电力电缆故障原因分析

电力电缆故障原因分析

高压电气设备检修试验问题与处理方式分析

高压电气设备检修试验问题与处理方式分析 发表时间:2018-10-14T10:37:09.510Z 来源:《电力设备》2018年第19期作者:王杰 [导读] 摘要:高压电气设备试验是保证高压电气设备安全与稳定运行的重要手段,是电气设备检修工作中的重要环节之一。 (内蒙古电力(集团)有限责任公司巴彦淖尔电业局乌拉特中旗供电分局内蒙古自治区 015300) 摘要:高压电气设备试验是保证高压电气设备安全与稳定运行的重要手段,是电气设备检修工作中的重要环节之一。在当今电力事业高速发展,高度重视电力系统运行安全与可靠的背景下,认知并掌握高压电器设备检修试验存在的问题,并探寻有效解决对策具有重要现实意义与研究价值。基于此,以高压电气设备检修试验为研究对象,就其存在的问题与对策进行了分析,挚爱提升检修试验质量,促进高压电气试验优化发展。 关键词:高压电气设备;检修试验;技术问题 高压电气设备检修试验,主要是指通过利用一定的检测与试验分析方法或措施,对电气设备的绝缘能力与运行稳定情况进行的试验,侧重于保障电气设备运行的安全性与可靠性。因此,在电力系统运行中,高压电气设备检修试验的好快将直接影响整个电力系统。故加强关于高压电气设备检修试验问题与对策的研究已经成为相关企业及工作人员关注的重点问题,对推进电力事业长效发展具有重要意义。 1、35KV高压电缆故障分析 电缆故障的产生大致是以下原因造成:制造质原因、设计原因、施工原因、外力破坏等四大类: (1)厂家制造过程中容易出现的问题有绝缘偏心、绝缘屏蔽厚度不均匀、绝缘内有杂质、内外屏蔽有突起、交联度不均匀、电缆受潮、电缆金属护套密封不良等,甚至有些是投入使用后才发现,隐患无穷。另外是高压电缆接头的制造,电缆接头分为电缆终端接头和电缆中间接头,不管什么接头形式,电缆接头故障一般都出现在电缆绝缘屏蔽断口处,因为这里是电应力集中的部位,因制造原因导致电缆接头故障的原因有应力锥本体制造缺陷、绝缘填充剂问题、密封圈漏油等原因。其次是电缆接地系统,其系统包括电缆接地箱、电缆接地保护箱(带护层保护器)、电缆交叉互联箱、护层保护器等部分。一般容易发生的问题主要是因为箱体密封不好进水导致多点接地,引起金属护层感应电流过大。另外护层保护器参数选取不合理或质量不好氧化锌晶体不稳定也容易引发护层保护器损坏。 (2)施工质量原因。因为施工质量导致高压电缆系统故障的事例很多。主要原因有以下几个方面。一是现场条件比较差,电缆和接头在工厂制造时环境和工艺要求都很高,而施工现场温度、湿度、灰尘都不好控制。二是电缆施工过程中在绝缘表面难免会留下细小的滑痕,半导电颗粒和砂布上的沙粒也有可能嵌入绝缘中,另外接头施工过程中由于绝缘暴露在空气中,绝缘中也会吸入水分,这些都给长期安全运行留下隐患。三是安装时没有严格按照工艺施工或工艺规定没有考虑到可能出现的问题。四是竣工验收采用直流耐压试验造成接头内形成反电场导致绝缘破坏。五是因密封处理不善导致。中间接头必须采用金属铜外壳外加PE或PVC绝缘防腐层的密封结构,在现场施工中保证铅封的密实,这样有效的保证了接头的密封防水性能。 (3)设计原因。因电缆受热膨胀导致的电缆挤伤导致击穿。交联电缆负荷高时,线芯温度升高,电缆受热膨胀,在隧道内转弯处电缆顶在支架立面上,长期大负荷运行电缆蠕动力量很大,导致支架立面压破电缆外护套、金属护套,挤入电缆绝缘层导致电缆击穿。 (4)外力破坏,由于外部其他施工造成已有电缆被破坏。 2、电缆故障查找 电缆差动保护装置的误动作概率小,因此差动保护跳闸后就可以认定为该回路出现故障,从而改变运行方式,开通临时供电。以往曾经采取的电缆故障仪测距及人工巡线的方法查找故障点,由于电缆击穿后的现象不尽相同,故障点查找困难。往往测出来的故障点离真正的故障点较远,延误了查找时间。即使偶尔故障点测距较准确,但由于故障点太小不明显及隧道内电缆敷设等原因,巡线人员仍不易发现。采用高压脉冲放电法进行查找故障点,准确率比较高。如2016年 1 #线电缆故障跳闸,采用高压脉冲放电法进行查找,75min后找到故障点。 2.1高压脉冲放电法 地铁35kV电缆在轨道行区明敷或电缆沟敷设,因此在进行高压脉冲放电法试验时,电压经过芯线只对电缆自身的屏蔽层或支架放电,对工作人员不会造成伤害,比较安全可靠。以下介绍该原理。 电压经B1调压器调压后,试验变压器B2升压,限流电阻R1在此作限流作用,硅堆D2整流后向电容器C充电。当充电在一定值时,使放电间隙击穿放电,试验电压便经过放电间隙向电缆放电。由于电缆故障点处较低,因此在故障点处击穿放电后再通过监听放电声音,准确查找故障点。 2.2故障查找操作 按图1接线,D点接故障电缆的芯线,电缆屏蔽层需要可靠接地。限流电阻R1及放电间隙必须悬空或放置于干燥绝缘台上。确认接线正

电力电缆故障原因及常用的检测方法(超全讲解)

https://www.360docs.net/doc/f11558517.html, 电力电缆故障原因及常用的检测方法(超全讲解)盲目的进行电缆故障查找工作往往费时费力而且无法准确的进行故障定点判断,这不是因为电缆故障种类的复杂造成,而是因为电缆周边环境所造成的。 1、电力电缆基础理论 我们目前采用的电缆故障查找方法离不开:故障诊断、粗测定点与精确定点三个步骤。但是往往在实际测试中能够确定故障类型,做到粗测定点,但是却无法真正精确定点进行开挖。这种原因的形成是因为客观存在的我们听得到的因素(公路或施工处振动噪声过大等原因)和看不到的因素(电缆走向、电缆埋设深度过深、故障点在积水中、电缆施工时余留不规范等原因)所造成的。因此在电缆故障查找前通过电缆施工、运行管理人员明确电缆长度、电缆走向、周边特殊情况、中间头位置、周边是否存在施工等要因是电缆故障查找前不可或缺的准备工作。 2、电缆故障原因及测量仪器 了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。

https://www.360docs.net/doc/f11558517.html, 注:(HZ-TC电缆故障测试仪) 电缆故障测试仪是我公司根据用户要求,从现场使用考虑,精心设计和制造的全新一代便携式电缆故障测试仪器。它秉承我们一贯高科技、高精度、高质量的宗旨,将电缆测试水平提高到一个新境界。 电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。

