电容反馈三点式振荡器

电容反馈三点式振荡器
电容反馈三点式振荡器

电容反馈三点式振荡器

1、课程设计的目的

本次课程设计我设计的是电容三点式振荡器,而电容三点式振荡器是自激振荡器的一种,因此要先了解一些自激振荡器的知识

自激多谐振荡器也叫无稳态电路两管的集电极各有一个电容分别接到另一管子的基极,起到交流耦合作用,形成正反馈电路,当接通电源的瞬间,某个管子先通,另一只管子截止,这时,导通管子的集电集有输出,集电极的电容将脉冲信号耦合到另一只管子的基极使另一只管子导通.这时原来导通的管子截止.这样两只管子轮流导通和截止,就产生了震荡电流.

由于器件不可能参数完全一致,因此在上电的瞬间两个三极管的状态就发生了变化,这个变化由于正反馈的作用越来越强烈,导致到达一个暂稳态.暂稳态期间另一个三极管经电容逐步充电后导通或者截止,状态发生翻转,到达另一个暂稳态.这样周而复始形成振荡。

构成电容反馈三点式振荡器的最基本电路应该是一个交流电路。因此在设计总电路图之前,我先设计了一个交流电路。

通过课程设计,可以使我们加强对高频电子技术电路的理解,因为在整个设计过程中需要我们判断电路是否可以起振和稳定工作外还必须学会振荡电路的分析和参数计算,电路的设计和调试,同时还要明确这种振荡器的优缺点和使用场合。

在设计过程中我们学会了查寻资料﹑方案比较,以及设计计算等环节。进一步提高分析解决实际问题的能力,创造一个动脑动手﹑独立开展电路实验的机会,锻炼分析﹑解决高频电子电路问题的实际本领,真正实现由课本知识向实际能力的转化;通过典型电路的设计与制作,加深对基本原理的了解,增强自己的实践能力。为以后的工作打下基础。

2、设计方案论证

2.1设计思路及方法

本次课程设计我设计的是电容反馈三点式振荡器,而电容反馈三点式振荡器是自激振荡器的一种,因此更好进行设计了。振荡器是不需要外加信号激励,自身将直流电能转换为交流电的装置。凡是可以完成这一目的的装置都可以作为振荡器。

由我们所学过的知识知道,构成一个振荡器必须具备下列一些最基本的条件:

(1)任何一个振荡回路,包含两个或两个以上储能元件。在这两个储能元件中,当一个释放能量时,另一个就接收能量。接收和释放能量可以往返进行,其频率决定于元件的数值。

(2)电路中必须要有一个能量来源,可以补充由振荡回路电阻所产生的损耗。在电容三点式振荡器中,这些能量来源就是直流电源。

(3)必须要有一个控制设备,可以使电源在对应时刻补充电路的能量损失,以维持等幅震荡。这是由有源器件(电子管,晶体管或集成管)和正反馈电路完成的。

对于本次课程设计,所用的最基本原理如下:

(1)振荡器起振条件为AF>1(矢量式),振荡器平衡条件为:AF=1(矢量式),它说明在平衡状态时其闭环增益等于1。在起振时A>1/F,当振幅增大到一定的程度后,由于晶体管工作状态有放大区进入饱和区,放大倍数A迅速下降,直至AF=1(矢量式),此时开始谐振。假设由于某种因素使AF<1,此时振幅就会自动衰减,使A与1/F逐渐相等。

(2)振荡器的平衡条件包括两个方面的内容:振幅稳定和相位稳定。

我们可以假设横坐标是振荡电压,而纵坐标分别是放大倍数K和反馈系数F,假设因为某种情况使电压增长,这时K.F<1,振荡就会自动衰减。反之,若电压减少,出现KF>1的情况,振荡就会自动增强,而又回到平衡点。由此可知结论为:在平衡点,若K曲线斜率小于0,则满足振荡器的振幅稳定条件。过K曲线的斜率为正,则不满足稳定条件。

对于相位稳定条件来说,它和频率稳定实质上是一回事,因为振荡的角频率

就是相位的变化率,所以当振荡器的相位发生变化时,频率也发生了变化。(3)我们知道LC振荡器有基本放大器、选频网络和正反馈网络三个部分组成。为了维持震荡,放大器的环路增益应该等于1,即AF=1,因为在谐振频率上振荡

器的反馈系数为C

1/C

2

,所以维持振荡所需的电压增益应该是

A=C2/C1

电容三点式振荡器的谐振频率为

f0=1/2π[L(C1C2/C1+C2)]1/2

在实验中可通过测量周期T来测定谐振频率,即

f0=1/T

放大器的电压增益可通过测量峰值输出电压Vop和输入电压Vip来确定,即

A=V op/V ip

(4)2N2221A三极管的工作原理

2N2221A三极管是一种控制元件,主要用来控制电流的大小,以共发射极接法为例,当基极电压UB有一个微小的变化时,基极电流IB也会随之有一小的变化,受基极电流IB的控制,集电极电流IC会有一个很大的变化,基极电流IB越大,集电极电流IC也越大,反之,基极电流越小,集电极电流也越小,即基极电流控制集电极电流的变化。

但是集电极电流的变化比基极电流的变化大得多,这就是三极管的放大作用。IC 的变化量与IB变化量之比叫做三极管的放大倍数β),三极管的放大倍数β一般在几十到几百倍。三极管在放大信号时,首先要进入导通状态,即要先建立合适的静态工作点,也叫建立偏置,否则会放大失真。

2.2电路方框图及说明:

图1 电路方框图

滤波网络:滤除电源中的交流成分是外加电源中只含有直流成分,因为振荡器所要求的加在电路上的电能是直流电能,而实际电源很难达到纯粹的直流,所以需要加这样一个电路将其中可能的交流成分滤除。

放大网络:放大网络就是通过加在基极的直流电压来控制集电极的电压输出。放大网络对于靠近谐振频率的信号,有较大的增益,对于远离谐振频率的信号,增益迅速下降。

选频网络:由电感及电容组成的选频网络分为两类,一类是串联谐振回路,另一类是并联谐振回路,回路谐振时,电感线圈中的磁能与电能中的磁能周期性的转换着。电抗元件不消耗外交电动势能量。外加电动势只提供回路电阻所消耗的能量,以维持回路中的等幅振荡。所以在串联谐振时,回路中电流达到最大值,并联谐振中,负载电压达到最大值。

