双踪示波器波形显示的基本原理与使用方法

双踪示波器波形显示的基本原理与使用方法
双踪示波器波形显示的基本原理与使用方法

双踪示波器波形显示的基本原理与使用方法

波形显示的基本原理

由示波管的原理可知,一个直流电压加到一对偏转板上时,将使光点在荧光屏上产生一个固定位移,该位移的大小与所加直流电压成正比。如果分别将两个直流电压同时加到垂直和水平两对偏转板上,则荧光屏上的光点位置就由两个方向的位移所共同决定。

如果将一个正弦交流电压加到一对偏转板上时,光点在荧光屏上将随电压的变化而移动。参见图5-4可知,当垂直偏转板上加一个正弦交流电压时,在时间t=0的瞬间,电压为V o(零值),荧光屏上的光点位置在坐标原点0上,在时间t=1的瞬间,电压为V1(正值),荧光屏上光点在坐标原点0点上方的1上,位移的大小正比于电压V1;在时间t=2的瞬间,电压为V2(最大正值),荧光屏上的光点在坐标原点0点上方的2点上,位移的距离正比于电压V2;以此类推,在时间t=3,t=4,…,t=8的各个瞬间,荧光屏上光点位置分别为3,4,…,8点。在交流电压的第二个周期、第三个周期……都将重复第一个周期的情况。如果此时加在垂直偏转板上的正弦交流电压之频率很低,仅为lHz~2Hz,那么,在荧光屏上便会看见一个上下移动着的光点。这光点距离坐标原点的瞬时偏转值将与加在垂直偏转板上的电压瞬时值成正比。如果加在垂直偏转板上的交流电压频率在10Hz~20Hz以上,则由于荧光屏的余辉现象和人眼的视觉暂留现象,在荧光屏上看到的就不是一个上下移动的点,而是一根垂直的亮线了。该亮线的长短在示波器的垂直放大增益一定的情况下决定于正弦交流电压峰一峰值的大小。如果在水平偏转板上加一个正弦交流电压,则会产生相类似的情况,只是光点在水平轴上移动罢了。

如果将一随时间线性变化的电压(如锯齿波电压)加到一对偏转板上,则光点在荧光屏上又会怎样移动呢?参看图5-5可见,当水平偏转板上有锯齿波电压时,在时间t=0瞬间,电压为V o(最大负值),荧光屏上光点在坐标原点左侧的起始位置(零点上),位移的距离正比于电压Vo;在时间t=1的瞬间,电压为V1(负值),荧光屏上光点在坐标原点左方的1点上,位移的距离正比于电压V1;以此类推,在时间t=2,t=3,...,t=8的各个瞬间,荧光屏上光点的对应位置是2,3,…,8各点。在t=8这个瞬间,锯齿波电压由最大正值V8跃变到最大负值Vo,则荧光屏上光点从8点极其迅速地向左移到起始位置零点。如果锯齿波电压是周期性的,则在锯齿波电压的第二个周期、第三个周期、……都将重复第一个周期的情形。如果此时加在水平偏转板上的锯齿波电压频率很低,仅为1Hz ~2Hz,在荧光屏上便会看见光点自左边起始位置零点向右边8点处匀速地移动,随后光点又从右边8点处极其迅速地移动到左边起始位置零点。上述这个过程称为扫描。在水平轴加有周期性锯齿波电压时,扫描将周而复始地进行下去。光点距离起始位置零点的瞬时值,将与加在偏转板上的电压瞬时值成正比。如果加在偏转板上的锯齿波电压频率在10Hz~20Hz以上,则由于荧光屏的余辉现象和人眼的视觉暂留现象,就看到一根水平亮线,该水平亮线的长度,在示波器水平放大增益一定的情况下决定于锯齿波电压值,锯齿波电压值是与时间变化成正比的,而荧光屏上光点的位移又是与电压值成正比的,因此荧光屏上的水平亮线可以代表时间轴。在此亮线上的任何相等的线段都代表相等的一段时间。

如果将被测信号电压加到垂直偏转板上,锯齿波扫描电压加到水平偏转板上,而且被测信号电压的频率等于锯齿波扫描电压的频率,则荧光屏上将显示出一个周期的被测信号电压随时间变化的波形曲线(如图5-6所示)。由图5-6所示可见,在时间t=0的瞬间,信号电压为V o(零值),锯齿波电压为V0′(负值),荧光屏上光点在坐标原点左面,位移的距离正比于

电压V0′;在时间t=1的瞬间,交流电压为V1(正值),锯齿波电压为V1′(负值),荧光屏上光点在坐标的第Ⅱ象限中。同理,在时间t=2,t=3,…,t=8的瞬间,荧光屏上光点分别位于2,3,…,8点。在t=8瞬间,锯齿波电压由最大正值V8′跳变到最大负V0′,因而荧光屏上的光点也从8点极其迅速地向左移到起始位置0点。以后,在被测周期信号的第二个周期、第三个周期……都重复第一个周期的情形,光点在荧光屏上描出的轨迹也都重叠在第一次描出的轨迹上。所以,荧光屏上显示出来的被测信号电压是随时间变化的稳定波形曲线。

若被测信号电压的频率等于锯齿波电压频率整数倍数时,则荧光屏上将显示出周期为整数的被测信号稳定波形。而当被测信号电压的频率与锯齿波电压的频率不成整数倍数时,则荧光屏上不能获得稳定的波形,如图5-7所示。在图5-7中,第一次扫描时,屏上显示的是0~1这段波形曲线;第二次扫描时,屏上显示1~2这段波形曲线;第三次扫描时,屏上显示2~3这段波形曲线;……可见,每次荧光屏上显示的波形曲线都不同,所以图形不稳定。

由上述可见,为使荧光屏上的图形稳定,被测信号电压的频率应与锯齿波电压的频率保持整数比的关系,即同步关系。为了实现这一点,就要求锯齿波电压的频率连续可调,以便适应观察各种不同频率的周期信号。其次,由于被测信号频率和锯齿波振荡信号频率的相对不稳定性,即使把锯齿波电压的频率临时调到与被测信号频率成整倍数关系,也不能使图形一直保持稳定。因此,示波器中都设有同步装置。也就是在锯齿波电路的某部分加上一个同步信号来促使扫描的同步,对于只能产生连续扫描(即产生周而复始连续不断的锯齿波)一种状态的简易示波器(如国产SB-10型示波器等)而言,需要在其扫描电路上输入一个与被观察信号频率相关的同步信号,当所加同步信号的频率接近锯齿波频率的自主振荡频率(或接近其整数倍)时,就可以把锯齿波频率“拖入同步”或“锁住”。对于具有等待扫描(即平时不产生锯齿波,当被测信号来到时才产生一个锯齿波进行一次扫描)功能的示波器(如国产ST-16型示波器、SBT-5型同步示波器、SR-8型双踪示波器等等)而言,需要在其扫描电路上输入一个与被测信号相关的触发信号,使扫描过程与被测信号密切配合。这样,只要按照需要来选择适当的同步信号或触发信号,便可使任何欲研究的过程与锯齿波扫描频率保持同步。

双线示波的显示原理

在电子实践技术过程中,常常需要同时观察两种(或两种以上)信号随时间变化的过程。并对这些不同信号进行电参量的测试和比较。为了达到这个目的,人们在应用普通示波器原理的基础上,采用了以下两种同时显示多个波形的方法:一种是双线(或多线)示波法;另一种是双踪(或多踪)示波法。应用这两种方法制造出来的示波器分别称为双线(或多线)示波器和双踪(或多踪)示波器。

双线(或多线)示波器是采用双枪(或多枪)示波管来实现的。下面以双枪示波管为例加以简单说明。双枪示波管有两个互相独立的电子枪产生两束电子。另有两组互相独立的偏转系统,它们各自控制一束电子作上下、左右的运动。荧光屏是共用的,因而屏上可以同时显示出两种不同的电信号波形,双线示波也可以采用单枪双线示波管来实现。这种示波管只有一个电子枪,在工作时是依靠特殊的电极把电子分成两束。然后,由管内的两组互相独立的偏转系统,分别控制两束电子上下、左右运动。荧光屏是共用的,能同时显示出两种不同的电信号波形。由于双线示波管的制造工艺要求高,成本也高,所以应用并不十分普遍。

双踪示波的显示原理

双踪(或多踪)示波是在单线示波器的基础上,增设一个专用电子开关,用它来实现两种(或多种)波形的分别显示。由于实现双踪(或多踪)示波比实现双线(或多线)示波来得简单,不需要使用结构复杂、价格昂贵的“双腔”或“多腔”示波管,所以双踪(或多踪)示波获得了普遍

的应用。

(1)双踪示波的显示原理

图5-8(a)是双踪示波法基本原理的示意图。图中,电子开关K的作用是使加在示波管垂直偏转板上的两种信号电压作周期性转换。例如,在0~1这段时间里,电子开关K与信号通道A接通,这时在荧光屏上显示出信号UA的一段波形;在1~2这段时间里,电子开关K与信号通道B接通,这时在荧光屏上显现出信号UB的一段波形;在2~3这段时间里,荧光屏上再一次显示出信号UA的一段波形;在3~4这段时间里,荧光屏上将再一次显示出UB的一段波形……。这样,两个信号在荧光屏上虽然是交替显示的,但由于人眼的视觉暂留现象和荧光屏的余辉(高速电子在停止冲击荧光屏后,荧光屏上受冲击处仍保留一段发光时间)现象,就可在荧光屏上同时看到两个被测信号波形(图5-8(b)所示)。

