baja赛车传动系统的设计思路和优化

新能源汽车白车身结构拓扑及尺寸优化设计研究

新能源汽车白车身结构拓扑及尺寸优化设计研究 摘要随着科学技术的不断进步,新能源汽车凭借高能效、低污染的优势成为汽车行业发展的新潮流。但是很多新能源汽车只更换了动力系统,却依旧沿用传统汽车的车身结构,然而使用电动机替换发动机且增加蓄电池的使用就一定会导致车身载荷发生变化,从而使得新能源汽车和传统汽车在结构设计上有很大不同,这就要求必须要改变车身结构设计。此外,新能源汽车的动力系统被大大简化,这也为车身结构轻量化提供了更大的可能。所以,加强新能源汽车白车身结构和尺寸优化成为汽车行业的重要研究方向,而结构拓扑技术成为实现上述设想的重要技术。 关键词新能源汽车;结构拓扑;尺寸优化 随着社会经济的快速发展,汽车数量在迅速增加,由燃油汽车造成的环境问题和能源问题成为人们面临的重要问题。作为一种新型的绿色交通工具,新能源汽车凭借其能效高、噪音低、污染少等优势成为世界各国关注的热点。当前阶段,对整车结构的拓扑优化相关研究较少,应用于新能源汽车整个车身设计的研究成果更是缺乏。在汽车整车概念设计过程中,如果能够依据新能源汽车的特征有针对性的对白车身结构进行设计,就能够在很大程度上提升材料利用率,更好地实现轻量化设计。 1 结构拓扑优化方法 随着学者们的不但探究,现在的拓扑优化技术已经日渐成熟,结构拓扑优化方法主要包括均匀化方法、水平集法及变密度法等,且从这些方法中又演变出很多新形式。 1.1 均匀化方法 在连续体结构拓扑优化的众多方法中,均匀化方法是使用最广泛的方法,这种方法的基本思想是把拓扑结构材料划分成众多单胞微结构,确保单胞的尺寸、形状参数和材料的弹性模型密度呈现出线性关系,这样单胞尺寸的变化就决定了微结构的有无。通过对形状参数的优化,可以影响设计区域的密度分布情况,从而最大程度提升结构拓扑优化和尺寸优化的性能。 对均匀化方法的研究成果主要分为理论研究、实际应用两个方面,其中理论研究更多在微结构模型中应用,而实际应用更多的应用在均匀化模型中[1]。微型结构模型的理论研究侧重于对方形结构掏空、挖洞的理论探究,均匀化模型实际应用则主要是指对三维连续问题、多工况二维平面问题等的探究。 1.2 变密度法 在连续体结构拓扑优化中,变密度法也是十分常见的一种方法,它是材料描

汽车传动系统详细讲解

汽车传动系统详细讲解 以前我们介绍过汽车车身尺寸的意义和汽车心脏发动机的基本构造,然而汽车要行驶在道路上必须先使车轮转动,要如何将发动机的动力传送到车轮并使车轮转动?负责传递动力让汽车发挥行驶功能的装置就是传动系统,汽车没有了它就会成为一台发电机或坐人的空壳,并且还是一台烧钱的机器了。 在基本的传动系统中包含了负责动力连接的装置、改变力量大小的变速机构、克服车轮之间转速不同的,和联结各个机构的传动轴,有了这四个主要的装置之后就能够把发动机的动力传送到轮子上了。 一、动力连接装置 1. 离合器:这组机构被装置在发动机与手动之间,负责将发动机的动力传送到手动。 汽油发动机车辆在运行时,发动机需要持续运转。但是为了满足汽车行驶上的需求,车辆必须有停止、换档等功能,因此必须在发动机的外连动之处,加入一组机构,以视需求中断动力的传递,以在发动机持续运转的情形之下,达成让车辆静止或是进行换档的需求。这组机构,便是动力连接装置。一般在车辆上可以看到的动力连接装置有离合器与扭力转换器等两种。

离合器这组机构被装置在发动机与手动之间,负责将发动机的动力传送到手动。如图所示,飞轮机构与发动机的输出轴固定在一起。在飞轮的外壳之中,以一圆盘状的弹簧连接压板,其间有一摩擦盘与输入轴连接。 当离合器踏板释放时,飞轮内的压板利用弹簧的力量,紧紧压住摩擦板,使两者之间处于没有滑动的连动现象,达成连接的目的,而发动机的动力便可以通过这一机构,传递至,完成动力传递的工作。 而当踩下踏板时,机构将向弹簧加压,使得弹簧的外围翘起,压皮便与摩擦板脱离。此时摩擦板与飞轮之间已无法连动,即便发动机持续运转,动力并不会传递至及车轮,此时,驾驶者便可以进行换档以及停车等动作,而不会使得发动机熄火。 2. 扭力转换器:这组机构被装置在发动机与自动之间,能够将发动机的动力平顺的传送到自动。在扭力转换器中含有一组离合器,以增加传动效率。 当汽车工业继续发展,一般消费者开始对于控制油门、剎车以及离合器等三个踏板的复杂操作模式感到厌烦。机械工程师开始思考如何以利用机构来简化操作过程。扭力转换器便是在这样的情形之下被导入汽车产品的,成就了全新的使用感受。 扭力转换器导入,改变了人们驾驶汽车的习惯!扭力转换器取代了传统的机械式离合器,被安装在发动机与自动之间,能够将发动机的动力平顺的传送到自动。 从图中可以清楚地看到,扭力转换器的离作方式与离合器之间截然不同。在扭力转换器之中,左侧为发动机动力输出轴,直接与泵轮外壳连接。而在扭力转换器的左侧,则有一组涡轮,透过轴与位于右侧的变速系统连接。导轮与涡轮之间没有任何直接的连接机构,两者均密封在扭力转换器的外壳之中,而扭力转换器之内则是充满了黏性液体。 当发动机低速运转时,整个扭力转换器会同样低速运转,泵轮上的叶片会带动扭力转换器内的黏性液体,使其进行循环流动。但是由于转速太低,液体对于