正反馈网络:反馈,指将系统的输出返回到输入端并以某种方式改变输入,进而影响系统功能的过程,即将输出量通过恰当的检测装置返回到输入端并与输入量进行比较的过程。正反馈使输出起到与输入相似的作用,使统偏差不断增大,使系统振荡,可以放大控制作用。正反馈网络是电感反馈三点式振荡网络中比较重要的一个环节。

2.3电路图所需元件

电源 1个

电阻 6个

电容 7个

电感 2个

三极管 1个

示波器 1个

3、设计结果与分析

3.1电路的设计依据及原理图

三点式LC振荡器,特别是电容反馈式三点振荡器,由于反馈主要是通过电容,所以可以削弱高次谐波的反馈,是振荡产生的波形得到改善,且频率稳定度高,又适于较高波段工作。

引起振荡频率不稳定的原因有很多,包括晶体管间存在的电容,谐振回路参数随时间、电源电压、温度的变化而变化,晶体管参数不稳定等,为得到稳定的振荡频率,因此我们在选元器件时,除选用高质量电路元件,采用直流稳压电源及恒温措施外,还应提高振荡回路品质因数Q,因为Q越大,相频特性曲线在f0附近的斜率也大,选频特性也越好。

构成电容反馈三点式振荡器的最基本电路应该是一个交流电路。因此在设计总电路图之前,我先设计了一个交流电路,随后将各个电路元件包括三极管连接起来才能得到最终的总电路图

3.2电路分析

在实验中为了减小晶体管极间电容的影响可采用改进型电容三点式振荡电路,即在谐振回路电感支路中增加一个电容C

6

,其直比较小,要求C6<

1/C总=1/C4+1/C5+1/C6≈1/C6,即C总≈C6

因此振荡频率f

近似为:

f0=1/2π(LC总)1/2≈1/2π(LC6)1/2

经过这样的改变之后,C

4,C

5

对振荡频率的影响显著减小,与 C

4

,C

5

并联相

接的晶体管极间电容影响也减小了。但由于谐振回路接入C

6

,晶体管等小负载会

减小、放大器放大倍数减小、振荡器输出幅度减小,若C

过小,振荡器会因不

6

的时候一定要选择合适的值,不能满足起振条件而停止振荡。因此,在添加C

6

为了减小晶体管极间电容的影响而使振荡器不再振动!

3.3电路图仿真

Multisim是Interactive Image Technologies公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。

以前由于做过数电课程设计,虽然对multisim的使用还有一些基础,但并不熟悉,因此在做本次课设之前我又看了好多资料,对于本电路来说,在仿真时需要注意以下方面:(1)仿真软件界面上组建仿真电路,其中需双击图标,将弹出的对话框栏中的Key设置成B,Incremen t栏设置成

可变电容C

4

(2)双击电位器图标,将弹出的对话框中Increment也改为1%暂时断开反馈电,调出虚拟万用表并联在集电极电阻R3两端。开启仿真开关,双击万用表容C

6

图标,调整电位器R6的百分比,是万用表的直流电压在2V左右,即电路的静态工作点I CQ≈2mA左右。

(1)交流电路仿真如下:

图2 交流电路仿真图

(2)总电路图仿真如下:

图3 总电路仿真图3.4仿真结果与分析

图4 仿真结果图

仿真结果如图上图所示,由图可知道,正弦波的周期约为350243.243ns,振幅约为4.2v,在本次仿真的过程中,开始时我将C5的电容值调得过大,并且由于没有接好电容C4,而使结果不能出波形。随后纠正了错误才得到上边的图形在设计过程中,我不会对波形调试,由于显示的波形太小并且把x轴的比例调的太大,导致没有发现图形。随后通过翻阅multisim的一些资料,才知道自己的失误,于是对电路重新进行了调试才得到满意的结果

4、心得体会

对于电路的设计过程我以为电容三点式振荡器的设计很难,设计比较烦琐,有静态工作点的要求,各电阻、电容值的设计,还有好多要求,看起来十分复杂。后来通过查资料,才了解到先要计算好各电阻的值,再根据各电容的作用,确定电容的值,画出电路图,一切都会变得简单。同样,在这次课程设计中也遇到了不少问题,集中体现在word运用极不熟练,尤其是编辑公式时,操作不灵便,编辑好的文档没有及时保存,以至于从头再来,浪费了很多时间。但吃一堑长一智,现在遇到这些问题,及时解决,以后再做这类事情就会多一点经验,就会少出一些类似问题。

我们在学习理论知识的同时还要努力培养自己的动手操作能力,对于通信工程的我们更是如此,通过这次课程设计我也看到了自己的差距,今后会努力提高自己的动手操作能力,以求真正领会通信专业里边的各种知识,为将来的工作打下良好的基础。但最后,我终于明白,分数不过是个数字,知识才是自己的。通过这次课程设计,我确实学到了很多东西,多年后我可能已经忘记这次课设最后打了多少分,但这些学到的东西却可以使我受益终生。除了知识技术上的东西,我更锻炼了自己的快速学习能力;我学会了如何快速有效地从图书馆、网络获取自己需要的信息;我尝到了在周围很多同学拷来拷去时孤军奋战的痛苦;我体会了夜以继日完成一个项目时中途过程的艰辛及最终完成后巨大的成就感……我更加深了人生的信心,以后面对任何一个困难的项目,我想我都不会惧怕,并最终能够成功地将其完成。感谢老师,感谢此次课程设计。虽然在其中吃了不少苦头,但我毫不后悔,因为我满载而归。

5、参考资料

[1]谢白美.《电子电路设计试验设计第三版》[M],科技大学出版社,2006年

[2]博战杰.童辉《AM信号到DSB信号的连续过渡与检波》[J],吉林大学学报

[3]孙博文等.《分形算法与程序设计》[M],科学出版社,2004年

[4]张玉辉.侯著荣,翟毅华《基于射频识别技术的装备维修器材管理系统的设计》[J],微计算机信息,2004年

[5]曹才开.《电路分析》[M],北京清华大学出版社,2008年

[6]刘聘.《高频电子技术》[M],北京:邮电出版社,2006年

[7]宋数祥.周冬梅《高频电子线路》[M],同济大学出版社,2007年

电容三点式震荡电路的设计..