图5-8 双踪示波器基本原理

为了保持荧光屏显示出来的两种信号波形稳定,则要求被测信号频率、扫描信号频率与电子开关的转换频率三者之间必须满足一定的关系。

首先,两个被测信号频率与扫描信号频率之间应该是成整数比的关系,也就是要求“同步”。这一点与单线示波器的原理是相同的,只是现在的被测信号是两个,而扫描电压是一个。在实际应用中,需要观察和比较的两个信号常常是互相有内在联系的,所以上述的同步要求一般是容易满足的。

为了使荧光屏上显示的两个被测信号波形都稳定,除满足上述要求外,还必须合理地选择电子开关的转换频率,使得在示波器上所显示的波形个数合适,以便于观察。下面谈谈电子开关的工作方式问题,这个问题与电子开关的转换频率有关。

电子开关的工作方式有“交替”转换和“断续”转换两种。

图5-9是电子开关“交替”转换工作方式的波形示意图。在0~1时间内,电子开关与通道A接通,加在X轴上的扫描信号开始进行第一个正程扫描,此时荧光屏上将显现出信号UA的波形;在完成UA波形显示后,扫描电压迅速回扫;在1~2时间内,电子开关K与通道B接通,X轴上的扫描信号开始进行第二个正程扫描,荧光屏上将显示出信号UB的波形;在2~3时间内,荧光屏上再一次显示出信号UA的波形;在3~4时间内,荧光屏上再一次显示出信号UB的波形……。由此可见,被测信号UA、UB的波形是依次、交替地出现在荧光屏上的,荧光屏上显示的波形如图5-9(b)所示。显然,此时电子开关的转换与X轴的扫描始终保持着一致的步调,即电子开关的转换频率等于X轴扫描信号的频率。图5-9(b)中的虚线实际上是看不见的。

图5-10 采用“断续”转换

图5-9 采用“交替”转换方式的波形示意图方式的波形示意图

采用交替转换工作方式的显示的波形与双线示波法所显示的波形非常相似,它们都没有

间断点。但由于被测信号UA、UB的波形是依次交替地出现在荧光屏上的,所以,如果交替的间隙时间超过了人眼的视觉暂留时间和荧光屏的余辉时间,则人们所看到的荧光屏上的波形就会有闪烁现象。为了避免这种情况的出现,就要求电子开关有足够高的转换频率。这就是说当被测信号的频率较低时,不宜采用交替转换工作方式,而应采用断续转换工作方式。

当电子开关用断续转换工作方式时,在X轴扫描的每一个过程中,电子开关都以足够高的转换频率,分别对所显示的每个被测信号进行多次取样。这样,即使被测信号频率较低,也可避免出现波形的闪烁现象。同时,由于在一次扫描的过程中,光点在两个图形上交换的次数极多,所以图形上的细小断裂痕迹不显著,并不妨碍对波形细节的观察。图5-10是电于开关采用断续转换方式时的波形示意图。实际上,由于开关的转换频率选得远大于X轴扫描频率,所以荧光屏上显示的图形不会是图5-10所示的断续图形,而是连续的图形。图中垂直方向的细虚线表示了电子开关的转换过程。因在转换过程中示波器电路的设置使电子束截止,所以图中所示的垂直细虚线实际上也是不可见的。

在了解上述用电子开关来实现双踪示波的原理后,就不难联想到用环形计数器来实现多踪示波的原理。由于两者的显示原理相似,这里就不再赘述。

(2)双踪示波器的基本组成

图5-11是双踪示波器的原理功能方框图。由图可见,它主要是由两个通道的Y轴前置放大电路、门控电路、电子开关、混合电路、延迟电路、Y轴后置放大电路、触发电路、扫描电路、X轴放大电路、Z轴放大电路、校准信号电路、示波管和高低压电源供给电路等组成。

观察信号波形时,被测信号uA,uB通过YA,YB两个输入端输入示波器,先分别送到Y轴前置放大电路YA和YB进行放大。因通道YA和通道YB都受电子开关的控制,所以uA,uB两信号轮换着输送到后面的混合电路,加到示波管的垂直偏转板上。

为了适应各种不同的测试需要,电子开关可有五种不同的工作状态,即交替、YA、YB、YA+YB、断续等。这5种工作状态由显示方式开关来控制。

当显示方式开关置于交替位置时,电子开关为一双稳态电路。它受由扫描电路来的闸门信号控制,使得Y轴两个前置通道随着扫描电路门信号的变化而交替地工作。每秒钟交替转换次数与由扫描电路产生的扫描信号的重复频率有关。交替工作状态适用于观察频率不太低的被测信号。

图5-11 双踪示波器的原理功能方框图

当显示方式开关置于YA或YB位置时,电子开关为一单稳态电路。前置放大电路YA 或YB可单独工作,此时,双踪示波器可作为普通单线示波器使用。

当显示方式开关置于YA+YB位置时,电子开关处于不工作状态。此时,YA、YB两通道同时工作,因而可得到两信号相加或两信号相减的显示。然而,两信号究竟是相加还是相减,这要通过YA通道的极性作用开关来选择。这个开关有两个位置,在第一个位置时,荧

光屏上的图形为两信号之和;在第二个位置(-YA)时,荧光屏上的图形为两信号之差。

为了观察被测信号随时间变化的波形,示波管的水平偏转板上必须加以线性扫描电压(锯齿波电压)。这个扫描电压是由扫描电路产生的。当触发信号加到触发电路时,触发了扫描电路,扫描电路就产生相应的扫描信号;当不加触发信号时,扫描电路就不产生扫描信号。

触发有内触发、外触发两种,由触发选择开关来选择。当该开关置于内的位置时,触发信号来自经Y轴通道送入的被测信号。当该开关置于外的位置时,触发信号是由外部送入的。这个信号应与被测信号的频率成整数比的关系。示波器在使用中,多数采用内触发工作方式。

所谓内触发也分为两种情况,并由内触发选择开关控制。当开关置于常态的位置时,触发电路的触发信号来自YA,YB通道。此时,两个通道即可同时稳定地显示出各自的被测信号。当用双踪显示来作时间比较分析时,就应该将内触发选择开关置于YB的位置。在这个位置时,触发电路的触发信号只取自YB通道的输入信号。此时只有当uA,uB的频率成整数比时,荧光屏上才能同时稳定地显示两个波形。

扫描电路产生的扫描信号(锯齿波信号),通过X轴选择开关接到X轴放大电路,经放大后送到示波管的X轴偏转板。这就是通常在观察信号随时间变化的波形时,开关选扫描档的情况。除上述情况外,用示波器进行其它测试(比如观察李沙育图形)时,开关置X外接档,此时可将X轴输入端输入的信号,加到X轴放大电路进行放大,随后再送至X轴偏转板。

Z轴放大电路对荧光屏上光点辉度起着调节的作用,抹去不必要显示的光点轨迹。当扫描电路闸门信号来到Z轴放大电路,Z轴放大电路便输出正向的增辉脉冲信号,加至示波管的控制极。这就是说,在扫描信号的过程中,荧光屏上的光点得以增辉;在电子开关的转换过程中,电子开关电路将输出脉冲信号也加至Z轴放大电路,此时Z轴放大电路便输出负向脉冲信号,加至示波管的控制极。这样,在电子开关的转换过程中,就消去了两个通道交替工作时的过渡光点,以提高显示波形的清晰度。

校正信号电路产生一个一定频率、一定幅度的矩形信号(如国产SR-8型两踪示波器的校正信号是频率为lkHz、幅度为1V)。它是作校正Y轴放大电路的灵敏度和X轴的扫描速度之用的。

高、低压电源供给电路中的低压是供给示波器各级所需的低压电源的,高压是供给示波管显示系统电源的。

使用方法示波器虽然分成好几类,各类又有许多种型号,但是一般的示波器除频带宽度、输入灵敏度等不完全相同外,在使用方法的基本方面都是相同的。本章以SR-8型双踪示波器为例介绍。

(一)面板装置

SR-8型双踪示波器的面板图如图5-12所示。其面板装置按其位置和功能通常可划分为

3大部分:显示、垂直(Y轴)、水平(X轴)。现分别介绍这3个部分控制装置的作用。

1.显示部分主要控制件为:

(1)电源开关。

(2)电源指示灯。

(3)辉度调整光点亮度。

(4)聚焦调整光点或波形清晰度。

(5)辅助聚焦配合“聚焦”旋钮调节清晰度。

(6)标尺亮度调节坐标片上刻度线亮度。

(7)寻迹当按键向下按时,使偏离荧光屏的光点回到显示区域,而寻到光点位置。

(8)标准信号输出1kHz、1V方波校准信号由此引出。加到Y轴输入端,用以校准Y轴输入灵敏度和X轴扫描速度。

2.Y轴插件部分

(1)显示方式选择开关用以转换两个Y轴前置放大器YA与YB 工作状态的控制件,具有五种不同作用的显示方式:

“交替”:当显示方式开关置于“交替”时,电子开关受扫描信号控制转换,每次扫描都轮流接通YA或YB 信号。当被测信号的频率越高,扫描信号频率也越高。电

子开关转换速率也越快,不会有闪烁现象。这种工作状态适用于观察两个工作频率较高的信号。

“断续”:当显示方式开关置于“断续”时,电子开关不受扫描信号控制,产生频率固定为200kHz方波信号,使电子开关快速交替接通YA和YB。由于开关动作频率高于被测信号频率,因此屏幕上显示的两个通道信号波形是断续的。当被测信号频率较高时,断续现象十分明显,甚至无法观测;当被测信号频率较低时,断续现象被掩盖。因此,这种工作状态适合于观察两个工作频率较低的信号。

“YA”、“YB ”:显示方式开关置于“Y A ”或者“YB ”时,表示示波器处于单通道工作,此时示波器的工作方式相当于单踪示波器,即只能单独显示“Y A”或“YB ”通道的信号波形。

“YA + YB”:显示方式开关置于“Y A + YB ”时,电子开关不工作,YA与YB 两路信号均通过放大器和门电路,示波器将显示出两路信号叠加的波形。

(2)“DC-⊥-AC” Y轴输入选择开关,用以选择被测信号接至输入端的耦合方式。置于“DC”是直接耦合,能输入含有直流分量的交流信号;置于“AC”位置,实现交流耦合,只能输入交流分量;置于“⊥”位置时,Y轴输入端接地,这时显示的时基线一般用来作为测试直流电压零电平的参考基准线。

(3)“微调V/div” 灵敏度选择开关及微调装置。灵敏度选择开关系套轴结构,黑色旋钮是Y轴灵敏度粗调装置,自10mv/div~20v/div分11档。红色旋钮为细调装置,顺时针方向增加到满度时为校准位置,可按粗调旋钮所指示的数值,读取被测信号的幅度。当此旋钮反时针转到满度时,其变化范围应大于2.5倍,连续调节“微调”电位器,可实现各档级之间的灵敏度覆盖,在作定量测量时,此旋钮应置于顺时针满度的“校准”位置。

(4)“平衡” 当Y轴放大器输入电路出现不平衡时,显示的光点或波形就会随“V/div”开关的“微调”旋转而出现Y轴方向的位移,调节“平衡”电位器能将这种位移减至最小。

(5)“↑↓ ” Y轴位移电位器,用以调节波形的垂直位置。

(6)“极性、拉Y A ” Y A 通道的极性转换按拉式开关。拉出时YA 通道信号倒相显示,即显示方式(YA+ YB )时,显示图像为YB - YA 。

(7)“内触发、拉YB ” 触发源选择开关。在按的位置上(常态) 扫描触发信号分别取自Y A 及YB 通道的输入信号,适应于单踪或双踪显示,但不能够对双踪波形作时间比较。当把开关拉出时,扫描的触发信号只取自于YB 通道的输入信号,因而它适合于双踪显示时对比两个波形的时间和相位差。

(8)Y轴输入插座采用BNC型插座,被测信号由此直接或经探头输入。

3.X轴插件部分

(1)“t/div” 扫描速度选择开关及微调旋钮。X轴的光点移动速度由其决定,从0.2μs~1s 共分21档级。当该开关“微调”电位器顺时针方向旋转到底并接上开关后,即为“校准”位置,此时“t/div”的指示值,即为扫描速度的实际值。

(2)“扩展、拉×10” 扫描速度扩展装置。是按拉式开关,在按的状态作正常使用,拉的位置扫描速度增加10倍。“t/div”的指示值,也应相应计取。采用“扩展拉×10”适于观察波形细节。

(3)“→← ” X轴位置调节旋钮。系X轴光迹的水平位置调节电位器,是套轴结构。外圈旋钮为粗调装置,顺时针方向旋转基线右移,反时针方向旋转则基线左移。置于套轴上的小旋钮为细调装置,适用于经扩展后信号的调节。

(4)“外触发、X外接”插座采用BNC型插座。在使用外触发时,作为连接外触发信号的插座。也可以作为X轴放大器外接时信号输入插座。其输入阻抗约为1MΩ。外接使用时,输入信号的峰值应小于12V。

(5)“触发电平”旋钮触发电平调节电位器旋钮。用于选择输入信号波形的触发点。具体地说,就是调节开始扫描的时间,决定扫描在触发信号波形的哪一点上被触发。顺时针方向旋动时,触发点趋向信号波形的正向部分,逆时针方向旋动时,触发点趋向信号波形的负向部分。

(6)“稳定性” 触发稳定性微调旋钮。用以改变扫描电路的工作状态,一般应处于待触发状态。调整方法是将Y轴输入耦合方式选择(AC-地-DC)开关置于地档,将V/div开关置于最高灵敏度的档级,在电平旋钮调离自激状态的情况下,用小螺丝刀将稳定度电位器顺时针方向旋到底,则扫描电路产生自激扫描,此时屏幕上出现扫描线;然后逆时针方向慢慢旋动,使扫描线刚消失。此时扫描电路即处于待触发状态。在这种状态下,用示波器进行测量时,只要调节电平旋钮,即能在屏幕上获得稳定的波形,并能随意调节选择屏幕上波形的起始点位置。少数示波器,当稳定度电位器逆时针方向旋到底时,屏幕上出现扫描线;然后顺时针方向慢慢旋动,使屏幕上扫描线刚消失,此时扫描电路即处于待触发状态。

(7)“内、外” 触发源选择开关。置于“内”位置时,扫描触发信号取自Y轴通道的被测信号;置于“外”位置时,触发信号取自“外触发X 外接”输入端引入的外触发信号。

(8)“AC”“AC(H)”“DC” 触发耦合方式开关。“DC”档,是直流藕合状态,适合于变化缓慢或频率甚低(如低于100Hz)的触发信号。“AC”档,是交流藕合状态,由于隔断了触发中的直流分量,因此触发性能不受直流分量影响。“AC(H)”档,是低频抑制的交流耦合状态,在观察包含低频分量的高频复合波时,触发信号通过高通滤波器进行耦合,抑制了低频噪声和低频触发信号(2MHz以下的低频分量),免除因误触发而造成的波形幌动。

(9)“高频、常态、自动” 触发方式开关。用以选择不同的触发方式,以适应不同的被测信号与测试目的。“高频”档,频率甚高时(如高于5MHz),且无足够的幅度使触发稳定时,选该档。此时扫描处于高频触发状态,由示波器自身产生的高频信号(200kHz信号),对被测信号进行同步。不必经常调整电平旋钮,屏幕上即能显示稳定的波形,操作方便,有利于观察高频信号波形。“常态”档,采用来自Y轴或外接触发源的输入信号进行触发扫描,是常用的触发扫描方式。“自动”挡,扫描处于自动状态(与高频触发方式相仿),但不必调整电平旋钮,也能观察到稳定的波形,操作方便,有利于观察较低频率的信号。

(10)“+、-” 触发极性开关。在“+”位置时选用触发信号的上升部分,在“-”位置时选用触发信号的下降部分对扫描电路进行触发。

(二)使用前的检查、调整和校准

示波器初次使用前或久藏复用时,有必要进行一次能否工作的简单检查和进行扫描电路稳定度、垂直放大电路直流平衡的调整。示波器在进行电压和时间的定量测试时,还必须进行垂直放大电路增益和水平扫描速度的校准。示波器能否正常工作的检查方法、垂直放大电路增益和水平扫描速度的校准方法,由于各种型号示波器的校准信号的幅度、频率等参数不一样,因而检查、校准方法略有差异。

(三)使用步骤

用示波器能观察各种不同电信号幅度随时间变化的波形曲线,在这个基础上示波器可以应用于测量电压、时间、频率、相位差和调幅度等电参数。下面介绍用示波器观察电信号波形的使用步骤。

1.选择Y轴耦合方式

根据被测信号频率的高低,将Y轴输入耦合方式选择“AC-地-DC”开关置于AC或DC。

2.选择Y轴灵敏度

根据被测信号的大约峰-峰值(如果采用衰减探头,应除以衰减倍数;在耦合方式取DC 档时,还要考虑叠加的直流电压值),将Y轴灵敏度选择V/div开关(或Y轴衰减开关)置于适当档级。实际使用中如不需读测电压值,则可适当调节Y轴灵敏度微调(或Y轴增益)旋钮,使屏幕上显现所需要高度的波形。

3.选择触发(或同步)信号来源与极性

通常将触发(或同步)信号极性开关置于“+”或“-”档。

4.选择扫描速度

根据被测信号周期(或频率)的大约值,将X轴扫描速度t/div(或扫描范围)开关置于适当档级。实际使用中如不需读测时间值,则可适当调节扫速t/div微调(或扫描微调)旋钮,使屏幕上显示测试所需周期数的波形。如果需要观察的是信号的边沿部分,则扫速t/div开关应置于最快扫速档。

