中文名称:频谱分析仪

中文名称:频谱分析仪
中文名称:频谱分析仪

频谱分析仪的使用方法

频谱分析仪的使用方法(第一页) 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不

频谱分析仪使用指南

Spectrum Analyzer Basics 频谱分析仪是通用的多功能测量仪器。例如:频谱分析仪可以对普通发射机进行多项测量,如频率、功率、失真、增益和噪声特性。 功能范围(Functional Areas ) 频谱分析仪的前面板控制分成几组,包含下列功能:频率扫描宽度和幅度(FREQUENCY,SPAN&LITUDE)键以及与此有关的软件菜单可设置频谱仪的三个基本功能。 仪器状态(INSTRUMENT STATE ):功能通常影响整个频谱仪的状态,而不仅是一个功能。 标记(MARKER)功能:根据频谱仪的显示迹线读出频率和幅度 提供信号分析的能力。 控制(CONTRIL)功能:允许调节频谱分析的带宽,扫描时间和 显示。 数字(DATA)键:允许变更激活功能的数值。 窗口(WINDOWS)键:打开窗口显示模式,允许窗口转换,控 制区域扫宽和区域位置。 基本功能(Fundamental Function) 频谱分析仪上有三种基本功能。通过设置中心频率,频率扫宽或者起始和终止频率,操作者可控制信号在频幕上的水平位置。信号的垂直位置由参考电平控制。一旦按下某个键,其

功能就变成了激活功能。与这些功能有关的量值可通过数据输入控制进行改变。 Sets the Center Frequency Adjusts the Span Peaks Signal Amplitude to 频率键(FREQUENCY) 按下频率( FREQUENCY)键,在频幕左侧显示CENTER 表示中心频率功能有效。中心频率(CENTERFREQ)软键标记发亮表示中心频率功能有效。激活功能框为荧屏上的长方形空间,其内部显示中心频率信息。出现在功能框中的数值可通过旋钮,步进键或数字/单位键改变。 频率扫宽键(SPAN) 按下频率扫宽 (SPAN)键, (SPAN)显示在活动功能框中,(SPAN)软键标记发亮,表明频率扫宽功能有效。频率扫宽的大小可通过旋钮,步进键或数字键/单位键改变。 幅度键(AMPLITUDE)按下 按下幅度键(AMPLITUDE)参考电平(REFLEVEL)0dbm显示在 激活功能框中,( REFLEVEL)软键标记发亮,表明参考电平功

信号处理实验七音频频谱分析仪设计与实现

哈尔滨工程大学 实验报告 实验名称:离散时间滤波器设计 班级:电子信息工程4班 学号: 姓名: 实验时间:2016年10月31日18:30 成绩:________________________________ 指导教师:栾晓明 实验室名称:数字信号处理实验室哈尔滨工程大学实验室与资产管理处制

实验七音频频谱分析仪设计与实现 一、 实验原理 MATLAB 是一个数据分析和处理功能十分强大的工程实用软件,其数据采集工具箱为实现数据的输入和输出提供了十分方便的函数命令。本实验要求基于声卡和MTLAB 实现音频信号频谱分析仪的设计原理与实现,功能包括: (1)音频信号输入,从声卡输入、从WAV 文件输入、从标准信号发生器输入; (2)信号波形分析,包括幅值、频率、周期、相位的估计、以及统计量峰值、均值、均方值和方差的计算。 (3)信号频谱分析,频率、周期的统计,同行显示幅值谱、相位谱、实频谱、虚频谱和功率谱的曲线。 1、频率(周期)检测 对周期信号来说,可以用时域波形分析来确定信号的周期,也就是计算相邻的两个信号波峰的时间差、或过零点的时间差。这里采用过零点(ti)的时间差T(周期)。频率即为f = 1/T ,由于能够求得多个T 值(ti 有多个),故采用它们的平均值作为周期的估计值。 2、幅值检测 在一个周期内,求出信号最大值ymax 与最小值ymin 的差的一半,即A = (ymax - ymin)/2,同样,也会求出多个A 值,但第1个A 值对应的ymax 和ymin 不是在一个周期内搜索得到的,故以除第1个以外的A 值的平均作为幅值的估计值。 3、相位检测 采用过零法,即通过判断与同频零相位信号过零点时刻,计算其时间差,然后换成相应的相位差。φ=2π(1-ti/T),{x}表示x 的小数部分,同样,以φ的平均值作为相位的估计值。 频率、幅值和相位估计的流程如图1所示。 4、数字信号统计量估计 (1) 峰值P 的估计 在样本数据x 中找出最大值与最小值,其差值为双峰值,双峰值的一半即为峰值。 P=0.5[max(yi)-min(yi)] (2)均值估计 i N i y N y E ∑== 1 )( 式中,N 为样本容量,下同。 (3) 均方值估计 () 20 2 1 ∑== N i i y N y E (4) 方差估计 ∑=-=N i i Y E y N y D 0 2))((1)(