https://www.360docs.net/doc/f11558517.html, 电缆寻迹及故障定点是由路径仪、定点仪、T型探头、A字架、听筒等组成。本仪器是电缆故障定位测试的专用仪表,适用测试对象为具有金属导体(线对、护层、屏蔽层)的各种电缆。其主要功能为对地绝缘不良点的定位测试,线缆路径的探测以及线缆埋深的测试。 注:(HZ-TCD全智能多次脉冲电缆故障测试仪) 全智能多次脉冲电缆故障测试仪是我公司为了迎合电力工业电力时代的到来,在集成了电缆故障测试行业的诸多精品方案,以IT时代的快速发展为契机,将单片机及笔记本式的电缆故障测试仪彻底摒弃,在嵌入式计算机平台的基础上打造出适合电缆故障测试行业自身特点的网络化电缆故障测试服务平台,并且系统化得集成了USB通信技术,触摸屏技术,3G 通信技术,极大提高了仪器的使用功能和利用价值以及便捷的现场环境操作。考虑到现在地

高压电缆故障分析判断与故障点查找

高压电缆故障分析判断与故障点查找 随着我国的市场经济与现代化科技水平的不断发展提升,加快促进了我国城乡基础设施的建设。而对于高压电缆而言,其主要作用为连接电气设备与传输电能,因具备优质的稳定性与安全性的特点,得到了我国全国范围内广泛应用与普及。但是高压电缆在日常运作中也会受到诸多因素的影响,例如不可预判的自然雷电灾害、忽略了使用年限超龄等,极易引发高压电缆故障,对城乡稳定供电产生困扰。基于此,为了有效及时的采取科学合理的措施解决高压电缆故障,我国电力工作者需要对高压电缆故障的分析判断能力与精确定位故障点能力进行提升。 标签:高压电缆;故障成因;故障点判断;故障点定位 高压电缆在电力系统中因占地面积小与送电可靠性高,电力工作者为了加强供电安全性与电厂规划布局、外观美化等性能方面逐渐深入了高压电缆的应用,并且高压电缆的正确合理运用还会对后续的电力系统维护保养工作提供基础保障。然而由一些因素导致可能会对稳定工作中的高压电缆造成一系列的负面影响,从而造成危害高压电缆正常供电运行的故障出现,为了有效排除故障,电力工作者将高压电缆故障的成因进行深度分析与探究对保证社会大众的生活生产用电极具现实意义[1]。 一、高压电缆故障成因 1机械损伤 电力工作者对高压电缆工作实际操作前,未对相关区域单位部门上报与获得批准,私自进行人工打桩或者机械开挖,其过程中发生人为误操作等情况,皆可能导致高压电缆断线故障。另外,电力工作者完成对线缆或线管的敷设安装后,对高压电缆标志牌未明确标明,一旦电缆受到过大的外力时,也会造成高压电缆的断线。经相关调查,这类高压电缆线路故障成因最为普遍。 2绝缘胶层老化变质 电力系统在经过长时间运行后会发生电流流经电缆发热现象,而后长期发热现象得不到有效缓解就会导致电流流经电缆的温度不断升高,从而对电缆的绝缘胶层造成一定程度的破坏;除此之外,铁塔地下土壤中存在的酸碱性物质等自然因素,久而久之也会腐蚀电缆的绝缘外套。 3电缆施工技术 一方面,在高压电缆安装时,电力工作者未根据相关技术标准进行违规造作。另一方面,在电力建筑工程中也会出现不同程度的下沉情况,让电缆承受了较大的压力,皆会导致高压电缆断线与短路的故障发生。

