虚拟现实案例介绍

虚拟现实案例介绍
虚拟现实案例介绍

虚拟现实——让生活更逼真

肖沪卫

(上海科学技术情报研究所 200031)摘要:人会做梦,会幻想,虚拟现实技术却能使梦想成真。未驾驶过飞机,也能知道驾机飞行的感觉;没有当过宇航员,却能体会到太空飞行中失重的滋味;虽不是潜水员,但能感受到深沉大海的孤寂和观看到神奇眩目的景观……虚拟现实技术所带来的身临其境的神奇效应正渗透到各行各业,成为近年来国际科技界关注的一个热点。它是建立在计算机图形学、人机接口技术、传感技术和人工智能等学科基础上的综合性极强的高新信息技术,在军事、医学、设计、艺术、娱乐等多个领域都得到了广泛的应用,被认为是21世纪大有发展前途的科学技术领域。本文如诗如画般全方位展现了虚拟现实技术的概念与应用前景。

未驾驶过飞机,也能知道驾机飞行的感觉;没有当过宇航员,却能体会到太空飞行中失重的滋味;虽不是潜水员,但能感受到深沉大海的孤寂和观看到神奇眩目的景观……虚拟现实技术所带来的身临其境的神奇效应正渗透到各行各业,成为近年来国际科技界关注的一个热点。它是建立在计算机图形学、人机接口技术、传感技术和人工智能等学科基础上的综合性极强的高新信息技术,在军事、医学、设计、艺术、娱乐等多个领域都得到了广泛的应用,被认为是21世纪大有发展前途的科学技术领域。

1 虚拟现实探秘

虚拟现实是从英文Virtual reality 一词翻译过来的,

1

Virtual 就是虚假的意思,Reality 就是真实的意思,合并起来就是虚拟现实,也就是说本来没有的事物和环境,通过各种技术虚拟出来,让你感觉到就如真实的一样。

关于虚拟现实的提法,历来多有争议。国外有人反对“Virtual Reality"这个词,称它太玄乎;国内也有人认为虚拟现实的译法不佳,而主张翻译为“灵境”,这给人一种空灵缥缈的感觉,颇有一些韵味。另外也有一些译法如实时环境、虚拟空间、人造现实、仿真技术等等。但在科学界,大多数人仍主张直译为虚拟现实,以求准确和符合现代语法。

1.1 什么是虚拟现实?

人在现实世界中是通过眼睛、耳朵、手指等器官来实现视觉、听觉、触觉等功能的,人们可以通过视觉观察到色彩斑斓的外部环境,通过听觉感知丰富多彩的音响世界,通过触觉了解物体的形状和特性。

一个世纪以来,我们已经有一种虚拟现实——电话,或者说是声音的虚拟现实。对此,我们早就习以为常。但当19世纪,电话初次展现在人们面前时,这也是一种全新的世界。无论人们相隔多远,一个电话线就能把两个人联系起来,这难道不让人惊奇么?在人类历史上,这也是开天辟地头一遭。

20世纪20年代,诞生了电视,这种以声音和影像并茂的虚拟现实,打开了人类视觉空间,使人们足不出户,遍览天下大事。

然而这些远非真正意义上的虚拟现实。真正的虚拟现实在技术思想上有着质的飞跃,它直接将我们投入到虚拟的三维空间中去,与交互的环境融为一体。在这个虚拟的世界里,我们能够自由的运动,观看风景,就和真实的世界一样,我们有着足够的自主性,我们甚至可以捡起一块石头攻击敌人。

于是,我们可以认为:虚拟现实是人们利用计算机生成一个2

逼真的三维虚拟环境,将模拟环境、视景系统和仿真系统合三为一,并利用人机交互设备,把操作者与计算机生成的三维虚拟环境连结在一起。操作者通过人机交互设备,以自然的方式(如头的转动、手的运动等)向计算机送入各种动作信息,并且通过视觉、听觉以及触觉等多种感知获得三维感觉世界。随着人们不同的动作,这些感觉也随之改变。目前,与虚拟现实相关的内容已经扩大到了与之相关的许多方面,像“人工现实(Artificial Reality)”、“遥现”(Telepresence)、“虚拟环境”(Virtual Environment)、“赛伯空间”(Cyberspace)等,都可以认为是虚拟现实的不同术语或形式。事实上, 虚拟现实要创建一个酷似客观环境又超越客观时空、能沉浸其中又能驾驭其一的和谐人机环境,也就是由多维信息所构成的可操纵的空间。

1.2 虚拟现实二大特点

虚拟现实最重要的特点就是“逼真”与“交互”性。参与者在虚拟世界中就象身临其境一样。环境象真的,人象在真环境中与各种物体及现象相互作用。环境中的物体和特性,按照自然规律发展和变化,而人在其中经历视觉、听觉、触觉、运动觉、味觉和嗅觉等感受。

首先,虚拟现实很“逼真”。电视的空间是二维空间而不是现实世界的三维空间,电视的所谓“立体声”效果也不同于现实世界的声音的立体特征。而虚拟现实的视觉空间、视觉形象是三维的,音响效果也是“地道的三维音响”。二维与三维的视觉形象有本质的区分:在一个二维屏幕上看三维的图像就如同从一个玻璃船底看下面的海水,这时感到自己还是在船上,处于三维环境的边缘,从它的边缘看这个世界的深处。而在一个立体的“屏幕”里看一个视觉世界就像是在潜水。通过一个电脑化的手套来操纵一个三维显示器,我们进入到虚拟现实的多重感觉的世界中,就

3

如同戴着潜水装置潜入到深海,我们沉浸在水下环境中,在礁石间穿行,听着鲸鱼的低鸣,捡起贝壳来仔细端详,与别的潜水员交谈,完全参与到海底探险的经验当中。这种感觉是如此的真实,以至于我们全方位地浸没在这个虚幻的世界中。

其次,虚拟现实强调交互性。在系统中,用户可以直接控制对象的各种参数,如:运动方向、速度等,而系统也可以向用户反馈信息,如:模拟驾驶系统中两车相撞,用户会感觉到震颤,车在抖动。经过不平路面时,汽车会颠簸。在虚拟现实中,视觉无疑是最主要和最常用的交互手段。因为观察点是在观察者的眼睛上,这样,观察者就可以得到与在真实世界中同样的感受。随着图像的变化,再配以适当的音响效果,就可以使人们有身临其境的感受。但是,当人们希望用手来触摸虚拟模型,或用手直接对虚拟模型进行操作时,只是视觉和听觉就无能为力了,因而需要研制和开发具有触觉功能的交互手段,也就是具有"力反馈"功能的装置。它可以对使用者的输入(如手势,语言命令)作出响应。比如你可以拿起一虚拟的火炬并打开其开关,你一推操纵杆,仿佛可以在里面漫游,你甚至可以用虚拟的手感触到虚拟物体存在。

1.3 虚拟现实三大类型

虚拟现实可分为仿真、超越、幻象三种类型。

仿真型虚拟现实:它根据现实世界的真实存在,由计算机将其模拟出来。它虽然现在并不存在,但一切都是符合客观规律的。仿真虚拟现实被广泛用于培训中。“虚拟飞机座舱”便是一例。学员坐在座舱里便可获得和真实飞行中一样的感受。根据这种感受做出各种操作,并根据操作后出现的效果可判断这样操作是否正确。旅游业同样可以利用仿真虚拟现实招揽游客,让公众通过虚拟现实观赏到名山大川之雄伟、深谷小溪之清幽、名胜古迹之丰

4

富、风土人情之多彩,必能激发其游兴,增加客源。

超越型虚拟现实:它虽然也是根据真实存在进行模拟,但所模拟的对象或者用人的五官无法感觉到,或者在日常生活中无法接触到。超越型虚拟现实可以充分发挥人的认识和探索能力,揭示未知世界的奥秘。它以现实为基础,却可能创造出超越现实的情景。例如,可以模拟宇宙太空和原子世界发生的情况,把人带入浩瀚无比或纤细入微的世界里,对那里发生的一切取得感性认识。如美国宇航局把火星探测器发回的大量数据,经过整理制成火星模型,可以使人从感性上了解火星上的各种情况,宛如置身于火星上一样。

幻想型虚拟现实:随心所欲地营造出现实世界不可能出现的情景。神话、童话、科学幻想在这个世界中可以轻而易举地化作“现实”。因此,幻想型虚拟现实给人带来广阔的想象时空,尽管有时是荒诞不经的,却促进了人类想象和创造力的发展;完全是子虚乌有的,却可供人消遣娱乐。例如,模拟海底龙宫世界,可以置人于虾兵蟹将之中,赏悦各种奇珍异宝。逼真的感受,宛如真正置身于龙宫。并且最重要的,就是它是交互式的,也就是说随着人的反应不同,将出现不同的情景。这一点是目前现实生活中其它娱乐手段所做不到的。

1.4 虚拟现实四大构成

虚拟现实系统包含操作者、机器、软件及人机交互设备四个基本要素,其中机器是指安装了适当的软件程序,用来生成用户能与之交互的虚拟环境的计算机,内含存有大量图像和声音的数据库。人机交互设备则是指将虚拟环境与操作者连接起来的传感与控制装置。

人机交互设备将视觉、听觉、触觉、味觉、嗅觉等各种感官

5

刺激传达给操作者,使人的意识进入虚拟世界。目前已经开发出来的,在视觉方面有头盔式立体显示仪等;听觉方面有立体音响;触觉、位置感方面有“数据手套”、“数据服”等,以及一些语音识别,眼球运动检测等装置,未来还会开发出模拟味觉和嗅觉的设备,那时虚拟现实将更加真实。

头盔式显示器(Head Mounted Display)是与虚拟现实系统

种设备是在头盔上安装显示器,

利用特殊的光学设备来对图像进

行处理,使图像看上去立体感更

强。绝大多数头盔式显示器使用

两个显示器,能够显示立体图像。

从人类获取信息的方式看,视觉是最主要的,它占人们获取的信息量的70%,其次是听觉、触觉和味觉。为了实现逼真的效果,满足人的视觉和听觉习惯,虚拟环境的图像和声响应是三维立体的;为了达到实时性,图像至少应有60 Hz的帧频,还要随时响应人们的操纵信号,延迟不能超过0.1秒。虚拟现实系统利用头盔显示器把用户的视觉、听觉和其他感觉封装起来,产生一种身在虚拟环境中的错觉。头戴式显示器将观察者的头部位置及运动方向告诉计算机,计算机就可以调整观察者所看到的图景,使得呈现的图像更趋于真实感。