轿车传动系总体方案设计及万向传动轴的设计

汽车设计课程设计 题目轿车传动系统总体方案及万向传动轴的设计 院(系)机械与汽车工程学院 专业车辆工程(新能源) 年级2011级 学生姓名 学号 指导教师邓利军 二○一四年六月

摘要 汽车传动系统的基本功用是将发动机发出的动力传给驱动车轮。组成现代汽车普遍采用的是活塞式内燃机,与之相配用的传动系统大多数是采用机械式或液力机械式的。普通双轴货车或部分轿车的发动机纵向布置在汽车的前部,并且以后轮为驱动轮,其传动系统的组成和布置发动机发出的动力依次经过离合器、变速器(或自动变速器)和由万向节与传动轴组成的万向传动装置,以及安装在驱动桥中的主减速器、差速器和半轴,最后传到驱动车轮。传动系统的首要任务是与发动机协同工作,以保证汽车能在不同使用条件下正常行驶,并具有良好的动力性和燃油经济性。 关键词:离合器、变速器、万向节传动轴、驱动桥、主减速器、差速器、半轴、驱动车轮

Abstract The basic issue of Automotive driveline is to driving force from the engine to drive wheels. The modern Motor commonly used is the piston-type internal combustion engine and usually use mechanical drive system or hydraulic mechanical drive system to match with it. The engine of General biaxial goods or part of the vertical layout are in the front of the car, and use the rear wheel for driving wheel, the composition of the drive system and arrangement of the engine power to issue the order after clutch、gearbox (or automatic transmission) and the drive shaft gear which make up of the universal section and the composition, and the main reducer which installed on the drive axle 、 differential and axle, and finally is the drive wheels.The primary tasks of transmission is to work together with the engine for ensure that the use of motor vehicles to normal in different traffic conditions, and has good power and fuel economy. Key words: Clutch, transmission, drive shaft universal joints, drive axle, main reducer, differential, axle, drive wheels

轿车车身功能尺寸系统优化设计及应用研究

轿车车身功能尺寸系统优化设计及应用研究 泛亚汽车技术中心有限公司曾贺胡敏 上海交通大学机械与动力工程学院金隼 从上世纪90年代以来,通过以“2mm工程”为代表的统计质量管理方法在整个汽车领域的应用和全面推广,已经使得全球的整车制造水平在过去的20年中整体提升了一个台阶。但随着汽车构造越来越复杂以及客户对汽车的质量要求越来越高,各汽车企业都已逐步认识到,整车质量的形成不仅与生产制造过程有关,还与包括产品设计在内的其他许多过程、环节和因素密切相关。只有将影响质量的所有因素全部纳入到质量管理中,并保持系统、协调的运作,才能确保整车的高质量。因此,全面质量管理的理论也就应运而生,而在全面质量管理方法中,设计质量又是重中之重。 在此背景下,近年来,功能尺寸这 一过去仅用于生产制造阶段,监控车身 尺寸偏差的工具被逐步扩展应用到了产 品设计阶段。所谓功能尺寸(Functional Dimension)就是指“从一般产品尺寸特 征中选择出来的一部分反映产品重要功能而且必须保证的尺寸”,它是由德国大众在上世纪90年代率先提出,并全面推广的概念。相对于传统的整车尺寸检测控制方法,功能尺寸在车身尺寸偏差控制方面有着“直观、效率高、与整车质量表现关联性强”等特点。 目前,国内企业在车身尺寸偏差监控方面,应用的功能尺寸控制标准主要是直接从国外引进,或者是工程师在实际生产中根据经验而定义的,至今国内还没有一套系统是针对功能尺寸从设计到验证再到应用的完整开发流程。但随着国际合作的增加,以及自主开发的不断深入,越来越多的汽车企业在设计过程中开始运用功能尺寸这一工具对设计进行优化,功能尺寸的设计开发也因此得到了各个整车企业的重视。 车身功能尺寸系统概述 1.车身功能尺寸的分类 功能尺寸按照不同的用途大致可分为:产品功能尺寸、基准功能尺寸和控制功能尺寸三大类。 (1)产品功能尺寸,是指为了保证下一级装配质 量而在上一级零件、分总成、总成上规定的功能尺寸, 是从整车性能要求中分解出来的对各总成、分总成和 零件的关键特征的相对公差要求。通过产品功能尺寸 的定义,可确定总成、分总成和零件的设计目标,驱 动总成或分总成中所有零件的结构关系、定位策略、 工艺过程、公差要求等的设计。 (2)基准功能尺寸,是指为了保证产品功能尺寸, 而在下一级的分总成、总成上对上一级的零件、分总成、总成的基准提出的公差要求。实现基准功能尺寸的主要方法就是在汽车产品设计和制造