高压电力电缆故障原因分析及其试验措施 王晓华

高压电力电缆故障原因分析及其试验措施王晓华 发表时间:2017-11-20T18:07:17.050Z 来源:《电力设备》2017年第19期作者:王晓华1 许文强2 聂立贤3 [导读] 摘要:随着我国经济的快速发展,“城乡一体化”的基础设施不断建设完善,国家和社会以及人们对电力的需求发生了巨大的变化,电力消耗与日俱增,为了可以保证国家和社会以及人们正常的用电需求,高压电力电缆已经投入使用,高压电力电缆不仅可以保证电能的质量,而且还能保证日常用电量的巨大消耗 (1.国网河北省电力公司检修分公司;2.国网冀北电力有限公司;3.国网河北省电力公司检修分公司) 摘要:随着我国经济的快速发展,“城乡一体化”的基础设施不断建设完善,国家和社会以及人们对电力的需求发生了巨大的变化,电力消耗与日俱增,为了可以保证国家和社会以及人们正常的用电需求,高压电力电缆已经投入使用,高压电力电缆不仅可以保证电能的质量,而且还能保证日常用电量的巨大消耗。所以,加强合理使用高压电力电缆,提高电力企业电力传输的质量和效率,进而促进国家电力行业的稳定、可持续发展。 关键词:高压电力电缆;故障分析;试验研究 引言 随着国家越来越重视电力发展程度,在输电、运转方面也给予高度的关注,特别是在高压电力电缆方面,分析其正常运行状态、常见的故障及其原因以及有效的实验方法,保证高压电力电缆的正常使用,俨然已经成为了社会科学研究学者和国家电力管理部门关注的重点之一。在积极、有效扩大电力电缆的使用范围的同时,加强对高压电力电缆的快速准确的故障诊断和维修以及强化线路布置管理,从而促进国家电力事业的发展,提高了电力传输效率和运行的质量。 1 探测电力电缆故障的意义以及故障出现的原因 当高压电力电缆运行使用到一定年限之后,其故障发生的概率会逐年增加,风险也随着逐年加大。因为电力电缆大多是埋在地下,一旦出现故障时很难找出,如果路径不清楚,故障点测距不够准确,就更加大了查找的难度,不仅仅浪费了大量的时间,也很容易造成严重的损失或伤害。因此,准确探测电力电缆故障无论是对人身安全还是对社会生产都有着非常重要的作用及意义。长期以来,引发高压电力电缆故障的原因大致分为以下几点: (1)由高压电力电缆的生产制造引起的电缆故障能够涵盖到电缆接头、本体等。一般情况下,因为现代制造工艺的不断进步,电力电缆本体缺陷引发的电缆故障率比较小,但是在实际生产中,厂家为赶工期或是没能按照生产规定进行抢工,加大了这种概率。电缆金属护套密封不良、绝缘屏蔽厚度不均匀、绝缘偏心、绝缘内有杂质等问题是在高压电力电缆生产过程中出现最频繁的问题; (2)高压电力电缆的安装必须要严格按照工艺规定进行施工,然而在电力电缆进行安装时环境比较差,现场湿度、温度、灰尘等都不易被控制,一些沙粒等杂质进入电缆绝缘中可能都会对其长期运行留下安全隐患。电力电缆项目在竣工验收的时候也应该要严格按照试验要求进行; (3)高压电力电缆因为长期在电和热的作用下,绝缘材料会长时间处于高温状态,加上长久以来受到强电磁场的影响,大大加快了绝缘层老化程度。电缆过热的主要原因是超负荷运行,再加上因为环境封闭所引起的通风质量较差,这都会严重影响电缆的绝缘层使用寿命。除此之外,电缆接头作为传输电缆的重要组成部分,其安装工作量比较大。但因为现场施工不到位的原因,难以避免绝缘带层间会有杂质和气隙,这也加剧电缆绝缘层的老化变质; (4)据相关统计表明,机械外力破坏所引起的电缆故障占到高压电力电缆总故障的半数以上,主要因为在城市发展中的地表塌陷、土地翻新等操作牵引力太大,会严重损伤电缆,甚至会引起电缆破裂或者断路现象出现。 2 高压电力电缆试验方法 目前针对国内高压电力电缆故障原因和维修予以了高度重视,如何提高电力电缆的有效性,提高其绝缘性能,延长使用寿命,使其具有耐高温、抗有毒气体的性能成为社会科学研究学者和国家电力企业关注的焦点之一。当前对高压电力电缆进行实验的主要方法是交流耐压法。 2.1谐振耐压试验 谐振电压在业内也被称为串联谐振。该方法通常适用于试验品无法满足试验电压要求方面,它具有很大的电流容量,可以满足任何电压被试品的需求。串联谐振耐压试验方法主要是通过改变试验系统实验频率和电感量,让回路一直处于谐振的状态,其具有重量轻、体积小、携带方便、理论资料成熟、价格低廉、广泛适用的优点,值得一提的是,其所需的实验仪器也很多,因此,在业内被称为优缺点并存的试验方法。 2.2振荡电压试验 高压电力电缆使用直流电源进行有效的充电,当达到试验电压的标准之后,进行放电间隙击穿后,通过电感线圈工作进行集中放电的就是振荡电压试验。该试验对高压电力电缆施加一种khz级别的衰减震荡波电压,成为高压电力电缆试验方法的有效途径之一。 3 目前我国电缆试验方法中的问题 国内目前阶段,在针对高压电力电缆试验的过程中,直流耐压存在的缺陷和问题最为严重,其主要表现为: (1)在直流电压和交流电压双重电压的作用下,橡塑绝缘高压电力电缆的绝缘层存在着一定的电场,其电场相对比较稳定,但是分布情况却是完全不一样的。电力电缆试验在这种情况下进行,完全无法充分反映问题的具体原因及其位置,存在缺陷和问题的设备元件不但不会被电压击穿,而且其击穿的部分也不会有任何问题反映。 (2)通常情况下,高压电力电缆主要质量问题是其不配套的生产设备、不严格的质量管理所造成的。像橡塑绝缘高压电力电缆绝缘出现问题,在直流试验进行的时候,将会随之发生积累效应,增加了老化的现象,造成不断缩短高压电力电缆使用寿命。 4 加强高压电力电缆故障以及实验方法管理的策略 4.1加强高压电力电缆故障措施 (1)在线监测高压电缆负荷电流,防范电缆重载运行:高压电力电缆长时间重载运行,会导致电缆本体温度过高,加快绝缘老化,易在电缆绝缘薄弱环节出现绝缘击穿(如接头处),极大地影响电缆寿命。因此,应根据电缆的运行数据,及时调整负荷分配。 (2)使用质量可靠的电缆及制作附件,并严把验收关:电缆及制作附件应选用信誉好、质量可靠的生产厂家,并经由专业人员进行

电力电缆故障的原因分类

电力电缆故障的原因分类 地下电力电缆故障复杂多变,引起电力电缆故障的原因分类大致可归纳为以下几类。 1. 机械损伤 由机械损伤引起的电缆故障占电缆事故很大的比例。有些机械损伤很轻微,当时并未造成故障,要在数月甚至数年后损伤才发展成故障。造成电缆的机械损伤的主要原因有: (1)安装时损伤。安装时不小心碰伤电缆;机械牵引力过大拉伤电缆;过度弯曲折伤电缆。 (2)直接受外力损伤。在安装后的电缆路径上或附近进行土建施工,使电缆直接受外力损伤。 (3)行驶车辆的震动或冲击性负荷也会造成地下电缆的铅(铝)包裂损。 (4)因自然现象造成的损伤。如中间接头或终端头的内绝缘胶膨胀而胀裂外壳或电缆护套;装在管口或支架上的电缆外皮擦伤;因土地沉降引起过大拉力,拉断中间接头或导体。

2. 绝缘受潮 绝缘受潮后会引起电缆耐压下降而产生故障。电缆受潮的主要原因有: (1)因接头盒或终端盒结构不密封或安装不良而导致进水。(2)电缆制造不良,金属护套有小孔或裂缝。 (3)金属护套因被外物刺伤或腐蚀穿孔。 3. 绝缘老化变质 绝缘老化会引起电缆耐压下降而产生故障。电缆老化的主要原因有:(1)电缆介质内部的渣质或气隙,在电场作用下产生游离和水解。(2)电缆过负荷或电缆沟通风不良,造成局部过热。 (3)油浸纸绝缘电缆的绝缘物流失。 (4)电力电缆超时限使用。 4. 过电压 过电压会使有缺陷的电缆绝缘层发生电击穿,引起电缆故障。其主要原因有:大气过电压(如雷击);内部过电压(如操作过电压)。

5. 设计和制作工艺不良 电缆头与中间设计和制作工艺不良,也会引起电缆故障。其主要原因为:电场分布设计不周密;材料选用不当;工艺不良,不按规程要求制作。 电缆故障的性质与分类 1. 以故障材料特征分类 可分为串联故障、并联故障及复合故障三类。 (1)串联故障 串联故障(金属材料缺陷)是指电缆一个或多个导体(包括铅、铝外皮)断开的故障。它是广义的电缆开路故障。因缆芯的连续性受到破坏,形成断线或不完全断线。不完全断线尤其不容易发现。串联故障具体可分为:一点开断、多点开断、一相断线、多相断线等。(2)并联故障 并联故障(绝缘材料缺陷)是指导体对外皮或导体之间的绝缘水平下降,不能承受正常运行电压而发生的短路故障。它是广义的电缆短路故障。这类故障由于缆芯之间或缆芯对外皮间的绝缘破坏而形成短路、接地、闪络击穿等现象,在现场出现频率较高。并联故障具体可分为:一相接地、两相接地、两相短路、三相短路等。

电力电缆故障测试仪地埋线故障检测仪

T-880电力电缆故障测试仪地埋线故障检测仪T-880电力电缆故障测试仪RL024280地埋线故障检测仪RL187405图片 型号:RL024280型号:RL187405 T-880电力电缆故障测试仪RL024280地埋线故障检测仪RL187405内容 型号:RL024280