北方民族大学课程设计报告 院(部、中心)电气信息工程学院 姓名郭佳学号 21000065 专业通信工程班级 1 同组人员 课程名称通信电路课程设计 设计题目名称 500KHz电容三点式LC正弦波振荡器的设计起止时间2013.3.4——2013.4.28 成绩 指导教师签名 北方民族大学教务处制

摘要 本次课设介绍了电容三点式高频振荡电路的设计方法,反馈振荡器的原理和分析以及电容三点式电路参数的计算,并利用其它相关电路为辅助工具来调试放大电路,解决了放大电路中经常出现的自激振荡问题和难以准确的调谐问题。同时也给出了具体的理论依据和调试方案,从而实现了快速、有效的分析和制作,振荡器电路。并以500KHz的振荡器为例,利用multisim制作仿真的模型。 关键字:电容三点式振荡仿真

目录 目录 (3) 1、概述 (4) 2、三点式电容振荡器 (5) 2.1 反馈振荡器的原理和分析 (5) 2.2 电容三点式参数 (6) 2.3设计要求 (8) 3、电路设计 (8) 4 、调试与总结 (10) 1 仿真 (10) 2、总结: (11) 5、心得体会 (11)

1、概述 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。 一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。选频网络则只允许某个特定频率 f 能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个 是反馈电压 U f 和输入电压 U i 要相等,这是振幅平衡条件。二是U f 和U i 必 须相位相同,这是相位平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 振荡器的用途十分广泛,它是无线电发送设备的心脏部分,也是超外差式接收机的主要部分各种电子测试仪器如信号发生器、数字式频率计等,其核心部分都离不开正弦波振荡器。功率振荡器在工业方面(例如感应加热、介质加热等)的用途也日益广阔。 正弦波是电子技术、通信和电子测量等领域中应用最广泛的波形之一。能够产生正弦波的电路称为正弦波振荡器。通常,按工作原理的不同,正弦振荡器分为反馈型和负载型两种,前者应用更为广泛。在没有外加输入信号的条件下,电路自动将直流电源提供的能量转换为具有一定频率、一定波形和一定振幅的交变振荡信号输出。

电容反馈LC振荡器实验内容及步骤

讲义不要带出本实验室,以便后来者使用电容反馈LC振荡器实验内容及步骤 1、静态工作点的设置 实验电路如图所示。实验步骤: 1、接好地线与12V电源线,此时电路没有振荡。 2、用万用表测量三极管发射极对地电压V E。由于R2为1.5k,所以只要V E=3V, 则I EQ=2mA。 2、了解振荡频率与谐振回路参数的关系 由公式 f L或C t变化时,振荡频率将随之变化。 1、接好地线与12V电源线,此时电路没有振荡。设置I EQ=2mA, 2、将C点接C3,A点接C6,D点接R5,B点分别接C8,C9,C10,测量三种情 况下振荡频率f和输出正弦波的峰-峰值V p-p,并将测量数据填入下表。 3、计算频率的理论值并与测量值比较。

3、了解幅度(峰-峰值Vp-p )与I EQ 的关系 实验步骤: 1、D 接R 5,C 接C 2,A 接C 6, 2、设置静态电流I EQ =0.8mA 。 3、B 接C 10,并测量振荡频率f 和峰-峰值V p-p 。 4、以I EQ 为横坐标,V p-p 为纵坐标,画出峰峰值与静态工作点电流之间的关系,注意分析振荡幅度和频率与I EQ 的关系。并与理论进行比较。 对于其他的I EQ 值,重复上述1~3步骤,并填写下面的表4-4格。 4、测量反馈系数与幅度的关系 实验步骤: 1、静态电流I EQ 设置为2mA 。 2、D 接R 5,C 接C 2,B 接C 9,A 接C 5。 3、测量峰峰值。 4、计算反馈系数C C F 上 下 ,比较反馈系数与峰峰值(幅度)的关系。 对于A 分别接C 6,C 7的情况,重复上述2、3两个步骤,将所得数据填写下表。 5、测量Q 值对振荡频率稳定性的影响 谐振回路的Q 值与回路的电阻有关,改变与电感并联的电阻阻值就可以改变谐振回路的Q 值。 实验步骤: 1、设置I EQ =2mA 。 2、A 接C 5,C 接C 2,B 接C 10,D 分别接R 5,R 6,R 7,观察振荡器是否振荡,如果振荡,测量其频率。填写下面的表格。

正弦波振荡器设计multisim(DOC)

摘要 自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定、反馈系数、输出波形、起振等因素的综合考虑,本次课程设计采用电容三点式振荡器,运用multisim软件进行仿真。根据静态工作点计算出回路的电容电感取值,得出输出频率与输出幅度有效值以达到任务书的要求。 关键词:电容三点式;振荡器;multisim;

目录 1、绪论 (1) 2、方案的确定 (2) 3、工作原理、硬件电路的设计和参数的计算 (3) 3.1 反馈振荡器的原理和分析 (3) 3.2. 电容三点式振荡单元 (4) 3.3 电路连接及其参数计算 (5) 4、总体电路设计和仿真分析 (6) 4.1组建仿真电路 (6) 4.2仿真的振荡频率和幅度 (7) 4.3误差分析 (8) 5、心得体会 (9) 参考文献 (10) 附录 (10) 附录Ⅰ元器件清单 (10) 附录Ⅱ电路总图 (11)

1、绪论 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持 下去。选频网络则只允许某个特定频率0f能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压 U和输入电压i U要相等,这是振幅平衡条件。二是f U和i U必须相位相同,这是相位f 平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 本次课程设计我设计的是电容反馈三点式振荡器,电容三点式振荡器,也叫考毕兹振荡器,是自激振荡器的一种,这种电路的优点是输出波形好。电容三点式振荡器是由串联电容与电感回路及正反馈放大器组成。因振荡回路两串联电容的三个端点与振荡管三个管脚分别相接而得名。 本课题旨在根据已有的知识及搜集资料设计一个正弦波振荡器,要求根据给定参数设计电路,并利用multisim仿真软件进行仿真验证,达到任务书的指标要求,最后撰写课设报告。报告内容按照课设报告文档模版的要求进行,主要包括有关理论知识介绍,电路设计过程,仿真及结果分析等。 主要技术指标:输出频率9 MHz,输出幅度(有效值)≥5V。