数据手套(Data glove)是虚拟现实系统中最常用的人机交互设备,它可测量出手的位置和形状从而实现环境中的虚拟手及其对虚拟物体的操纵。数据手套通过手指上的弯曲、扭曲传感器和手掌上的弯度、弧度传感器,确定手及关节的位置和方向。数据手套可能使你觉得你的手产生放在水中、或者泥巴中的感觉。

数据服也是虚拟现实系统中用的人机交互设备。一件虚拟现

实的数据紧身服可能使你有在水中或泥沼中游泳的感觉。

6

当人戴上头盔时,就把立体图像,由多媒体计算机从头盔的显示器显示给参观者。人戴上数据手套,你的手一动,有很多传感器就测出了你的动作(比如去开门)。计算机接到这一信息,就去控制图像,使门打开,你眼前就出现了室内的图像景物,并给出相应的声音及运动感觉。当你的妻子恰巧在房中,看到你的出现,她张开双臂亲昵地向你飞奔而来,随之你的腰被紧紧地搂住。切记,此时仅是数据紧身服在收缩罢了,只是这一切来得那么自然,那么逼真,那么不露痕迹。

2 虚拟现实的发展

人类自古以来都有一种对某个未知、未及的世界的想象和想象性地占有。这种欲望和想象在个人身上表现为梦(睡梦和白日梦),在集体(民族)身上表现为神话、宗教。

人类不仅把对另外世界的向往和想象诉诸神话、诗歌等语言形式,而且以既有的技术手段将它们诉诸视觉形象和声音形式。于是,原始人的岩画,中国古代的兵马俑,各个时代的雕塑、绘画视觉艺术,以及近现代出现的透视画、全景画、立体图镜、电影、电视等构成了虚拟现实的史前史。

画、电影、电话、电视、计算机的发展为虚拟现实问世打下了基础。

20世纪50年代,莫顿.海利希就考虑,看电影如何才能使人有身临其境的感觉。他得到墨西哥教育部长的支持,研究制造出一台机器,叫“传感影院”,但效果不佳。又由于教育部长在飞机失事中丧生,他失去了经济支持。幸好又有对此感兴趣的人提供投资,他才制成第二台样机。这是利用视觉、听觉、运动觉,使用户感到好像是骑在摩托车上旅行,欣赏周围的自然景色。可惜的是,这种装置只能为一个人服务,每次花费惊人,所以没有引

7

起电影界的重视。

1965年,美国人艾凡·萨瑟兰,在篇名为<<终极的显示>>的论文中首次提出了包括具有交互图形显示、力反馈设备以及声音提示的虚拟现实系统的基本思想,后来被公认为在虚拟环境领域中起着里程碑的作用。

1970年,出现了第一个功能较齐全的头盔式显示器系统。该系统含有能模拟力量和触觉的力反馈装置。

80年代,美国的杰伦正式提出了“Virtual Reality”一词。美国宇航局(NASA)及美国国防部组织了一系列有关虚拟现实技术的研究,并取得了令人瞩目的研究成果,从而引起了人们对虚拟现实技术的广泛关注。1986年,美国航空和航天局建立了世界上第一个计算机虚拟环境。

1990年在美国达拉斯召开的国际会议上明确了虚拟现实的主要技术构成,即实时三维图形生成技术、多传感交互技术及高分辨率显示技术。

进入90年代,迅速发展的计算机硬件技术与不断改进的计算机软件系统相匹配,使得基于大型数据集合的声音和图像的实时动画制作成为可能;人机交互系统的设计不断创新,新颖、实用的输入输出设备不断地进入市场。而这些都为虚拟现实系统的发展打下了良好的基础。

1993年爱荷华大学提出了“制造技术的虚拟环境”的报告,提出建立支持虚拟制造环境等技术。

1997年美国标准与技术研究院“使用VRML的制造系统建模”,探讨了虚拟现实技术及在网络上的应用。希望将WWW变成一个三维的立体空间。主页的链接也不再是高亮显示的图片和文字,而是在三维空间打开一扇门或者触摸一个物体,就进入了另一个主页。甚至同时上网者互相之间都能看到,你在网上可以有一个虚8

拟的自己,可以象逛街一样浏览主页,同时和路上碰到的人打招呼。你能在Internet上设计自己的三维虚拟空间。可以建造虚拟的房间、建筑物、城市、山脉和星球。能用虚拟的家具、汽车、人员、飞机或你能想象的任何东西来填充虚拟的世界。

3 虚拟现实技术现状

虚拟现实技术发展到如今,当然不只是纸上谈兵。各大公司努力开发的各种设备,在促进虚拟现实的实际应用上起到了相当的作用。

3.1 国外现实技术现状

3.1.1 硬件现状

虚拟现实技术诞生以来,许多大学、科研机构及制造厂家研究开发了各种各样的信息检测、再现和生成装置,尤其对视觉信息再现装置的研究方面取得重大进展。按立体成像方式和图像是否跟随观察者头的转动而移动,视觉信息再现装置大体上可以分为两大类,一种是利用立体电影原理生成立体图像的视觉信息再现装置。这种方式的立体图像需要戴上特殊的眼镜才能看得到,且立体图像不能跟随观察者头转动。另一种视觉信息再现装置是头盔式显示器,其立体图像可以跟随观察者的头而转动,这种方式可以获得较高的临场感觉。

头盔式显示器(HMD):美国犹他大学的学生索式兰德应用立体镜视原理在60年代末发明了第一台头盔式显示器。虚拟现实技术诞生之后,头盔式显示器得到了广泛的应用。近年来世界上许多厂家生产了各种各样的头盔式显示器。岛津制作所生产的头盔式显示器采用CRT显像方式,重量虽然增加了一些,但图像的清晰度比液晶显像高。另外,现阶段头盔式显示器主要应用在科研机构,所以生产的台数有限也是价格高的一个主要原因。索尼公

9

司为了降低头盔式显示器的价格以把它推向个人消费市场,于1997年6月开发了廉价、简易、携带型的新产品(MLM-50)。这种小型的头盔式显示器虽然观赏不到立体图像,但可以取得在2米的距离观看52英寸电视机的效果,并有配套的小型录像机和充电电池适合于个人在野外或出差途中使用。索尼公司计划以每月5000台的数量推向个人消费市场。

2000年6月14-19日在东京举行的“第8届产业虚拟现实展”中,正在开发中的单眼头戴式显示器“DATA GLASS2”被展出。该产品只要与电脑相接便可显示图像,与早期的产品相比,新产品的最大改进之处在于减轻了重量,仅为80g,据称这是目前最轻的头盔式显示器。新产品与800×600像素(SVGA)的彩色显示相对应,总像素(RGB)与早期产品相比,增加了50%,达到144万像素。视角也从25度增至30度。头戴该产品的视觉感受,与在60cm远的地方观看14英寸屏幕的效果基本相同。该产品由液晶板和反射光学系统构成的曲面镜组成。考虑到头戴时的安全性,外界光线能够透过画面,使戴镜者能够看到周围物体。

数据手套:赛伯手套(Cyber Glove)公司生产的数据手套在每个手指上有三个弯曲传感器和一个扭曲传感器,在手掌上还有两个传感器。数据手套本身配有一个叫“假手”的软件,该软件用来接收传感器所获取的数据,利用这些信息可控制虚拟空间中物体的位置和方向。VPL公司开发的数据手套,在手指关节处安装有光学传感器,手套周围遍布磁场跟踪器。马特(Mattel)公司生产的PowerGlove曾在短时间内应用于游戏系统,它用指端的压力传感器和超声位置传感器提供了手掌和手指的位置数据。

3.1.2 软件现状

虚拟现实发展至今,已有了许多的建模软件,它们使用的机制各有不同,对用户的要求也有高低,当然,其功能上的差异也

10

是很大的。其典型代表为:Rend386是一个免费的程序库和播放器,功能较弱,适于DOS环境;World Tool Kit for Windows 是Sense8 公司以Windows动态连接库的形式发布的虚拟现实程序库,在标准SVGA下运行,可以在窗口中显示带纹理映射的虚拟世界,也可全屏显示。该程序支持DDE,因而可以通过电子表格、数据库或其它程序来控制虚拟世界;虚拟现实建模语言VRML(Virtual Reality Modeling Language)是HTML的3D模型,其目的是提供一种用于网上的虚拟世界的描述方法。目前已有VRML1.0、VRML2.0、VRML97等几种版本;OpenGL(开放式图形语言)是Silicon Graphics开发的一种建立图形库的语言,该语言功能强大,是实现虚拟现实的较好工具,但由于其编程量大,又较难掌握,因此目前只在专业人员中有较广的应用。

语音输入为用户与虚拟环境交互提供了一种方便的方法。提供语音输入功能需要一个普通的麦克风和某种语音识别软件。语音识别技术发展至今,已经能在货架上见到待出售的语音识别软件。这种软件有:SoundBlaster 公司的Voice-Assist 软件,Command 公司的 Voice 软件,以及Dragon系统的 Dictate软件。

3.1.3 应用现状

九十年代,虚拟现实技术应用研究全面展开。有人曾对全世界范围内进行的805项虚拟现实技术研究项目作了统计,结果表明:娱乐、教育及艺术方面的占据主流,达21.4%,其次是军事与航空达12.7%,医学方面达6.13%,机器人方面占6.21%,商业方面占4.96%,另外在可视化计算、制造业等方面也有相当的比重。

11

3.1.3.1 虚拟游戏

由于娱乐方面对虚拟现实的真实感要求不是太高,故虚拟现实在该方面发展最为迅猛。如1990年,在芝加哥开放了世界上第一台大型可供多人使用的虚拟现实娱乐系统,其主题是关于3025年的一场未来战争。1991年英国开发的称为“Virtuality”的虚拟游戏系统,配头盔式显示器,大大增强了真实感;1992年的一台称为“Legeal Qust”的系统由于增加了人工智能,使计算机具备了自学习能力,大大增强了趣味性及难度,使该系统获年度虚拟现实技术产品奖。美国许多采用虚拟现实技术制作的游戏已成为青少年的新宠。比如在好莱坞大片《侏罗纪公园》中,几千万年前已经灭绝的恐龙在屏幕上活灵活现地肆虐;《勇敢者游戏》中,大象冲上街头踏破小汽车等,都是在电脑上运用虚拟现实技术做出的效果。