频谱分析仪基础知识性能指标和实用技巧

频谱分析仪基础知识性能指标及实用技巧 频谱分析仪是用来显示频域幅度的仪器,在射频领域有“射频万用表”的美称。在射频领域,传统的万用表已经不能有效测量信号的幅度,示波器测量频率很高的信号也比较困难,而这正是频谱分析仪的强项。本讲从频谱分析仪的种类与应用入手,介绍频谱分析仪的基本性能指标、操作要点和使用方法,供初级工程师入门学习;同时深入总结频谱分析仪的实用技巧,对频谱分析仪的常见问题以Q/A的形式进行归纳,帮助高级射频的工程师和爱好者进一步提高。 频谱分析仪的种类与应用 频谱分析仪主要用于显示频域输入信号的频谱特性,依据信号方式的差异分为即时频谱分析仪和扫描调谐频谱分析仪两种。完成频谱分析有扫频式和FFT两种方式:FFT适合于窄分析带宽,快速测量场合;扫频方式适合于宽频带分析场合。 即时频谱分析仪可在同一时间显示频域的信号振幅,其工作原理是针对不同的频率信号设置相对应的滤波器与检知器,并经由同步多工扫瞄器将信号输出至萤幕,优点在于能够显示周期性杂散波的瞬时反应,但缺点是价格昂贵,且频宽范围、滤波器的数目与最大多工交换时间都将对其性能表现造成限制。 扫瞄调谐频谱分析仪是最常用的频谱分析仪类型,它的基本结构与超外差式器类似,主要工作原理是输入信号透过衰减器直接加入混波器中,可调变的本地振荡器经由与CRT萤幕同步的扫瞄产生器产生随时间作线性变化的振荡频率,再将混波器与输入信号混波降频后的中频信号放大后、滤波与检波传送至CRT萤幕,因此CRT萤幕的纵轴将显示信号振幅与频率的相对关系。 基于快速傅立叶转换(FFT)的频谱分析仪透过傅立叶运算将被测信号分解成分立的频率分量,进而达到与传统频谱分析仪同样的结果。新型的频谱分析仪采用数位,直接由类比/数位转换器(ADC)对输入信号取样,再经傅立叶运算处理后而得到频谱分布图。 频谱分析仪透过频域对信号进行分析,广泛应用于监测电磁环境、无线电频谱监测、电子产品电磁兼容测量、无线电发射机发射特性、信号源输出信号品质、反无线窃听器等领域,是从事电子产品研发、生产、检验的常用工具,特别针对无线通讯信号的测量更是必要工具。另外,由于频谱仪具有图示化射频信号的能力,频谱图可以帮助我们了解信号的特性和类型,有助于最终了解信号的调制方式和机的类型。在军事领域,频谱仪在电子对抗和频谱监测中

matlab频谱分析仪

频谱分析仪 摘要频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,是一种多用途的电子测量仪器。随着软硬件技术的发展,仪器的智能化与虚拟化已成为未来实验室及研究机构的发展方向。虚拟仪器技术的优势在于可由用户定义自己的专用仪器系统,且功能灵活,很容易构建,所以应用面极为广泛。本文介绍了一种使用GUI工具箱用matlab实现的简易虚拟频谱分析仪的设计方法。 关键词matlab,频谱分析仪,时域分析,频域分析

目录 1概述 (3) 2技术路线 (4) 3实现方法 (5) 3.1搭建GUI界面 (5) 3.2信号输入 (6) 3.2.1选择信号输入 (6) 3.2.2声卡输入 (7) 3.2.3读取wav文件 (7) 3.2.4信号发生器输入 (7) 3.3时域分析 (8) 3.4频域分析 (9) 3.5仿真 (10) 3.5.1声卡输入 (10) 3.5.2读取wav文件 (10) 3.5.3信号发生器 (11) 4存在的问题 (15) 5致谢...................................................................................................... 错误!未定义书签。参考文献 (15)

1概述 MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件。可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。图形用户界面(Graphical User Interface,简称GUI,又称图形用户接口)是指采用图形方式显示的计算机操作用户界面。与早期计算机使用的命令行界面相比,图形界面对于用户来说在视觉上更易于接受。MATLAB自带了强大的GUl工具[1]。在本文中,将利用MATLAB的GUI工具,设计出数字频谱分析仪。 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。它又可称为频域示波器、跟踪示波器、分析示波器、谐波分析器、频率特性分析仪或傅里叶分析仪等。现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1赫兹以下的甚低频到亚毫米波段的全部无线电频段的电信号[2]。目前已经有许多较成熟的频谱分析软件,如SpectraLAB、RSAVu、dBFA等[3]。本文将给出的则是通过MATLAB软件实现的基于FFT的数字频谱分析仪。 FFT(Fast Fourier Transformation),即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步[4]。 通过此次设计,能进一步掌握MATLAB软件开发过程的基本理论、基本知识和基本技能,熟悉基于MATLAB平台的若干信号处理系统开发及调试方法,且成本低,易于实现,容易修改,并可以进行仿真。该设计的进行可以为我们以后的学习工作奠定一定的基础。