T-880电力电缆故障测试仪 长度测试+漏电测试 T-880加强版:长度测试+漏电测试+路径查找(功能上取得重大突破:断线点可以实现精确定位,带外铠电缆的对地短路、相线断线也能测试)---10天倒计时上市发售,目前接收预定,6月25日前预定客户到正式上市发售时送精美礼品一份。 长度测试:电缆线的断线、短路距离;也可以测试电缆线总长度(用于工程验收) 漏电测试:针对地埋线路绝缘层被破坏造成的绝缘不好定位; 路径查找:对于不知道地埋走向电缆能方便的查找出其准确走向; 工业级制造标准,不存在接口粗糙连接不好情况,专业指导,售后无忧。 使用ARM技术和FAGA技术一键自动快速测试,不用漫长等待,测试结果直观明了!采用大屏幕真彩液晶显示 适用于测量低压电力电缆的断线、混线(短路)、漏电等故障的精确位置。是缩短故障查找时间、提高工作效率、减轻线路维护人员劳动强度的得力工具。线路查修人员也可以用于线路工程验收和检查电缆电气特性。填补农电故障及小区供电故障没有相应仪表测试的空白。 产品功能: 长度测试单元: ?脉冲反射测试法,可以测试断线、混线(短路)、严重绝缘不良类型的故障距离; ?全自动测试,智能故障诊断,全中文操作菜单,液晶显示具有背光功能; ?自动增益和自动阻抗平衡技术,替代繁琐的电位器调节; ?手动分析功能,方便对电缆进行分析判断; ?可充锂电电池,智能充电,无需值守。 ?脉冲反射测试法:最大测量范围2km,测试分辨率:1m,测试盲区:0m, 脉冲宽度:80ns-10μs自动调节。 漏电测试单元: ?故障智能诊断,辅助耳机音频判断; ?背带包式设计,方便随身携带; ?对于绝缘没处理好或者绝缘层遭到破坏造成的漏电(线间漏电、对地漏电)故障均可测试; ?测试电缆地埋深度不大于3米; ?测试精度:探测误差±5cm; 其他指标: ?充电时间约3个小时,充满后连续工作时间8小时;

电力电缆故障点分析及查找

电力电缆故障点分析及查找 自从电被人类发现并使用之后,给工业的发展和社会的进步带来了翻天覆地的变化,现代社会的正常运转已离不开电能的供给,城市化进程的加速促使电力电缆被运用到电力系统和生活中的各个领域,所以谨防电缆故障,保证供电的稳定性十分重要,本文通过阐述电力电缆对于社会发展的作用,对常见的电力电缆故障点进行了分析总结,并提出了一些查找办法,从而进一步提升电力系统的供电可靠性。 标签:电力电缆;故障点分析;查找办法 1 电力电缆对于社会发展的作用 电力行业作为我国的经济支柱产业之一,始终在国民经济中占有重要位置,回顾电力电缆的发展历程,起源于新中国成立之后,随着社会主义经济的发展,各项体制制度的完善,以及科学水平的提升,与生产、生活密切相关的电缆工业终于从无到有,由小变大,不仅规模和数量日益扩大,而且所生产的产品技术与工艺水平都得到突飞猛进,在国家大力支持基础公共设施建设的同时,其对国民经济状况的影响也越来越大,例如:据有关调查统计,我国的电缆工业从发展以来,生产技术水平已经达到或者接近世界的先进水平,电力电缆年产值达到了惊人的900亿元,占国民经济总产值的2%,由此不难看出,电力电缆的运行程度好坏直接影响着国家的经济发展,而由于电力行业中很多电气火灾事故都源于电缆的故障,所以完善电缆的施工质量,加强维护措施,将有利于排除电力电缆的安全隐患,发挥出其对于维护社会秩序安全、稳定发展的重要作用,因此,针对电力电缆的故障点进行及时、细致、深入的分析与查找,进而一并解决显得尤为必要。 2 常见的电力电缆故障点分析与总结 2.1 短路或接地电力电缆故障 短路故障是电力电缆中最常见的故障之一,一般其有高电阻短路和低电阻短路之分,常伴随电缆的两芯或三芯短路,而当电缆发生短路故障之后,常会发生短路保护装置当中的熔丝被烧断,形成跳闸现象,而且会散发出一种绝缘烧焦的气味,这时的故障点就产生于短路,而接地故障同样分为低阻接地与高阻接地,二者无论从判断工具方面,还是自身性质的划分都有差异,通常来说,可以利用低壓电桥测得并且接地电阻小于20-100Ω的成为低阻故障,而接地电阻高于100Ω,且需要使用高压电桥才能测得的则为高阻故障,一旦发生此类事故,接地所用的监视装置会发出信号,漏电继电保护装置馈电开关产生跳闸。 2.2 断线电力电缆故障 断线故障的发生常会产生两种状况,一种属于高阻断线故障,那么另一种必