汽车动力传动系参数优化设计

汽车理论Project 第一章汽车动力性与燃油经济性数学模型立 1.汽车动力性与燃油经济性的评价指标 1.1 汽车动力性评价 汽车的动力性是指汽车在良好路面上直线行驶时由汽车受到的纵向外力决定的、所能达到的平均行驶速度。汽车的动力性主要可由以下三方面的指标来评定: (1)最高车速:最高车速是指在水平良好的路面(混凝土或沥青)上汽车能达到的最高行驶速度。它仅仅反映汽车本身具有的极限能力,并不反映汽车实际行驶中的平均车速。 (2)加速能力:汽车的加速能力通过加速时间表示,它对平均行驶车速有着很大影响,特别是轿车,对加速时间更为重视。当今汽车界通常用原地起步加速时间与超车加速时间来表明汽车的加速能力。原地起步加速时间是指汽车由第I挡或第II挡起步,并以最大的加速强度(包括选择适当的换挡时机)逐步换至最高挡后达到某一预定的距离或车速所需要的时间。超车加速时间是指用最高挡或次高挡内某一较低车速全力加速至某一高速所需要的时间。 (3)爬坡能力:汽车的爬坡能力是指汽车满载时用变速器最低挡

在良好路面上能爬上的最大道路爬坡度。 1.2 汽车燃油经济性评价 汽车的燃油经济性是指在保证汽车动力性能的前提下,以尽量少的燃油消耗量行驶的能力。汽车的燃油经济性主要评价指标有以下两方面: (1)等速行驶百公里燃油消耗量:它指汽车在一定载荷(我国标准规定轿车为半载、货车为满载)下,以最高挡在良好水平路面上等速行驶100km的燃油消耗量。行驶的燃油消耗量。 (2)多工况循环行驶百公里燃油消耗量:由于等速行驶工况并不能全面反映汽车的实际运行情况。汽车在行驶时,除了用不同的速度作等速行驶外,还会在不同情况下出现加速、减速和怠速停车等工况,特别是在市区行驶时,上述行驶工况会出现得更加频繁。因此各国都制定了一些符合国情的循环行驶工况试验标准来模拟实际汽车运行 状况,并以百公里燃油消耗量来评价相应行驶工况的燃油经济性。1.3 汽车动力性与燃油经济性的综合评价 由内燃机理论和汽车理论可知,现有的汽车动力性和燃油经济性指标是相互矛盾的,因为动力性好,特别是汽车加速度和爬坡性能好,一般要求汽车稳定行驶的后备功率大;但是对于燃油经济性来说,后备功率增大,必然降低发动机的负荷率,从而使燃油经济性变差。从汽车使用要求来看,既不可脱离汽车燃油经济性来孤立地追求动力性,也不能脱离动力性来孤立地追求燃油经济性,最佳地设计方案是在汽车的动力性与燃料经济性之间取得最佳折中。目前,在进行动力

FASE方程式赛车传动设计报告

传动部分 1 发动机 1.1 发动机的选择: 根据大赛规则,驱动赛车的发动机必须采用四冲程、排量610CC一下的活塞式发 1.2 发动机的固定 采用六点固定,具体固定情况如下图: 2 传动系基本参数的确定: 2.1变速箱的基本参数: 2.2 根据功率平衡方程: 确定赛车的最高车速。 式中:P e——发动机有效输出功率 G——重力 η ——传动效率 T ?——滚动阻尼系数

u a ——最高车速 i——坡度 C D ——风阻系数 A——迎风面积 δ——旋转质量换算 m——质量 根据最高车速的定义得:i=0,du/dt=0 其中:加装限流阀后P e=51.45KW;G=2940N;ηT=0.85;C D=0.25;A=0.746m2; 滚动阻尼系数由经验公式:f=f0+f1v 100+f4(v 100 )4可算出 查表后取:f0=0.01;f1=0.00027;f4=0.0012; 由此求得:u a=118km/h。 2.3确定传动比 根据公式: u a=0.377rn i g i o i c 式中:u a=118km/h;r=0.2667m;n=9000rpm;i g=1.272;i c=1.822;求得:i o=3.3 2.4 链条的选择 2.5大链轮的计算 因为小链轮齿数Z1=15且ic=Z2 Z1 所以: 大链轮齿数:Z 2 =49 分度圆直径:d= p sin(180°/z) =12.7 sin180°49 ? =198.22mm 齿顶圆直径:d a=p(0.54+cot180° z ) =204.67mm 齿根圆直径:d f=d?d1=190.30mm 2.6 链速的确定 由公式v= znp 60×1000 得 v=14.37m/s

怎样把汽车优化设计

汽车设计 目录 前言 1、轿车车身 2、轿车造型与空气动力学 3、导流板与扰流板 5、汽车档风玻璃 6、汽车档风玻璃2 8、现代汽车的造型设计 9、轿车车身上的三大立柱车身外型设计的两对矛盾汽车风阻的五个组成部分汽车外形的演变 车身要紧构件 轿车的面漆 汽车的噪声 轿车的降噪措施 汽车的色彩 汽车内饰件的材料