安立频谱仪使用说明

安立频谱仪介绍

安立频谱仪使用章程 频谱分析仪的正面图如下: 下面介绍这些按键的功能: 第三章按键功能 硬键 硬键是指在面板上用黑色和蓝色标注的按键,他们有着特殊的功能。功能硬键有四种,他们位于下端,而右端则有17个硬键,这17个硬键中有12个硬键有着双重的功能,这就要看当前所使用的模式而决定它们的功能了。 功能硬键 模式 按一下“MODE(模式)”键,然后用“UP/DOWN(上下)”键来选 择所要操作的模式,然后再按“ENTER(回车)”键来确认所选的模 式。 FREQ/SPAN (频率/频宽)

按一下“FREQ/SPAN(频率/频宽)”键后便会出现“CENTER(中心)、 FREQUENCY(频率)、SPAN(频宽)、START(开始频率)和STOP(截 至频率)的选项。我们可以通过相应的软键来选择相应的功能。AMPLITUDE (幅度) 按一下“AMPLITUDE(幅度)”键后便会出现“REFLEVEL(参考电平)、 SCALE(刻度)、ATTEN(衰减)、REF LEVEL OFFSET(参考电平偏移)、 和UNITS(单位)”选项,我们可以通过相应的软键来选择相应的功能。BW/SWEEP (带宽/扫描) 按一下“BW/SWEEP(带宽/扫描)”键后便会出现“RBW、VBW、 MAXHOLD(保持最大值)、A VERAGE(平均值)和DETECTION(检 测)”选项,我们可以通过相应的软键来选择相应的功能。KEYPAD HARD KEYS (面板上的硬键) 下面的这些按键是用黑色字体标注的 0~9 是当需要进行测量或修改数据时用来输入数据的。 +/- 这个键可以使被操作的数值的符号发生变化即正负变化。 . 入小数点。 ESCAPE CLEAR 这个键的功能是退出当前操作或清楚显示。如果您在进行参数修改时 按一下这个键,则该参数值只保存最后一次操作的有效值,如果再按 一次该键则关闭该参数的设置窗口。再正常的前向移动(就是进入下 层目录)中,按一下这个键则返回上层目录。如果在开该仪器的时候 一直按下该键则仪器将恢复出厂时的设置。 UP/DOWN ARROWS

Adobe-Audition-系列教程(二):频谱分析仪

Adobe Audition系列教程(二):频谱分析仪 频谱分析仪是研究信号频谱特征的仪器,在电子技术一日千里的今天,是研究、开发、调试维修中的有力武器。现代频谱分析仪都趋向于智能化,虚拟仪器技术广泛应用,有些就是以专用的计算机系统为核心设计的。其结果是结构大大简化、性能飞速提高。当然专业的频谱分析仪就比示波器更加昂贵了,业余爱好者更难用上。不过不必灰心,我们可以充分利用AdobeAudition的频谱分析功能,让你拥有精确频谱分析仪的美梦成真!? 1. 频谱显示模式? Adobe Audition本身有一种“频谱显示”模式。先打开一段波形,或用《妙用Adobe Audition:数字存储示波器》一文介绍的方法录制一段波形,即可进行频谱分析。这里我们新建一段20秒的对数扫频信号(本文大多选用直接建立的波形,以便了解信号原始波形的标准频谱特征),然后选择“View=>Spectral View”(视图=>频谱),如图1,或点击快捷工具栏的“Toggle between Spectral and Waveform views”(切换频谱视图/波形视图)按扭,即可将波形以频谱显示的方式显示出来,如图2。扫频的频谱显示见图3。 图1

图2 图3 可以看到,横轴为时间,纵轴为频率指示。每个时刻对应的波形频谱都被显示出来了,可以看到扫描速度是指数增加的,即将频率轴取对数时扫描速度是线性的。如图中光标处18秒处频谱指示约11KHz。实际上频谱指示的颜色是代表频谱能量的高低的,颜色从深蓝到红再到黄,指示谱线电平由低到高的变化。这实际上跟地图的地形鸟瞰显示是比较相似的,看图4频谱复杂变化的声音频谱就更容易理解这点了。 图4

Adobe-Audition-系列教程(二):频谱分析仪

AdobeAudition系列教程(二):频谱分析仪 频谱分析仪是研究信号频谱特征的仪器,在电子技术一日千里的今天,是研究、开发、调试维修中的有力武器。现代频谱分析仪都趋向于智能化,虚拟仪器技术广泛应用,有些就是以专用的计算机系统为核心设计的。其结果是结构大大简化、性能飞速提高。当然专业的频谱分析仪就比示波器更加昂贵了,业余爱好者更难用上。不过不必灰心,我们可以充分利用AdobeAudition的频谱分析功能,让你拥有精确频谱分析仪的美梦成真! 1. 频谱显示模式 AdobeAudition本身有一种“频谱显示”模式。先打开一段波形,或用《妙用Adobe Audition:数字存储示波器》一文介绍的方法录制一段波形,即可进行频谱分析。这里我们新建一段20秒的对数扫频信号(本文大多选用直接建立的波形,以便了解信号原始波形的标准频谱特征),然后选择“View=>Spe ctral View”(视图=>频谱),如图1,或点击快捷工具栏的“Toggle between Spectral and Waveform views”(切换频谱视图/波形视图)按扭,即可将波形以频谱显示的方式显示出来,如图2。扫频的频谱显示见图3。 图1