美国芝加哥有一个虚拟现实娱乐厅,叫“战技中心”。它是世界上第一个大规模虚拟现实娱乐系统,有一个座舱,前方有一个屏幕。可以从上面看到战斗场景。下方有个副屏幕,从它的上面可看到损伤情况。主屏幕的两侧显示武器的状态和选择,左边的操纵杆控制武器动作,右边的调整开关可以控制速度。“战斗机器”是这个娱乐系统的“主要人物”,是一个超级机器人。它是一场战争的发动者,假设这场战争发生在一千多年以后。用脚去踏脚踏板,就使“战斗机器模拟器”开始工作,于是模仿一千多年以后的战争就开始了。人们排长队买票去玩这种虚拟现实娱乐,去进行战斗游戏:玩的人在座舱内,利用舱内的设备,在星球间飞行,飞行中要保护自己,防止巨型坦克的袭击,并用激光枪展开射击竞赛,或低头弯腰,扭身拐行,躲开史前翼身龙的攻击。虚拟战争游戏受到人们欢迎;日本横滨的“战技中心”是有32个座舱的大系统,比芝加哥的“战技中心”座舱要多一倍。

12

3.1.3.2 虚拟高尔夫

美国一家工程公司研制出一种打高尔夫球的虚拟现实模拟器。在很大的房间内,悬挂一个有弹性的尼龙屏幕,你在室内用标准的高尔夫球杆和真正的球,进行打球活动,只要你从球座上发球后,球飞出碰到屏幕便掉在你的房间地板上。这时屏幕上可以显示出球在真实球场的上空飞行的状况。这是因为,由传感器、红外线发射器、电子跟踪系统确定出球的飞行情况,由计算机计算出球继续飞行的路径,并确定出是左曲球还是右曲球,于是在屏幕上显示出球的飞行过程。这种虚拟的室内打高尔夫球模拟器,可以模拟16个著名高尔夫球场的实况,打18个洞的高尔夫球。

3.1.3.3 虚拟滑雪

东京一家公司开发的滑雪训练系统,是典型的虚拟现实系统。当你戴上头盔显示器,穿上滑雪鞋,站到由驱动装置驱动的金属板上,就可滑雪了,在你的头盔显示器里就显示出高山雪道和斜坡石崖。当你手持滑雪杆,向下滑去,脚下的金属板在驱动装置驱动下,模拟人从高山上滑下来的过程以及撞击情况。你站在金属板上,身体的感觉就是顺雪道飞驰而下,头盔里可以看到皑皑白雪从你身边掠过,前面的山崖向你冲来……

3.1.3.4 虚拟乐队

“虚拟乐队”是芬兰赫尔辛基技术大学开发的一套培训乐队指挥的系统。它通过受训者身上佩戴的磁性传感器来收集数据,根据受训者指挥动作的变化而产生相应的演奏效果。譬如,受训者一只手挥动指挥棒,可改变虚拟乐队的演奏速度,另一只手则可控制演奏音量的大小。这种虚拟现实系统采用了八声道音频技术,它能产生与置身于音乐厅相类似的音响效果,同时还可模拟在观众席上不同位置所感受到的演出效果的差异。另外,由于在

13

声音的合成上采用了对不同乐器单独处理的办法,这一系统还能够帮助教师分析“虚拟乐队”不同“成员”的演奏效果,从而对学生的指挥进行评估测试。

有了这支“虚拟乐队”,一方面可省去诸如租用场地一类的开支;另一方面,由于不存在乐队是否愿意配合等问题,学生们可反复训练一些基本动作和技巧。这不仅为教学带来了极大的便利,也有助于教学质量的提高。

3.1.3.5 虚拟工厂

世界著名的摩托罗拉公司,从1994年开始,建立了工厂装配线的虚拟模型。这种虚拟模型是由硬件和软件组成的。硬件包括计算机、各种传感器、头盔显示器、鼠标等。软件包括计算机控制程序,由实际装配线拍摄下来的照片并变成计算机存储的图像资料。操作者在启动、运行、关闭装配系统的虚拟模型中,可以听到像从真实系统发出的响声,从显示器上可看见与真实系统一样的动作反应。摩托罗拉公司用该虚拟模型,对世界各地的员工进行培训,获得良好效果。用虚拟模型有两点好处:一是虚拟现实实验用的装配线模型比真实的装配线便宜(只有3~10万美元),并且可以很方便地运到任何地方去;二是当真正的装配线上的机械设备变更或改进时,虚拟现实实验室的模型很容易得到及时的更新。

3.1.3.6 虚拟飞机

虚拟现实技术应用于生产,可以节省大量的成本,提高效率。美国用虚拟现实技术设计波音777飞机,获得巨大成功。三百多万个零部件的设计与飞机整体结构的互相组合,都是在一个由数百台工作站组成的虚拟环境系统上进行的。设计师带上虚拟现实技术装配的头盔显示器后,可穿行于这个虚拟的“飞机”中,去审视“飞机”的各项设计是否合乎理想。过去要设计一架新型飞

14

机必须先造两架实体模型飞机,至少要花120万美元,虚拟现实技术不仅节约了经费,更重要的是缩短了新产品上市的时间,大大增加了市场竞争能力。

3.1.3.7 虚拟汽车

近年在美国通用、福特等汽车公司的虚拟现实技术工作室里,人们可以看到拥有各种各样的新颖装备和制作工具,工程师们正在进行着试验性的工作,通过头盔和感应手套等工具,使工作站上生成立体的汽车原型图像,也有用1:1的大型屏幕,把立体图像的汽车,完全与实体一样显示出来,并可以随意进行设计改进,使人们感到一种完全身临其境的逼真体验。

德国汽车业应用虚拟现实技术最快也最广泛。目前,德国所有的汽车制造企业都建成了自己的虚拟现实开发中心。奔驰、宝马、大众等大公司的报告显示,应用虚拟现实技术、以“数字汽车”模型来代替木制或铁皮制的汽车模型,可将新车型开发时间从一年以上缩短到2个月左右,开发成本最多可降低到原先的十分之一。

目前,德国汽车制造企业已将虚拟现实技术应用到零部件设计、内部设计、空气动力学试验和模拟撞车安全试验等细小局部的工作中。汽车零部件的设计因为使用了虚拟现实技术,成本降低达40%。研究人员还计划将虚拟现实技术降低成本后进一步应用于销售、客户服务和市场调查。届时,客户可以先体验多媒体“数字汽车”之后再选择定购。虚拟现实技术的应用大幅度提高了德国汽车产业的竞争力。

3.1.3.8 虚拟太空机器人

1999年4月19至21日,德国多特蒙德大学机器人研究所与日本宇宙开发事业团合作完成了用虚拟现实技术遥控太空机器人的实验。两国科学家在日本筑波的卫星地面控制中心通过虚拟现

15

实头盔和数字手套指挥一台机器人。这台机器人搭载于日本的工程实验卫星“ETS7”上,在距地面500千米的近地轨道运行。借助于虚拟现实技术,地面上的科学家在头盔中看到的景物就是机器人在太空中“视线”所及。与此相应,进行实验的专家转动头部或挥挥手,机器人也会做同样动作。地面上的真人和太空中的机器人实现了“心有灵犀一点通”。科学家戴上头盔和手套操纵机器人,能遥控机器人避开各种障碍物。该实验证明虚拟现实技术使得远距离操纵机器人完成研究和探测使命更加容易和方便。比如一位生物学家能够在自己的办公室里戴上头盔和手套研究太空中实验生物的生长情况,而在太空中“亲临现场”的却是一台机器人。

3.1.3.9 虚拟战场

美国陆军1994年的“路易斯安娜94”作战演习就是利用虚拟现实技术进行的。这次演习不但试验论证了美国陆军制定的条令、战术和部队编成,使之更加符合21世纪的作战要求,还节约演习经费近20亿美元。

在波斯尼亚伊格尔基地,美国陆军采用一种计算机武器模拟作战系统对维和部队士兵进行作战训练。猛一看,这种场面更象是在电子游艺厅里,人们用假枪玩电子游戏。目前,这一系统已在该基地使用两个月了,将逐步取代过去采用实弹进行的作战准备训练。

3.1.3.10 虚拟诊断

1999年3月报道,美国明尼苏达州梅奥诊所将虚拟现实技术应用于结肠癌诊断,使医生可仿佛身临其境地在结肠中“穿行”,寻找肿瘤或息肉部位。新技术还可将结肠图像局部放大,以便对细小部位进行研究,将其“切开”露出肠壁,让医生作更好的检查。在对70名患者所作的研究中,医生们发现,利用虚拟现实技

16

术进行检查要精确得多。这种方法对患者来说也更好,因为它无需让病人保持镇静状态,整个扫描过程所需时间不到2分钟。而使用最普遍的验血方法,不但患者承受一定的痛苦,且确诊率不到50%。

3.1.3.11 虚拟手术台

澳大利亚联邦科学与工业研究组织的研究人员发明了一种虚拟手术台。该手术台把三维镜像系统与具有输入和感觉反馈装置的机器人手臂结合起来。使用者戴上三维眼镜坐在手术台上,在机器人手臂末端握着笔式、工具式、手术刀样,或者是系统程序设置的别的样式器械。控制机器人手臂移动方式的大功率微型电机,可产生导致使用者感觉的阻力,这种感觉就像实际接触人体一样。由于如同在活体手术一样,人们能惊讶地感到注射器穿刺皮肤和静脉注射的感觉,然后看到注射器里充满了血液。在“手术”期间,通过对切口的压力与角度、组织损害及其他指标的准确性测定,可监测受训练者手术操作技术的进步。因此该项技术的意义巨大,它将使手术操作训练产生一场革命。

3.1.3.12 虚拟病房

美国伊利诺斯州的科普利纪念医院病房设计出来之后,请一大批残疾老战士,坐在轮椅上,戴上显示器头盔和数据手套,进入虚拟现实世界,对病房的设计进行检查、评论。他们从头盔中看到的是犹如真的病房,他们到处查看,结果发现。水池上方的水龙头调节手柄距离地面太远,坐轮椅的人够不着。用虚拟现实世界,查出设计中的毛病,加以改进,使真实的建筑更加完美。

3.1.3.13 虚拟小宠物

日本富士通公司用计算机制造出一个小动物,它一半像海豚,一半像鸟。这个由虚拟现实技术创造的电子宠物叫“菲兰克”。它

17

和人能进行相互交流,它会记人的脸和声音,当主人呼唤它的时候,它会高兴得又叫又跳。你用温柔的声音对它说话,它就会作出小鸟依人状;如果你粗声吼叫,它就会飞行得无影无踪。它会唱歌,能学唱新歌,还会表演杂技。

3.1.3.14 虚拟大猩猩

美国佐治亚理工学院开发出虚拟动物园的大猩猩系统。游人戴上头盔,看到立体景物,就像身临其境一样,在大猩猩群中走动。如果游客太靠近雄性大猩猩,它会发出咳嗽声,好像是警告你。你若不离远点,大猩猩就会虚张声势地扑过来。

