+b计算下一个y值。 (10)转到步骤(6)。 3.请用伪代码程序描述使用斜截式方程画一条斜率介于45°和-45°(即|m|>1)之间的直线所需的步骤。

本章解答只给出算法描述,1~7题略。 ⒈一棵度为2 ⒉对于图2所示的树,试给出: ⑴双亲数组表示法示意图; ⑵孩子链表表示法示意图; ⑶孩子兄弟链表表示法示意图。 ⒊画出下图所示的森林经转换后所对应的二叉树,并指出在二叉链表中某结点所对应的森林中结点为叶子结点的条件。 (3题图) (4题图) ⒋将右上图所示的二叉树转换成相应的森林。 ⒌在具有n(n>1)个结点的各棵树中,其中深度最小的那棵树的深度是多少?它共有多少叶子和非叶子结点?其中深度最大的那棵树的深度是多少?它共有多少叶子和非叶子结点? ⒍画出和下列已知序列对应的树T: 树的先根次序访问序列为:GFKDAIEBCHJ; 树的后根访问次序为:DIAEKFCJHBG。 ⒎画出和下列已知序列对应的森林F: 森林的先序次序访问序列为:ABCDEFGHIJKL; 森林的中序访问次序为:CBEFDGAJIKLH。 ⒏对以孩子-兄弟链表表示的树编写计算树的深度的算法。 typedef struct TreeNode{ datatype data; struct TreeNode *child, *nextsibling ; }NodeTtpe , *CSTree; int high(CSTree t ) { if ( t= =NULL ) return ( 0 ) ; (2题图)

else { h1=high(t->child ) ; h2=high(t->nextsibling ); return(max(h1+1,h2)); } } ⒐对以孩子链表表示的树编写计算树的深度的算法。算法略 ⒑对以双亲链表表示的树编写计算树的深度的算法。typedef struct{ datatype data; int parent ; }NodeType; int high(NodeType t[ ], int n) { maxh=0; for (i=0 ;imaxh)

第一章 线性空间与线性变换 线性空间与线性变换是学习现代矩阵论时经常用到的两个极其重要的概念.本章先简要地论述这两个概念及其有关理论,然后再讨论两个特殊的线性空间,这就是Euclid 空间和酉空间. §1.1 线性空间 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础,所考虑的数域是实数域(记为R)和复数域(记为C),统称数域F . 一、线性空间的定义及性质 定义1 设V 是一个非空集合,F 是一数域.如果存在一种规则,叫做V 的加法运算:对于V 中任意两个元素,αβ,总有V 中一个确定的元素γ与之对应.γ称为αβ与的和,记为γαβ=+.另有一种规则,叫做V 对于F 的数乘运算:对于F 中的任意数k 及V 中任意元素α,总有V 中一个确定的元素σ与之对应,σ叫做k 与α的数乘,记为k σα=.而且,以上两种运算还具有如下的性质: 对于任意α,β,V γ∈及k ,l F ∈,有 1)αββα+=+; 2)()()αβγαβγ++=++; 3)V 中存在零元素0,对于任何V α∈,恒有αα+=0; 4)对于任何V α∈,都有α的负元素V β∈,使0αβ+=; 5)1αα=; 6)()()k l kl αα=;(式中kl 是通常的数的乘法) 7)()k l k l ααα+=+;(式中k l +是通常的数的加法) 8)()k k k αβαβ+=+. 则称V 为数域F 上的一个线性空间,也称向量空间. V 中所定义的加法及数乘运算统称为线性运算,其中数乘又称数量乘 法.在不致产生混淆时,将数域F 上的线性空间简称为线性空间. 需要指出,不管V 的元素如何,当F 为实数域R 时,则称V 为实线性空间;当F 为复数域C 时,就称V 为复线性空间. 线性空间{0}V =称为零空间.

第七章线性变换3.在P[x]中,Af(x)f(x),Bf(x)xf(x),证明: ABBA=E. 『解题提示』直接根据变换的定义验证即可. 证明任取f(x)P[x],则有 =(A BBA)f(x)ABf(x)BAf(x)A(xf(x))B(f(x)) (xf(x))xf(x)f(x)Ef(x), 于是ABBA=E. 4.设A,B是线性变换,如果ABBA=E,证明: kkk k1,k1ABBAA. 『解题提示』利用数学归纳法进行证明. 证明当k2时,由于ABBA=E,可得 22()()2 ABBAAABBAA B BAAA, 因此结论成立. 假设当ks时结论成立,即ssss1 ABBAA.那么,当ks1时,有 s1s1(s s)()ssss(s1)s ABBAAABBAA B BAAAAA, 即对ks1结论也成立.从而,根据数学归纳法原理,对一切k1结论都成立. 『特别提醒』由 AE可知,结论对k1也成立. 5.证明:可逆映射是双射. 『解题提示』只需要说明可逆映射既是单射又是满射即可. 1证明设A是线性空间V上的一个可逆变换.对于任意的,V,如果AA,那么,用 A 作用左右两边,得到A AAA,因此A是单射;另外,对于任意的V,存在1()1() 1()1() 1V A,使得 1 AA(A),即A是满射.于是A是双射.