图2 图3 可以看到,横轴为时间,纵轴为频率指示。每个时刻对应的波形频谱都被显示出来了,可以看到扫描速度是指数增加的,即将频率轴取对数时扫描速度是线性的。如图中光标处18秒处频谱指示约11KHz。实际上频谱指示的颜色是代表频谱能量的高低的,颜色从深蓝到红再到黄,指示谱线电平由低到高的变化。这实际上跟地图的地形鸟瞰显示是比较相似的,看图4频谱复杂变化的声音频谱就更容易理解这点了。

频谱仪测试时几个重要参数的设置

- 49 - 频谱仪测试时几个重要参数的设置 冯菊香 (玉林师范学院,广西 玉林 537000) 【摘 要】频谱仪的最佳工作状态是由诸多因素、参数决定的,而各种参数之间又相互关联,因此在设置频谱仪时需要统筹考虑。文章从频谱仪的基本原理出发,对输入衰减、前置放大、混频、分辨率带宽、视频带宽、扫频宽度和扫描时间等参数作了重点介绍,并就它们之间的最佳工作状态关系设置进行了阐述。 【关键词】频谱仪;分辨率带宽;视频带宽;扫频宽度 【中图分类号】TM935.21 【文献标识码】A 【文章编号】1008-1151(2009)10-0049-02 频谱分析仪是信号分析处理中常用的仪器设备,它不仅 用于测量各种信号的频谱,而且还可测量功率、失真、增益 和噪声特性等。其覆盖的频率范围可达40GHz甚至更高,因而 被广泛用于所有的无线或有线通信应用中,包括开发、生产、 安装与维护等。 从工作原理上看,频谱分析仪可以分为模拟式与数字式 两大类。数字式频谱分析仪主要用于超低频或低频段,其中 最有代表性的为傅立叶分析仪。模拟式频谱分析仪根据使用 滤波器的不同,又分为带通滤波器频谱分析仪与外差式扫频 频谱分析仪。 (一)频谱仪的基本原理 频谱分析仪的基本电路是超外差接收机,亦即利用超过 输入信号频率的本地振荡频率通过混频器获得差频输出。频 谱仪显示屏的水平坐标为频率轴,垂直坐标为功率轴,主要 用于观测和记录某个指定频率段内的载波频谱。其基本原理 如图1: 图1 频谱分析仪基本原理框图 信号的流程是:射频信号RF 接入频谱仪,经过前端的衰 减器和放大器,达到频谱仪的量程电平指标后,再经过混频 器,通过与本振信号的和频或差频而产生中频频率,然后, 通过中频带通滤波器和检波器峰值检波后的信号,再经过视 频滤波器滤波,经由A/D 转换后显示出来。由于本振电路的振 荡频率随着时间变化,因此频谱分析仪在不同的时间接收的 频率是不同的。当本振振荡器的频率随着时间进行扫描时, 屏幕上就显示出被测信号在不同频率上的电压包络,从而得 到被测信号的频谱。 (二)频谱仪的几个重要参数分析 用频谱分析仪对电信号进行测量时,要充分发挥频谱仪 的性能,尽可能地减少测量误差,显示其巨大的优越性,首 先必须根据所测的信号特点来设定频谱仪的衰减器、分辨率 带宽、视频带宽和扫描宽度(或时间)等,才可能使频谱仪 处于最佳工作状态。 1.合理使用输入衰减器和前置放大器 为了防止高电平输入信号对混频器产生的非线性失真,各种不同型号和不同类型的频谱仪,在仪器内部都设有输入衰减器,以此来选择最佳的混频电平。输入信号的电平不随衰减增加而下降,这是因为每当衰减降低加到检波器的信号电平10dB时,中放(IF)增益同时增加10dB来补偿这个损失,其结果使仪表显示的信号幅度保持不变。但是,噪声信号受到放大器的影响很大,其电平被放大,增加了10dB。既然内部噪声主要由中放第一级产生,因而输入衰减器不影响内部噪声电平。但是,输入衰减器影响到混频器的信号电平,并降低信噪比。也就是说,衰减器的衰减量每增加10dB,频谱仪显示的噪声电平就增加10dB。这样,要提高频谱分析仪的灵敏度就需要将衰减设置得尽可能小,降低噪声电平的值,使得信号不被噪声淹没。 使用前置放大器可以提高RF输入信号的信噪比,在测量小信号时,用前置放大器配合频谱仪的测量是非常有帮助的,特别是对卫星信号下行链路的弱信号进行检测时,需要加前置放大器改善系统的接收效果,否则,信号将很难看到或者根本看不到。但是,使用前置放大器时需要考虑两个重要的因素: 噪声值和增益。接收到的信号强度已经包含了放大器的增益,因此在计算信号的实际强度时,需要将天线增益、放大器增益以及监测系统的其它增益或损耗均排除掉,才能 够得到信号的实际强度。前置放大器有内部和外部之分,内 部前置放大器需要选件,工作频率范围一般为3GHz;外部前置放大器可根据待监测的频率范围,选择相应的放大器,放大器的增益要足够大,以便于监测。 2.最佳混频电平 混频器是频谱仪的前端电路,如果工作不正常,频谱仪自身就会产生多种频率成份,导致测量不准确。为了满足大的动态范围和最好的信噪比,希望混频器的驱动电平尽可能大;为了减少非线性失真,又希望加到混频器的电平尽可能低。究竟混频器的电平取多大呢?多数使用说明书建议最佳的混频电平在-30~0dBm 之间,这时混频器内部产生的失真电平低于显示的平均噪声电平,也就是说混频器产生的失真电平观察不到,可以忽略。 3.分辨率带宽 (RBW:Resolution Band Width) 在频谱分析仪中,分辨率带宽 RBW 是一个非常重要的参【收稿日期】2009-07-02 【作者简介】冯菊香(1972-),女,安徽滁州人,玉林师范学院讲师,桂林电子科技大学在读工程硕士,从事电子与通信测试技术研究。

