防雷防浪涌

防雷防浪涌
防雷防浪涌

3. 7 防雷/防浪涌系统

站控和RTU控制系统均设有完善的防雷击、浪涌的保护措施。与本系统所有的连接都有可能将由于雷击(直击雷、感应雷、传导雷等)产生的过电压导入计算机系统。所以,对以下部分必须进行保护:

☆与电信公网的连接处;

☆供电系统的连接处;

☆与站内其他设备的通信接口-包括流量计和色谱仪等;

☆站场内的模拟量信号(输入和输出),ESD系统的所有I/O点;

防雷击和浪涌的设备对于电源接口要求抗浪涌主要的技术指标:抗浪涌能力≥50kA(10/350μs)。通信接口和其它的I/O点抗浪涌主要的技术指标:抗浪涌能力:20kA(8/20μs)。

本方案采用世界著名的英国MTL公司产品;MTL公司专门设计和生产各种浪涌保护设备,为用户的各类系统提供全面的解决方案。它包括两个密切联系的子公司,位于美国佛罗里达的AtlanticScientific公司和位于英国伦敦附近的Telematic公司。二者在该领域的经验计约有五十年。该公司在工业控制领域有着丰富的经验和良好的声誉,加上Telematic公司在各种水处理行业的成绩和AtlanticScientific可为计算机网络、无线通讯领域提供全面的解决方案。MTL浪涌保护技术可以为全球大量的工业领域提供浪涌解决方案。比如:交直流电源系统、过程控制系统、网络和通讯系统、无线和射频通讯系统。

3.7.1电源防雷要求

在各门站,调压站和阀室电源应安装B(第一级)级电源避雷器,220/380VAC,最大冲击电流为20KA/25As(10/350μs),避雷器要求:1)能直接泄放直击雷电流;

2)具有全摸式保护方式:L-N,N-G(干线),L-L,L-G,N-G(设备)3)密封设计。

4)环境运行温度:-40o-85oC。

5)有国内工程应用,尤其各重点安装使用经验。

6)要求采用并联安装方式。

7)具有VO级别的阻燃等级。

1、电源一级

2、UPS电源内防浪涌保护器为C级(如果UPS厂家已配有浪涌保护设施,可免去这级)。

浪涌保护器电气参数为:

3.7.2仪表、通信类浪涌保护器要求

要求在控制室侧进入、出控制室的金属导线均要装设浪涌保护器。

所有模拟量控制电缆要求有双屏蔽结构。浪涌保护器为多级保护结构。

浪涌保护器最大浪涌电流应达到20KA,8/20μs

信号浪涌保护器在正常的工作电压条件下漏电流小于1μA。

模拟量信号浪涌保护器标称通流量的测试条件下残压小于40V。

开关量信号浪涌保护器标称通流量的测试条件下残压小于55V。

环境条件:0o-55oC。Regard

模拟量信号浪涌保护器回路电阻小于3欧姆。

开关量信号浪涌保护器回路电阻小于5欧姆。

信号防雷器技术要求:

1、室外现场I/O信号防雷器:(A/I,A/O,D/I,D/O)

2、流量计算机,修正仪,流量表RS485数据线防雷浪涌保护器:

3、现场24VDC电源浪涌保护器

3.7.3视频类浪涌保护器要求

现场摄像头防雷浪涌保护器:

3.7.4浪涌保护器简介及主要技术参数

3.7.5配置及数量清单

根据标书防雷要求,需要对如下两部分做防雷保护:

●控制室侧所有模拟量,ESD部分的开关量点,RS485信号及电

源;

●监视系统侧的视频信号及RS485信号。

(1) 配置选型

(2) 数量清单

注:1.SLP32D 是双通道信号浪涌保护器,2.有相同点数的站,I/O点总数都乘以站点数.