5.输入被测信号

被测信号由探头衰减后(或由同轴电缆不衰减直接输入,但此时的输入阻抗降低、输入电容增大),通过Y轴输入端输入示波器。

PSEM双踪示波器

兼有数字示波器和模拟示波器的特点,在示波管屏幕上直接显示电压、时间、等参数。

贴片工艺生产,进口编码开关, 高可靠性.高稳定性。

高精度六位频率计数器。

进口高亮度示波管。

体积小.外形美观。

在国外先进产品基础上开发生产,为当前国内最先进的数字、模拟一体化示波器。

PSEM双踪示波器性能特点

贴片工艺, 进口编码开关, 高可靠性, 高稳定性。

微处理器操作系统,十组不同面板设定可任意存储和呼叫。

进口高亮度示波管。高精度六位频率计数器。其准确度高达±0.01%。使用光标可直接读出电压、时间、频率等参数。

误操作报警功能。

交替扩展扫描、双踪四迹显示。Y1通道放大输出功能。TV信号同步功能。

ALT放大功能主扫描波形与放大的扫描波形可同时于显示幕上显现。

便利的垂直触发模式当垂直触发源切换至垂直触发模式时,同步信号来源将自动地被选择,

PSEM双踪示波器技术指标

Y系统灵敏度1mV~20VDIV 共14档

输入阻抗1MΩ ±2%约25pF

垂直模式CH1, CH2, DUAL(CHOP, ALT), ADD, CH2 INV

X系统扫速:0.2μSDIV~0.5SDIV,共20档,连续可调±3%,

扫描放大5倍,10倍,20倍±5%

触发模式AUTO, NORM,TV

触发源VERT 模式, CH1, CH2, LINE, EXT

光标量测功能:ΔV,ΔT, 1ΔT;游标解析度:125格

有效游标范围:垂直:±3格,水平:±4格

测量感度:大于2格(量测源选择来自CH1或CH2之同步信号)

体积28(W)×13(H)×37(D) (cm) 重量约7.2kg

示波器原理及其应用分析解析

示波器原理及其应用 示波器介绍 示波器的作用 示波器属于通用的仪器,任一个硬件工程师都应该了解示波器的工作原理并能够熟练使用示波器,掌握示波器是对每个硬件工程师的基本要求。 示波器是用来显示波形的仪器,显示的是信号电压随时间的变化。因此,示波器可以用来测量信号的频率,周期,信号的上升沿/下降沿,信号的过冲,信号的噪声,信号间的时序关系等等。 在示波器显示屏上,横坐标(X)代表时间,纵坐标(Y)代表电压,(注,如果示波器有测量电流的功能,纵坐标还代表电流。)还有就是比较少被关注的-亮度(Z),在TEK的DPO示波器中,亮度还表示了出现概率(它用16阶灰度来表示出现概率)。 1.1.示波器的分类 示波器一般分为模拟示波器和数字示波器;在很多情况下,模拟示波器和数字示波器都可以用来测试,不过我们一般使用模拟示波器测试那些要求实时显示并且变化很快的信号,或者很复杂的信号。而使用数字示波器来显示周期性相对来说比较强的信号,另外由于是数字信号,数字示波器内置的CPU或者专门的数字信号处理器可以处理分析信号,并可以保存波形等,对分析处理有很大的方便。

1.2.1 模拟示波器 模拟示波器使用电子枪扫描示波器的屏幕,偏转电压使电子束从上到下均匀扫描,将波形显示到屏幕上,它的优点在于实时显示图像。 模拟示波器的原理框图如下: 见上图所示,被测试信号经过垂直系统处理(比如衰减或放大,即我们拧垂直按钮-volts/div),然后送到垂直偏转控制中去。而触发系统会根据触发设置情况,控制产生水平扫描电压(锯齿波),送到水平偏转控制中。 信号到达触发系统,开始或者触发“水平扫描”,水平扫描是一个是锯齿波,使亮点在水平方向扫描。触发水平系统产生一个水平时基,使亮点在一个精确的时间内从屏幕的左边扫描到右边。在快速扫描过程中,将会使亮点的运动看起来

模拟示波器的基本工作原理

模拟示波器的基本工作原理 1. 回顾中学的沙漏实验——随时间变化的信号如何在平面展示 物理学理论可以证明,一端通过细绳固定的重物在作摆动时,与中心垂线的距离满足正弦波规律。沙漏实验可以清晰地显示这个随时间变化的波形:用沙漏充当重物,并且在沙漏底下的桌面上平铺一张纸,当沙漏开始摆动时,让纸匀速移动。这样,沙漏中流出的细沙,就在纸上留下了一个正弦波痕迹,如图所示。利用这种设计思想,可以完成波形在平面上(对应于时间的流动)的展开。这种设计思想在波形记录、显示中被广泛采用,比如心电图机,就是用原地摆动的电热针,在匀速移动的记录纸带上描记出心电波形。 利用心电图机的结构,已经可以记录电压信号,但是,示波器在大量的应用中,并不需要通过消耗纸张来记录波形,而仅仅是观察波形。因此,可以重复使用的荧光屏,被应用到示波器的设计中。 在示波器上描绘一条曲线——电子枪和荧光屏 在一个封闭玻璃管显示屏的内壁涂上荧光粉,当荧光粉被大量电子形成的电子束轰击时,会发出荧光。可以发出电子束的设备称为电子枪,它可以连续地发出集束性很强的电子。这些电子束在飞行过程中,如果遇到电场的作用,会因电场形成的力而改变运行方向,导致最终电子束落到荧光屏上的位置发生改变,也就是光点改变。根据这个原理制造的示波管,其结构如图所示。图中电子枪发出的电子束,经过两个偏转板的作用,会在X 、Y 两个方向上发生偏转。 当在Y 偏转板上加入被测信号,而在X 偏转板上不加电压,可以在示波管的荧光屏上看到光点随着被测电压的变化而发生位置变化——电压越大,光点位置越靠上方。 当在X 偏转板上加入一个锯齿波,而在Y 偏转板上不加电压,可以看到光点从荧光屏左边出现,匀速移动到右边,然后又迅速在左边重复出现。 当在X 偏转板上加入一个锯齿波,而在Y 偏转板上加入一个正弦波,则可以看到,光点在匀速左移的同时,其Y 方向位置出现了正弦变化的规律,也就是说,光点的移动轨迹是一个正弦波。 怎样将周期性电压信号稳定地显示于荧光屏 图 沙漏摆动留下的正弦波 图 示波管的结构示意图

示波器的基础学习知识原理和使用

示波器的原理和使用 示波器是一种用途广泛的基本电子测量仪器,用它能观察电信号的波形、幅度和频率等电参数。用双踪示波器还可以测量两个信号之间的时间差,一些性能较好的示波器甚至可以将输入的电信号存储起来以备分析和比较。在实际应用中凡是能转化为电压信号的电学量和非电学量都可以用示波器来观测。 【实验目的】 1.了解示波器的基本结构和工作原理,掌握使用示波器和信号发生器的基本方法。2.学会使用示波器观测电信号波形和电压幅值以及频率。 3.学会使用示波器观察李萨如图并测频率。 图1-1 示波器结构图 【实验原理】 不论何种型号和规格的示波器都包括了如图1-1所示的几个基本组成部分:示波管(又称阴极射线管,cathode ray tube,简称CRT)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号发生电路(锯齿波发生器)、自检标准信号发生电路(自检信号)、触发同步电路、电源等。 1.示波管的基本结构

示波管的基本结构如图1-2所示。主要由电子枪、偏转系统和荧光屏三部分组成,全都密封在玻璃壳体内,里面抽成高真空。 (1)电子枪:由灯丝、阴极、控制栅极、第一阳极和第二阳极五部分组成。灯丝通电后加热阴极。阴极是一个表面涂有氧化物的金属圆筒,被加热后发射电子。控制栅极是一个顶端有小孔的圆筒,套在阴极外面。它的电位比阴极低,对阴极发射出来的电子起控制作用,只有初速度较大的电子才能穿过栅极顶端的小孔然后在阳极加速下奔向荧光屏。示波器面板上的“辉度”调整就是通过调节电位以控制射向荧光屏的电子流密度,从而改变了屏上的光斑亮度。阳极电位比阴极电位高很多,电子被它们之间的电场加速形成射线。当控制栅极、第一阳极与第二阳极电位之间电位调节合适时,电子枪内的电场对电子射线有聚集作用,所以, H-灯丝;K-阴极;G1,G2- 控制栅极;A1-第一阳极;A2-第二阳极;Y-竖直偏转板;X-水平偏转板 图1-2 示波管结构图 第一阳极也称聚集阳极。第二阳极电位更高,又称加速阳极。面板上的“聚集”调节,就是调第一阳极电位,使荧光屏上的光斑成为明亮、清晰的小圆点。有的示波器还有“辅助聚集”,实际是调节第二阳极电位。 (2)偏转系统:它由两对互相垂直的偏转板组成,一对竖直偏转板,一对水平偏转板。在偏转板上加以适当电压,电子束通过时,其运动方向发生偏转,从而使电子束在荧光屏上产生的光斑位置也发生改变。 (3)荧光屏:屏上涂有荧光粉,电子打上去它就发光,形成光斑。不同材料的荧光粉发光的颜色不同,发光过程的延续时间(一般称为余辉时间)也不同。荧光屏前有一块透明的、带刻度的坐标板,供测定光点的位置用。在性能较好的示波管中,将刻度线直接刻在荧光屏玻璃内表面上,使之与荧光粉紧贴在一起以消除视差,光点位置可测得更准。2.波形显示原理