5.3.2 三点式振荡电路

5.3.2 三点式振荡电路 定义:三点式振荡器是指LC回路的三个端点与晶体管的三个电极分别连接而组成的反馈型振荡器。 三点式振荡电路用电感耦合或电容耦合代替变压器耦合,可以克服变压器耦合振荡器只适宜于低频振荡的缺点,是一种广泛应用的振荡电路,其工作频率可从几兆赫到几百兆赫。 1、三点式振荡器的构成原则 图5 —20 三点式振荡器的原理图 图5 —20是三点式振荡器的原理电路(交流通路)为了便于分析,图中忽略了回路损耗,三个电抗元件

be ce bc X X X 、和构成了决定振荡频率的并联谐振回路。 要产生振荡,对谐振网络的要求:? 必须满足谐振回路的总电抗0be ce bc X X X ++=,回路呈现纯阻 性。 反馈电压f u 作为输入加在晶体管的b 、e 极,输出o u 加在晶体管的c 、e 之间,共射组态为反相放大器,放大 器的的输出电压o u 与输入电压i u (即f u )反相,而反馈 电压f u 又是o u 在bc X 、be X 支路中分配在be X 上的电压。 要满足正反馈,必须有 ()be be f o o be bc ce X X X X X u u u ==-+ (5.3.1) 为了满足相位平衡条件,f u 和o u 必须反相,由式(5.3.1)可知必有0be ce X X >成立,即 be X 和ce X 必须是同性质电抗,而 ()bc be ce X X X =-+必为异性电抗。 综上所述,三点式振荡器构成的一般原则: (1) 为满足相位平衡条件,与晶体管发射极相连

的两个电抗元件be X 、ce X 必须为同性, 而不与发射极相连的电抗元件bc X 的电 抗性质与前者相反,概括起来“射同基 反”。此构成原则同样适用于场效应管电路,对应 的有“源同栅反”。 (2) 振荡器的振荡频率可利用谐振回路的谐振频率来估 算。 若与发射极相连的两个电抗元件be X 、ce X 为容性的,称为电容三点式振荡器,也称为考比兹振荡器(Colpitts),如图5 —21(a )所示; 若与发射极相连的两个电抗元件be X 、ce X 为 感性的,称为电感三点式振荡器,也称为哈特莱振荡器(Hartley),如图5 —21(b )所示。 图5 —21 电容三点式与电感三点式振荡器电路原理图

电容三点式振荡器-高频课设

1 概述 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。 一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。选频网络则只允许某个特定频率 f 能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电 压 U f 和输入电压 U i 要相等,这是振幅平衡条件。二是U f 和U i 必须相位相同,这是 相位平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 振荡器的用途十分广泛,它是无线电发送设备的心脏部分,也是超外差式接收机的主要部分各种电子测试仪器如信号发生器、数字式频率计等,其核心部分都离不开正弦波振荡器。功率振荡器在工业方面(例如感应加热、介质加热等)的用途也日益广阔。 正弦波是电子技术、通信和电子测量等领域中应用最广泛的波形之一。能够产生正弦波的电路称为正弦波振荡器。通常,按工作原理的不同,正弦振荡器分为反馈型和负载型两种,前者应用更为广泛。在没有外加输入信号的条件下,电路自动将直流电源提供的能量转换为具有一定频率、一定波形和一定振幅的交变振荡信号输出。

2 三点式电容振荡器 2.1 反馈振荡器的原理和分析 反馈振荡器原理方框图如图2.1所示。反馈型振荡器是由放大器和反馈网络组成的一 个闭合环路,放大器通常是以某种选频网络(如振荡回路)作负载,是一个调谐放大器。 图2.1 反馈振荡器方框图 为了能产生自激振荡,必须有正反馈,即反馈到输入端的自你好与放大器输入端的信号相位相同。定义A (S )为开环放大器的电压放大倍数: ) () ()(S U S U S A i o = F(S)为反馈网络的电压反馈系数: ) () ()('S U S U S F o i = )(S A f 为闭环电压放大倍数: ) ()(1) ()()()(S F S A S A s U s U S A i o f ?-== 在振荡开始时,由于激励信号较弱,输出电压的振幅o U 则比较小,此后经过不断放大与反馈循环,输出幅度o U 开始逐渐增大,为了维持这一过程使输出振幅不断增加,应使反馈回来的信号比输入到放大器的信号大,即振荡开始时应为增幅振荡,即: 1)( jw T 因此起振的振幅条件是:

电容三点式振荡器电路设计与实现

郑州轻工业学院本科 通信电子线路课程设计总结报告 设计题目:电容三点式振荡器电路设计与实现 学生姓名:赵玉春 系别:计算机与通信工程学院信息与通信工程系专业:通信工程 班级:08级1班 学号:58号 指导教师:曹瑞、黄敏 2010年12月25日

郑州轻工业学院 课程设计任务书 题目:电容三点式振荡器电路设计与实现 专业、班级通信工程08-1学号 58姓名赵玉春 主要内容、基本要求、主要参考资料等: 1、主要内容 1) 焊接振荡器电路板。 2) 通过LC振荡器和晶体振荡器输出的波形,对比分析LC振荡器与晶体振荡器的频率稳定度。 2、基本要求 元器件排放错落有致,节点焊接正确,设计结构设合理,实验数据可靠,结果输出稳定。 3、主要参考资料 [1]张启民编著.通信电子线路.西安:西安电子科技大学出版社,2004. [2]董尚斌等编.通信电子线路.北京:清华大学出版社,2007. [3]顾宝良编著.通信电子线路教程.北京:电子工业出版社,2007. 完成期限:2010年12月25日 指导教师签名: 课程负责人签名: 2010年12月25日

目录 1、设计题目 (4) 2、设计内容 (4) 3、设计思路 (4) 4、设计原理 (4) 5、运行结果 (9) 6、实验体会 (10) 7、参考文献 (11)