内饰件与模块化 汽车木质内饰件 电动玻璃升降器 电动座椅 现代轿车座椅的要求 车顶盖 轿车的门 车用塑料燃油箱 轿车的仪表板总成 轿车的前照灯 以后的轿车大灯 汽车内的雨刮器 现代轿车音响 氙灯——一种新型的前大灯人机工程学与汽车设计 现代轿车设计概况 “优化设计”与轿车产品 材料疲劳——汽车安全的大敌塑料在汽车内的应用

镁合金在汽车内的应用车用材料的新进展 汽车铝质材料 纳米技术和汽车 车用钢板 新型车身材料 绿色浪潮与汽车 汽车信息化 网络汽车 蓝牙技术与汽车 汽车移动影院与信息化Wi-Fi与汽车 车载燃料电池 混合动力汽车 汽车保险杠 安全气囊 轿车内的安全带

前言 ....汽车作为一种商品,首先向人们展示的确实是它的外型,外型是否讨人喜爱直接关系到这款车子甚至汽车商的命运。在全球各大汽车企业中,汽车造型工作差不多上由公司的最高层直接领导。因此除了汽车公司自己的设计队伍,还有一些独立的、专业的汽车设计公司,如闻名意大利设计大师乔治亚罗的设计公司[ www.italdesign.it]、意大利博通设计室[ www.bertone.it] 等等。 ....好,先让我们看一下什么是汽车造型设计? ....汽车造型设计是依照汽车整体设计的多方面要求来塑造最理想的车身形状。汽车造型设计是汽车外部和车厢内部造型设计的总和。它不是对汽车的简单装饰,而是运用艺术的手法科学地表现汽车的功能、材料、工艺和结构特点。 ....汽车造型的目的是以其的美去吸引和打动观者,使其产生拥有这种车的欲望。汽车造型设计尽管是车身设计的最初步骤,是整车设计最初时期的一项综合构思,但却是决定产品命运的关键。汽车的造型已成为汽车产品竞争最有力的手段之一。 ....汽车造型设计需要你掌握哪些知识? ....汽车造型要紧涉及科学和艺术两大方面。设计师需要明白得车身结

汽车传动系参数的优化匹配研究(精)

汽车传动系参数的优化匹配研究 课题分析: 汽车的动力性、燃油经济性和排放特性是汽车的重要性能。如何在保证汽车具有良好动力性的同时尽量降低汽车的油耗并获得良好的排放特性,是汽车界需要解决的重大问题。传动系参数的优化匹配设计是解决该问题的主要措施之一。 汽车传动系参数的优化匹配设计是在汽车总质量、质量的轴荷分配、空阻及滚阻等量已确定的情况下,合理地设计和选择传动系参数,从而大幅提高匹配后汽车的动力性、燃油经济性和排放特性。 以往传动系统参数设计依靠大量的实验和反复测试完成,耗时长,费用高,计算机的广泛应用和新的计算方法的出现,使得以计算机模拟计算为基础的传动系设计可在新车的设计阶段就较准确地预测汽车的动力性、经济性和排放特性,经济且迅速。 目前国内围绕汽车传动系参数的设计和优化,主要在以下几个方面展开工作:①汽车传动系参数优化匹配设计评价指标的研究;②汽车传动系各部分数学模型的研究,特别是传动系各部分在非稳定工况下模型的研究;③按给定工况模式的模拟研究;④按实际路况随机模拟的研究;⑤传动系参数优化模型的研究;⑥模拟程序的开发和研究。 检索结果: 所属学科:车辆工程 中文关键字:汽车传动系参数匹配优化 英文关键字:Power train;Optimization;Transmission system; Parameter matching; 使用数据库:维普;中国期刊网;万方;Engineering village;ASME Digital Library 文摘: 维普: 检索条件: ((题名或关键词=汽车传动系)*(题名或关键词=参数))*(题名或关键词=优化)*全部期刊*年=1989-2008 汽车传动系统参数优化设计 1/1 【题名】汽车传动系统参数优化设计 【作者】赵卫兵王俊昌 【机构】安阳工学院,安阳455000 【刊名】机械设计与制造.2007(6).-11-13 【文摘】主要研究将优化理论引入到汽车传动系参数设计中,以实现汽车的发动机与传动系的最佳匹配,达到充分发挥汽车整体性能的目的。 汽车发动机与传动系优化匹配的仿真研究 【题名】汽车发动机与传动系优化匹配的仿真研究

中国巴哈大赛赛车底盘设计开题报告

中国巴哈大赛赛车底盘设计开题报告 1.选题背景 中国汽车工程学会巴哈大赛Baja SAE China ( 简称BSC大赛)是由中国汽车工程学会(SAE China,简称中汽协会)主办,在各院校间开展的小型越野赛车设计和制作竞赛。此项赛事起源于美国,是大学生方程式赛车的前身,适合各职业院校和本科低年级学生参与。竞赛包括多种静态与动态项目测试,静态项目包括技术检查,赛车设计,成本与制造,商业营销等。动态项目包括牵引力,绕桩,直线加速,操控性,耐力比赛等。2015年8月26日中国汽车工程协会在山东省潍坊市成功举办了第一届巴哈大赛,成为世界上第六个举办巴哈比赛的国家。 选题意义 中国的巴哈大赛起步较晚,仍处在一个起步阶段,国内参加参加比赛的多是职业院校,本科院校涉及较少,相关资料也比较匮乏。因此,本次我们团队的选题研究对本校的巴哈赛车的研究开发有一定的现实,可为日后参加巴哈大赛奠定一定的理论和实践基础。同时激发同学们对于汽车运动的爱好和学习兴趣,深入掌握汽车结构设计,制造,装配,调教维修,市场营销等多方面的专业知识和技能,提高我们的团队协作能力。通过这样与现实紧密贴合的选题研究,为我们以后进入汽车相关领域,积累了宝贵的经验。 2.国内外研究现状 巴哈大赛在国外起源较早,1976年就已开始举办,技术积累相