浅析高压电缆故障分析及解决方法

浅析高压电缆故障分析及解决方法 发表时间:2019-04-11T14:01:57.313Z 来源:《河南电力》2018年19期作者:周荣斌[导读] 本人根据作者实践,按照高压电缆故障产生的原因进行分类,并按照不同类别给出具体解决方案活建议,希望能为同仁提供借鉴 周荣斌 (福建省万维新能源电力有限公司福建福州 350003)摘要:本人根据作者实践,按照高压电缆故障产生的原因进行分类,并按照不同类别给出具体解决方案活建议,希望能为同仁提供借鉴。 关键词:高压电缆;故障分析;电力1.高压电缆故障原因分析 按照故障产生的原因进行分类,高压电缆故障大致分为以下几类:厂家制造原因、施工质量原因、设计单位设计原因、外力破坏四大类。下面进行分类介绍: 1.1厂家制造原因 厂家制造原因根据发生部位不同,又分为电缆本体原因、电缆接头原因两类。 一是电缆本体制造原因。一般在电缆生产过程中容易出现的问题有绝缘偏心、绝缘屏蔽厚度不均匀、绝缘内有杂质、内外屏蔽有突起、交联度不均匀、电缆受潮、电缆金属护套密封不良等,有些情况比较严重可能在竣工试验中或投运后不久出现故障,大部分在电缆系统中以缺陷形式存在,对电缆长期安全运行造成严重隐患。 二是电缆接头制造原因。高压电缆接头以前用绕包型、模铸型、模塑型等类型,需要现场制作的工作量大,并且因为现场条件的限制和制作工艺的原因,绝缘带层间不可避免地会有气隙和杂质,所以容易发生问题。电缆接头分为电缆终端接头和电缆中间接头,不管什么接头形式,电缆接头故障一般都出现在电缆绝缘屏蔽断口处,因为这里是电应力集中的部位,因制造原因导致电缆接头故障的原因有应力锥本体制造缺陷、绝缘填充剂问题、密封圈漏油等原因。 1.2施工质量原因 因为施工质量导致高压电缆系统故障的事例很多,主要原因有以下几个方面:一是现场条件比较差,电缆和接头在工厂制造时环境和工艺要求都很高,而施工现场温度、湿度、灰尘都不好控制。二是电缆施工过程中在绝缘表面难免会留下细小的滑痕,半导电颗粒和砂布上的沙粒也有可能嵌入绝缘中,另外接头施工过程中由于绝缘暴露在空气中,绝缘中也会吸入水分,这些都给长期安全运行留下隐患。三是安装时没有严格按照工艺施工或工艺规定没有考虑到可能出现的问题。四是竣工验收采用直流耐压试验造成接头内形成反电场导致绝缘破坏。五是因密封处理不善导致。中间接头必须采用金属铜外壳外加PE或PVC绝缘防腐层的密封结构,在现场施工中保证铅封的密实,这样有效的保证了接头的密封防水性能。 1.3设计原因 因电缆受热膨胀导致的电缆挤伤导致击穿。交联电缆负荷高时,线芯温度升高,电缆受热膨胀,在隧道内转弯处电缆顶在支架立面上,长期大负荷运行电缆蠕动力量很大,导致支架立面压破电缆外护套、金属护套,挤入电缆绝缘层导致电缆击穿。 2.高压电缆头制作技术 电缆终端头是将电缆与其他电气设备连接的部件,电缆中间头是将两根电缆连接起来的部件,电缆终端头与中间头统称为电缆附件。电缆附件应与电缆本体一样能长期安全运行,并具有与电缆相同的使用寿命。 2.1高压电缆头的基本要求 良好的电缆附件应具有以下性能,线芯联接好,主要是联接电阻小而且联接稳定,能经受起故障电流的冲击;长期运行后其接触电阻不应大于电缆线芯本体同长度电阻的1.2倍;应具有一定的机械强度、耐振动、耐腐蚀性能;此外还应体积小、成本低、便于现场安装。绝缘性能好:电缆附件的绝缘性能应不低于电缆本体,所用绝缘材料的介质损耗要低,在结构上应对电缆附件中电场的突变能完善处理,有改变电场分布的措施。 2.2电场分布原理 高压电缆每一相线芯外均有一接地的(铜)屏蔽层,导电线芯与屏蔽层之间形成径向分布的电场。也就是说,正常电缆的电场只有从(铜)导线沿半径向(铜)屏蔽层的电力线,没有芯线轴向的电场(电力线),电场分布是均匀的。 在做电缆头时,剥去了屏蔽层,改变了电缆原有的电场分布,将产生对绝缘极为不利的切向电场(沿导线轴向的电力线)。在剥去屏蔽层芯线的电力线向屏蔽层断口处集中。那么在屏蔽层断口处就是电缆最容易击穿的部位。电缆最容易击穿的屏蔽层断口处,我们采取分散这集中的电力线(电应力),用介电常数为20~30,体积电阻率为108~1012Ω?cm 材料制作的电应力控制管(简称应力管),套在屏蔽层断口处,以分散断口处的电场应力(电力线),保证电缆能可靠运行。 为尽量使电缆在屏蔽层断口处电场应力分散,应力管与铜屏蔽层的接触长度要求不小于20mm,短了会使应力管的接触面不足,应力管上的电力线会传导不足(因为应力管长度是一定的),长了会使电场分散区(段)减小,电场分散不足。一般在20~25mm左右。 预制式安装要求比热缩的高,难度大。管式预制件的孔径比电缆主绝缘层外径小2~5mm。中间接头预制管要两头都套在电缆的主绝缘层外,各与主绝缘层连接长度不小于10mm。电缆主绝缘头上不必削铅笔头(在电缆芯线上尽量留半导体层)。铜接管表面要处理光滑,包适量填料。 关键技术问题是附件的尺寸与待安装的电缆的尺寸配合要符合规定的要求。另外也需采用硅脂润滑界面,以便于安装,同时填充界面的气隙,消除电晕。预制附件一般靠自身橡胶弹力可以具有一定密封作用,有时可采用密封胶及弹性夹具增强密封。预制管外面同热缩的一样,半导体层和铜屏蔽层,最外面是外护层。 3.电缆终端电应力控制方法

高压电力电缆故障分析及诊断处理_0

高压电力电缆故障分析及诊断处理 在新经济常态下,城市和农村对用电的需求越来越大,因此高压电力电缆在城乡电网输变电中得到了广泛运用。如果高压电力电缆在试验、生产、施工等环节质量有问题,那么在投入使用中,受运行环境、化学、机械等因素的影响,将造成绝缘老化等问题,最终造成电缆运行发生故障。 标签:高压电力电缆;故障;诊断 1 高压电力电缆故障主要类型 高压电力电缆故障类型多种多样,其中经常见到的故障有如下5种。第一,接地故障。导体和地面连接在一起,此过程中若电阻不存在统计意义,那么就属于安全接地。还有种情况为电阻不能被忽略,此时就可以产生低电阻或高电阻接地的情况。第二,断线故障。高压电力电缆在实际运行的过程中,在外力的作用下会出现各类突发状况,如被大风刮断等,电缆断开之后,电力输送也会中断,该区域中的电能供应就会出现瘫痪的情况。第三,绝缘故障。电缆绝缘在产生问题之后,会出现漏电事故。第四,短路。电力电缆短路后,可以会造成火灾,亦或是烧毁电力设备。第五,闪络故障。电流值异常升高,监控电力表针存在闪络摆动的情况,电压下降之后此情况会消失,但电缆绝缘阻值居高不下,表明高压电缆存在故障。 2 高压电缆故障的分析判断 2.1 高压电缆故障原因 高压电力电缆故障原因较多:电缆敷设过程中,施工人员技能水平不足使本体外护套受损或架设时牵引力太大引起电缆损伤,导致潮气进入电缆,使得电缆在投运前就存在严重缺陷;选择的电缆质量不过关,绝缘达不到相关的标准,导致出现风化、裂口、受潮等情况;随着人们用电需求的不断增加,电缆长期持久输送电能,有些处于超负荷运行状态;城市基建项目为了赶工期,往往不能及时清楚辨析电缆的走向就施工,导致直埋电缆遭到外力破坏;电缆在输送电能的过程中会产生热量,这些热量不能有效排解,就会加速电缆的老化。 2.2 高压电缆故障的分析 电力电缆故障分析和处理一般都是事后进行调查维修,主要包括以下步骤:首先进行故障检测,检测故障是否依然存在,辨别正常和故障的电缆芯线,同时确定故障类型;然后进行故障测距,确定故障发生的大概距离,为精准定位故障点提供准确的相关信息;最后进行精测定位,在故障测距的基础上,实现故障点精准定位,以便及时开展检修。目前的测距方法有电桥法、低压脉冲反射法、脉冲电压法、脉冲电流法、直流高压闪络法、冲击高压闪络法、二次脉冲法等,这些方法根据不同的原理都可粗略测定故障距离;精确定位方法有声测定点法、音