一:设计题目: 电容三点式振荡器电路设计与实现 二:设计内容: 1) 振荡器电路板的设计与焊接。 2) 调节LC振荡器和晶体振荡器中静态工作点,并了解反馈系数及负载对振荡器的影响。 3) 测试、分析比较LC振荡器与晶体振荡的稳定状况。 三:设计思路: 焊接一个符合电容三点式的电路板,电路板上包含有LC振荡电路和集体震荡器震荡电路。 焊接好电路板之后,调节LC振荡器和晶体振荡器的静态工作点。 观察LC振荡器和晶体振荡器的波形图,同时对LC振荡器和晶体振荡器所产生的波形图进行对比分析。 四:设计原理: 本次实验首先需要焊接电路板,在焊接电路板时需要注意一些节点的焊接,同时避免焊接时出现短路现象。 本次实验验中振荡器包含电容反馈LC三端振荡器和一个晶体振荡器。振荡电路主要由振荡回路模块、偏置电路模块、输出缓冲电路模块组成。它选择主要是根据所给定的工作频率(或工作频段)频率稳定度的要求。因为设计的电路要求是高频信号,故选择LC振荡电路或晶体振荡电路,现在分别应用这两种电路,分别比较它们的频稳性。 1) 三点式震荡电路的基本模型

最新压控LC电容三点式振荡器设计及仿真

实验二压控 LC 电容三点式振荡器设计及仿真1 2 一、实验目的 3 1、了解和掌握LC 电容三点式振荡器电路组成和工作原理。 4 2、了解和掌握压控振荡器电路原理。 5 3、理解电路元件参数对性能指标的影响。 6 4、熟悉电路分析软件的使用。 7 二、实验准备 8 1、学习LC 电容三点式西勒振荡器电路组成和工作原理。 9 2、学习压控振荡器的工作原理。 10 3、认真学习附录相关内容,熟悉电路分析软件的基本使用方法。 11 三、设计要求及主要指标 12 1、采用电容三点式西勒振荡回路,实现振荡器正常起振,平稳振荡。 13 2、实现电压控制振荡器频率变化。 14 3、分析静态工作点,振荡回路各参数影响,变容二极管参数。 15 4、振荡频率范围:50MHz~70MHz,控制电压范围3~10V。 16 5、三极管选用MPSH10(特征频率最小为650MHz,最大IC 电流50mA,可 17 满足频率范围要求),直流电压源12V,变容二极管选用MV209。 18 四、设计步骤

19 1、整体电路的设计框图 20 整个设计分三个部分,主体为LC 振荡电路,在此电路基础上添加压控部分, 21 22 设计中采用变容二极管MV209 来控制振荡器频率,由于负载会对振荡电路的频 23 24 率产生影响,所以需要添加缓冲器隔离以使振荡电路不受负载影响。 25 2、LC 振荡器设计 26 27 首先应选取满足设计要求的放大管,本设计中采用MPSH10 三极管,其特征频28 率f T=1000MHz。LC 振荡器的连接方式有很多,但其原理基本一致,本实验中29 采用电容三点式西勒振荡电路的连接方式,该振荡电路在克拉泼振荡电路的基30 础上进行了细微的改良,增加了一个与电感L 并联的电容,主要利用其改变频31 率而不对振荡回路的分压比产生影响的特点。电路图如下所示:

四LC电容反馈式三点式振荡器

实验四 LC 电容反馈式三点式振荡器 一、实验目的 1. 掌握LC 三点式振荡电路的基本原理,掌握LC 电容反馈式三点振荡电路 的设计及电路参数计算; 2. 掌握振荡回路Q 值对频率稳定度的影响; 3. 弄清振荡器反馈系数不同时,静态工作电流EQ I 对振荡器起振及振幅的 影响。 二、预习要求 1. 弄清LC 振荡器的工件原理; 2. 分析图4-1电路的工作原理及各元件的作用,计算晶体管静态工作电流 EQ I 的最大值(设晶体管的β值为50); 3. 电路中,1L =3.3h μ, 若C =120pf , C '=680pf ,计算当T C =50pf 和T C =150pf 时振荡频率各为多少? 三、仪器设备 1. 双踪示波器 1台 2. 高频电路实验学习机 1台 3. 万用表 1块 4. 实验板1G 1块 四、实验内容及步骤 实验电路见图4-1。实验前根据4-1所示原理图在实验板上找到相应器件及插孔并弄清其作用。 1. 检查静态工作点 (1)在实验板+12V 插孔上接入+12V 直流电源,注意电源极性不能接反。

+12V 图4-1 LC电容反馈式三点式振荡器原理图 (2)C、R、 T C不接,C'接(C'=680pf),用示波器观察振荡器停振时 的情况(此时用示波器观察应为一条直线)。 注意:连接C'的导线要尽量短。 (3)改变电位器 P R(0~47KΩ),用万用表测得晶体管V的发射极工作 电压 EQ U, EQ U可连续变化,记下 EQ U的最大值 max EQ U,计算 max EQ I的值,填入表4.1中。 表4.1 其中:max max 4 EQ EQ U I R =(已知 4 R=1KΩ)。 2.振荡频率与振荡幅度的测试

高频课程设计_LC振荡器_克拉泼.(DOC)

高频电子线路课程设计报告设计题目:高频正弦信号发生器 2015年 1月 6 日

目录 一、设计任务与要求 (1) 二、设计方案 (1) 2.1电感反馈式三端振荡器 (2) 2.2电容反馈式三端振荡器 (2) 2.3克拉波电路振荡器 (6) 三、设计内容 (8) 3.1LC振荡器的基本工作原理 (8) 3.2克拉泼电路原理图 (9) 3.2.1振荡原理 (9) 3.3克拉泼振荡器仿真 (10) 3.4.1软件简介 (10) 3.4.2进行仿真 (10) 3.4.3电容参数改变对波形的影响 (11) 四、总结 (17) 五、主要参考文献 (18) 六、附录.................................................................................... .. (18)