对深厚。在基础参数选择方面有了大量的实践经验,包括但不限于轴距的合理选择,车重的合理估计,轮辋轮胎选择,AISI 4130管件的加工工艺相对成熟。车辆各系同的轻量化改进。综合近几年国外参赛队伍的设计情况来看,轴距在60到64英寸(152.4到160公分),离地间隙选取为12到16英寸(30到40公分),整备质量在350到400磅(158.9到181.6千克),轮胎多选用22到25英寸的大尺寸越野轮胎。 长期的参赛经历,足够的资金投入,在CVT变速箱的改装方面,国外院校各有千秋。广泛采用四速CVT,最大车速在35英里/小时,通过测功机标定最大扭矩和相应转速。通过有限元分析对CVT变速箱进行轻量化改进。 车架设计方面,都选择桁架式车架,结合各自的设备进行应力分析,意图做到最大程度轻量化,并兼顾稳定性和耐用性。而且在车架顶梁结合处的弯曲度加工技术成熟。悬架系统由于赛事限制均采用双A臂独立悬架和弹簧阻尼系统。同样进行有限元分析,轻量化改进,以减轻簧下质量,提高稳定性,并简化其结构。转向系统采用机械转向结构,主要在于方向机的优化,相关机械零件的静平衡,动平衡计算。 而国内的巴哈大赛起步较晚,各参赛队伍水平参差不齐。主要是高职院校和大学低年级同学参加,主要设计工作依靠外包。但是基本已经实现传动系统的布置,变速器的改进,制动系统的优化布置。在车身车架设计方面目前主要致力于其稳定性,安全性,加强筋较多,

汽车动力传动系统参数优化匹配方法

1 机械传动汽车动力传动系统参数的优化通常包括发动机性能指标的优选,机械变速器传动比的优化和驱动桥速比的优化,以下分别阐述。 7.1汽车发动机性能指标的优选方法 在汽车设计中,发动机的初选通常有两种方法: 一种是从保持预期的最高车速初步选择发动机应有功率来选择的,发动机功率应大体上等于且不小于以最高车速行驶时行驶阻力功率之和;一种是根据现有的汽车统计数据初步估计汽车比功率来确定发动机应有的功率。 在初步选定发动机功率之后,还需要进一步分析计算汽车动力性和燃料经济性,最终确定发动机性能指标(如发动机最大转矩,最大转矩点转速等)。 通常在给定汽车底盘参数、整车性能要求(如最大爬坡度max i ,最高车速m ax V ,正常行驶车速下百公里油耗Q ,原地起步加速时间t 等),以及车辆经常运行工况条件下,就可以选择发动机的最大转矩T emax ,及其转矩n M ,最大功率max e P 及其转速P n ,发动机最低油耗率min e g 和发动机排量h V 。 在优选发动机时常常遇到两种情况:一种情况是有几个类型的发动机可供选择,在整车底盘参数和车辆经常行驶工况条件确定时,这属于车辆动力传动系合理匹配问题,可用汽车动力传动系统最优匹配评价指标来处理。 第二种情况是根据整车性能要求和汽车经常行驶工况条件来对发动机性能提出要求,作为发动机选型或设计的依据,而这时发动机性能是未知的。 对于计划研制或未知性能特性指标的发动机性能可看作为发动机设计参数和运行参数的函数,此时,外特性和单位小时燃油消耗率可利用表示发动机的简化模型。 优选汽车发动机参数的方法: (1) 目标函数F (x ) 目标函数为汽车行驶的能量效率最高。 (2) 设计变量X ],,,,[max h M p e em V n n P T X