深圳市天然气管网SCADA系统防雷设备总数表

避雷器与浪涌保护器的区别

概念 1.避雷器 过电压限制器。当过电压出现时,必雷器两端子间的电压不超过规定定值,是电气设备免受过电压损坏;过电压作用后,又能使系统迅速恢复正常状态。 2.阀片 具有非线性伏安特性的电阻片,在过电压时呈低电阻。从而限制避雷器上的电压,而在正常工频电压下呈高阻,能限制通过避雷器的电流。 3.避雷器的额定电压 是施加到避雷器端子间最大允许工频电压有效值,按照此电压所设计的避雷器能在所规定的动作负载实验中确定暂过电压下正确地工作他是表明避雷器运行特性的一个重要参数。但它不等于系统额定电压。 4.避雷器的残压 放电电流通过避雷器时,其端子间的最大电压值 5.雷电冲击电流 一种8/20波形的冲击电流。因设备调整的限制,视在伯谦时间的实测值为7~9us,波尾中值时间为18-20us。 6.操作冲击电流 视在波前时间大于30us而小于100us,波尾在半峰值时间紧似为视在波前时间2倍的冲击电流。

7.方波冲击电流 迅速上升最大值,在规定时间内大体保持恒定,然后迅速降到零值的冲击波。 8.陡波冲击电流 具有视在波前时间为1us的冲击电流。 9.冲击电流耐受能力(冲击电流迫流容量) 在规定的波形(方波、雷电和线路放电等)情况下,非线性电阻片耐受通过电流的能力,以电流的幅值和次数表示。 10.动作负载试验 用于确定避雷器在规定的条件下可靠重复动作的能力。 模拟雷电过电压动作的实验称为雷电冲击动作负载试验。 模拟操作过电压动作的实验成为操作冲击动作负载试验。 11.避雷器的保护范围 以避雷器到被保护设备之间倒显得最大允许长度,在该范围内被保护设备上的过电压不超过规定值。 12.避雷器的持续电流 在持续运行电压下流过避雷器的电流,以峰值或有效值表示。13.避雷器的持续运行电压 在运行中允许持久地施加在避雷器端子上的工频电压有效值。14.避雷器工频参考电压 在工频参考电流下测出的避雷器上的工频电压最大峰值除以2 15.避雷器的直流参考电流

安全防范系统雷电浪涌防护技术要求GA-T670-2006

安全防范系统雷电浪涌防护技术要求 GA/T 670-2006 中华人民共和国公安部2006-12-14发布2007-06-01实施 前言 本标准的附录A、附录B为资料性附录。 本标准由全国安全防范报警系统标准化技术委员会(SAC/TC 100)提出并归口。 本标准起草单位:广西地凯科技有限公司、全国安全防范报警系统标准化技术委员会(SAC/TC100)秘书处、广西壮族自治区公安厅技防办。 本标准主要起草人:王东生、刘希清、张凡夫、施巨岭、张跃、马宁。 1 范围 本标准规定了安全防范系统雷电防护的基本要求,着重规定了安全防范系统雷电浪涌防护的具体要求。 本标准适用于安全防范系统雷电防护的设计、实施和检验等。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本,凡是不注日期的引用文件,其最新版本适用于本标准。 GB 18802.1—2002 低压配电系统的电涌保护器(SPD) 第1部分:性能要求和试验方法(IEC 61643-1:1998,IDT) GB 50057-1994(2000年版) 建筑物防雷设计规范 GB 50343-2004 建筑物电子信息系统防雷技术规范 GB 50348-2004 安全防范工程技术规范 3 术语和定义 下列术语和定义适用于本标准。 3.1 安全防范系统security and protection system:SPS 以维护社会公共安全为目的,运用安全防范产品和其他相关产品,所构成的入侵报警系统、视频安防监控系统、出入口控制系统、防爆安全检查系统等;或由这些系统作为子系统组合或集成的电子系统或网络。 [GB 50348-2004,2.0.2] 3.2 直击雷direct lightning flash 闪击直接击在建筑物、其他物体、大地或防雷装置上,产生电效应、热效应和机械力者。 [GB 50057-1994(2000年版)附录8] 3.3 雷电感应lightning induction 闪电放电时,在附近导体上产生的静电感应和电磁感应,它可能使金属部件之间产生火花。 [GB 50057-1994(2000年版)附录8] 3.4 雷电浪涌lightning surge 与雷电放电相联系的电磁辐射,所产生的电场和磁场能够耦合到电气(电子)系统中而产生破坏性的冲击电流或电压。 3.5 雷电活动区分类classification of thunder and lightning active zone