示波器的使用方法详解

* 声明 鼎阳科技有限公司,版权所有。 未经本公司同意,不得以任何形式或手段复制、摘抄、翻译本手册的内容。 ⅠSDS1000系列数字存储示波器简介 SDS1000 系列数字示波器体积小巧、操作灵活;采用彩色TFT-LCD及弹出式菜单显示,实现了它的易用性,大大提高了用户的工作效率。此外,SDS1000 系列性能优异、功能强大、价格实惠。具有较高的性价比。SDS1000 实时采样率最高 2GSa/s 、存储深度最高 2Mpts, 完全满足捕捉速度快、复杂信号的市场需求;支持USB设备存储,用户还可通过U盘或LAN 口对软件进行升级,最大程度地满足了用户的需求;所有型号产品都支持PictBridge 直接打印,满足最广泛的打印需求。 SDS1000系列有二十一种型号: [ SDS1000C系列 ]: SDS1102C、SDS1062C、SDS1042C、SDS1022C [ SDS1000D系列 ]:SDS1102D、SDS1062D、SDS1042D、SDS1022D [ SDS1000CM系列 ]: SDS1152CM、SDS1102CM、SDS1062CM [ SDS1000CE系列 ]: SDS1302CE、SDS1202CE、SDS1102CE、SDS1062CE [ SDS1000CF系列 ]: SDS1304CF、SDS1204CF、SDS1104CF、SDS1064CF [ SDS1000CN系列 ]:SDS1202CN、SDS1102CN ●超薄外观设计、体积小巧、桌面空间占用少、携带更方便 ●彩色TFT-LCD显示,波形显示更清晰、稳定 ●丰富的触发功能:边沿、脉冲、视频、斜率、交替 ●独特的数字滤波与波形录制功能 ●Pass/Fail功能,可对模板信号进行定制 ●3种光标模式、32 种自动测量种类

示波器基础使用说明和功能详细讲解

示波器基础使用说明和功能详细讲解 2009/7/30/10:56 来源:慧聪教育网 【慧聪教育网】示波器基础使用说明和功能 说明和功能 我们可以把示波器简单地看成是具有图形显示的电压表。 普通的电压表是在其度盘上移动的指针或者数字显示来给出信号电压的测 量读数。而示波器则与共不同。示波器具有屏幕,它能在屏幕上以图形的方式显示信号电压随时间的变化,即波形。 示波器和电压表之间的主要区别是: 1.电压表可以给出祥测信号的数值,这通常是有效值即RMS值。但是电压表不能给出有关信号形状的信息。有的电压表也能测量信号的峰值电压和频率。然而,示波器则能以图形的方式显示信号随时间变化的历史情况。 2.电压表通常只能对一个信号进行测量,而示波器则能同时显示两个或多个信号。 显示系统 示波器的显示器件是阴极射线管,缩写为CRT,见图1。阴极射线管的基础是一个能产生电子的系统,称为电子枪。电子枪向屏幕发射电子。电子枪发射的电子经聚焦形成电子束,并打在屏幕中心的一点上。屏幕的内表面涂有荧光物质,这样电子束打中的点就发出光来。 图1阴极射线管图 电子在从电子枪到屏幕的途中要经过偏转系统。在偏转系统上施加电压就可以使光点在屏幕上移动。偏转系统由水平(X)偏转板和垂直(Y)偏转板组成。这种偏转方式称为静电偏转。 在屏幕的内表面用刻划或腐蚀的方法作出许多水平和垂直的直线形成网络,称为标尺。标尺通常在垂直方向有8个,水平方向有10个,每个格为1cm。有的标尺线又进一步分成小格,并且还有标明0%和100%的特别线。这些特别的线和标明10%和90%的标尺配合使用以进行上升时间的测量。我们后面会讨论这个问题。 如上所述,受到电子轰击后,CRT上的荧光物质就会发光。当电子束移开后,荧光物质在一个短的时间内还会继续发光。这个时间称为余辉时间。余辉时间的长短随荧光物质的不同而变化。最常用的荧光物质是P31,其余辉时间小于一毫

示波器的使用实验报告

示波器的使用实验报告 一、实验目的 二、1. 了解示波器的基本结构和工作原理,掌握示波器的调节和使用方法; 三、2. 学会利用双踪示波器观测电信号波形; 四、3. 学会利用双踪示波器观察李萨如图形,并利用其测量正弦信号的频率。 五、二、实验仪器 六、EE1642B型函数信号发生器、GDS-2062型双踪示波器、导线。 七、三、实验原理 双踪示波器包括两部分:示波管和控制示波管工作的电路。 1. 示波管 如下图所示,示波管是呈喇叭形的玻璃泡,抽成高真空,内部装有电子枪和两对相互垂直的偏转板,喇叭口的球面壁上涂有荧光物质,构成荧光屏。高速电子撞击在荧光屏上会使荧光物质发光,在荧光屏上就能看到一个亮点。Y偏转板是水平放置的两块电极。X偏转板是垂直放置的两块电极。在Y 偏转板和X偏转板上分别加电压,可以在荧光屏上得到相应的图形。 2. 双踪示波器的原理

双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电路、扫描发生器、同步电路、电源等。 电子开关将两个待测的电压信号Y CH1和Y CH2周期性的轮流作用在Y偏转板上。由于视觉滞留效应,能在荧光屏上看到两个波形。 由示波器的原理功能方框图可见,被测信号电压加到示波器的Y轴输入端,经垂直放大电路加于示波管的垂直偏转板。示波管的水平偏转电压,虽然多数情况都采用锯齿电压(用于观察波形时),但有时也采用其它的外加电压(用于测量频率、相位差等时),因此在水平放大电路输入端有一个水平信号选择开关,以便按照需要选用示波器内部的锯齿波电压,或选用外加在X轴输入端上的其它电压来作为水平偏转电压。 此外,为了使荧光屏上显示的图形保持稳定,要求锯齿波电压信号的频率和被测信号的频率保持同步。这样,不仅要求锯齿波电压的频率能连续调节,而且在产生锯齿波的电路上还要输入一个同步信号。这样,对于只能产生连续扫描(即产生周而复始、连续不断的锯齿波)一种状态的简易示波器(如国产SB10型等示波器)而言,需要在其扫描电路上输入一个与被观察信号频率相关的同步信号,以牵制锯齿波的振荡频率。对于具有等待扫描功能(即平时不产生锯齿波,当被测信号来到时才产生一个锯齿波,进行一次扫描)功能的示波器(如国产ST-16型示波器、SR-8型双踪示波器等而言,需要在其扫描电路上输入一个与被测信号相关的触发信号,使扫描过程与被测信号密切配合。为了适应各种需要,同步(或触发)信号可通过同步或触发信号选择开关来选择,通常来源有3个:①从垂直放大电路引来被测信号作为同步(或触发)信号,此信号称为“内同步”(或“内触发”)信号;②引入某种相关的外加信号为同步(或触发)信号,此信号称为“外同步”(或“外触发”)

示波器的原理和使用

示波器的原理和使用 实验目的 (1) 了解示波器的主要结构和显示波形的基本原理; (2) 掌握模拟示波器和函数信号发生器的使用方法; (3) 观察正弦、矩形、三角波等信号发生器的使用方法; (4) 通过示波器观察李萨如图形,学会一种测量正弦振动频率的方法,并加深对互相垂直振动合成理论的理解。 实验方法原理 (1) 模拟示波器的基本构造 示波器主要由示波管、垂直放大器、水平放大器、扫描信号放大器、触发同步等几个基本部分组成。 (2) 示波器显示波形原理 如果只在垂直偏转板上加一交变正弦电压,则电子束的亮点随电压的变化在竖直方向上按正弦规律变化。要想显示波形,必须同时在水平偏转板上加一扫描电压,使电子束所产生的亮点沿水平方向拉开。 (3) 扫描同步 当扫描电压的周期T x 是被观察周期信号的整数倍时,扫描的后一个周期扫绘的波形与前一个周期完全一样,荧光屏上得到清晰而稳定的波形,这叫做信号与扫描电压同步。 (4) 多踪显示 根据开关信号的转换频率不同,有两种不同的时间分割方式,即“交替”和“断续”方式。 (5) 观察李萨如图形并测频率 x y y x f f N Y N X =数方向切线对图形的切点数方向切线对图形的切点 实验步骤 (1) 熟悉示波器各控制开关的作用,进行使用前的检查和校准。 (2) 将信号发生器的输出信号连接到示波器的CH1或CH2,观察信号波形。 (3) 用示波器测量信号的周期T 、频率f 、幅值U 、峰-峰值Up-p 、有效值Urms,频率和幅值任选。 (4) 观察李萨如图形和“拍”。 (5) 利用多波形显示法和李萨如图形判别法观测两信号的相位差 ① 多波形显示法观测相位差。 ② 李萨如图形判别法观测相位差。 数据处理 0p p u p p =-= --显显U U U E 000=-=T T T E T π 2 4 44 2 4 π2 0 频率相同位相不同时的李萨如图形

实验1 示波器函数信号发生器的原理及使用(实验报告之实验数据表)

实验1 示波器、函数信号发生器的原理及使用 【实验目的】 1. 了解示波器、函数信号发生器的工作原理。 2. 学习调节函数信号发生器产生波形及正确设置参数的方法。 3. 学习用示波器观察测量信号波形的电压参数和时间参数。 4. 通过李萨如图形学习用示波器观察两个信号之间的关系。 【实验仪器】 1. 示波器DS5042型,1台。 2. 函数信号发生器DG1022型,1台。 3. 电缆线(BNC 型插头),2条。 【实验内容与步骤】 1. 利用示波器观测信号的电压和频率 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-1所示的正余弦波形,显示在示波屏上。 图1-1 函数信号发生器生成的正、余弦信号的波形 学生姓名/学号 指导教师 上课时间 第 周 节