安捷伦glenB 频谱分析仪使用说明简介

Agilent E4402B ESA-E Series Spectrum Analyzer 使用方法简介 宁波之猫 2009-6-17

目录

1简介 Agilent ESA-E系列是能适应未来需要的Agilent中性能频谱分析仪解决方案。该系列在测量速度、动态范围、精度和功率分辨能力上,都为类似价位的产品建立了性能标准。它灵活的平台设计使研发、制造和现场服务工程师能自定义产品,以满足特定测试要求,和在需要时用新的特性升级产品。该产品

采用单键测量解决方案,并具有易于浏览的用户界面和高速测量的性能,使工程师能把较少的时间用于测试,而把更多的时间用在元件和产品的设计、制作和查错上。 2.面板 操作区 1.观察角度键,用于调节显示,以适于使用者的观察角度。 2.Esc键,可以取消输入,终止打印。 3.无标识键,实现左边屏幕上紧挨的右边栏菜单的功能。 4.Frequency Channel(频率通道)、Span X Scale(扫宽X刻度)和Amplitude Y scale(幅度Y 刻度)三个键,可以激活主要的调节功能(频率、X轴、Y轴)并在右边栏显示相应的菜单。 5.Control(控制)功能区。 6.Measure(测量)功能区。 7.System(系统)功能区。 8.Marker(标记)功能区。 9.软驱和耳机插孔。 10.步进键和旋钮,用于改变所选中有效功能的数值。 11.音量调节。 12.外接键盘插口。 13.探头电源,为高阻抗交流探头或其它附件提供电源。 14.Return键,用于返回先前选择过的一级菜单。 15.Amptd Ref Out,可提供-20dBm的50MHz幅度参考信号。 16.Tab(制表)键,用于在界限编辑器和修正编辑器中四处移动,也用于在有File菜单键所访问对话 框的域中移动。 17.信号输入口(50Ω)。在使用中,接50ΩBNC电缆,探头上必须串联一隔直电容(30PF左右,陶瓷 封装)。探头实物:

史上最好的频谱分析仪基础知识(收藏必备)

频谱分析是观察和测量信号幅度和信号失真的一种快速方法,其显示结果可以直观反映出输入信号的傅立叶变换的幅度。信号频域分析的测量范围极其宽广,超过140dB,这使得频谱分析仪成为适合现代通信和微波领域的多用途仪器。频谱分析实质上是考察给定信号源,天线,或信号分配系统的幅度与频率的关系,这种分析能给出有关信号的重要信息,如稳定度,失真,幅度以及调制的类型和质量。利用这些信息,可以进行电路或系统的调试,以提高效率或验证在所需要的信息发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。 现代频谱分析仪已经得到许多综合利用,从研究开发到生产制造,到现场维护。新型频谱分析仪已经改名叫信号分析仪,已经成为具有重要价值的实验室仪器,能够快速观察大的频谱宽度,然后迅速移近放大来观察信号细节已受到工程师的高度重视。在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速,精确和重复地完成一些极其复杂的测量。 有两种技术方法可完成信号频域测量(统称为频谱分析)。 1.FFT分析仪用数值计算的方法处理一定时间周期的信号,可提供频率;幅度和相位信息。这种仪器同样能分析周期和非周期信号。FFT 的特点是速度快;精度高,但其分析频率带宽受ADC采样速率限制,适合分析窄带宽信号。 2.扫频式频谱分析仪可分析稳定和周期变化信号,可提供信号幅度和频率信息,适合于宽频带快速扫描测试。