SPD(避雷器、电涌保护器、浪涌保护器)的选择

低压配电系统中电涌保护器的选择及安装 [日期:2005-10-24] 来源:转引自“中国防雷商务网”作者:[字体:大中小] 近年来,随着现代化水平的不断提高,民用建筑物内安装的电子信息设备和计算机设备越来越多,电子信息设备一般工作电压较低,耐压水平也很低,极易受到雷电电磁脉冲的危害,因此设有信息系统设备的民用建筑物,除应考虑防直击雷措施外,还应考虑雷电电磁脉冲的防护措施。建立完善的雷电浪涌过电压保护措施是电气工程设计的重要组成部分,为此本文提出了在实际工程中,如何根据被保护建筑物的特点选择电涌保护器,如何根据低压电源系统的不同形式安装电涌保护器及有关的注意事项。可供工程设计人员实际应用中参考。 1.电涌(浪涌、避雷器)保护器(英文缩写为SPD,以下简称SPD)的分类 (1)开关型SPD,又称雷电流避雷器,这种SPD在没有电涌时为高阻抗,但一旦响应电压电涌时其阻抗就突变为低值,用作这种非线性装置的常见例子有放电间隙,气体放电管,闸流晶体管(可控硅)及三端双向可控硅开关。这类S PD有时称为克罗巴型SPD。 (2)限压型SPD,这种SPD在没有电涌时为高阻抗,但随着电涌电流和电压的增加其阻抗会不断减小,用作这类非线性组件的例子是压敏电阻和抑制二极管,这类SPD有时称为箝压型SPD。 (3)联合型SPD,这种SPD由电压开关型部件和限压型部件联合组装在一起,根据二者的联合参数和应用电压特性可组合装成具有电压开关﹑限压或这两种特性兼有的联合型SPD。 2.SPD的主要性能、指标 (1)最大持续运行电压Uc: 可以持续施加于电涌保护器的最大交流有效值电压或最大直流电压,等于电涌保护器的额定电压。 (2)冲击电流Iimp:

弱电系统的防雷防浪涌保护设计

弱电系统的防雷防浪涌保护设计 引言 雷电放电可能发生在云层之间或云层内部,或云层对地之间;另外许多大容量电气设备的使用带来的内部浪涌,对供电系统(中国低压供电系统标准: AC50Hz220/380V)和用电设备的影响以及防雷和防浪涌的保护,已成为人们关注的焦点。 云层与地之间的雷击放电,由一次或若干次单独的闪电组成,每次闪电都携带若干幅值很高、持续时间很短的电流。一个典型的雷电放电将包括二次或三次的闪电,每次闪电之间大约相隔二十分之一秒的时间。大多数闪电电流在10,000至100,000安培的范围之间降落,其持续时间一般小于100微秒。 供电系统内部由于大容量设备和变频设备等的使用,带来日益严重的内部浪涌问题。我们将其归结为瞬态过电压(TVS)的影响。任何用电设备都存在供电电源电压的允许范围。有时即便是很窄的过电压冲击也会造成设备的电源或全部损坏。瞬态过电压(TVS)破坏作用就是这样。特别是对一些敏感的微电子设备,有时很小的浪涌冲击就可能造成致命的损坏。 供电系统浪涌的影响 供电系统浪涌的来源分为外部(雷电原因)和内部(电气设备启停和故障等):#雷击对地闪电可能以两种途径作用在低压供电系统上: l直接雷击:雷电放电直接击中电力系统的部件,注入很大的脉冲电流。发生的概率相对较低。 2间接雷击:雷电放电击中设备附近的大地,在电力线上感应中等程度的电流和电压。 内部浪涌发生的原因同供电系统内部的设备启停和供电网络运行的故障有关: 供电系统内部由于大功率设备的启停、线路故障、投切动作和变频设备的运行等原因,都会带来内部浪涌,给用电设备带来不利影响。特别是计算机、通讯等微电子设备带来致命的冲击。即便是没有造成永久的设备损坏,但系统运行的异常和停顿都会带来很严重的后果。比如核电站、医疗系统、大型工厂自动化系统、证券交易系统、电信局用交换机、网络枢纽等。 直接雷击是最严重的事件,尤其是如果雷击击中靠近用户进线口架空输电线。在发生这些事件时,架空输电线电压将上升到几十万伏特,通常引起绝缘闪络。雷电电流在电力线上传输的距离为一公里或更远,在雷击点附近的峰值电流可达100kA或以上。在用户进线口处低压线路的电流每相可达到5kA到10kA。在雷电活动频繁的区域,电力设施每年可能有好几次遭受雷电直击事件引起严重雷电电