(2)用示波器对图1-1中所示的正余弦波形进行测量并填写下表 表1-1 正余弦信号的电压和时间参数的测量 电压参数(V)时间参数 峰峰值最大值最小值频率(Hz)周期(ms)正弦信号 3sin(200πt) 余弦信号 3cos(200πt) 2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-2所示的正余弦波形的李萨如图形,调节并正确显示在示波屏上。 图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形 3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形 (1)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+45o),观测并记录两正弦信号的李萨如图形于图1-3中。 (2)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+135o),观测并记录两正弦信号的李萨如图形于图1-3中。

示波器的工作原理与使用

河南科技大学实验教学教案 课程名称大学物理实验A 指导教师李海生

河南科技大学实验教学教案首页

预习及实验课前提问: 1.示波器中第一阳极和第二阳极的作用分别是什么? 解答:第二阳极电位比第一阳极高,当第一阳极与第二阳极间电位差调节合适时,电子枪内的电场对电子射线有聚焦作用,使屏上光斑成为明亮、清晰的小圆点,面板上的“聚焦”旋钮是用来调节第一阳极电位的,所以,第一阳极又称为聚焦阳极。第二阳极称为加速阳极。有些示波器还有“辅助聚焦”旋钮,是用来调节第二阳极电位的。 2.锯齿波如何形成? 解答:如果只在竖直偏转板上加一交变的正弦电压,则电子束的亮点将随电压的变化在竖直方向来回运动,如果电压频率较高,则看到的将是一条竖直亮线。要显示出波形,必须同时在水平偏转板上加一个扫描电压,使电子束的亮点同时沿着水平方向拉开。这种扫描电压的特点是电压随时间成线性关系增加到最大值,然后突然回到最小,此后再重复地变化。扫描电压随时间变化的关系曲线形同“锯齿”,故称“锯齿波”。 3.扫描图形在荧光屏上显示向左或向右移动的波形,为什么?如何使其稳定? 解答:要在示波器荧屏上获得稳定的波形,被测信号的频率Y f 必须为扫描电压(锯齿波)频率X f 的整数(N )倍,即有 X Y Nf f ,如果被测信号与锯齿波两者频率不满足上述整倍数的关系,每次扫描显示的图形就不能重合,结果荧光屏上呈现向左或向右移动的波形,这样就难以对信号进行观察和测量。必须设法调节使两者频率自动保持整数比。 实验原理: 示波器的结构主要由示波管、垂直放大器、水平放大器、扫描发生器、触发同步电路等组成。示波管是示波器的心脏部分,它是由电子枪、偏转系统、荧光屏构成。从电子枪发射出的电子束,经过加速电极和聚焦电极打到荧光屏上,形成一亮点。在偏转板上加适当电压,电子束的运动方向将发生偏转。当在y 板上加一交变信号时,在屏上将看到一条竖直亮线。若要观察交变信号的波形,需在x 板上加一锯齿波(扫描)电压,此电压由示波器内部提供。由于采用触发扫描方式,使得每一次扫描的起点位置都相同,因而得到的波形是稳定的。若在x 板和y 板上分别加上正弦信号,当他们的频率比为整数比时,屏上显示的稳定波形称为李萨如图形。频率比不同,李萨如图形的形状也不同。该图形在水平方向的切点数x n 和图形在垂直方向的切点数y n 与频率之间存在下列规律:

手持示波器详解

E贴心小家电https://www.360docs.net/doc/f214092656.html, 浮地隔离:输入、参考和地1000V隔离;输入灵敏度:5mV/div到100V/div;毛刺捕捉:3ns(脉宽触发)在5m/div到1min/div可测至50ns峰值; 手持示波器产品简介 高解析度大屏幕彩色显示 数字余辉与快速屏幕刷新 高至2.5G/秒实时采样与200M带宽的示波器 镍氢电池可连续使用4小时 190C系列全彩余辉示波表 朦胧色显示,观察更轻松 新型的全彩余辉示波表190C系列是技术领先,携带方便的手持示波器。高解析度的大屏幕彩色显示为工程现场应用提供更强的观察能力,新设计的硬件数字余辉处理能力为您观察各种复杂的波形提供强大的支持: 不同的通道波形具有不同颜色的显示 高解析度的大屏幕为您显示更多的信号细节 数字余辉模式可以像模拟示波器一样分析复杂的动态波形 快速的屏幕刷新率可以迅速观察信号的动态变化 在示波器记录功能下的“触发即停”功能可以存贮和分析预触发波形数据 具有波形参考功能来进行直观的波形比较 脉宽调制信号测试功能方便变频器的设计和应用 手持示波器另外所有的190系列万用示波表都具有: 最高至200M带宽的示波器 最高至2.5G/秒的实时采样率 即触即测(Connect-and View)触发方式,方便迅速观察波形 回放(Replay)功能——自动存贮与回放100屏波形 双通道完全隔离输入(1000V CATⅡ/600VCATⅢ) 镍氢电池可工作4小时以上 190C系列全彩余辉示波表看得更多,应用更广! 通过提供了台式示波器才具有的高指标,全彩余辉示波表190C系列还具备高解析度的大屏幕彩色显示,硬件数字余辉处理能力,以及快速的屏幕刷新率,为现场和实验室的应用提供了全新的示波器概念。

数字示波器及其简单原理图

数字示波器及其简单原理图 数字示波器可以分为数字存储示波器(DSO)数字荧光示波器(DP09、混合信 号示波器(MSO9和米样示波器。 数字式存储示波器与传统的模拟示波器相比,其利用数字电路和微处理器来增强对信号的处理能力、显示能力以及模拟示波器没有的存储能力。数字示波器的基本工 作原理如上图所示当信号通过垂直输入衰减和放大器后,到达模-数转换器(ADC。ADC 将模拟输入信号的电平转换成数字量,并将其放到存贮器中。存储该值得速度由触发电路和石英晶振时基信号来决定。数字处理器可以在固定的时间间隔内进行离散信号的幅值采样。接下来,数字示波器的微处理器将存储的信号读出并同时对其进行数字信号处理,并将处理过的信号送到数-模转换器(DAC、,然后DAC的输出信号去驱动垂直偏转放大器。DAC也需要一个数字信号存储的时钟,并用此驱动水平偏转放大器。与模拟示波器类似的,在垂直放大器和水平放大器两个信号的共同驱动下,完成待测波形的测量结果显示。数字存储示波器显示的是上一次触发后采集的存储在示波器内存中的波形,这种示波器不能实时显示波形信息。其他几种数字示波器的特点,请参考相关书籍。

Agile nt DSO-X 2002A 型数字示波器面板介绍 Rm — "P SiD (l#~j a o o o a 二 Mr 强 ; A T ef kiLol&£i^ li^fiiu]\'ioan Svaixli | Analiif] PnOi 伽 Fui£ Dto-X :ua ;A [*■4■討心十!?山皿町 p . * 3 ? ? ? 山唤附■血品 1 lnlensity(^fe ) 2 Entry HW 3 LCD^TF ◎IWI 控制 S

示波器的原理和使用

清华大学实验报告 系别:机械工程系班号:机械72班姓名:车德梦(同组姓名:)作实验日期2008年11月19日教师评定: 实验3.12 示波器的原理和使用 一、示波器的原理 示波器的规格和型号很多,就其显示方式来说主要有阴极射线示波管和液晶显示两种。阴极射线示波器一般都包括示波管(阴极射线管,CRT)、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。 1.示波管的基本结构 示波管主要包括电子枪、偏转系统和荧光屏三个部分,全都密封在玻璃外壳内,里面抽成高真空。 (1)电子枪:由灯丝、阴极、控制栅极、第一阳极和第二阳极五部分组成。灯丝通电后加热阴极,阴极是一个表面涂有氧化物的金属圆筒,被加热后发射电子。控制栅极是野鸽顶端有小孔的圆筒,套在阴极外面。它的电位比阴极低,对阴极发射出来的电子起控制