图1 信号的频域分析技术 快速傅立叶变换频谱分析仪 快速傅立叶变换可用来确定时域信号的频谱。信号必须在时域中被数字化,然后执行FFT算法来求出频谱。一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,用微处理器(或其他数字电路如FPGA,DSP)接收取样波形,利用FFT计算波形的频谱,并将结果记录和显示在屏幕上。 FFT分析仪能够完成多通道滤波器式同样的功能,但无需使用许多带通滤波器,它使用数字信号处理来实现多个独立滤波器相当的功能。从概念上讲,FFT方法

频谱分析

标题:基于MATLAB的声音信号频谱分析仪设计 2009-05-17 13:49:14 基于MATLAB的声音信号频谱分析仪设计 1.概述 随着软硬件技术的发展,仪器的智能化与虚拟化已成为未来实验室及研究机构的发展方向[1]。虚拟仪器技术的优势在于可由用户定义自己的专用仪器系统,且功能灵活,很容易构建,所以应用面极为广泛。基于计算机软硬件平台的虚拟仪器可代替传统的测量仪器,如示波器、逻辑分析仪、信号发生器、频谱分析仪等[2]。从发展史看,电子测量仪器经历了由模拟仪器、智能仪器到虚拟仪器,由于计算机性能的飞速发展,已把传统仪器远远抛到后面,并给虚拟仪器生产厂家不断带来连锅端的技术更新速率。目前已经有许多较成熟的频谱分析软件,如S pectraLAB、RSAVu、dBFA等。 声卡是多媒体计算机最基本的配置硬件之一,价格便宜,使用方便。MATLAB是一个数据分析和处理功能十分强大的工程实用软件,他的数据采集工具箱为实现数据的输入和输出提供了十分方便的函数和命令[3]。本文将给出基于声卡与MATLAB的声音信号频谱分析仪的设计原理与实现方法,功能包括: (1) 音频信号信号输入,从声卡输入、从WAV文件输入、从标准信号发生器输入; (2) 信号波形分析,包括幅值、频率、周期、相位的估计,以及统计量峰值、均值、均方值和方差的计算; (3) 信号频谱分析,频率、周期的估计,图形显示幅值谱、相位谱、实频谱、虚频谱和功率谱的曲线。 2.设计原理2.1波形分析原理2.1.1 信号频率、幅值和相位估计 (1)频率(周期)检测 对周期信号来说,可以用时域波形分析来确定信号的周期,也就是计算相邻的两个信号波峰的时间差、或过零点的时间差。这里采用过零点(ti)的时间差T(周期)。频率即为f = 1/T,由于能够求得多个T值(ti有多个),故采用它们的平均值作为周期的估计值。 (2)幅值检测 在一个周期内,求出信号最大值y max与最小值y min的差的一半,即A = (y max- y min)/2,同样,也会求出多个A值,但第1个A值对应的y max和y min不是在一个周期内搜索得到的,故以除第1个以外的A值的平均作为幅值的估计值。 (3)相位检测 采用过零法,即通过判断与同频零相位信号过零点时刻,计算其时间差,然后换成相应的相位差。φ=2π(1-t i/T),{x}表示x的小数部分,同样,以φ的平均值作为相位的估计值。 频率、幅值和相位估计的流程如图1所示。

频谱分析报告仪地使用方法

频谱分析仪的使用方法 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。

是德科技频谱分析基础

是德科技 频谱分析基础 应用指南 150

谨以本应用指南献给是德科技的 Blake Peterson。 Blake 在惠普和是德科技效力 45 年之久,为全球各地的客户提供最出色的技术支持。Blake 长期负责向新入行的市场和销售工程师传授有关频谱分析仪技术的基础知识,以便为他们学习和掌握更高深的技术打下良好的基础。工程师们把他视为频谱分析领域的良师益友和具有突出贡献的技术专家。 Blake 的众多成就包括: –著作首版《频谱分析基础》应用指南,并参与后继版本的编撰 –帮助推出 8566/68 频谱分析仪,开启现代频谱分析新时代;以及 PSA 系列频谱分析仪,在问世时为业界树立全新性能标杆 –提议创办 Blake Peterson 大学—为是德科技所有新入职的工程师提供必要的技术培训 为了表彰他的出色成就和重要贡献,《Microwaves & RF》杂志将首座 2013 年当代传奇奖 (Living Legend Award)特别授予 Blake。

第 1 章 – 引论 – 什么是频谱分析仪? (5) 频域对时域 (5) 什么是频谱? (6) 为什么要测量频谱? (6) 信号分析仪种类 (8) 第 2 章 – 频谱分析仪原理 (9) 射频衰减器 (10) 低通滤波器或预选器 (10) 分析仪调谐 (11) 中频增益 (12) 信号分辨 (13) 剩余FM (15) 相位噪声 (16) 扫描时间 (18) 包络检波器 (20) 显示 (21) 检波器类型 (22) 取样检波 (23) (正)峰值检波 (24) 负峰值检波 (24) 正态检波 (24) 平均检波 (27) EMI 检波器:平均值和准峰值检波 (27) 平滑处理 (28) 时间选通 (31) 第 3 章 – 数字中频概述 (36) 数字滤波器 (36) 全数字中频 (37) 专用数字信号处理集成电路 (38) 其他视频处理功能 (38) 频率计数 (38) 全数字中频的更多优势 (39) 第 4 章 – 幅度和频率精度 (40) 相对不确定度 (42) 绝对幅度精度 (42) 改善总的不确定度 (43) 技术指标、典型性能和标称值 (43) 数字中频结构和不确定度 (43) 幅度不确定度示例 (44) 频率精度 (44)