发动机传动系统动力总成优化设计

发动机传动系统动力总成优化设计 摘要:发动机就相当于汽车的心脏,发动机与传动系统的匹配研究一直是关于 汽车行业的重大研究方向,二者之间的配合程度,直接影响整个车的动力和燃油 经济性。在车的布置设计中,对发动机传动系统传动轴角度的校核是一项重要工作。如果发动机传动轴初始工作角度选取不当,会使工作夹角很容易超出合理范围,造成传动轴零件的损坏,降低其使用寿命,使得整车的平顺变差。所以汽车 发动机与传动系的合理匹配,要根据车辆的使用条件和要求,通过改进发动机、 选择适当的传动系参数,最后使发动机的经常工作区尽量与理想工作区相吻合, 以达到整车动力性和燃油经济性的改善。为保证传动轴设计寿命和整车性能,在设计初期就应对各传动轴夹角进行校核。 关键词:发动机;传动轴夹角;参数化设计;动力优化 引言: 动力传动系统的弯曲共振是导致传动系统或动力总成的失效及车内振动噪声 大的重要原因之一。系统的约束方式和状态对其固有频率和振型有重要影响。针 对某轻卡在高速行驶工况出现的动力总成附件失效问题进行试验诊断,确定为动 力传动系统弯曲共振导致。通过研究不同约束方式对动力转动系弯曲模态的影响,建立最符合整车实际运行状态的弯曲模态识别步骤及方法。悬置系统设计理论人 体对低频振动比较敏感,在车辆前期开发过程中,对整车怠速工况下方向盘及座 椅的振动进行预估并进行优化控制对于整车厂尤为重要,也是悬置系统前期开发 设计时主要考虑的问题。 1 整车动力性能评价 汽车的动力性是指汽车在良好路面上直线行驶时由汽车受到的纵向外力决定的、所能达到的平均行驶速度。动力性通常是汽车各种性能中最基本、最重要性能,主要由汽车的最高车速和汽车的加速时间以及汽车的最大爬坡度三方面的指 标来进行评价。最高车速是指在水平良好的路面(混凝土或沥青)上汽车能达到 的最高行驶车速;加速时间表示汽车的加速能力,汽车的上坡能力是用满载(或 某一载质量)时汽车在良好的路面上的最大爬坡度表示的。 2.悬置系统数学模型 发动机悬置系统可简化模型为:通过三个或四个三维的粘—弹性元件悬置支 承在车架上,具有六个自由度。建立动力总成质心坐标系,X轴与发动机曲轴线 平行并指向发动机前端,Z轴与气缸中轴线平行并垂直向上,Y轴按右手定则确定。动力总成空间刚体的6个自由度为沿动力总成质心坐标系x、y、z轴3个方 向的平动及绕x、y、z轴的转动角θx、θy、θz利用动力总成质量、转动惯量、质 心位置及悬置刚度参数,可求得系统的模态频率及振型。 2.1能量解耦理论动力总成 六自由度之间的振动一般是耦合的,施加在动力总成上的激励会激起系统的 多个模态,使发动机的振幅加大,共振频率带变宽。用系统在各阶振动时各自由 度方向振动能量占该阶振动总能量的百分比作为系统模态解耦的评价指标,用矩 阵形式表示,可得到系统的能量分布矩阵。系统以第j阶模态频率振动时的最大 能量为此值越大,代表系统的解耦程度就越高,有利于悬置系统获得良好的 隔振性能。 2.2弹性轴-扭矩轴理论 扭矩轴为当一扭矩作用在曲轴时,无约束刚体的实际旋转轴,扭矩轴的方向

车辆工程 汽车优化设计论文

优化设计在汽车中的应用 长安大学汽车学院 车辆工程三班

摘要 20世纪90年代以来,汽车行业的竞争已从单一的性能竞争转向性能、环保、节能等多元综合竞争。安全、舒适、节能环保是二十一世纪汽车工程领域具有重大意义的研究热点。 随着国内汽车研发水平的提升,优化设计已经逐步应用到整车开发过程当中。本文结合在整车开发中的优化设计经验,对几种不同的优化设计方法进行简单介绍,从而使大家对优化设计有更直观的认识。

关键词 汽车优化设计实践 目录 一、摘要 (1) 二、现代最优化设计简介 (3) 三、优化设计在汽车设计中的应用 (4) 四、CAE在汽车冲压件生产工艺中的优化应用 (5) 五、优化设计在汽车零部件轻量化中的应用 (6) 六、总结 (6)

一、现代最优化设计简介 1.1最优化设计概念及最优值 最优化设计是在现代计算机广泛应用的基础上发展起来的一项新技术,是根据最优化原理和方法,综合各方面的因索,以人机配合方式或用自动探索的方式,在计算机上进行的半自动或自动设计,以选出在现有工 程条件下的最好设计方案的一种现代设计方法实践证明,最优化设计是保证产品具有优良的性能,减轻自重或体积,降低工程造价的一种有效设计方法,同时也可使设计者从大量繁琐和重复的计算工作中解脱出来,使 之有更多的精力从事创造性的设计,并大大提高设计效率。最优化设计方法己陆续应用到建筑结构、化工、冶金、铁路、航空、造船、机床、汽车、自动控制系统、电力系统以及电机、电器等工程设计领域,并取得了显著效果。 设计上的“最优值”是指在一定条件(各种设计因素)影响下所能得到的最佳设计值。最优值是一个相对的概念。它不同于数学上的极值,但有很多情况下可以用最大值或最小值来表示。概括起来,最优化设计工作包 括以下两部分内容:(1)将设计问题的物理模型转变为数学模型。建立 数学模型时要选取设计变量,列出目标函数,给出约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式;(2)采用适当的最优化方法,求解数学模型。可归结为在给定的条件(例如约束条件)下求目标函数的极值或最优值问题。 1.2设计方法的分类 在工程优化原理和方法的应用领域,主要是优化设计、优化试验和优化控制三个方面。根据优化问题的不同特征,可有不同的分类方法。 (1)按有无约束分:无约束优化问题和有约束优化问题; (2)按设计变量的性质分:连续变量、离散变量和带参变量;