作用,只有初速度较大的电子才能穿过其顶端的小孔然后在阳极加速下奔向荧光屏。可以通过调节札记电位来控制射向荧光屏的电子流密度从而改变荧光屏的光斑亮度。当控制栅极、第一阳极和第二阳极三者的电位调节合适时,电子枪内的电场对电子射线有聚焦的作用,所以第一阳极也称聚焦阳极,第二阳极电位更高,又称加速阳极。 (2)偏转系统:它有两队互相垂直的偏转板组成,一对竖直偏转板和一对水平偏转板,加以适当电压可以使电子束运动方向发生偏转,从而使电子束在荧光屏上产生的光斑位置发生改变。 (3)荧光屏:屏上涂有荧光粉,电子打上去它就发光,形成光斑。不同材料的荧光粉发光的颜色不同,发光过程的延续时间(一般成为余辉时间)也不同。在性能好的示波管中,荧光屏玻璃内表面上直接刻有坐标刻度,供测定光点位置用。荧光粉紧贴坐标刻度以消除视差,光点位置可测得准确。 2.示波器显示波形的原理 如果在竖直偏转板上加一交变的正弦电压,同时在水平偏转板上加一扫描电压(锯齿波电压),电子受竖直、水平两个方向的力的作用,电子的运动是相互垂直的运动的合成。当锯齿波电压与正弦电压的变化周期相等时,在荧光屏上将能显示出完整周期的所加正弦电压的波形图。 3.同步的概念 如果正弦波和锯齿波电压的周期稍不同,屏上出现的将是一移动着的不稳定图形。如果T x稍小于T y,屏上显示的波形每次都不重叠,好像波形在向右移动。同理,如果T x比T y稍大,则好像在向左移动。以上描述的情况在示波器使用过程中经常会出现。其原因是扫描电压的周期与被测信号的周期不相等或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的。 为了获得一定数量的完整周期波形,示波器上设有“TIME/DIV”(时间分度)调解旋钮,用来调节锯齿波电压的周期T x(或频率f x),使之与被侧信号的周期T y(或频率f y)呈合适的关系,从而,在示波器屏上得到所需数目的完整的被测波形。 输入Y轴的被测信号与示波器内部的锯齿波电压是互相独立的。由于环境或其它因素的影响,它们的周期会发生微小的改变。为此示波期内装有扫描同步装置,在适当调节后,让锯齿波电压的扫描起点自动跟着被测信号改变,这就称为整步(或同步)。调节示波器面板上的“TRIG LEVER(触发电平)”一般能使波形稳定下来。 4.利萨如图形的基本原理 如果示波器的X和Y输入时频率相同或者简单整数比的两个正弦电压,则屏上的光点将呈现特殊形状的轨迹,这种轨迹图形称为利萨如图形。如果做一个限制光点x、y方向变化范围的假象方框,则图形与此框相切时,横边上的切点数n x与竖边上的切点数n y 之比恰好是Y和X输入的两正弦信号的频率之比。若出现有端点与假想边框相接时,,应把一个端点计为半个切点。所以利用利萨如图形可以方便地比较出两个正弦信号的频率。若已知其中一个信号的频率,数出图上的切点数n x和n y,便可算出另一待测信号的频率。

示波器图文教程_非常详细讲解

看到论坛有很多新手在问示波器怎么用,苦苦寻找示波器的教程.....以前用的大多是那种很大台笨重的模拟示波十M的价格都要好几千,小弟我也买不起,所以至今是只见过猪走路,没吃过猪肉。现在都是数字时代了,现0M的不到两千MB可买得一台了,小巧、彩色、而且可说像傻瓜式的,操作非常方便面,只需测量时按下上面了。 其实示波器在实际维修运用中,用得最多的就是测量晶阵、时钟频率、检修PWM电路及一些关键信号的捕捉,今天闲来没事就简单给大家演示一下示波器实际维修的运用及所测到的波形。 主演:安泰信ADS1102C 配角:我是刚来的 首先先请主演先登场吧 第一:检修不触发故障主板时,可以用示波器测32.768和25M(NF的板)晶振是否起振,非常直观,非常准确,万用表测晶振的两脚的压差不是也可以判断其好坏吗?没错,但是我要告诉你你只对了一半,有压差只能初步判也经常碰到有压差但不起振的故障,在没示波器下最好的方法就是代换一个。但如果我们有示波器,测其晶振两且下面标有对应的频率数值没有偏移,那么晶振肯定是好的。如图为实测32.768的波形

第二:在检修能上电不亮机故障时,首先就是测量主板各大供电是否正常,而如今的主板的供电方式大多彩用了来检测PWM控制电路是否正常工作,也是比万用表更准确更直观,正常工作时的波形为脉冲方波。如:如图为方波,表明CPU电路正常工作

表明内存供电电路正常

桥供电正常

第三:对于主板不亮故障,如以上测完主板供电都正常情况下,就要检测主板各时钟是否正常了。这时示波器的常准确的测出该点的时钟频率的数值,正常为一个正弦波。万用表测也行,一般33M为1.6V左右,66M为0.6左右,只是个大概判断,当然没示波器来的准确。 如图为实测的33M频率波形(测量点可用打值卡上测,或在PCI槽B16测到)

模拟示波器的基本工作原理定稿版

模拟示波器的基本工作 原理 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

模拟示波器的基本工作原理 1.回顾中学的沙漏实验——随时间变化的信号如何在平面展示 利用心电图机的结构,已经可以记录电压信号,但是,示波器在大量的应用中,并不需要通过消耗纸张来记录波形,而仅仅是观察波形。因此,可以重复使用的荧光屏,被应用到示波器的 设计中。 2.在示波器上描绘一条曲线——电子枪和荧光屏 当在Y 偏转板上加入被测信号,而在X 偏转板上不加电压,可以在示波管的荧光屏上看到光点随着被测电压的变化而发生位置变化——电压越大,光点位置越靠上方。 当在X 偏转板上加入一个锯齿波,而在Y 偏转板上不加电压,可以看到光点从荧光屏左边出现,匀速移动到右边,然后又迅速在左边重复出现。 当在X 偏转板上加入一个锯齿波,而在Y 偏转板上加入一个正弦波,则可以看到,光点在匀速左移的同时,其Y 方向位置出现了正弦变化的规律,也就是说,光点的移动轨迹是一个正弦波。 3.怎样将周期性电压信号稳定地显示于荧光屏? 图1.1.3 沙漏摆动留下的正弦

○1~○6时 刻,具有相 同的特征: 都是以上升的方式经过0V电压。示波器内部,用微分电路可以区分被测信号上升或者下降,用比较器配合外部的电压设置,可以判断被测信号是否经过这个比较电压(比如图中的0V)。这样,再经过一套逻辑电路,可以在被测信号具有相同初相角的时刻,控制X轴偏转板,发出一个锯齿波。这种利用被测信号的周期性,在相同初相角时刻,触发X轴锯齿波扫描信号,使得波形被重叠、稳定地显示于示波器荧光屏的技术,称为同步触发扫描。图中,锯齿波在○1~○6时刻满足触发条件,但仅在○1、○3、○5时刻被触发,是因为在○2、○4、○6时刻,此前的锯齿波尚未扫描结束。 因此,在 示波器外部 面板上,有 控制被测信号在电压多大时触发锯齿波产生的电平旋钮,英文标识为Level,这个电压称为触发电平。有控制被测信号是上升或者下降经过Level电压的选择开关,英文标识为Slope Y轴偏转 X轴偏 Y轴偏转 X 轴偏 Y轴偏转 X 轴偏

模拟示波器的基本工作原理

模拟示波器的基本工作原理 1.回顾中学的沙漏实验——随时间变化的信号如何在平面展示 利用心电图机的结构,已经可以记录电压信号,但是,示波器在大量的应用中,并不需要通过消耗纸张来记录波形,而仅仅是观察波形。因此,可以重复使 用的荧光屏,被应用到示波器的设计中。 2.在示波器上描绘一条曲线——电子枪 和 荧光屏 当在Y 偏转板上加入被测信号,而在X 偏转板上不加电压,可以在示波管的荧光屏上看到光点随着被 测电压的变化而发生位置变化——电压越大,光点位 置越靠上方。 当在X 偏转板上加入一个锯齿波,而在Y 偏转板上不加电压,可以看到光点从荧光屏左边出现,匀速移动到右边,然后又迅速在左边重复出现。 当在X 偏转板上加入一个锯齿波,而在Y 偏转板上加入一个正弦波,则可以看到,光点在匀速左移的同时,其Y 方向位置出现了正弦变化的规律,也就是说,光点的移动轨迹是一个正弦波。 3 .怎样将周期性电压信号稳定地显示于荧光屏? ○ 1~○6时刻,具有相同的特征:都是以上升的方式经过0V 电压。示波器内部,用微分电路可以区分被测信号上升或者下降,用比较器配合外部的电压设置,可以判断被测信号是否经过这个比较电压(比如图中的0V )。这样,再经过一套逻辑电路,可以在被测信号具有相同初相角的时刻,控制X 轴偏转板,发 出一个锯齿 波。这种利用被测信号的周期性,在相 同 初相角时刻,触发X 轴锯齿波扫描信号,使得波形被重叠、稳定地显示于示波器荧光屏的技术,称为同步触发扫描。图中, 锯齿波在○ 1~○6时刻满足触发条件,但仅在○1、○3、○5时刻被触发,是因为在○2、○4、○6时刻,此前的锯齿波尚未扫描结束。 因此,在 示波器外部面板上,有控制被测信号在电压多大时触发锯 齿波产生的电 平旋钮,英文标识为Level ,这个电压称为触发电平。有控制被测信号是上升或者下降经过Level 电压的选择开关,英文标识为Slope 图1.1.3 沙漏摆动留下的正弦波 图1.1.4 示波管的结构示意图 Y 轴偏转板 被测信号 X 轴偏转板 锯齿波 Y 轴偏转板 被测信号 X 轴偏转板 锯齿波