音频频谱分析仪设计

信号处理实验 实验八:音频频谱分析仪设计与实现

一、实验名称:音频频谱分析仪设计与实现 二、实验原理: MATLAB是一个数据信息和处理功能十分强大的工程实用软件,其数据采集工具箱为实现数据的输入和输出提供了十分方便的函数和命令。本实验可以用MATLAB进行音频信号频谱分析仪的设计与实现。 1、信号频率、幅值和相位估计 (1)频率(周期)检测 对周期信号来说,可以用时域波形分析来确定信号的周期,也就是计算相邻的两个信号波峰的时间差、或过零点的时间差。这里采用过零点(ti)的时间差T(周期)。频率即为f = 1/T,由于能够求得多个T值(ti有多个),故采用它们的平均值作为周期的估计值。 (2)幅值检测 在一个周期内,求出信号最大值ymax与最小值ymin的差的一半,即A = (ymax - ymin)/2,同样,也会求出多个A值,但第1个A值对应的ymax和ymin不是在一个周期内搜索得到的,故以除第1个以外的A值的平均作为幅值的估计值。 (3)相位检测 采用过零法,即通过判断与同频零相位信号过零点时刻,计算其时间差,然后换成相应的相位差。φ=2π(1-ti/T),{x}表示x的小数部分,同样,以φ的平均值作为相位的估计值。 频率、幅值和相位估计的流程如图所示。

其中tin表示第n个过零点,yi为第i个采样点的值,Fs为采样频率。 2、数字信号统计量估计 (1) 峰值P的估计 在样本数据x中找出最大值与最小值,其差值为双峰值,双峰值的一半即为峰值。P=0.5[max(yi)-min(yi)] (2)均值估计 式中,N为样本容量,下同。 (3) 均方值估计

频谱分析仪的几大技术指标

频谱分析仪的几大技术指标 频谱分析仪用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。 频谱分析仪的几大技术指标 1、输入频率范围 指频谱仪能够正常工作的频率区间,以HZ表示该范围的上限和下限,由扫描本振的频率范围决定,现代频谱仪的频率范围通常可从低频段至射频段,甚至微波段,如1KHz~4GHz,这里的频率是指中心频率,即位于显示频谱宽度中心的频率。 2、分辨力带宽 指分辨频谱中两个相邻分量之间的小谱线间隔,单位是HZ,它表示频谱仪能够把两个彼此靠得很近的等幅信号在规定低点处分辨开来的能力,在频谱仪屏幕上看到的被测信号的谱线实际是一个窄带滤波器的动态幅频特性图形(类似钟形曲线),因此,分辨力取决于这个幅频生的带宽,定义这个窄带滤波器幅频特性的3dB带宽为频谱仪的分辨力带宽。 3、灵敏度 指在给定分辨力带宽、显示方式和其他影响因素下,频谱仪显示小信号电平的能力,以dBm、dBu、dBv、V等单位表示,超外差频谱仪的灵敏度取决于仪器的内噪声,当测量小信号时,信号谱线是显示在噪声频谱之上的,为了易于从噪声频谱中看清楚信号谱线,一般信号电平应比内部噪声电平高10dB,另处,灵敏度还与扫频速度有关,扫频速度赶快,动态幅频特性峰值越低,导致灵敏度越低,并产生幅值差。 4、动态范围 指能以规定的准确度测量同时出现在输入端的两个信号之间的差值,动态范围的上限爱到非线性失真的制约,频谱仪的幅值显示方式有两种:线性的对数,对数显示的优点是在有限的屏幕有效的高度范围内,可获得较大的动态范围,频谱仪的动态范围一般在60dB以上,有时甚至达到100dB以上。 5、频率扫描宽度(Span) 另有分析谱宽、扫宽、频率量程、频谱跨度等不同叫法。通常指频谱仪显示