电力电缆故障测试报告.doc

如对您有帮助,请购买打赏,谢谢您! 电力电缆故障测试报告 时间:2010年03月29日至04月1日 地点:辽宁省盘锦市欢喜岭住宅小区 参加人员:盘锦市欢喜岭物二、凯运公司:萧队长、刘队长、胡工、杨工淄博威特电气有限公司:赵金峰、张华平 使用仪器:CD-63电缆故障探测信号发生器 CD-71电力电缆多次脉冲故障测距仪 CD-715多次脉冲信号耦合器 CD-81数字式多功能电缆故障定点仪 CD-22电缆探测多频组合信号发生器 CD-12数字式多功能电缆探测仪 兆欧表(500V) 整体工作情况:累计测试6条故障电缆、精确定点6个故障点。 根据盘锦市欢喜岭物二、凯运公司的要求,其管辖的住宅小区内电力电缆出现故障而不能运行,需要我公司人员对存在故障的6条电缆进行准确故障定点,下面根据电缆的标记情况及电缆测试的过程逐一进行详细阐述:1.小区1#电缆的探测过程 该电缆自配电房至对面住宅楼。将电缆两端全部解开后,在配电房内用兆欧表测量结果为:红、绿、黄、零色芯线对地绝缘为零,使用CD-71测量结果为:各芯线之间全为22米开路波形。我们先用CD-22在黄色芯线和接地排加入信号(电缆对端未接地),电流显示为0.18A,用CD-12路径探测仪在配电室外找出信号幅值最大处进行标定,然后按设备的指示探测电缆的埋设路径,当走到距离配电室大约22米左右时,信号出现陡然衰减,我们怀疑故障点就在这附近。然后我们停下CD-22,接上CD-63,加5KV高压进行周期放电,携带CD-81在信号出现陡然衰减处定点,得到多次放电的声音波形,同时听到故障点周期性的放电声,经声磁延时比较,确定最小值为1.2ms处为故障点。在该处挖掘后看到故障点, 2.西区3#楼电缆的探测过程 该电缆自配电室至3#楼。将电缆两端全部解开后,在配电房内用兆欧表

电缆故障点的四种实用检测方法

电缆故障点的四种实用检测方法 1 电缆故障的种类与判断 无论是高压电缆或低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力作用等原因造成故障。电缆故障可概括为接地、短路、断线三类,其故障类型主要有以下几方面: ①三芯电缆一芯或两芯接地。 ②二相芯线间短路。 ③三相芯线完全短路。 ④一相芯线断线或多相断线。 对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接地故障,用兆欧表摇测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。 故障类型确定后,查找故障点并不是一件容易的事情,下面根据笔者的经验,介绍几种查找故障点的方法,供参考。 2 电缆故障点的查找方法 (1) 测声法: 所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机。电路接线如图1所示,其中SYB为高压试验变压器,C为高压电容器,ZL为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。

当电容器C充电到一定电压值时,球间隙对电缆故障芯线放电,在故障处电缆芯线对绝缘层放电产生“滋、滋”的火花放电声,对于明敷设电缆凭听觉可直接查找,若为地埋电缆,则首先要确定并标明电缆走向,再在杂噪声音最小的时候,借助耳聋助听器或医用听诊器等音频放大设备进行查找。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到“滋、滋”放电声最大时,该处即为故障点。使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。 (2) 电桥法: 电桥法就是用双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算出故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。

电力电缆故障分析

电力电缆故障分析 随着我国经济建设的飞速发展,在各行各业中大量使用电力能源,而电力电缆又是电力输送的主要工具之一。作为电力企业电缆故障会直接威胁到发、变电及电网系统的安全运行,造成巨大的经济损失、严重威胁人民的生命安全。当电缆发生故障后,如何准确快速地查找故障点,修复故障,尽快恢复供电,是长期困扰我们的一项难题。本人根据多年的工作经验,罗列了一些主要的故障类型,浅析了故障原因,介绍常用的故障点的查找方法并在此基础上提出一些故障的防范措施。 了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。电缆故障的原因大致可归纳为以下几类:了解电缆故障原因,有利于尽快地找到故障点。 要注意电缆敷设、维护资料的整理与保存。 主要故障原因: 机械损伤(外力破坏):占58% 附件制造质量的原因:占27%。 敷设施工质量的原因:占12%。 电缆本体的原因:占3%。 一、电缆故障的类型 无论是高压电缆还是低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力作用等原因造成故障。电缆故障可概括为接地、短路、断线三类,其故障类型主要有以下几方面:

1.电缆相芯接地; 2.芯线间短路; 3.芯线或多相断线。 对于直接短路或断线故障用万用表可直接测量判断,对于非直接短 路和接地故障,用兆欧表摇测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。 二、电缆故障的原因 1.机械损伤 机械损伤是引起电缆故障最重要的原因。虽然有些机械损伤很轻微,当时并没有造成故障,但是在一段时间内就有可能随着损伤的加重而发展成故障。造成电缆机械损伤的主要原因有: (1)电缆与外部物体造成的擦伤;如:与地面、电缆管口、桥架的磨插。 (2)机械敷设时由于牵引力过大而引起的绝缘拉伤; (3)电缆过度弯曲而导致的损伤。 2.绝缘受潮 造成电缆受潮的主要原因有:

地铁高压电缆击穿故障与对策

地铁高压电缆击穿故障与对策 摘要:地铁直流电缆作为输电的重要部件,运行的状态对地铁牵引供电系统稳 定性有着直接的影响。本文根据多年工作实践,对高压电缆击穿的故障原因及预 防措施进行探索,供同行借鉴参考。 关键词:地铁直流电缆;击穿故障;对策 一、故障现象分析 XX年X月,某地铁线路接触网避雷器高压侧1500V直流电缆击穿放电,并引起A\B双边两个直流断路器瞬时过流保护动作跳闸,跳闸后自动重合闸成功。故 障发生在非运营时段,当时没有列车运行,故障发生后立即组织变电和接触网人 员进行现场检查及故障处理,设备恢复正常运行,未造成运营方面的影响。 二、电缆工况分析 该1500V直流电缆芯线是由铜丝束绞组成的电缆导体,外线护套由乙丙橡胶(EPR)绝缘和低烟、低卤、B类阻燃带构成(图1)。发生故障的直流电缆一端 与接触网连接,另外一端连接至避雷器端,故障发生在直流电缆连接避雷器的电 缆头近端。 三、故障原因分析 对故障点处的避雷器进行检查,外观检查并无闪络或击穿现象,送检后其预防性试验数 据见表 1(注:YH5WS-17/75 避雷器直流 1m A 参考电压不小于25 k V,0.75U1m A时电流不 大于50 μ A),数据表明该避雷器性能参数合格,能满足该线接触网防雷系统要求。结合 A/B开关瞬时过流保护动作跳闸后自动重合闸成功的故障现象,可推知该故障为瞬间金属性 接地故障,排除因避雷器内部电阻片老化(或劣化)、泄漏电流大幅度增加或者避雷器元件 发生击穿性短路故障导致的接地故障发生。 通过对故障电缆进行解剖,发现故障电缆的主绝缘有割伤,同时内部铜芯也有不同程度 的割断,综合考虑故障点的运行环境,总结原因如下: (一)直流电缆介质沿面放电导致电缆绝缘下降。制作过程中,热缩套管内部含有杂质、汗液及气隙等,加之电缆终端头外的热缩套管由于在高架段露天段经受一年四季的气候变化,强烈的温差以及潮湿的环境导致热缩管劣化,雨季时,有大量水分附着在电缆上,极易通过 外层的热缩套管气隙渗入到电缆剥接层,同时杂质、气隙等共同作用下极有可能造成介质沿 面放电,导致主绝缘逐步下降。 (二)长期局部放电加速了电缆的绝缘老化。电缆的主绝缘层已渗水,由于在施工做端 子头压接时电缆主绝缘末部制成锥体,如图2所示,由于剥接工艺质量控制不到位,绝缘层、电缆铜芯处有割伤,造成主绝缘层被破坏,导致外护套与平滑过渡层间产生气隙,加大了电 晕产生的可能性,成为局部放电源。因为气隙的相对介电常数小于乙丙橡胶的相对介电常数,导致气隙内部电场强度高于周围的乙丙橡胶,易发生击穿,即产生局部放电,引起绝缘腐蚀 和老化,使材料电导率变大,造成绝缘损伤。 在局部放电和沿面放电的共同作用下,热缩管失去应有的防水绝缘功能,经过以上因素 的共同作用和长期累加,以及故障发生前连日暴雨雷鸣,环境空气湿度大,致使局部放电区 域逐渐扩大,当电缆通过暂态过电压时,最终导致电缆绝缘Ⅱ段处绝缘薄弱点瞬时闪络性击穿,电缆突然泄露大量电流,造成直流电缆线芯通过其金属箱体接地短路(图 3)。 四、预防对策 根据以上原因分析,需认真地对辖区所属的直流1500V 正极电缆及附属高压侧连接电缆

电力电缆在运行中的常见故障

电力电缆在运行中的常见故障 电力电缆在运行中的常见故障 电力电缆是用于传输电力、传输信息和实现电磁转化的一大类电力产品,在当今电气化的时代,电力电缆广泛的分布于生活中的各个角落,涉及社会方方面面,凡是有人类活动的地方,都会有电力电缆的存在,社会中的交通、生产、生活及社会的发展都要电力电缆的带动。面对日益增多的电力电缆,随之而来的也有更多的电缆故障。学习、掌握各种预防和处理电力电缆故障的方法、技巧对现在的电缆建设、维护和管理人员来说是及其重要的。 摘要:在现代化进程越来越快的今天,城市快速发展,城市电网电缆化已成为发展的趋势,电力电网的安全运行直接影响着社会的稳定、经济的发展及人民的正常生活。随着电力电缆的广泛应用及电缆的长时间使用,电缆发生故障的几率也越来越高。文章分析了电力电缆在日常运行中的常见故障及故障原因,并对防止电缆故障的预防措施进行分析和阐述。 关键词:电力电缆,故障,措施 1电力电缆在运行中的常见故障 ①接地性故障。电缆一芯或者多芯接地,分为低阻接地和高阻接地,以10k Ω为界。②短路性故障。电缆两芯或者三芯短路,一般常见两相短路和三相短路。 ③断路性故障。电缆一芯或者多芯被外部应力或线路短路破坏,造成电缆某一芯或者数芯发生断裂,致使电缆之间或对地的绝缘电阻在规定范围电压却不能传输到终端。④闪络性故障。该类故障主要发生在高压试验中,并且大多数在电缆接头处或电缆终端位置发生。当所加电压达到某一数值时击穿,电压低至某一值时绝缘又恢复。⑤综合性故障。同时出现以上两种或者两种以上故障成为综合性故障。

2电力电缆常见故障的原因 2.1机械损伤 电缆本体发生机械外力破坏,这类故障在电力电缆事故中所占比例较大。且对电网安全运行影响较大,可能造成较严重后果。 ①直接外力破坏电缆。多因为城市工程建设管理中疏忽漏洞,施工过程不善等引起的电缆故障。②自然现象造成的电缆损伤。地质灾害如地震等会产生的过大拉力拉断电缆,温度太低也可能冻坏电缆附件,这些是不可抗拒的损伤。③地基下沉破坏电缆。电缆穿越铁路及高大建筑物时,由于地基负重太大,会发生地基下沉现象,对电缆产生垂直方向上的拉力破坏折断电缆或造成电缆中间接头内部绝缘降低而发生击穿。 2.2化学损伤 造成电缆化学损伤主要由于热化学作用对电缆的破坏。 ①电缆管道铺设不当,导致的电缆产生热量无法有效散热,及电缆长时间过负荷使用,造成电缆老化及绝缘损伤加速。②电缆长期过负荷使用很容易导致电缆过热,电缆长期受高热高温,会使得部分的电缆绝缘碳化,这样对电缆绝缘材料有很大损害,使其弹性减弱就很容易产生破裂损坏。③早期敷设的电缆如穿蛇皮管的直埋电缆及穿钢管的直立电缆,当电缆为三芯电缆时,高负荷情况下会产生100℃的高温,这种现象为涡流现象,对电缆损伤很大。 2.3过电压损伤 过电压一般会发生在已经有缺陷的绝缘处。在较大电压情况下,击穿绝缘层,损害电缆。如雷击可产生极大的电压,在电缆已有损伤的情况下,雷击有可能击穿电缆。但是总的来说,电缆对电压有极强的承受能力,可承受较大的电压,超过正常测试电压的几十倍以上。而且,电缆线路被雷击的可能性也是很小的。根据