3.1.3.15 虚拟厨房

日本松下公司用来招揽买主的“厨房世界”,就是用虚拟现实技术,让顾客去品评厨房设备是否合自己的心意的一个尝试。当你走进陈列室,只要戴上特殊的头盔和一双银色的手套,你在原地就可以去漫游“厨房世界”了。在头盔的显示器内,你可以看到厨房及它的门。你伸出手去开门,门随手而开,厨房内所有的设备就会映入你的眼帘。你可以用手打开柜橱的门和抽屉,查看里面的结构和质量,可从碗架上拿下盘子看看,也可以打开水龙头,立即看见水流出来,听见流水声,还可查看水池下面的排水是否流杨,也可查看照明是否亮堂,试试通水排气是否正常。如果您对厨房的布置不满意,可按照自己的意愿重新安排。这一切在你的感觉中和真的一模一样。经过亲眼目睹和亲自操作,你如果感到满意,只要填一张订单,计算机立即把订单传输到工厂,两周内,就可以得到所订的厨具了。

3.1.3.16 虚拟演员

美国迪斯尼公司宣称推出虚拟演员,这将使“演员”艺术青春常在,并将导致个人数字电影的诞生。

好莱坞征服世界的一个法宝是“明星制度”。对明星偶像的追18

逐,为电影业带来了滚滚财源。明星制度也让道格拉斯·范朋克、葛丽泰·嘉宝等一批明星成为一些人崇拜的偶像。

但是,明星是吃“青春饭”的,而虚拟演员却可青春常在、活力永存。虚拟演员可以比斯瓦辛格更强壮、比卓别林更滑稽、比费雯丽更妩媚。由计算机拍成的游戏节目《古墓丽影》,片中的虚拟女主角入选为全球的知名人物,预示着虚拟演员时代即将来临。目前全世界电影业都面临危机。一方面其他新兴娱乐方式的出现,削弱了它的吸引力;另一方面场面越来越大、片酬越来越高,巨额投资往往难有相应效益。使用虚拟演员将可改变这种局面。例如,拍摄《昆虫总动员》,用传统方式需用100人完成动画,用电脑制作动画也要30人;而用电脑制作的虚拟演员,只要几个人便够了。

虚拟演员成为电影主角后,电影将成为软件产业的一个分支。各软件公司将开发出数不胜数的虚拟演员供人选购。一个人可以身兼制片人、导演、摄影师、布景设计师,把编写剧本、选择明星、选择艺术手法等所有工作都集于一身,把复杂的拍摄设备变成一台计算机,把有血有肉的演员变成程序。因此以使用虚拟演员为特征的个人电影也被称为“个人虚拟电影”。

电影诞生以来一直在变革,无声电影、有声电影、彩色电影、立体电影、宽银幕电影……但哪一次都不会像使用虚拟现实技术拍摄个人虚拟电影所引起的变化那么大。

3.1.3.17 虚拟歌手

日本的一家公司设计制造出一个虚拟世界中的歌手,叫伊达恭子。它不是真人,但是胜似真人。伊达恭子是16岁妙龄的少女,身材美妙,歌喉柔蜜略带沙哑,动作令人倾倒。它不会老,也不会发脾气,随意由人支使,可以连续唱数小时而不会累倒,会讲 7种语言。伊达恭子的出现,使流行乐坛发生了变化,越来越多的

19

人喜欢这个虚拟世界中的歌手。

3.1.3.18 虚拟女主持

英国报业联合会新媒体公司经过9个月的研制,2000年四月

创造出了从形象、声音至动作都完美无

报道新闻,开创了虚拟主持人播报新闻

的先河。为全球网民提供24小时的英语

新闻报道。数字化的安娜诺娃,在电脑

浏览器中看与真人一模一样,芳龄28

岁,未婚,外形出众,身高1.64米,衣

着入时,有品位。新闻文字资料通过计算机系统迅速转变成她的

声音和口形,并有脸部表情。虚拟报道员可以24小时不停地工作,

这是真的报道员做不到的。目前,美国广播公司“金牌报道员”

沃尔特斯的年薪高达1000万美元,而虚拟的新闻报道员是永不会

要求加薪的。

3.1.3.19 虚拟情人

全球许多电脑专家正致力研制“电脑虚拟情人”。如果成功,

人们可以通过模拟感观装置与虚拟偶像明星实现“肌肤之亲”。据

海外媒体报道,全球大约有数十名科学家正积极研制电脑程序,

配合视频眼镜和特制的电子触觉手套,可让人们与任何虚拟人物

发展浪漫情缘。据称该技术有高度真实感。据报道,使用者可像

打游戏机一样,选定任何人物做情人。英国一名电脑设计员指出:

人们初时都避谈“虚拟情人”这类事情,只埋头发展其他电脑游

戏,但世界快速转变,人们想从电脑中获取更大和更好的体验,

这可能是终极体验。来自澳大利亚新南威尔斯省的一位科学家专

门研究网上“机器人”系统,他制造酷似明星的机械人体模型,

盖上仿真皮肤后,与真人几乎无异。机械人的四肢和各器官会接

20

虚拟现实技术简介

虚拟现实简介及行业发展前景 一、虚拟现实简介 虚拟现实(Virtual Reality,简称VR,又译作灵境、幻真)是近年来出现的高新技术,也称灵境技术或人工环境。虚拟现实是利用电脑模拟产生一个三维空间的虚拟世界,提供使用者关于视觉、听觉、触觉等感官的模拟,让使用者如同身历其境一般,可以及时、没有限制地观察三度空间内的事物 百科内容: VR是一项综合集成技术,涉及计算机图形学、人机交互技术、传感技术、人工智能等领域,它用计算机生成逼真的三维视、听、嗅觉等感觉,使人作为参与者通过适当装置,自然地对虚拟世界进行体验和交互作用。使用者进行位置移动时,电脑可以立即进行复杂的运算,将精确的3D世界影像传回产生临场感。该技术集成了计算机图形(CG)技术、计算机仿真技术、人工智能、传感技术、显示技术、网络并行处理等技术的最新发展成果,是一种由计算机技术辅助生成的高技术

模拟系统。 概括地说,虚拟现实是人们通过计算机对复杂数据进行可视化操作与交互的一种全新方式,与传统的人机界面以及流行的视窗操作相比,虚拟现实在技术思想上有了质的飞跃。 虚拟现实中的“现实”是泛指在物理意义上或功能意义上存在于世界上的任何事物或环境,它可以是实际上可实现的,也可以是实际上难以实现的或根本无法实现的。而“虚拟”是指用计算机生成的意思。因此,虚拟现实是指用计算机生成的一种特殊环境,人可以通过使用各种特殊装置将自己“投射”到这个环境中,并操作、控制环境,实现特殊的目的,即人是这种环境的主宰。 二、虚拟现实分类 行业概况: 北京傲唯刃道科技有限公司甘健先生认为:供求关系是一个行业能否快速发展的前提。目前来看,市场需求是很大的,而供应方面却略显不足,尤其是拥有核心知识产权,专利产品及服务质量过硬的企业并不多,行业整体缺乏品牌效应。在需求旺盛的阶段,行业需求巨大,

虚拟现实技术基础与应用代码-8 综合实例

8.3.2 场景模型的构建 建立了消防车的3ds模型后,我们就可以来定义一个消防车类了。消防车类中包含车身、云梯、吊篮成员对象,这些对象通过前节介绍的3ds载入类C3DSLoader来定义。此外我们在吊篮上安置一个消防水枪来模拟喷水效果,为此用前章定义好的粒子系统类CparticleSys来定义一个水枪效果对象。为实现云梯的交互运动,增加了云梯水平旋转的变量theta,和俯仰运动的变量phi。车身的运动由变量Position来控制。其消防车类的定义如下: //注:以下代码写在文件Motor.h中 #include "gl/glut.h" #include "3DSLoader.h" #include "Particle.h" class CMotor //消防车类 { public: float Position[3]; //车位置 float theta; //云梯支架旋转角 float phi; //云梯俯仰角 //定义3ds载入对象 C3DSLoader m_3DSMotor; //车身 C3DSLoader m_3DSSupport; //云梯支架 C3DSLoader m_3DSLadder; //云梯 C3DSLoader m_3DSBasket; //篮子 CParticleSys m_WaterGun; //水枪效果 CMotor(); //构造函数 virtual ~CMotor(); //析构函数 void DrawMotor(); //绘制车 void Init(); //初始化 }; 车身模型,云梯模型和吊篮模型的载入以及水枪的初始化通过成员函数Init来完成,其实现形式如下: //注:以下代码写在文件Motor.cpp中 void CMotor::Init() { m_3DSMotor.Load3DSModel("3DSModel\\武警学院车身1.3DS"); m_3DSSupport.Load3DSModel("3DSModel\\云梯支架.3ds"); m_3DSLadder.Load3DSModel("3DSModel\\云梯.3ds"); m_3DSBasket.Load3DSModel("3DSModel\\吊篮.3ds"); m_WaterGun.SetPosition(0,0,0); //水枪位置 m_WaterGun.SetMode(0.5,100, 10,-0.8,1); //粒子系统模式设置 m_WaterGun.Init(PI/2,PI/3);//水枪方向 } 消防车的绘制过程在成员函数DrawMotor中来完成,其实现形式如下: //注:以下代码写在文件Motor.cpp中 void CMotor::DrawMotor()