一、设计任务与要求 为了熟悉《高频电子线路》课程中所学到的知识,在本课程设计中,我和队友(石鹏涛、甘文鹏)对LC正弦波振荡器进行了分析和研究。通过对几种常见的振荡器(电感反馈式三端振荡器、电容反馈式三端振荡器、改进型电容反馈式振荡器)进行分析论证,我们最终选择了克拉泼振荡器。 在本次课程设计中,设计要求产生10~20Mhz的振荡频率。振荡器的种类很多,适用的范围也不相同,但它们的基本原理都是相同的,都由放大器和选频网络组成,都要满足起振,平衡和稳定条件。然后通过所学的高频知识进行初步设计,由于受实践条件的限制,在设计好后,我利用了模拟软件进行了仿真与分析。为了学习Multisim软件的使用,以及锻炼电子仿真的能力,我们选用的仿真软件是Multisim11.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。 最后我们利用了仿真软件对电路进行了一写的仿真分析,如改变电容的参数,分析对电路产生的影响等,再考虑输出频率和振幅的稳定性,得到了与理论值比较相近的结果,这表明电路的原理设计是比较成功的,本次课程设计也是比较成功的。 二:设计方案 通过学习高频电子线路的相关知识,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路)等。通过老师所讲和查阅相关资料可知,克拉泼振荡电路具有该电路频率稳定性非常高,振幅稳定,适合做波段振荡器等优点。所以在本设计中拟采用改进型电容反馈式--克拉泼电路振荡器。 下面对几种振荡器进行分析论证: 2.1电感反馈式三端振荡器

电容三点式振荡电路

电容三点式振荡电路的分析与仿真 摘要:自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定度、反馈系数、输出波形、起振等因素的综合考虑,本设计采用的是电容三点式振荡器。 关键词:电容三点式、multisim、振荡器 引言:不需外加输入信号,便能自行产生输出信号的电路称为振荡器。按照产生的波形,振荡器可以分为正弦波振荡器和非正弦波振荡器。按照产生振荡的工作原理,振荡器分为反馈式振荡器和负阻式振荡器。所谓反馈式振荡器,就是利用正反馈原理构成的振荡器,是目前用的最广泛的一类振荡器。所谓负阻式振荡器,就是利用正反馈有负阻特性的器件构成的振荡器,在这种电路中,负阻所起的作用,是将振荡器回路的正阻抵消以维持等幅振荡。反馈式振荡电路,有变压器反馈式振荡电路,电感三点式振荡电路,电容三点式振荡电路和石英晶体振荡电路等。本次设计我们采用的是电容三点式振荡电路。

设计原理: 1、电容三点式振荡电路 (1)线路特点 电容三点式振荡器的基本电路如图(1)所示。与发射极连接的两个电抗元件为同性质的容抗元件C2和C3;与基极和集电极连接的为异性质的电抗元件L。它的反馈电压是由电容C3上获得,晶体管的三个电极分别与回路电容的三个端点相连接,故称之为电容反馈三端式振荡器。电路中集电极和基极均采取并联馈电方式。C7为隔直电容。 图(1) (2)起振条件和振荡频率 由图可以看出,反馈电压与输入电压同相,满足相位起振条件,这时可以调整反馈系数F,使之满足A0F>1就可以起振。

高频课设电容三端式振荡器

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 电容三端式振荡器 初始条件: 电容三端式振荡器原理,Multisim软件 要求完成的主要任务: (1)设计任务 根据电容三端式振荡器的原理,设计电路图,并在multisim软件仿真出波形结果。 (2)设计要求 ①正常工作状况时的波形图; ②起振条件的仿真,要求改变偏置电阻、相位电容和电源电压值,再观察起振波形和振荡电压的变化情况。 时间安排: 1、2014 年11月17 日集中,作课设具体实施计划与课程设计报告格式的要求说明。 2、2014 年11月17 日,查阅相关资料,学习基本原理。 3、2014 年11月18 日至2014 年11月20日,方案选择和电路设计。 4、2014 年11月20 日至2014 年11月21日,电路仿真和设计说明书撰写。 5、2014 年11月23 日上交课程设计报告,同时进行答辩。 课设答疑地点:鉴主13楼电子科学与技术实验室。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) Abstract (2) 1 克拉泼振荡器原理 (3) 1.1 克拉泼振荡器产生的原因 (3) 1.2 克拉泼振荡器电路分析 (3) 1.3 克拉泼振荡器起振条件 (4) 1.3.1 相位条件 (4) 1.3.2振幅条件 (4) 1.4 克拉泼振荡器的振荡频率 (5) 2 克拉泼振荡器仿真分析 (6) 2.1 正常起振的电路图 (6) 2.2改变偏置电阻的仿真 (7) 2.3改变相位电容的仿真 (8) 2.4改变电源大小的仿真 (8) 3 心得体会 (9) 参考文献 (10)

实验一 LC电容反馈 三点式振荡电路

实验一 LC电容反馈三点式振荡电路 一,实验目的: (1)掌握三点式振荡电路的基本原理,掌握LC电容反馈式三点振荡 电路设计及电参数计算 (2)掌握振荡回路Q值对频率稳定度的影响 (3)掌握振荡器反馈系数不同时,静态工作电流Ieo对振荡器及振 幅的影响 二,预习要求 (1)复习LC振荡器的工作原理 (2)分析图1-1电路的工作原理,及各元件的作用,并计算晶体管静 态工作电流Ic的最大值(设晶体管的β值为50) (3)实验电路中,L1=3.3uH,若C=120pf,C’=680pf,计算当Ct=50pf 和Ct=150pf时振荡频率各为多少 三,实验仪器 (1)双踪示波器 (2)频率计 (3)万用表 (4)实验板B1 四,实验内容及步骤 实验电路见1-1,实验前根据图1-1所示原理图在实验板上找到相应器件及插孔并了解其作用.