电力电缆故障测试技术及应用的概述

电力电缆故障测试技术及应用的概述 发表时间:2017-09-21T10:49:37.033Z 来源:《电力设备》2017年第13期作者:张涛 [导读] 摘要:随着国民经济的快速发展和城市建设规划的迫切需要,电力电缆的应用迅速增长,从而导致电缆故障明显增加(内蒙古鲁电蒙源电力工程有限公司内蒙古呼和浩特 010000) 摘要:随着国民经济的快速发展和城市建设规划的迫切需要,电力电缆的应用迅速增长,从而导致电缆故障明显增加。为了提高供电可靠性就必须以最短的时间修复故障,然而电力电缆是埋设于地下的电力线路,不能用眼睛直接发现故障点。如果不能及时查找出故障点的位置就更不用谈到修复故障,所以如何快速准确的测试出电力电统故障的位置,是修复电力电缆故障提高电网供电可靠,减少经济损失的关健所在。本文对各种可能出现的电缆故障的测试方法以及国内外一些先进测试设备进行概述,并介绍电统故障测试设备的应用体会。 关键词:电力电缆故障测试技术应用 随着电缆电网的发展,在电缆数量增加、工作时间延长的环境下,其故障发生频率也逐渐升高,而由于电缆路线隐蔽性强、检测设备和技术有限等原因的影响,使得电缆故障检测难度提升,因此,如何进行电缆故障检测,保障电量供应安全,成为电缆运行管理的重要内容。由于电力电缆具有供电可靠、不占地面和空间、受各种自然灾害影响较小等优点,使在现代电网供电系统中,电缆的使用数量急剧上升。与此同时,电缆的故障几率也随之增加,这给电力管理部门带来很多困扰,也给电网的安全运行提出了更大的挑战,因此迅速准确地判断故障点的位置,对保证供电线路的及时修复和恢复供电有着重要意义。电缆故障的探测方法取决于故障的性质,探测工作的第一步就是判明故障的性质。电缆故障的性质可分如下几种。①接地故障,即一芯或多芯接地。②短路故障,即两芯或三芯短路。③断线故障,即一芯或多芯被故障电流烧断或外力破坏断开。④闪络性故障,即当所加电压达到某一值时,绝缘被击穿,而当电压低于某一值时,绝缘又恢复。⑤混合故障即同时具有两种和两种以上性质的故障。另外,高阻与闪络性故障的区分不是绝对的,它与高压试验设备的容量或试验设备的内阻等因素有关。而在各种建设飞速发展的今天,外力破坏成为电力电缆故障的主要原因之一。一般在测定电缆故障类型时,首先用2500V以上兆欧表测量绝缘电阻,对电缆进行直流耐压试验以鉴定电缆是否有故障。泄露电流可能出现的情况有:①泄露电流变化很大。②泄露电流值随试验电压的升高而急剧上升。③泄露电流值随时 一、常见的电缆故障测试方法 根据电缆故障发生的原因,可以分为串联故障和并联故障两种,其中并联故障又可分为主绝缘故障和外皮故障两种,而不同的绝缘故障采用不同的检测方法,其具体表现在:主绝缘故障根据电阻影响的不同,分为低阻故障、高阻故障和间歇性故障,在与定位检测中,其分别主要采用低压脉冲反射法、二次脉冲法和二次脉冲法,而有时也可分别采用电桥法、冲闪法和衰减法等,在精确定位检测时,则采用音频感应法、声响法、声磁同步法等,而在断线故障检测中,则使用低压脉冲反射法和生磁同步法进行与定位和精确定位,在外护套故障中,预定位法与精确定位法分别为高压电桥法、降压法和生磁同步法、跨步电压法。 直流闪测发和冲击闪测法是现代进行故障检测的主要方法,其分别面向间歇故障与高阻故障,而其中的电压法也已有效实现检测效果,其波形清晰,盲区较少,这就有效实现了高电阻检测,但是接线操作复杂,分压过大,若操作不规范,往往会产生危险;电桥法、低压冲脉反射法对低压电缆进行故障检测,能起到一定效果,但是,对高阻故障却不能使用;二次冲脉法是现阶段较为先进的基础测试法,其与高压发生器冲击闪络技术相结合,通过内部装置将低压脉冲法神,而次脉冲在电弧电阻很低的情况下,发生短路反射,在仪器中形成记忆,而在电弧熄灭后,则实现开路反射,其有利于实现对故障点的转却判断,因此其具有很强的应用前景,而究其使用设备来看,主要有Baur和Seba产品,其中Baur具有安全性高、容易接线、方便切换、结构紧凑、子宫判断以及消除盲区等优点,可有效提升检测的精确度。 二、电缆故障测试的设备要求 2.1考虑价格比和价值比。在选用设备中,往往将其价格和性能进行比较,而鉴于高性能设备成本较高,出于经济效益考虑,而不予购买或是使用,实际上,当设备达到相应的使用规模时,则会实现其性能效益,若是因设备使用不当而引起停电等,则会造成更大的经济损失。 2.2由于电缆故障的隐蔽性,提升了检测难度,尤其对一些不知路径的直埋电缆,由于其埋于地下、管线干扰较强、损失较大,因此要加强各个检测工具和设备的综合运用,如将电缆识别仪器、预定位设备、精定位仪器等,以实现其检测的有效性。 2.3关注仪器反射的波形。在进行波形测定中,要考虑到冲击能量的影响,现代国外仪器一般采用2μF或是4μF电容,但是在进行测试时,往往的不到波形,因此要求其电容量加大,且对主绝缘进行有效保护,控制仪器体积等,促使冲击能量加大,以延长故障点起弧时间,增强放电量,从而获得测试波形,这对于低压电缆而说,其更为突出。 2.4由于电缆设置的隐蔽性,且电缆内部危险性等因素的影响,在检测中要求对故障点进行精确检测,这就要求选择高精确度的设备,在提升检测准确性的同时,实现安全性维护,避免因检测位置不当,或是故障点把握不准,而造成安全事故等。 三、电缆故障测试的把握点 3.1事前准备。电缆故障预测前的准备是保障故障检测的先决条件,也是实现有效监测的保障,因此在进行电缆验证时,要将电缆长度、路径预留情况、接头位置等各项资料查看,以保证监测点的准确性。 3.2检测定位。查找故障点,是进行检测的根本,若是故障点定位不准确,则会造成经济和安全损失,因此在检测中,要充分利用故障预定位检测方式和精定位检测方式,并在一定条件下,进行有机结合,以实现故障点检测的准确性,进而提升检测维修效果。如由于主绝缘故障精确定位较难但是预定位较容易,外护套恰恰与之相反,因此,在绝缘和外护套故障发生点相同时,则可将两者进行结合使用,以有效实现检测定位。 3.4预定位误差。由于操作或是仪器、技术等因素的影响,出现检测误差是必然现象,因此,在检测中,要考虑到预定位误差,其中包括仪器误差、度量误差、波速误差、波形误差等,由于仪器误差是客观存在的,其具有一定恒定性,不以人为改变;度量误差,是在测量中存在的,人为因素有一定影响,因此,必须强化人员的规范化操作,注意两端电缆的预留圈的存在性;在波速误差控制中,则要以电缆长度计算的方式,尽量降低误差与正确值之间的差距;而在仪器和人为作用下出现的波形判断误差,因此,在进行其控制中,不仅要实现规范性操作,而且要进行经验收集,以提升其准确度。 3.5获得波形。在电缆一段测试不到波形时,要进行两端互换,或是将燃弧电流加大后再进行测试;若是因为电缆较长而在预定位得不到波形,则要采用延长触发时间、加大冲击电压等措施,来获得波形;而对间歇性故障测试中,若冲击电压不能击穿,则可采用直流耐压方

相关文档
最新文档