频谱仪的简单操作使用方法

R3131A频谱仪简单操作使用方法 一.R3131A频谱仪简介。 R3131A频谱仪是日本ADV ANTEST公司的产品,用于测量高频信号,可测量的频率范围为9K—3GHz。对于GSM手机的维修,通过频谱仪可测量射频电路中的以下电路信号, (维修人员可以通过对所测出信号的幅度、频率偏移、干扰程度等参数的分析,以判断出故障点,进行快速有效的维修): 1.手机参考基准时钟(13M,26M等); 2.射频本振(RFVCO)的输出频率信号(视手机型号而异); 3.发射本振(TXVCO)的输出频率信号(GSM:890M—915M;DCS:1710—1785M); 4.由天线至中频芯片间接收和发射通路的高频信号; 5.接收中频和发射中频信号(视手机型号而异)。 面板上各按键(如图-1所示)的功能如下: A区:此区按键是其他区功能按键对应的详细功能选择按键,例如按下B区的FREQ 键后,会在屏幕的右边弹出一列功能菜单,要选择其中的“START”功能就可通过按下其对 (图-1) B区:此区按键是主要设置参数的功能按键区,包括:FREQ—中心频率; SPAN—扫描频率宽度;LEVEL—参考电平。此区中按键只需直接按下对应键输入数值及单位即可。 C区:此区是数字数值及标点符号选择输入区,其中“1”键的另一个功能是“CAL(校

准)”,此功能要先按下“SHIFT(蓝色键)”后再按下“1”键进行相应选择才起作用; “-”是退格删除键,可删除错误输入。 D 区:参数单位选择区,包括幅度、电平、频率、时间的单位,其中“Hz ”键还有“ENTER(确认)”的作用。 E 区:系统功能按键控制区,较常使用的有“SHIFT ”第二功能选择键,“SHIFT+CONFIG(PRESET )”选择系统复位功能,“RECALL ”调用存储的设置信息键,“SHIFT+RECALL(SA VE )”选择将设置信息保存功能。 F 区:信号波形峰值检测功能选择区。 G 区:其他参数功能选择控制区,常用的有“BW ”信号带宽选择及“SWEEP ”扫描时间选择,“SWEEP ”是指显示屏幕从左边到右边扫描一次的时间。 显示屏幕上的信息(如图-2所示)。 二.一般操作步骤。[“ ”表示的是菜单面板上直接功能按键,“ ” 表 示单个菜单键的详细功能按键(在显示屏幕的右边)]: 1) 按Power On 键开机。 2) 每次开始使用时,开机30分钟后进行自动校准,先按 Shift+7(cal ) ,再选择 cal all 键,校准过程中出现“Calibrating ”字样,校准结束后如通过则回复校准前状态。校准过程约进行3分钟。 3) 校准完成后首先按 FREQ 键,设置中心频率数值,例如需测中心频率为902.4M 的信

matlab gui 频谱分析仪

频谱分析仪实验报告 一:频谱分析仪的功能: (1) 音频信号信号输入。输入的途径包括从声卡、从WAV文件输入、从信号发生器输入; (2) 信号波形分析。包括幅值、频率、周期、相位的估计,并计算统计量的峰值、均值、均方值和方差等信息;GUI界面见附页 (3) 信号频谱分析。频率、周期的估计,图形显示幅值谱、相位谱和功率谱等信息的曲线。二:实验原理 1. 时域抽样 时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:对于基带信号,信号抽样频率大于等于2倍的信号最高频率。时域抽样是把连续信号变成适于数字系统处理的离散信号。 2.快速傅里叶变换(FFT) 对有限长序列可以利用离散傅立叶变换(DFT)进行分析。DFT不但可以很好的反映序列的频谱特性,而且易于用快速算法(FFT)在计算机上进行分析。MATLAB为计算数据的离散快速傅立叶变换,提供了一系列丰富的数学函数,本设计用的为FFT 3.波形分析原理 (1)频率(周期)检测 对周期信号来说,可以用时域波形分析来确定信号的周期,也就是计算相邻的两个信号波峰的时间差、或过零点的时间差。这里采用过零点(ti)的时间差T(周期)。频率即为f = 1/T,由于能够求得多个T值(ti有多个),故采用它们的平均值作为周期的估计值。 (2)幅值检测 在一个周期内,求出信号最大值ymax与最小值ymin的差的一半,即A = (ymax - ymin)/2,同样,也会求出多个A值,但第1个A值对应的ymax和ymin不是在一个周期内搜索得到的,故以除第1个以外的A值的平均作为幅值的估计值。 (3)相位检测 采用过零法,即通过判断与同频零相位信号过零点时刻,计算其时间差,然后换成相应的相位差。φ=2π(1-ti/T),{x}表示x的小数部分,同样,以φ的平均值作为相位的估计值。(4)峰值P的估计在样本数据x中找出最大值与最小值,其差值为双峰值,双峰值的一半即为峰值。P=[max(yi)-min(yi)]/2 (5)均值,均方值,方差,均有计算所得 4,频谱图 为了直观地表示信号的频率特性,工程上常常将Fourier变换的结果用图形的方式表示,即频谱图 三:程序设计 1、三种信号的输入方式 (1)声卡的输入 这里声卡输入是指由麦克风录音得到的声音信号的输入,MATLAB提供了wavrecord函数,该函数能够实现读取麦克风录音信号。以下是“开始录音”按钮的回调函数内容。 获得FS的值 Fs=str2double(get(findobj('Tag','samplerate'),'String')); 根据设定的时间长度进行录音,保存在handles中,保存为double型 handles.y=wavrecord(str2double(get(findobj('Tag','recordtime'),'Strin

相关文档
最新文档