OUT 图1-1 LC电容反馈肆三点式振荡器原理图 1,检查静态工作点 (1)在实验板+12V扦孔上接入+12V直流电源,注意电源极性不能接 反 (2)反馈电容C不接,C’接入(C’=680pf),用示波器观察振荡器停 振时的情况 注意:连接C’的接线要尽量短 (3)改变电位器Rp测的晶体管V的发射极电压Ve,Ve可连续变化, 记下Ve的最大值,计算Ie值 Ie=Ve/Re 设Re=1k? 2,振荡频率与振荡幅度的测试 实验条件:I e=2Ma,c=120pf,C’=680pf,RL=110K (1)改变Ct电容,当分别接为C9,C10,C11时,记录相应的频率值,

并填入表3.1 (2)改变Ct电容,当分别接为C9,C10,C11时,用示波器测量相应振 荡电压的峰峰值Vp-p,h,并填入表1.1 表1.1 3,测试当C,C’不同时,起据点,振幅与工作电流Ier的关系(R=110K?) (1)取C=C3=100pf,C’=C4=1200pf,调电位器Rp使Ieq(静态值)分 别为表3.2所标各值,用示波器测量输出振荡幅度Vp-p,并填入表1.2 表1.2 (2)取C=C5=120pf,C’=C6=680pf,C=C7=680pf,C’=C8=120pf,分 别重复测试表3.2的内容 4,频率稳定度的影响 (1)回路LC参数固定时,改变并联在L上的电阻使等效Q值变化时, 对振荡频率的影响 实验条件:f=6.5MHZ时,C/C’=100/1200pf,Ieq=3mA改变L的并联电

高频课设报告---通信电子线路课程设计——电容三点式正弦波振荡器

目录 一课程设计目的 (2) 二课程设计题目 (2) 三课程设计内容 (2) 3.1 仿真设计部分 (2) 3.1.1设计方案的选择 (2) 3.1.2振荡器的原理概述 (3) 3.1.3方案对比与选择 (5) 3.1.4电路设计方案 (7) 3.1.5元器件的选择 (9) 3.1.6电路仿真 (9) 3.1.7元器件清单 (12) 3.2系统制作和调试 (13) 3.2.1系统结构 (13) 3.2.2系统制作 (15) 3.2.3调试分析 (16) 四课后总结和体会 (17) 参考文献 (17)

一课程设计目的 《高频电子线路》课程是电子信息专业继《电路理论》、《电子线路(线性部分)》之后必修的主要技术基础课,同时也是一门工程性和实践性都很强的课程。课程设计是在课程内容学习结束,学生基本掌握了该课程的基本理论和方法后,通过完成特定电子电路的设计、安装和调试,培养学生灵活运用所学理论知识分析、解决实际问题的能力,具有一定的独立进行资料查阅、电路方案设计及组织实验的能力。通过设计,进一步培养学生的动手能力。 二课程设计题目 1、模块电路设计(采用Multisim软件仿真设计电路) 1)采用晶体三极管或集成电路,场效应管构成一个正弦波振荡器; 2)额定电源电压5.0V ,电流1~3mA; 输出中心频率 6 MHz (具一定的变化范围); 2、高频电路制作、调试

LC 高频振荡器的制作和调试 三 课程设计内容 3.1 仿真设计部分 3.1.1设计方案的选择 电容反馈式振荡电路的基本电路就是通常所说的三端式(又称三点式)的振 荡器,即LC 回路的三个端点与晶体管的三个电极分别连接而成的电路,如图2-0 所示。由图可见,除晶体管外还有三个电抗元件X1、X2、X3,它们构成了决定 振荡器频率的并联谐振回路,同时构成了正反馈所需的网络,为此根据振荡器组 成原则,三端式振荡器有两种基本电路,如图2-0所示。图2-0中X1和X2为容 性,X3为感性,满足三端式振荡器的组成原则,反馈网络是由电容元件完成的, 称电容反馈振荡器 电容反馈式振荡电路的设计及原理分析 电路由放大电路、选频网络、正反馈网络组成。总体设计方案框图如下: V 0 图2-1 三端式振荡器基本电路

实验3 电容三点式LC振荡器实验指导

实验3 电容三点式LC振荡器 一、实验准备 1.做本实验时应具备的知识点: ●三点式LC振荡器 ●西勒和克拉泼电路 ●电源电压、耦合电容、反馈系数、等效Q值对振荡器工作的影响 2.做本实验时所用到的仪器: ●LC振荡器模块 ●双踪示波器 ●万用表 二、实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.掌握电容三点式LC振荡电路的基本原理,熟悉其各元件功能; 3.熟悉静态工作点、耦合电容、反馈系数、等效Q值对振荡器振荡幅度和频率的影响; 4.熟悉负载变化对振荡器振荡幅度的影响。 三、实验电路基本原理 1.概述 LC振荡器实质上是满足振荡条件的正反馈放大器。LC振荡器是指振荡回路是由LC元件组成的。从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。 在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振

荡频率可高达几百MHZ~GHZ。 2.LC振荡器的起振条件 一个振荡器能否起振,主要取决于振荡电路自激振荡的两个基本条件,即:振幅起振平衡条件和相位平衡条件。 3.LC振荡器的频率稳定度 频率稳定度表示:在一定时间或一定温度、电压等变化范围内振荡频率的相对变化程度,常用表达式:Δf0/f0来表示(f0为所选择的测试频率;Δf0为振荡频率的频率误差,Δf0=f02-f01;f02和f01为不同时刻的f0),频率相对变化量越小,表明振荡频率的稳定度越高。由于振荡回路的元件是决定频率的主要因素,所以要提高频率稳定度,就要设法提高振荡回路的标准性,除了采用高稳定和高Q值的回路电容和电感外,其振荡管可以采用部分接入,以减小晶体管极间电容和分布电容对振荡回路的影响,还可采用负温度系数元件实现温度补偿。 4.LC振荡器的调整和参数选择 以实验采用改进型电容三点振荡电路(西勒电路)为例,交流等效电路如图3-1所示。 图3-1 电容三点式LC振荡器交流等效电路 (1)静态工作点的调整 合理选择振荡管的静态工作点,对振荡器工作的稳定性及波形的好坏,有一定的影响,偏置电路一般采用分压式电路。

LC电容反馈三点式振荡器proteus仿真实验

实验报告 课程名称:高频电子线路 实验名称:LC电容反馈三点式振荡器 姓名: xxx 专业班级xxxxx 一、实验目的 1:掌握LC三点式振荡电路的基本原理及电路设计和电参数计算2:掌握振荡器反馈系数不同时,静态工作电流I(EQ)对振荡器的起振及幅度的影响。 二、实验内容及其结果 实验电路如下: 1:检查静态工作点 (1):改变电位器RV,测得三极管Q的发射及电压V(E),V(E)可以连续变化,记下V(E)的最大值,并计算I(E)=V(E)/R(E).