虚拟现实的创新案例

虚拟现实的创新案例——NervGear 什么是虚拟现实技术? 虚拟现实技术是一种可以创建和体验虚拟世界的计算机仿真系统它利用计算机生成一种模拟环境是一种多源信息融合的交互式的三维动态视景和实体行为的系统仿真使用户沉浸到该环境中。利用这种技术,可以打破现实中我们对现世观念的界限,例如,可以把一组虚拟的建筑物投射到现实中,查看它的实现可行性。又或者把磁场路径这种虚拟的东西在现实环境中展现出来,让学生们更容易去理解。 到目前2015年为止,利用虚拟现实技术的产品有哪些呢?有基于VR技术的SONY公司出品的PlayStation VR、有基于AR技术的microsoft公司出品的hollens。这两大公司各自产品所代表这两大分支最前沿技术。PlayStation VR优点可视角度广,画质靓丽,让人沉浸在虚拟的环境中,但缺点就是需要依靠手柄作为操纵杆,无法做到单凭双手的灵活操作!缺乏直接交互性。而hollens刚刚相反,强大的可操纵性,可以全凭双手或眼镜进行操作(延迟也就0.5秒左右),而且可以把一组虚拟的画面几乎无瑕疵的投影在现实环境中,但最大的缺点(也是AR最大的缺点)是可视角度仅有20-40度左右,相当之小,使应用扩展范围大大缩小。 其实在我看来,当今的VR与AR技术也只是虚拟现实技术的半成品,真正的虚拟现实应该是人完全沉浸在虚拟的环境中,而不仅是只有视觉,还有听觉,味觉,触觉.可以说与现实世界的生活方式几乎无差别。而这种技术称呼为完全潜行技术。这种技术是利用人脑与机器相互发出的脑电波的交流,使人完全进入一个全新的世界,在这个世界你可以像现实世界一样行走、跑步、呼吸,而实现中你的手脚由于机械装置发出的脑电波暂时阻隔了手脚活动神经的传输,所以不会有任何反应,而利用这种完全潜行技术的机械装置产品称为NervGear。 NervGear的优点是利用完全潜行技术使人完全进入一个虚拟的现实世界,在这里,可以做任何你所能想象的事情,例如可以在这简单准确地画出CAD图、公司各方负责人可以随时随地聚集一齐进行开会、全新玩游戏模式、在医疗方面可以更加准确地,几乎1比1无差别地进行3D打印器官,在教学方面,一切虚拟模糊难理解的现象都可以在这个世界里完全具体地展现出来…………完全潜行技术是AR与VR优点的结合体,一来解决了可视角度的问题,二来解决了操作交互性的问题。

虚拟现实技术应用实例研究报告

虚拟现实技术应用实例研究报告

虚拟现实技术应用实例研究报告 1引言 虚拟现实(V irtua l Rea lity. 简称VR)是一种多通道的新型人机交互接口, 人们能够经过视觉、听觉、触觉和加速度感等多种感觉通道感知计算机模拟的虚拟世界, 也能够经过移动、语音、表情、手势及视线等最自然的方式和虚拟世界交互, 从而产生身临其境的体验。虚拟现实技术是计算机技术、传感器技术、人机交互技术、人工智能技术等多种技术的综合发展, 当前已经在军事、医学、教育、娱乐、制造业、工程训练等各个方面得到应用, 它被认为是当前及将来影响人们生活的重要技术之一。 2虚拟现实的应用 虚拟现实技术是帮助人们解决实际问题或给人们提供传递信息、思想和情感的一种有效方法。近年来, 随着计算机技术、交互技术和人工智能等相关技术的快速发展, 虚拟现实技术取得了巨大的进步, 以此为基础的实际应用也得到了很快的发展和提高。虚拟现实技术适合应用于使用计算机仿真技术或计算机模拟技术的场合, 特别是需要在三维空间中表现仿真模拟的过程或结果且需要实时的直接交互时, 虚拟现实技术具有很大的优势。最初, 虚拟技术是美国航空航天局与军事部门为了模拟训练而开发的, 当前虚拟现实技术已经被运用到教育、医疗卫生、工程制造、航空航天、军事仿真、科学研究等各个领域中。 3. 1教育与培训

近年来, 虚拟环境技术的发展吸引了教育界和工业界的目光。虚拟现实能够用来表示深奥的概念、复杂的技术和实验等, 也能够模拟操作环境和工作流程等。 3. 1. 1教育 当前, VR已成为一种大人和小孩都喜欢的一种教学方式, 它的沉浸感和多种方式的交互性让人们觉得十分有趣。经过VR的交互环境、再现能力及一对一的实践, 能够提高学生们的记忆力和学习兴趣;具有真实的可视化能力, 很适于表示难以理解的抽象概念;经过模拟化学、物理等实验, 学生们不需要冒着真实实验中可能存在的安全问题的风险, 就能够很好的学习到相应的知识。比如, 针对在学习微分代数和微分几何时经常遇到的困难, 瑞典皇家理工学院的研究人员开发了共享的虚拟环境CyberM a th, 能够以一种很愉快的方式来表现复杂的数学概念。在实际条件不允许的情况下, 虚拟现实给我们真实地体验某种现实的能力。对于地球科学和环境科学来说, 实验室练习、野外观察和野外旅行是基本课程, 可是由于距离、时间、花费、安全的限制或者真实环境的高度复杂性等原因, 野外练习和旅行可能不能够进行。针对这种情况, 佛罗里达大学的V. Ram asunda ram 等开发了一个环境的虚拟野外实验室, 用来研究野外环境的属性, 并刺激了学生的高层次认知技巧。 3. 1. 2培训 与传统的培训方法相比, 基于VR的培训系统, 在没有真正地安装设备的情况下, 学员能够接受生产过程和方法的培训, 充分的感

虚拟现实技术简介

虚拟现实技术 虚拟现实(简称VR),又称灵境技术,是以沉浸性、交互性和构想性为基本特征的计算机高级人机界面。他综合利用了计算机图形学、仿真技术、多媒体技术、人工智能技术、计算机网络技术、并行处理技术和多传感器技术,模拟人的视觉、听觉、触觉等感觉器官功能,使人能够沉浸在计算机生成的虚拟境界中,并能够通过语言、手势等自然的方式与之进行实时交互,创建了一种适人化的多维信息空间。使用者不仅能够通过虚拟现实系统感受到在客观物理世界中所经历的“身临其境”的逼真性,而且能够突破空间、时间以及其他客观限制,感受到真实世界中无法亲身经历的体验。 VR技术具有超越现实的虚拟性。虚拟现实系统的核心设备仍然是计算机。它的一个主要功能是生成虚拟境界的图形,故此又称为图形工作站。目前在此领域应用最广泛的是SGI、SUN等生产厂商生产的专用工作站,但近来基于Intel 奔腾Ⅲ(Ⅳ代)代芯片的和图形加速卡的微机图形工作站性能价格比优异,有可能异军突起。图像显示设备是用于产生立体视觉效果的关键外设,目前常见的产品包括光阀眼镜、三维投影仪和头盔显示器等。其中高档的头盔显示器在屏蔽现实世界的同时,提供高分辨率、大视场角的虚拟场景,并带有立体声耳机,可以使人产生强烈的浸没感。其他外设主要用于实现与虚拟现实的交互功能,包括数据手套、三维鼠标、运动跟踪器、力反馈装置、语音识别与合成系统等等。虚拟现实技术的应用前景十分广阔。它始于军事和航空航天领域的需求,但近年来,虚拟现实技术的应用已大步走进工业、建筑设计、教育培训、文化娱乐等方面。它正在改变着我们的生活。 虚拟与现实两词具有相互矛盾的含义,把这两个词放在一起,似乎没有意义,但是科学技术的发展却赋予了它新的含义。虚拟现实的明确定义不太好说,按最早提出虚拟现实概念的学者https://www.360docs.net/doc/f213531845.html,niar的说法,虚拟现实,又称假想现实,意味着“用电子计算机合成的人工世界”。从此可以清楚地看到,这个领域与计算机有着不可分离的密切关系,信息科学是合成虚拟现实的基本前提。生成虚拟现实需要解决以下三个主要问题:

VR虚拟现实-虚拟化案例Lenovo 精品

关键字:成功案例、R520 G6、R630 G6、SF640、VMWare 厦门湖里区政府VT项目 项目背景 政府作为国家行政机构,承担着大量的公众事务的管理和服务职能,其信息化建设是社会的需要。我国已经把信息化作为非常重要的战略提出来。我国信息化的工作首先从电子政务入手,带动其他领域信息化的工作。而电子政务就是建立电子政务的平台,通过电子政务更好地提高政府管理水平,更好地为公众服务。可以说政府信息化是社会信息化的基础。 从世界范围来看,推进政府部门办公网络化、自动化、电子化,全面信息共享已是大势所趋。联合国经济社会事务部把推进发展中国家政府信息化作为今后的工作重点,希望通过信息技术的应用改进政府组织,重组公共管理,最终实现办公自动化和信息资源的共享。 电子政务是完善现代政府管理,适应政府职能转变的一项管理措施,是政府运作管理机制的范式转变。政府管理作为上层建筑,必须服务于时代的社会经济基础。新经济形势要求政府必须削减旧经济时期膨胀起来的许多不必要的权力,把政府包揽的社会事务大部分还给社会,由社会组织自行管理。这样,政府部门就可以把握全局,进行宏观管理,有利于大幅节约政府管理成本,转变政府作风,防止腐败现象。这是进一步协调社会矛盾的重要渠道,是现代社会发展的重要标志。 由于政府信息化是社会信息化的基础,电子政务的主要目的是推进政府部门办公自动化、网络化、电子化,全面信息共享等工作进程,从而营造运用信息及通信技术打破行政机关的组织界限的电子化虚拟机关,实现广泛范围意义的政府机关间及政府与社会各界之间经由各种电子化渠道进行相互沟通,并依据人们的需求、人们可以使用的形式、人们要求的时间及地点,提供人们各种不同的针对个性的服务选择。电子政务加快政府职能的转变,扩大对外交往的渠道,密切政府与人民群众的联系,提高政府工作效率。 政府信息中心建设对服务器和存储系统有着严格的要求。首先要有超强的计算能力和事务处理能力,可以承受长时间、大用户量的并发访问,快速处理大容量的数据存储,高效完成数据库的各种录入、查询、更改、报表生成等操作;其次,服务器系统的可靠性、可用性、易用易管理对于用户也是极为重要的。如果系统出现故障,造成服务的中断,或者重要资料的丢失,会给用户造成无法挽回的损失。所以,用户在选择服务器-存储系统时一定要考虑高可用的系统方案。

虚拟现实简介

虚拟现实技术简介 虚拟现实(VR-Virtual Reality),也称虚拟实境或灵境,是一种可以创建和体验虚拟世界的计算机系统,它利用计算机技术生成一个逼真的、具有视、听、触等多种感知的虚拟环境,用户即可以简单的通过网页浏览、应用程序查看时键盘和鼠标的操作甚至通过使用各种交互设备,同虚拟环境中的实体相互作用,使之产生身临其境感觉的交互式视景仿真和信息交流,是一种先进的数字化人机接口技术。 与传统的模拟技术相比,虚拟现实技术的主要特征是:操作者能够看到三维实体、逼近真实的场景,结合环幕等硬件设备可以使操作者真正进入一个由计算机生成的交互式三维虚拟现实环境中,与之产生互动,进行交流。通过参与者与虚拟仿真环境中对象的相互作用,并借助人本身对所接触事物的感知和认知能力,帮助启发参与者的思维,以全方位地获取虚拟环境所蕴涵的各种空间信息和逻辑信息。这是符合人类认知过程一种计算机技术。 沉浸/临场感和实时交互性是虚拟现实的实质性特征,对时空环境的现实构想(即启发思维,获取信息的过程)是虚拟现实的最终目的。虚拟现实技术的先进特性使得该项技术应用于各行各业的模拟仿真研究中,并切实有效地指导了生产实践。自从虚拟现实技术诞生以来,它已经在军事模拟、先进制造、城市规划/地理信息系统、医学生物等领域中发挥了巨大的经济、军事和社会效益。预言家们预言虚拟现实技术在不远的将来虚拟现实技术就会象当年地计算机一样应用于社会生产实践的各个领域,它与网络、多媒体将并称为21世纪最具应用前景的三大技术。 目前已经众多国内外的公司退出了自己的虚拟现实技术解决方案,包括软件的解决方案和硬件的解决方案,更多的是软硬件结合的解决方案。好的软件也需要好的硬件来配合实现身临其境的效果,因此这是一个系统工程,技术门槛不高,但实际应用难度大。