汽车的优化设计整理

汽车造型 1.汽车造型和汽车设计的关系?那个包括范围广? 造型强调的是成型,设计强调的是构思。汽车造型是汽车设计的先行环节之一,也是汽车设计的重要组成部分。联系:产品的实用性和审美性融会贯通,通过熟练的技艺体现在产品形态上。造型和设计是一对孪生儿,由于产品有实用与精神的双重作用,在产品开发过程中密不可分。创造性是它们共同的精髓。 汽车设计涵盖范围广。 2.汽车造型发展阶段?推动发展的原因? 从整体来看,一百多年来,汽车造型的的变化主要经历了以下几个阶段:马车型汽车,箱型汽车,甲壳虫型汽车,流线型汽车,船型汽车,楔型汽车到现在的复合型汽车; 确定汽车外形有三个基本要素,即机械工程学、人机工程学和空气动力学 3.著名汽车设计公司,大师? 宾尼法利那(Pinifarina)、意大利设计公司(ITALDESlGN)、博通(Bertone)、意迪雅(I.DE.A);乔治亚罗(Qugetto Giugiaro)、Nucc Bertone、波尔舍、 4..汽车造型工作方法流程 产品规划、二维设计、三维设计、样车试制 5.为什么要制造缩小比例模型?作用(4个作用) 1)是造型构思的延续2)比效果图的三维空间感更强3)是模型的前期试验品4)是选型的重要依据 6.车身主要曲线曲面在汽车造型哪个阶段确定?为什么? 7.什么方法时汽车获得动感? 使汽车的外形与运动物体的外形相像;使汽车具有活泼流畅的线条和光顺的车身表面;强调

水平划分线和削弱垂直划分线;运用不同色彩或不同质感的对比方法。 8.汽车色彩三要素? 色相、明度、纯度 9.使配色更好用哪个配色系统?怎么使色彩搭配协调的配色方法? 奥斯特华徳系统(配色系统有孟歇尔系统、奥斯特华徳系统、CIE系统);使色彩搭配协调的方法有:减少一种色彩的面积;加入白色,使色彩变淡;加入黑灰色,使色彩变暗,用白、灰、黑、金、银等色镶边,作调和过渡;两种色彩交接处用邻接色(在色相环或色度图中亮色之间的色彩)隔开

汽车动力传动系统参数优化匹配方法.

机械传动汽车动力传动系统参数的优化通常包括发动机性能指标的优选,机械变速器传动比的优化和驱动桥速比的优化,以下分别阐述。 7.1汽车发动机性能指标的优选方法 在汽车设计中,发动机的初选通常有两种方法:一种是从保持预期的最高车速初步选择发动机应有功率来选择的,发动机功率应大体上等于且不小于以最高车速行驶时行驶阻力功率之和;一种是根据现有的汽车统计数据初步估计汽车比功率来确定发动机应有的功率。 在初步选定发动机功率之后,还需要进一步分析计算汽车动力性和燃料经济性,最终确定发动机性能指标(如发动机最大转矩,最大转矩点转速等)。通常在给定汽车底盘参数、整车性能要求(如最大爬坡度imax,最高车速Vmax,正常行驶车速下百公里油耗Q,原地起步加速时间t等),以及车辆经常运行工况条件下,就可以选择发动机的最大转矩Temax,及其转矩nM,最大功率Pemax及其转速nP,发动机最低油耗率gemin和发动机排量Vh。 在优选发动机时常常遇到两种情况:一种情况是有几个类型的发动机可供选择,在整车底盘参数和车辆经常行驶工况条件确定时,这属于车辆动力传动系合理匹配问题,可用汽车动力传动系统最优匹配评价指标来处理。 第二种情况是根据整车性能要求和汽车经常行驶工况条件来对发动机性能提出要求,作为发动机选型或设计的依据,而这时发动机性能是未知的。 对于计划研制或未知性能特性指标的发动机性能可看作为发动机设计参数和运行参数的函数,此时,外特性和单位小时燃油消耗率可利用表示发动机的简化模型。 优选汽车发动机参数的方法: (1)目标函数F(x) 目标函数为汽车行驶的能量效率最高。 (2)设计变量X X [Tem,Pemax,np,nM,Vh] (3)约束条件 1)发动机性能指标的要求 发动机转矩适应性要求: 1.1≤Tem/TP≤1.3 转矩适应性系数也可参考同级发动机试验值选取。发动机转速适应性要求: 1.4≤np/nM≤ 2.0 如果nM取值过高,使np/nM<1.4,则可能使直接档稳定车速偏高,汽车低速行驶稳定性变差,换档次数增多。 2)汽车动力性要求 最大爬坡度要求:

大学生方程式赛车设计(传动及最终传动系统设计)

大学生方程式赛车设计(传动及最终传动系统设计) 摘要 汽车传动系统的基本功用是将发动机输出的动力传递给驱动车轮,传动系统对整车的动力性和设计中一个重要的组成部分。本文主要研究的是FSAE方程式赛车传动系统的燃油经济性有很大的影响,故传动系统参数的确定是汽车设计,基于我院LS Racing车队三年来的比赛经验和设计理念,对赛车的传动系统进行优化和改造。本赛车选用的是铃木CBRR600四缸发动机,差速器是选用德雷克斯勒限滑差速器(Drexler),根据发动机的特性参数、档位比和差速器的工作原理,选择合适的链传动比,计算链条的参数,设计差速器固定支架,合理的布置整个传动系统。针对传动系统各组成部件,采用ANSYS有限元分析软件对零部件进行强度校核,优化结构使其达到质量轻、强度高的目标。 关键字:FSAE,差速器选型,德雷克斯勒限滑差速器,传动系 I