-1-

『特别提醒』由此结论可知线性空间V上的可逆映射A是V到自身的同构. 6.设1,2,,n是线性空间V的一组基,A是V上的线性变换,证明A可逆当且仅当 A1,A2,,A n线性无关. 证法1若A是可逆的线性变换,设k AkAkA0 ,即 1122nn A(kkk nn)0. 1122 而根据上一题结论可知A是单射,故必有k kk0,又由于 1,2,,n是线性无关的, 1122nn 因此k 1k2k n0.从而A1,A2,,A n线性无关. 反之,若A 1,A2,,A n是线性无关的,那么A AA也是V的一组基.于是,根据 1,2,,n 教材中的定理1,存在唯一的线性变换B,使得B(A i)i,i1,2,,n.显然 BA(i)i,A B(A i)A i,i1,2,,n. 再根据教材中的定理1知,ABBAE.所以A是可逆的. 证法2设A在基 1,2,,n下的矩阵为A,即 A(,,,n)(A,A,,A n)(,,,n)A. 121212 由教材中的定理2可知,A可逆的充要条件是矩阵A可逆. 因此,如果A是可逆的,那么矩阵A可逆,从而A 1,A2,,A n也是V的一组基,即是线性无 关的.反之,如果A AA是线性无关,从而是V的一组基,且A是从基 1,2,,n到1,2,,n A1,A2,,A n的过渡矩阵,因此A是可逆的.所以A是可逆的线性变换. 『方法技巧』方法1利用了上一题的结论及教材中的定理1构造A的逆变换;方法2借助教材中的定理2,将线性变换A可逆转化成了矩阵A可逆. 9.设三维线性空间V上的线性变换A在基1,2,3下的矩阵为 aaa 111213 A aaa. 212223 aaa 313233 1)求A在基3,2,1下的矩阵;

习题 2.试证明下述几何变换的矩阵运算具有互换性: (1)两个连续的旋转变换;(2)两个连续的平移变换; (3)两个连续的变比例变换;(4)当比例系数相等时的旋转和比例变换; (1)证明:设第一次的旋转变换为: cosθ1 sinθ1 0 T1= - sinθ1 cosθ1 0 0 0 1 第二次的旋转变换为: Cosθ2 s inθ2 0 T2= - sinθ2 cosθ2 0 0 0 1 则因为 T1*T2 = cosθ1 sinθ1 0 cosθ2 sinθ2 0 - sinθ1 cosθ1 0 - sinθ2 cosθ2 0 0 0 1 0 0 1 = cosθ1 cosθ2+sinθ1 sinθ2 cosθ1 sinθ2+ sinθ1 cosθ2 0 - sinθ1 cosθ2- cosθ1 sinθ2 -sinθ1 sinθ1+ cosθ1 cosθ2 0 0 0 1 Cos(θ1+θ2)sin(θ1+θ2) 0 = - sin(θ1+θ2) cos(θ1+θ2) 0 0 0 1 cosθ2 sinθ2 0 cosθ1 sinθ1 0 T2*T1 = - sinθ2 cosθ2 0 - sinθ1 cosθ1 0 0 0 1 0 0 1

cosθ1 cosθ2+ sinθ1 sinθ2 cosθ1 sinθ2+ sinθ1 cosθ2 0 = - sinθ2cosθ1- cosθ2 sinθ1 -sinθ1 sinθ1+ cosθ1 cosθ2 0 0 0 1 Cos(θ1+θ2)sin(θ1+θ2) 0 = - sin(θ1+θ2) cos(θ1+θ2) 0 0 0 1 即T1*T2= T2*T1, 两个连续的旋转变换具有互换性 (2)证明:设第一次的平移变换为: 1 0 0 T1= 0 1 0 Tx1 Ty1 1 第二次的平移变换为: 1 0 0 T2= 0 1 0 Tx2 Ty2 1 则因为 T1*T2 = 1 0 0 1 0 0 0 1 0 0 1 0 Tx1 Ty1 1 Tx2 Ty2 1 1 0 0 = 0 1 0 Tx1+Tx2 Ty1+Ty2 1 而 T2*T1 = 1 0 0 1 0 0 0 1 0 0 1 0 Tx2 Ty2 1 Tx1 Ty1 1 1 0 0 = 0 1 0

相关文档
最新文档