虚拟现实技术介绍

虚拟现实技术介绍 虚拟现实(VR-----Virtual Reality),也称灵境,是一种可以创建和体验虚拟世界的计算机技术,它汇集了计算机图形学、多媒体技术、人工智能、人机接口技术、传感器技术、高度并行的实时计算技术和人的行为学研究等多项关键技术。它利用计算机技术生成一个逼真的、具有视、听、触等多种感知的虚拟环境,用户通过使用各种交互设备,同虚拟环境中的实体相互作用,使之产生身临其境感觉的交互式视景仿真和信息交流。 虚拟现实的主要特征是:多感知性(Multi-Sensory)、浸没感(Immersion)、交互性(Interactivity)、构想性(Imagination)。虚拟现实系统具有融合海量信息、逼真再现实景、表现形式新颖直观、传播范围遍及全球、异地浏览方便快捷、内容更新快速简单、互动参与趣味多多等独特优势和特征。 本公司采用空间信息技术和虚拟现实技术开发的系统具有如下功能特点: (1)、支持虚拟漫游,临场体验 实现场景虚拟漫游,用户可以自由的漫步其间,可以快速到达想去的地方,这一切都由用户亲手控制。本系统可以通过键盘、鼠标或操纵杆实现前、后、左、右、上、下方向的位移,同时可以实现左转、右转、仰视、俯视等功能。用户观看不受限制时间、空间的限制,能根据他们的意志探索整个环境,选择他们自己想体验的东西。

(2)、支持建筑或设备的信息查询及定位功能 我们将在系统中建立建筑或设备的信息数据库,通过输入建筑或设备名称,可快速定位到相应的区域或者对象上,同时可以迅速获得相关的数据信息,包括文字介绍、图像、视频、动画、背景音乐以及配音解说等等。 (3)、支持多媒体资源超链接 可以将与该建筑或设备相关的视频、音频、实景图片、动画、电子文档等多媒体资源整合在该系统中,采用超链接形式,只需用鼠标轻轻一点,即可调出所需资料。 (4)、支持导航地图 可建立一个平面导航地图,使用户清楚了解自身所处地理位置,并可以利用该地图迅速到达指定地点,该地图可以缩小、放大或隐藏。 (5)、支持自动漫游和自主漫游的切换 可以在没有任何人工操作的时候,进入自动漫游模式,画面将沿着实现录制好的路径进行自动漫游,同时音乐会随着到达不同的地点而切换,在自动漫游的时候,用户也可随时控制停止,进入自主漫游。 (6)、支持多方案替换对比 在系统中实现不同设计的方案切换,为设计方案的选择提供一个方便直观的讨论环境,可以对比不同的设计所反映的效果,如方案对比、建筑高度调整、光影分析等。 (7)、支持分区规划 这个功能在数字城市中用途非常广泛。可以将整个城市分成几个

虚拟现实技术简介

三、空间信息可视化的形式 地图是空间信息可视化的最主要的形式,也是最古老的形式。在计算机上,将空间信息用图形和文本表示,是在计算机图形学出现的同时也就出现了。这是空间信息可视化的较为简单而常用的形式,可以说是一维形式,多媒体技术的产生和发展,使空间信息可视化进入一个崭新的时期。可视化的形式也五彩缤纷,呈现多维化的局面,并正在发展,现把空间信息可视化主要形式介绍于下: 1、地图:它有两种形式:纸质或其它介质地图及屏幕上的电子地图。由于计算机技术的发展,这两种形式仅是计算机上数字地图的硬、软拷贝的差别。硬拷贝的是纸质地图,软拷贝--屏幕上的电子地图比前者具有更多的优点:其制作灵活,形式极其多样,修改制作方便,周期短,色彩丰富,动态性强,查询方便、快捷。从而使人们能从不同的高度、不同的方式、不同的角度和不同的详细程度来观察空间客体信息; 2、多媒体地学信息:综合、形象地表现空间信息的使用文本、表格、声音、图像、图形、动画、音频、视频各种形式逻辑地联接并集成为一个整体概念,是空间信息可视化的重要形式。各种多媒体形式能够形象、真实地表示空间信息某些特定方面,作为全面地表示空间信息的不可缺少的手段。 3、三维仿真地图三维仿真地图是基于三维仿真和计算机三维真实图形技术而产生的三维地图,经具有仿真的形状、光照、纹理……,也可以进行各种三维的量测和分析。

4、虚拟现实虚拟现实是空间信息可视化进一步研究和发展的新 方式。它是由计算机和其它设备如头盔、数据手套等组成的高级人--机交互系统,以视觉为主,也结合听、触、嗅甚至味觉来感知的环境,使人们有如进入真实的地理空间环境之中并与之交互作用。 四、地学可视化的类型 GIS的多维可视化是指采用2.5维、3维和4维等地图表现形式反映地理实体的多维特征。包括: 地图可视化 GIS可视化 专业应用领域可视化 1、地图可视化类型 (1)虚拟地图,在计算机屏幕上产生的地图。 (2)动态地图,由于地学数据存储于计算机内存,可以动态显示地学数据的不同角度的观察,不同方法的表示结果,或者随时间的变化结果。 (3)交互交融地图,是指人可与地图进行相互作用和信息交流。交互即相互改变显示行为,交融即投入感和沉浸感。 (4)超地图,多媒体地图。是与超文本概念对应的。 地理可视化的范围大于地图可视化。

虚拟现实技术应用实例以及在各行业的应用情况

西安曲江数字科技有限公司https://www.360docs.net/doc/f213531845.html, 虚拟现实在各行应用六则(三) 一、虚拟现实的计算机技术:计算机体系结构 虚拟现实对计算机系统的要求,只包括了视觉显示对计算机系统的要求。位姿传感器的数据处理,一般不在主计算机上进行,而是由专用的电子设备完成。听觉显示,力觉触觉显示,研究工作和实际应用还较少,对其计算要求的认识还较少。听觉显示和力觉触觉显示的计算,往往由专用计算机完成。所以,当前的虚拟现实计算机,主要完成视觉显示的计算任务。 帧频和延迟时间的要求 VR要求高帧频和快速响应,这是由于其内在的交互性质。 要求的帧频和延迟一般取决于环境特性。只有慢速运动物体的较静的环境,可以用帧频每秒8至10,和0.1秒延迟。如果环境有高速运动的物体,则要求高帧频(>60Hz)和短延迟。所有情况下,若帧频低于每秒8帧,则失去三维环境的生动感,若延迟大于0.1秒,则很难操作环境。因此,帧频必须大于8到10帧/秒,总延迟必须小于0.1秒。 帧频概念来自动图像技术。在动图像显示中,每一帧实际上是静止照片。如果新照片快速接替旧照片,就产生连续运动的幻觉。修改率是在屏幕上的显示改变的速率。为符合基本的动图像技术,理想的修改率是每秒20帧(新图像)。 对计算机硬件,帧频有几个含义。它们大致分类为:图形的帧频,计算的帧频,数据存取的帧频。为了维持在VR中的临场和沉浸感,图形帧频是关键的。这些帧频可能是独立的,图像场景可能变化,而没有来自用户视点运动的计算和数据存取。这时,图形的帧频大于计算的帧频和数据存取的帧频。经验表明,图形帧频率应尽可能高,低于每秒10帧的帧频严重降低临场的幻觉。如果图形显示依靠计算和数据存取,则计算和数据存取帧频必须为8到10帧/秒,维持用户看到时间演化的幻觉。 如果应用允许交互控制,也要求快速响应。已知,长响应时间(滞后时间,延迟时间)严重降低用户性能。延迟时间是从用户的动作开始(如用户转动头部),经过位姿传感器感知用户位姿,把位姿信号传送给计算机,计算机计算新的显示场景,把新的场景传送给视觉显示设备,直到视觉显示设备显示出新的场景为止。这些延迟在计算机系统中来自很多因素,如数据存取时间、计算时间、绘制时间以及输入设备数据处理时间。类似帧频的情况,延迟的来源分成:数据存取、计算、图形。虽然延迟与帧频有关,但它们不同。系统可能有高帧频,但有较大的延迟时间,显示的图像和提供的计算结果是几帧以前的。研究表明,多于几毫秒的延迟会影响用户性能,而多于0.1秒的延迟有严重影响。 计算能力和场景复杂性 虚拟现实仿真的计算问题,是一种时间受限的计算。这是因为显示的帧频必须大于8到10帧/秒。于是,在0.1秒内,必须完成一次场景的计算。如果一个显示的场景中有10,000个三角形(或多边形),这个数量就反映了场景复杂性。这样,在每秒进行的10次计算中,就应该计算100,000个三角形(或多边形)。这表示了计算能力。 若要求更加逼真的仿真效果,就要增加场景复杂性。显示的场景中有更多的三角形(或多边形),显示的效果就更逼真。这就要求更强的计算能力,每秒计算更多的三角形(或多边形)。反之,如果只能使用能力有限的指定的计算机,则限定了计算能力,也就限定了场景复杂性。每个场景,只能用较少的三角形(或多边形),产生较粗糙的显示。这种考虑就是,计算能力和场景复杂性的折衷。 下面几节将介绍用于VR的各类计算机。对这些计算机,主要的技术指标就是其计算能力,也就是每秒计算的三角形(或多边形)的数目。应该注意,是否加纹理,是否反走样,采用哪一种明暗模型,都会影响到计算能力。加入这些复杂的功能,就会增加计算复杂性,从而减少每秒计算的三角形(或多边形)的数目。 下图表示,波音747-400飞机的两种复杂性不同的三维模型。(a)中的模型有520个顶点,406个多边形。(b)中的模型有7694个顶点,7556个多边形。效果图说明了明显的逼真度差别。 北京搜维尔国际贸易有限公司 地址:北京市海淀区上地七街1号汇众科技大厦819、821室(100085) E-mail:sale@https://www.360docs.net/doc/f213531845.html, 电话:0086-10-82772136 62986566 网址:https://www.360docs.net/doc/f213531845.html, https://www.360docs.net/doc/f213531845.html,