Formula SAE of china (transmission and final drive system) ABSTRACT The basic function of auto transmission system is transfer engine power to drive wheels .The transmission system has a great influence in dynamic performance .So the parameter of drive system is one of the important part in automobile design .The article mainly research is drive system design of FSAE racing car. The car drive system optimization and transformation is based on LS Racing team competition experience and design concept in the past three years .The racing car engine is choose SUZUKI GSX-R600 have four cylinder engine .The differential is choose Drexler limited slip differential. According to the characteristics of the engine parameters, gear ratio and differential working principle ,that choose the right chain transmission ratio, calculation chain parameters, design the differential fixed bracket, reasonable arrangement of the drive system. Aimed at the transmission system components, use the ANSYS finite element analysis to check intensity of the parts, that optimize structure enables it to achieve light weight, high strength goal. KEY WORD:FSAE, Differential selection, Drexler limited slip differential, the ANSYS finite element analysis

传动系统参数优化

汽车传动系统结构及参数优化发展 摘要:本文主要讲述汽车传动系组成及功用,故障检测以及传动系优化设计研究。系统的讲述了传动系的组成及离合器、变速器、万向节传动装置、驱动桥常见故障检测。同时综述我国汽车研究者在汽车传动系参数优化设计研究方面的进展,分析灿在的问题,并对今后的研究和发展提出建议。 关键词:传动系、故障检测、参数优化、发展 中图分类号:U472.42 文献标识码:A Auto transmission system structure and parameters optimization Abstract:This article mainly tells the car drive train composition and the function, fault detection and drivetrain optimization design research. System about the transmission of composition and the clutch, transmission, universal transmission device, drive axle common fault detection. Review at the same time our country automobile researchers in automotive transmission system parameter optimization design research progress, shimmering in the analysis of problems, and puts forward Suggestions for future research and development. Keywords: drive train, fault detection, parameter optimization ,development 1汽车传动系的组成和功用 称为汽车的传动系。它应保证汽车具有在各种行驶条件下所必需的牵引力、车速,以及保证牵引力与车速之间协调变化等功能,使汽车具有良好的动力性和燃油经济性;还应保证汽车能倒车,以及左、右驱动轮能适应差速要求,并使动力传递能根据需要而平稳地结合或彻底、迅速地分离。传动系包括离合器、变速器、传动轴、主减速器、差速器及半轴等部分。汽车发动机与驱动轮之间的动力传递装置称为汽车的传动系。 汽车传动系的组成和布置形式是随发动机的类型、安装位置,以及汽车用途的不同而变化的。 传动系的布置型式机械式传动系常见布置型式主要与发动机的位置及汽车的驱动型式有关。有六种可分为:前置后驱、后置后驱、前置前驱、野汽车的传动系、中置后驱、四轮驱动 发动机的动力经离合器、变速器、万向节、传动轴、主减速器、差速器、半轴传给后面的驱动轮。并与发动机配合,保证汽车在不同条件下能正常行驶。为了适应汽车行驶的不同要求,传动系应具有减速增扭、变速、使汽车倒退、中断动力传递、使两侧驱动轮差速旋转等具体作用。 各部功用 离合器:1、离合器可使汽车发动机与传动系逐渐结合,保证汽车平稳起步。2,离合器可暂时切断发动机与传动系的联系,便于发动机的起动和变速器的换挡,以保证传动系换挡时工作平顺。3,离合器还能限制所传递的转矩,防止传动系过载。 变速器:1,变速变矩。2,实现汽车倒驶。3,必要时中断动力传输。4,实现动力输出。万向传动装置: 在汽车上任何一对轴间夹角和相对位置经常发生变化的转轴之间传递动力。

中国巴哈大赛赛车动力匹配设计

中国巴哈大赛动力匹配设计 摘要:此次毕业设计是要对赛车进行动力匹配设计及优化,并指出了研究的目的和意义。首先在详细了解2017年中国汽车工程学会巴哈大赛规则后,确定了赛车发动机的选型原则。其次通过讨论,确定了巴哈赛车发动机的主要参数,进而完成了后期的计算,并运用caita三维制图软件结合参数进行3D图的绘制。最后在老师的指导下,协同小组成员制作一辆巴哈赛车。 关键词:巴哈,设计及优化,选型,主要参数,赛车制作

Chassis design of Baja SAE China racing car Abstract:The graduation design is to design and optimize the dynamic matching of the car, and pointed out the purpose and significance of the study. First in a detailed understanding of the 2017 China Automotive Engineering Society Baja rules, to determine the principle of selection of the car engine. Secondly, through the discussion, the main parameters of the Baja Racing engine are determined, and the later calculation is completed. The 3D drawing of the graph is carried out by using caita three-dimensional drawing software. Finally, under the guidance of the teacher, the collaboration team members to produce a Baha car. Keywords:Baja; Chassis design and optimization; Selection;Main parameter; Racing production

相关文档
最新文档