示波器的原理及使用

实验4—11 示波器的原理及使用 示波器是一种用途十分广泛的电子测量仪器,它可以直接观察电信号的波形,测量电压的幅度、周期(频率)等参数。用双踪示波器还可以测量两个信号之间的时间差或相位差,一些性能较好的示波器甚至可以将输入的电信号存储起来以备分析和比较。在实际应用中凡是能转化为电压信号的电学量和非电学量(如压力、温度、磁感应强度、光强等)都可以用示波器来观测。 【实验目的】 1.了解示波器的基本结构和工作原理,掌握示波器和信号发生器的基本使用方法。 2.学会使用示波器观察电信号波形,测量电压幅值及频率。 3.掌握利用李萨如图形测量频率的实验方法。 【实验原理】 不论何种型号和规格的示波器都包括了如图4-11-1所示的几个基本组成部分:示波管(又称阴极射线管,cathode ray tube,简称CRT)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号发生电路(锯齿波发生器)、自检标准信号发生电路(自检信号)、触发同步电路、电源等。 图4-11-1 示波器基本组成框图 1.示波原理 在中学物理课中有一个演示振动图形的沙斗实验,装置如图4-11-2所示。图中P为平面板,能在X方向上作匀速直线运动。S为沙斗,斗内装上细沙,细沙能从斗的下端慢慢漏出,沙斗通过细绳连接在支架H上,构成单摆。假定此单摆在与X的垂直方向Y上振动,P在X

实验4—11 示波器的原理及使用 95 方向匀速运动,那么在平面板上将有漏沙的径迹,这就是单摆的振动图线——正弦曲线。根据曲线和匀速运动的速率v 不难求得振动周期(或频率)和振幅等物理量的大小。 示波器的示波原理和沙斗实验中平面板上漏沙径迹的道理相同。 1) 如果仅在垂直偏转板上(Y 偏转板)加正弦交变电压U ()y t ,则电子束在荧光屏上所产生的亮点位置随着电压在y 方向作往复运动。如果电压频率较高,由于人眼的视觉暂留现象,则看到的是一条竖直 亮线,其长度与正弦交变电压的峰—谷值P P V 成正比。如图4-11-3所示。 图4-11-3 垂直偏转板加正弦交变电压 图4-11-4 水平偏转板加锯齿电压 图4-11-5 波形显示原理图 2)如果在水平偏转板(X 偏转板)加上扫描发生器所输出的扫描(锯齿)电压()x U t ,则能使y 轴方向所加的被观察信号电压()y U t 在空间展开,与沙斗实验中的平面板P 有同样 图4-11-2 沙斗实验

示波器的使用方法

示波器种类、型号很多,功能也不同。模拟、数字电路实验中使用较多的是20MHz或者40MHz的双踪 示波器。这些示波器用法大同小异,本节针对V-252型号示波器介绍其常用功能。 一、电源、示波管部分 1. 荧光屏 荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间 值。 2.电源(POWER) 示波器主电源开关位于荧光屏的右上角。当此开关按下时,电源指示灯亮,表示电源接通。 3.辉度(INTENSITY) 旋转此旋钮能改变光点和扫描线的亮度。顺时针旋转,亮度增大。观察低频信号时可小些,高频信号时大些。以适合自己的亮度为准,一般不应太亮,以保护荧光屏。 4.聚焦(FOCUS) 聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。 5.辉线旋转旋钮(TRACE ROTATION) 受地磁场的影响,水平辉线可能会与水平刻度线形成夹角,用此旋钮可使辉线旋转,进行校准。 6. 通道1(CH1)的垂直放大器信号输入插座(CH1 INPUT)

通道1垂直放大器信号输入BNC插座。当示波器工作于X-Y模式时作为X信号的输入端。 7. 通道2(CH2)的垂直放大器信号输入插座(CH2 INPUT) 通道2垂直放大器信号输入BNC插座。当示波器工作于X-Y模式时作为Y信号的输入端。 8.垂直轴工作方式选择开关(MODE) 输入通道有五种选择方式:通道1(CH1)、通道2(CH2)、双通道交替显示方式(ALT)、双通道切换显示方式(CHOP).叠加显示方式(ADD)。 CH1:选择通道1,示波器仅显示通道1的信号。 CH2:选择通道2,示波器仅显示通道2的信号。 ALT:选择双通道交替显示方式,示波器同时显示通道1信号和通道2信号。两路信号交替地显示。用较高的扫描速度观测CH1和CH2两路信号时,使用这种显示方式。 CHOP:选择双通道交替显示方式,示波器同时显示通道1信号和通道2信号。两路信号以约250Hz 的频率对两路纤毫进行着性切换,同时显示于屏幕。 ADD:选择两通道叠加方式,示波器显示两通道波形叠加后的波形。 9.内部触发信号源选择开关(INT TRIG) 当SOURCE开关置于INT时,用此开关具体选择触发信号源。 CH1:以CH1的输入信号作为触发信号源。 CH2:以CH2的输入信号作为触发信号源。 VERT MODE:交替地分别以CH1和CH2两路信号作为触发信号源。观测两个通道的波形时,进行交替扫描的同时,触发信号源也交替地切换到相应的通道上。 10. 扫描方式选择开关(MODE) 扫描有自动(AUTO)、常态(NORM)、视频-行(TV-H) 和视频-场(TV-V)四种扫描方式。 自动(AUTO):自动方式,任何情况下都有扫描线。有触发信号时,正常进行同步扫描,波形静止。当无触发信号输入,或者触发信号频率低于50Hz时,扫描为自激方式。 常态(NORM):仅在有触发信号时进行扫描。当无触发信号输入时,扫描处于准备状态,没有扫描线。触发信号到来后,触发扫描。观测超低频信号(25Hz)调整触发电平时,使用这种触发方式。 视频-行(TV-H):用于观测视频-行信号。 视频-场(TV-V):用于观测视频-场信号。 注:视频-行(TV-H) 和视频-场(TV-V)两种触发方式仅在视频信号的同步极性为负时才起作用。 11.触发信号源选择开关(SOURCE) 要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。触发源选择确定触发信号由何处供给。通常有三种触发源:内触发(INT)、电源触发(LINE)、外触发(EXT)。 内触发(INT):内触发使用被测信号作为触发信号,是经常使用的一种触发方式。由于触发信号本身是被测信号的一部分,在屏幕上可以显示出非常稳定的波形。以通道1(CH1)或通道2(CH2)的输入信号作为触发信号源。 电源触发(LINE):电源触发使用交流电源频率信号作为触发信号。这种方法在测量与交流电源频率有关的信号时是有效的。特别在测量音频电路、闸流管的低电平交流噪音时更为有效。 外触发(EXT):TRIG INPUT 的输入信号作为触发信号源。外加信号从外触发输入端输入。外触发信号与被测信号间应具有周期性的关系。由于被测信号没有用作触发信号,所以何时开始扫描与被测信号无关。 12.外触发信号输入端子(TRIG INPUT) 外触发信号的输入端子 13.触发电平/和触发极性选择开关(LEVEL) 触发电平调节又叫同步调节,它使得扫描与被测信号同步。电平调节旋钮调节触发信号的触发电平。一旦触发信号超过由旋钮设定的触发电平时,扫描即被触发。顺时针旋转旋钮,触发电平上升;逆时针旋转旋

示波器的原理和使用实验报告

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 18 日,第13周,星期 二 第 5-6 节 实验名称 示波器的原理与使用 教师评语 实验目的与要求: (1) 了解示波器的工作原理 (2) 学习使用示波器观察各种信号波形 (3) 用示波器测量信号的电压、频率和相位差 主要仪器设备: YB4320G 双踪示波器, EE1641B 型函数信号发生器 实验原理和内容: 1. 示波器基本结构 示波器主要由示波管、放大和衰减系统、触发扫描系统和电源四部分组成, 其中示波管是核心部分。 示波管的基本结构如下图所示, 主要由电子枪、偏转系统和荧光屏三个部分组成, 由外部玻璃外壳密封在真空环境中。 成 绩 教师签字

电子枪的作用是释放并加速电子束。 其中第一阳极称为聚焦阳极, 第二阳极称为加速阳极。 通 过调节两者的共同作用, 可以使电子束打到荧光屏上产生明亮清晰的圆点。 偏转系统由X 、Y 两对偏转板组成, 通过在板上加电压来使电子束偏转, 从而对应地改变屏上亮点的位置。 荧光屏上涂有荧光粉, 电子打上去时能够发光形成光斑。 不同荧光粉的发光颜色与余辉时间都不同。 放大和衰减系统用于对不同大小的输入信号进行适当的缩放, 使其幅度适合于观测。 扫描系统的作用是产生锯齿波扫描电压(如左上图所示), 使电子束在其作用下匀速地在荧光屏周期性地自左向右运动, 这一过程称为扫描。 扫描开始的时间由触发系统控制。 2. 示波器的显示波形的原理 如果只在竖直偏转板加上交变电压而X 偏转板上五点也是, 电子束在竖直方向上来回运动而形成一条亮线, 如左图所示: 如果在Y 偏转板和X 偏转板上同时分别加载正弦电压和锯齿波电压, 电子受水平竖直两个方向的合理作用下, 进行正弦震荡和水平扫描的合成运动, 在两电压周期相等时, 荧光屏上能够显示出完整周期的正弦电压波形, 显像原理如右图所示: 3. 扫描同步 为了完整地显示外界输入信号的周期波形, 需要调节扫描周期使其与外界信号周期相同或成合适的关系。 当某些因素改变致使周期发生变化时,使用扫描同步功能, 能够使扫描起点自动跟踪外界信号变化, 从而稳定地显示波形。 步骤与操作方法: 1. 示波器测量信号的电压和频率 对于一个稳定显示的正弦电压波形, 电压和频率可以由以下方法读出 h a U p p ?=-, 1)(-?=l b f

相关文档
最新文档