vr虚拟现实技术的原理介绍

vr虚拟现实技术的原理介绍 VR虚拟现实经过几年的预热,已经开始呈现爆发式增长。你知道vr虚拟现实技术的一些原理吗?下面是为你精心推荐的vr虚拟现实技术原理,希望对您有所帮助。 显示原理: 人看周围的世界时,由于两只眼睛的位置不同,得到的图像略有不同,这些图像在脑子里融合起来,就形成了一个关于周围世界的整体景象,这个景象中包括了距离远近的信息。当然,距离信息也可以通过其他方法获得,例如眼睛焦距的远近、物体大小的比较等。 在VR系统中,双目立体视觉起了很大作用。用户的两只眼睛看到的不同图像是分别产生的,显示在不同的显示器上。有的系统采用单个显示器,但用户带上特殊的眼镜后,一只眼睛只能看到奇数帧图像,另一只眼睛只能看到偶数帧图像,奇、偶帧之间的不同也就是视差就产生了立体感。 用户(头、眼)的跟踪:在人造环境中,每个物体相对于系统的坐标系都有一个位置与姿态,而用户也是如此。用户看到的景象是由用户的位置和头(眼)的方向来确定的。 跟踪头部运动的虚拟现实头套:在传统的计算机图形技术中,视场的改变是通过鼠标或键盘来实现的,用户的视觉系统和运动感知系统是分离的,而利用头部跟踪来改变图像的视角,用户的视觉系统和运动感知系统之间就可以联系起来,感觉更逼真。另一个优点是,

用户不仅可以通过双目立体视觉去认识环境,而且可以通过头部的运动去观察环境。 声音: 人能够很好地判定声源的方向。在水平方向上,我们靠声音的相位差及强度的差别来确定声音的方向,因为声音到达两只耳朵的时间或距离有所不同。常见的立体声效果就是靠左右耳听到在不同位置录制的不同声音来实现的,所以会有一种方向感。现实生活里,当头部转动时,听到的声音的方向就会改变。但目前在VR系统中,声音的方向与用户头部的运动无关。 感觉反馈: 在一个VR系统中,用户可以看到一个虚拟的杯子。你可以设法去抓住它,但是你的手没有真正接触杯子的感觉,并有可能穿过虚拟杯子的“表面”,而这在现实生活中是不可能的。解决这一问题的常用装置是在手套内层安装一些可以振动的触点来模拟触觉。 语音: 在VR系统中,语音的输入输出也很重要。这就要求虚拟环境能听懂人的语言,并能与人实时交互。而让计算机识别人的语音是相当困难的,因为语音信号和自然语言信号有其“多边性”和复杂性。 使用人的自然语言作为计算机输入目前有两个问题,首先是效率问题,为便于计算机理解,输入的语音可能会相当啰嗦。其次是正确性问题,计算机理解语音的方法是对比匹配,而没有人的智能。

2016年最新虚拟现实VR技术在各行业应用案例分析

2016年最新虚拟现实VR 技术在各行业应用案例分析目录 3.1企业概况 (2) 3.2.Converse3D虚拟现实引擎 (2) 1、核心引擎 (3) 2、引擎特色 (4) 3、虚拟社区系统 (7) 4、系列工具软件 (7) 3.3Converse3D引擎行业应用实例 (11) 1、体育类游戏 (11) 2、解放军总后勤部虚拟档案室 . 11 3、数字油田三维仿真和消防演练系统 (12) 4、天津鑫茂城商业地产项目 (13) 5、数字城市三维虚拟仿真数字城市决策系统 (13) 6、文物古迹——良渚古城遗迹复原 (14) 7、中国海洋石油三维辅助决策系统 (15) 8、web3d多人在线交互社区 (16)

9、虚拟校园社区系统 (17) 10、虚拟商城(B2C) (17) 11、天津工业大学 (18) 12、深圳富士康工业集团 (19) 13、河北电力公司 (19) 3.1企业概况 北京中天灏景网络科技有限公司是一家专门致力于三维网络游戏和虚拟现实软件研发的高新技术企业,公司自主研发了Converse3D虚拟现实引擎系统,同时获得了Converse3D 虚拟现实引擎著作权登记证书,并将该引擎应用于多款三维游戏和虚拟现实系列软件,均取得了很好的经济效益和社会效益。 Converse3D虚拟现实引擎的问世打破了国外同类软件 独霸市场的格局,给中国的虚拟现实技术领域注入了强大的生命力。产品一经推出即被业界给与很高的评价,对游戏和虚拟现实展示良好的兼容是其他单纯的游戏引擎或虚拟现实引擎所做不到的,二者在功能上互为补充,相得益彰。

目前公司以软件开发、软件销售、项目制作、技术输出、虚拟现实内容提供为主营业务,迅速构建起了庞大的全国代理分销网络渠道和服务体系,使我们的产品和服务能最快速最优质的到达终端消费者。 我们为不同需求的用户提供了各种解决方案。既满足了一般客户的需求,又适应了特殊化需求。我们提供软件定制化定向开发,这是其他公司所不能提供的服务,在多变的市场环境下,这些都构成了我们的核心竞争力。 公司依附于强大的技术实力和完善的研发、销售、客服体系,在三维游戏和虚拟现实领域确立了其不可动摇的地位。我们在上海等各城市都有分支机构,依赖于我们强大的机构体系,相信我们的服务将做的更好。 Converse意为“颠覆”,我们是充满激情和创意的年轻人,相信我们能不断的颠覆传统,改革创新,时刻走在时代的最前列。 3.2.Converse3D虚拟现实引擎

《VR—虚拟现实世界》课程案例

龙源期刊网 https://www.360docs.net/doc/f213531845.html, 《VR—虚拟现实世界》课程案例 作者:胡洁玲 来源:《课程教育研究·学法教法研究》2018年第28期 一、课程定位与价值 STEAM是科学(Science)、技(Technology)、工程(Engineering)、艺术(Arts)和数学(Mathematics)五门学科的总称,多学科的交叉融合。STEAM教育并不是科学、技术、工程、艺术和数学教育的叠加,而是要将五门学科内容结合形成一个有机整体,从而可以更好地培养学生的新精神与践能力[1]。目前,国内比较多的是如何进行STEAM创新能力的培养,包括从各个学科进行展开分析,国内外现状开展课程的情况,如何打破课程之间的界限等方面展开。但是在初中阶段,因为学校内基础设备的限制,有时候不具备相应的全部器材,有些课程的开发具有局限性,很难进一步继续探究。而课外社会实践的延伸非常好的可以让学生利用课内知识进行课外的延伸,更加注重了学生的主动实践和个体发展。也更加体现了STEAM课程真正提高学生能力和核心素养这一最终目的。我将在这个课程中以学生感兴趣的VR技术为例,尝试利用课堂教学和课外社会实践相互结合,以实现新的突破,可以更好的培养学生的能力和科学素养。而这种课程开展方式也可以借鉴应用于其他需要更多社会资源支持的课程开发。 二、课程纲要 本课程主要从“课堂内”和“课堂外”两条维度展开STEAM课程,以达到课堂内外相结合,更多的利用社会资源,把教育的目的和对学生的素养培养最大化。本次课程以VR技术为例,对STEAM课程在初中可以更有效更可行性的展开做出新的尝试。 (一)学情分析 “中小学整合性STEM教学设计原则”中提到的整合性STEM教学的主要目标必须包含数学和(或)科学内容,并关注各学科间的联系[2]。八年级的学生已经在七上的时候学习了凸透 镜的成像原理,在八上也学习了视觉的产生过程,但是对于利用已学的知识来解释未知事物的能力却比较弱,还不能把课堂内的知识转化为一种服务于生活的能力。青少年对于VR技术这样的新事物具有充分的好奇心,容易调动起学习的积极性和探索意识,也可以以这节课为契机,激发学生对新的科技事物的观察和思考。对于初步接触STEAM课程的学生而言,可以在老师的带领下把科学和技术结合起来,可以应用多种学科的只是共同来探究尝试科技前沿技术。假期间,学生利用暑期社会实践小组去嘉兴市科技馆实地感受VR眼镜和技术的实际运用,感受了海底世界,消防灭火等操作,弥补了课堂上器材上的局限性。 (二)课程目标

虚拟现实技术资料讲解

虚拟现实技术

虚拟现实技术具有超越现实的虚拟性。它是伴随多媒体技术发展起来的计算机新技术,它利用三维图形生成技术、多传感交互技术以及高分辨率显示技术,生成三维逼真的虚拟环境,用户需要通过特殊的交互设备才能进入虚拟环境中。这是一门崭新的综合性信息技术,它融合了数字图像处理、计算机图形学、多媒体技术、传感器技术等多个信息技术分支,从而大大推进了计算机技术的发展。它的一个主要功能是生成虚拟境界的图形,故此又称 商生产的专用工作站,但近来基于Intel奔腾Ⅲ(Ⅳ代)代芯片的和图形加速卡的微机图形工作站性能价格比优异,有可能异军突起。图像显示设备是用于产生立体视觉效果的关键外设,目前 档的头盔显示器在屏蔽现实世界的同时,提供高分辨率、大视场 天领域的需求,但近年来,虚拟现实技术的应用已大步走进工业、建筑设计、教育培训、文化娱乐等方面。它正在改变着我们的生活。 虚拟与现实两词具有相互矛盾的含义,把这两个词放在一起,似乎没有意义,但是科学技术的发展却赋予了它新的含义。

虚拟现实的明确定义不太好说,按最早提出虚拟现实概念的学者https://www.360docs.net/doc/f213531845.html,niar的说法,虚拟现实,又称假想现实,意味着“用电子计算机合成的人工世界”。从此可以清楚地看到,这个领域与计算机有着不可分离的密切关系,信息科学是合成虚拟现实的基本前提。 多感知性(Multi-Sensory)——所谓多感知是指除了一般计算机技术所具有的视觉感知之外,还有听觉感知、力觉感知、触觉感知、运动感知,甚至包括味觉感知、嗅觉感知等。理想的虚拟现实技术应该具有一切人所具有的感知功能。由于相关技术,特别是传感技术的限制,目前虚拟现实技术所具有的感知功能仅限于视觉、听觉、力觉、触觉、运动等几种。 浸没感(Immersion)——又称临场感或存在感,指用户感到作为主角存在于模拟环境中的真实程度。理想的模拟环境应该使用户难以分辨真假,使用户全身心地投入到计算机创建的三维虚拟环境中,该环境中的一切看上去是真的,听上去是真的,动起来是真的,甚至闻起来、尝起来等一切感觉都是真的,如同在现实世界中的感觉一样。 交互性(Interactivity)——指用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度(包括实时性)。例如,用户可以用手去直接抓取模拟环境中虚拟的物体,这时手有握着东西