实验结果如下: (1):在V(E)最大时的静态工作电路如下: 由上图知:Umax(E)=5.62319V, Imax(E)=5.62319mA. (2):交流通路如下: (3):实验电路中,各元器件作用分析 图中:C2,C3与L1构成型LC滤波电路;RV、R2,R4组成

分压时偏置电路;R3为集电极直流负载电阻;C1,C4隔直电容,C,C

’’,L2,CT构成并联谐振回路;RL是负载电阻。 2:振荡频率与震荡幅度的测试 实验条件:U(E)=2V,C=120pF,C’’=680pF,RL=110K. 改变电容CT值,记录相应的频率值以及相应的振荡电压的峰-峰值,填入下表。 实验结果如下: X方向一方格代表0.5uS,Y方向一方格表示5V。CT(pF)F(MHZ)V(p-p) 5038.5 100 2.59 150210 结果分析:由上表数据可知,与理论推测比较吻合;因为电容CT变化会直接影响三极管Q的等效负载,CT减小,负载也会相应减小,进而使三极管的放大倍数减小;而对于振荡频率的变化,源于振荡频率f(0)在L2一定时与C(总)成反比,故有CT增大而,F减小。 3:测量C,C’’不同时,起振点幅度与工作电流I(EQ)的关系

高频电容三点式正弦波振荡器课程设计报告

课程设计任务书 学生姓名:***专业班级:电子 指导教师:吴皓莹工作单位:信息工程学院 题目:高频电容三点式正弦波振荡器 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。 要求完成的主要任务: 1.采用晶体三极管或集成电路,场效应管构成一个正弦波振荡器; 2.额定电源电压5.0V ,电流1~3mA; 输出中心频率 6 MHz (具一定的变化范围); 3.通过跳线可构成发射极接地、基极接地及集电极接地振荡器; 4.有缓冲级,在100欧姆负载下,振荡器输出电压≥ 1 V (D-P); 5.完成课程设计报告(应包含电路图,清单、调试及设计总结)。 时间安排: 1.2011年6月3日分班集中,布置课程设计任务、选题;讲解课设具体实施计划与课程设计报告格式的要求;课设答疑事项。 2.2011年6月4日至2011年6月9日完成资料查阅、设计、制作与调试;完成课程设计报告撰写。 3. 2011年6月10日提交课程设计报告,进行课程设计验收和答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要............................................................................................................. 错误!未定义书签。Abstract ........................................................................................................... 错误!未定义书签。 1 绪论............................................................................................................. 错误!未定义书签。 2.1 反馈振荡器的原理........................................................................... 错误!未定义书签。 2.1.1 原理分析................................................................................. 错误!未定义书签。 2.1.2 平衡条件................................................................................. 错误!未定义书签。 2.1.3 起振条件................................................................................. 错误!未定义书签。 2.1.4 稳定条件................................................................................. 错误!未定义书签。 2.2 电容三点式振荡器........................................................................... 错误!未定义书签。 3 设计思路及方案......................................................................................... 错误!未定义书签。 3.1 总体思路........................................................................................... 错误!未定义书签。 3.2 设计原理........................................................................................... 错误!未定义书签。 3.3 单元设计........................................................................................... 错误!未定义书签。 3.3.1 电容三点式振荡单元............................................................. 错误!未定义书签。 3.3.2 输出缓冲级单元..................................................................... 错误!未定义书签。 4 电路仿真与实现......................................................................................... 错误!未定义书签。 4.1 基于................................................................................................... 错误!未定义书签。 4.2 硬件调试........................................................................................... 错误!未定义书签。 5 心得体会..................................................................................................... 错误!未定义书签。参考文献......................................................................................................... 错误!未定义书签。附录Ⅰ总电路图......................................................................................... 错误!未定义书签。附录Ⅱ元件清单......................................................................................... 错误!未定义书签。

三点式振荡器

改进型电容三点式振荡电路的设计 摘要 高频信号发生器主要用来向各种电子设备和电路提供高频能量或高频标准信号,以便测试各种电子设备和电路的电气特性。 高频信号发生器主要是产生高频正弦振荡波,故电路主要是由高频振荡电路构成。振荡器的功能是产生标准的信号源,广泛应用于各类电 子设备中。为此,振荡器是电子技术领域中最基本的电子线路,也是从事电 子技术工作人员必须要熟练掌握的基本电路。 本次课设设计了改进型电容三点式高频振荡器,介绍了设计步骤,比较了各种设计方法的优缺点,总结了不同振荡器的性能特征。使用 Protel2004DXP制作PCB板,并使用环氧树脂铜箔板和FeCl3进行了制 板和焊接。使用实验要求的电源和频率计进行验证,实现了设计目标。 1 实验原理 1.1 振荡的原理 三点式LC正弦波振荡器的组成法则(相位条件)是:与晶体管发射极相连的两个电抗元件应为同性质的电抗,而与晶体管集电极—基极相连的电抗元件应与前者性质相反。图1-1所示为满足组成法则的基本电容反馈LC振荡器共基极接法的典型电路。当电路参数选取合适,满足振幅起振条件时,电路起振。当忽 f可近似认为等略负载电阻、晶体管参数及分布电容等因素影响时,振荡频率 osc f,即 于谐振回路的固有振荡频率 o f=(1)

式中 C 近似等于1C 与2C 的串联值 12 12 C C C C C ≈ + (2) 图1-1 电容反馈LC 振荡器 由图1-1所画出的分析起振条件的小信号等效电路如图1-2所示。 图1-2 分析起振条件的小信号等效电路 由图1-2分析可知,振荡器的起振条件为: e L e L m ng g n g g n g +=+>'''1 )(1 (3) 式中 '011 ,//L e L e e g g R R r = = 0e R 为LC 振荡回路的等效谐振电阻; 电路的反馈系数 1 12 f C k n C C =≈ + (4) 由式(3)看出,由于晶体管输入电阻e r 对回路的负载作用,反馈系数f k 并不是越大越容易起振,反馈系数太大会使增益A 降低,且会降低回路的有载Q 值,使回路的选择性变差,振荡波形产生失真,频率稳定性降低;所以,在晶体管参数一定的情况下,可以调节负载和反馈系数,保证电路起振。f k 的取值一般在0.1—0.5 之间。

相关文档
最新文档