《虚拟现实初探》教学案例

虚拟现实初探 设计者:李瑞玲 单位:广州市番禺区石北中学 案例名称:虚拟现实初探 适应范围(标明年级和模块):高二多媒体技术应用(选修2) 课时:1课时 一、教学内容分析 本节教材为上海科技教育出版社《多媒体技术应用》第四章第二节,以制作校园全景图为例,通过两个任务:校园场景全景制作和评选最佳作品,让学生在活动中感受虚拟现实,学习虚拟现实的基本知识及简单虚拟现实作品的制作方法。 教学重点:1、理解什么是虚拟现实及虚拟现实技术。 2、拍摄和制作全景图作品。 教学难点:全景图照片的拍摄。 二、教学对象分析 在电影、电视和游戏中,学生接触过虚拟现实,但是对虚拟现实的认识比较模糊,通过学习虚拟现实的基本知识,使学生更好地理解虚拟现实。高二年级学生经过必修模块的学习,具备一定的计算机操作能力,初步形成协作探究能力。 三、教学目标 1、知识与技能 (1)了解虚拟现实的含义、基本特征及其应用前景。 (2)掌握全景图照片素材的拍摄技巧。 (3)掌握用Ulead COOL 360制作简单虚拟现实作品的方法。 2、过程与方法 学会从需求出发,选择合适的设备和软件拍摄和制作全景图,并根据全景图的创作过程和结果进行自评与互评。 3、情感态度与价值观 使学生初步感受虚拟现实技术的魅力和文化内涵,激发学生的学习兴趣,引发对科学技术的求知欲。 四、教学策略 发挥学生的主体性,让学生亲自尝试全景图照片的拍摄,以此突破本节的难点。结合专题学习网站,学习过程以自主探索为主,学习者之间进行交流、合作。教师以一种“导演”的身份参与、指导学生的学习过程,让学生主动地获取新知。 五、教学媒体选择 1、硬件环境——多媒体网络教室,数码相机,三角架 2、软件资源——全景图制作软件(Ulead COOL 360),“虚拟现实初探——全景图制作”专题学习网站,模块包括:引言、任务、资源、作品上传、作品评价、学习指引、讨论社区六、教学过程 教学环节 教师活动 学生活动

2017年vr虚拟现实房地产行业案例及运用方案

VR样板间:虚拟现实颠覆您对购房的 所有概念 VR地产营销:自主研发交互式虚拟现实样板间 好莱坞电影天马行空曾经幻想的以前,在这些年以倍速实现在我们眼前,上一个十年我们并不知道生活真的会被彻底智能化。VR从概念走向技术走向你的身边,就是这么快。 虚拟这两个字这几年我们已经听的多了,真正重要的具有划时代的,是其能提供的真实细腻的感官体验。借助相应的设备(VR眼镜),使人产生超乎想象身临其境的感受。其原理是综合利用了仿真、计算机图形学、人工智能、多传感器和各种现实及控制等接口设备,在计算机上生成可交互三维环境,从而实现用户提供及时、没有限制地超越现实的虚拟沉浸环境。让使用者如同身临其境一般,以第一视角观察三维空间内的事物。 VR技术将向人类打开另一个充满想象的世界。 这项技术它已经在工程、科学技术、文化、医学、娱乐等领域得

到了广泛应用。目前,虚拟现实技术正从专业领域向大众领域转换,也许你会好奇,在被称为VR元年的2016年,它会以什么形式率先进入你的生活?作为一件价值不菲的游戏装备?作为家中新的豪华影 院?但您先不必花费现今仍然高企的价格购买设备只为一尝新鲜,VR 技术将率先以服务的身份来到您的身边——带您体验您未来的?家?。 VR技术在地产营销的应用场景 VR技术与房地产的结合乍听似乎很奇异,但实际上在现实领域的应用上,VR在国外首先介入的是样板房。VR技术融入地产营销,奇象VR自主研发交互式虚拟现实样板房是利用VR技术,再根据真实样板房的比例及设计制作而成的场景,它的核心是虚拟现实技术,载体是虚拟现实眼镜,只要戴上眼镜,就仿佛走进了?真实样板房?一样,可以进入房间虚拟体验户型。对于地产项目而言,再无需等到样板间房及园林景观示范区的落成。购房者只要戴上虚拟现实头盔,便能?走入?几年后才能落成的建筑主体内外和景观全景。 近些年来,人们对房地产的需求量越来越大,随着我国房地产行业的发展,竞争也趋向白热化,而如何在众多项目中脱颖而出,让客

虚拟现实案例介绍

虚拟现实——让生活更逼真 肖沪卫 (上海科学技术情报研究所 200031)摘要:人会做梦,会幻想,虚拟现实技术却能使梦想成真。未驾驶过飞机,也能知道驾机飞行的感觉;没有当过宇航员,却能体会到太空飞行中失重的滋味;虽不是潜水员,但能感受到深沉大海的孤寂和观看到神奇眩目的景观……虚拟现实技术所带来的身临其境的神奇效应正渗透到各行各业,成为近年来国际科技界关注的一个热点。它是建立在计算机图形学、人机接口技术、传感技术和人工智能等学科基础上的综合性极强的高新信息技术,在军事、医学、设计、艺术、娱乐等多个领域都得到了广泛的应用,被认为是21世纪大有发展前途的科学技术领域。本文如诗如画般全方位展现了虚拟现实技术的概念与应用前景。 未驾驶过飞机,也能知道驾机飞行的感觉;没有当过宇航员,却能体会到太空飞行中失重的滋味;虽不是潜水员,但能感受到深沉大海的孤寂和观看到神奇眩目的景观……虚拟现实技术所带来的身临其境的神奇效应正渗透到各行各业,成为近年来国际科技界关注的一个热点。它是建立在计算机图形学、人机接口技术、传感技术和人工智能等学科基础上的综合性极强的高新信息技术,在军事、医学、设计、艺术、娱乐等多个领域都得到了广泛的应用,被认为是21世纪大有发展前途的科学技术领域。 1 虚拟现实探秘 虚拟现实是从英文Virtual reality 一词翻译过来的,Virtual 就是虚假的意思,Reality 就是真实的意思,合并起来就是虚拟现实,也就是说本来没有的事物和环境,通过各种技术

虚拟出来,让你感觉到就如真实的一样。 关于虚拟现实的提法,历来多有争议。国外有人反对“Virtual Reality"这个词,称它太玄乎;国内也有人认为虚拟现实的译法不佳,而主张翻译为“灵境”,这给人一种空灵缥缈的感觉,颇有一些韵味。另外也有一些译法如实时环境、虚拟空间、人造现实、仿真技术等等。但在科学界,大多数人仍主张直译为虚拟现实,以求准确和符合现代语法。 1.1 什么是虚拟现实? 人在现实世界中是通过眼睛、耳朵、手指等器官来实现视觉、听觉、触觉等功能的,人们可以通过视觉观察到色彩斑斓的外部环境,通过听觉感知丰富多彩的音响世界,通过触觉了解物体的形状和特性。 一个世纪以来,我们已经有一种虚拟现实——电话,或者说是声音的虚拟现实。对此,我们早就习以为常。但当19世纪,电话初次展现在人们面前时,这也是一种全新的世界。无论人们相隔多远,一个电话线就能把两个人联系起来,这难道不让人惊奇么?在人类历史上,这也是开天辟地头一遭。 20世纪20年代,诞生了电视,这种以声音和影像并茂的虚拟现实,打开了人类视觉空间,使人们足不出户,遍览天下大事。 然而这些远非真正意义上的虚拟现实。真正的虚拟现实在技术思想上有着质的飞跃,它直接将我们投入到虚拟的三维空间中去,与交互的环境融为一体。在这个虚拟的世界里,我们能够自由的运动,观看风景,就和真实的世界一样,我们有着足够的自主性,我们甚至可以捡起一块石头攻击敌人。 于是,我们可以认为:虚拟现实是人们利用计算机生成一个逼真的三维虚拟环境,将模拟环境、视景系统和仿真系统合三为一,并利用人机交互设备,把操作者与计算机生成的三维虚拟环境连结在一起。操作者通过人机交互设备,以自然的方式(如头

VR虚拟现实技术详细

VR简介: VR(Virtual Reality,即虚拟现实,简称VR),是由美国VPL公司创建人拉尼尔(Jaron Lanier)在20世纪80年代初提出的。其具体内涵是:综合利用计算机图形系统和各种现实及控制等接口设备,在计算机上生成的、可交互的三维环境中提供沉浸感觉的技术。其中,计算机生成的、可交互的三维环境称为虚拟环境(即Virtual Environment,简称VE)。虚拟现实技术是一种可以创建和体验虚拟世界的计算机仿真系统的技术。它利用计算机生成一种模拟环境,利用多源信息融合的交互式三维动态视景和实体行为的系统仿真使用户沉浸到该环境中。 技术点: 1、图像质量:屏幕图像的显示质量,是否存在“纱窗效应”。 头部追踪:当你的头部不停晃动观察各个角度时,屏幕内容的快速渲染能力。 身体感知:在VR 场景中是否可以感知到自己身体,比如朝下可以看到自己的手,让有人向你靠近,他们的大小准确地改变。 环境交互:你可以和你周围的世界产生交互。比如你在一个桌子上留下一个东西,转过身那个东西仍然在那里。 社交:多人可以在一个虚拟空间内进行交流。 2、VR 设备不只是头显,还有各种输入设备,对OSVR 而言,它将设备分成 Tracker,人体跟踪 Button,物理按键 Analog,模拟信号 EyeTracker,眼球跟踪 Gesture,手势检测 Imager,摄像头画面 Skeleton,骨骼跟踪 Display,显示输出 3、虚拟现实(Virtual Reality,VR)是利用计算机生成有视觉、听觉、触觉的虚拟环境,让用户对客体获得身临其境的感受.在建筑、城市规划领域,虚拟现实主要用于对物质环境、景观的视觉仿真.目前,比较广泛接受的虚拟现实是在计算机中建立物体的三维几何模型,然后动态、交互地观察、感受景观,由于受计算机处理能力的限制,原始数据输入计算机工作量又很大,这种虚拟现实还难以大量推广.基于图像的虚拟现实(IMage-based VitrualReality,IMVR)是

相关文档
最新文档