避雷器与浪涌保护器

避雷器和电涌保护器运用说明

目录 一、定义 二、防雷器与浪涌保护器的比较 三、线路避雷器运用及其说明 四、浪涌保护器设计原理、特性、运用范畴 五、参考依据与文献

一、定义 1.避雷器 避雷器是变电站保护设备免遭雷电冲击波袭击的设备。当沿线路传入变电站的雷电冲击波超过避雷器保护水平时,避雷器首先放电,并将雷电流经过良导体安全的引入大地,利用接地装置使雷电压幅值限制在被保护设备雷电冲击水平以下,使电气设备受到保护。 2.浪涌保护器 也叫防雷器,是一种为各种电力设备、仪器仪表、通讯线路等提供安全防护的装置。当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。

?从以下资料可以看出,浪涌保护器也是防雷器的一种,但是有很大的区别。 二、避雷器与浪涌保护器的比较 避雷器指建筑物避雷器,与避雷针、接地排等一起形成一个法拉第笼,防止建筑物被损坏,避雷器的基本原理是把雷击电磁脉冲(LEMP)导入地进行消解。但是为什么在安装避雷器后仍有大量的建筑物及其里面的设备被雷击损坏呢? 首先,避雷器的导线采用铜铁合金,因此其导线性能是有限的,反应速度仅为200微妙(uS)。而LEMP的半峰速度(能量达到最大值)为20微妙(uS),也就是说LEMP的速度快于避雷器,这样避雷器把第一次直击雷导入地后,对于二次雷、三次雷往往反应不过来,直接泄漏打在设备上。也就是说,避雷器对二次雷、三次雷几乎不起作用。 其次,LEMP导入地后,会从地返回形成感应雷。感应雷会从所有含有金属的导线上泄漏到设备(网线、电源线、信号线、传输线等)。由于避雷器是单向作用的,因此它对感应雷不起作用,感应雷可以直接打坏设备。更何况,导线部分往往不会安装避雷器。 再次,浪涌只有20%来自雷击等外部环境,80%来自系统内部运行,避雷器对这80%是不起任何作用的。

浪涌保护器工作原理

以下是电源系统SPD选择的要点: 欧阳学文 1、根据被保护线路制式,例如:单相220V、三相 220/380V TNC/TNS/TT等,选择合适制式SPD 2、根据被保护设备的耐冲击电压水平,选择SPD的电压保护水平Up。一般终端设备的耐冲击电压1.5kV,具体可参照GB 503435.4。Up值小于其耐冲击电压即可。 3、根据线路引入方式,有无因直击雷击中而传到雷电流的风险,选择一级或者二级SPD。一级SPD是有雷电流泄放参数的10/350波形的。 4、根据GB 500576.3.4里的分流计算,计算线路所需的泄放电流强度,选择合适放电能力的SPD,需要SPD标称放电电流参数大于线路的分流电涌电流即可。 至于型号,不同厂家型号不一,没什么参考价值。建议选择知名品牌,现在防雷市场鱼龙混杂,不要贪图便宜而使用劣质产品。 浪涌保护器设计原理、特性、运用范畴 设计原理

在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。如下图所示,MOV将火线和地线连接在一起。MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。 这些半导体具有随着电压变化而改变的可变电阻。当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。随着多余的电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌保护器连接的设备供电。打个比方说,MOV的作用就类似一个压敏阀门,只有在压力过高时才会打开。 另一种常见的浪涌保护装置是气体放电管。这些气体放电管的作用与MOV相同——它们将多余的电流从火线转移到地线,通过在两根电线之间使用惰性气体作为导体实现

避雷器与浪涌保护器的比较

避雷器与浪涌保护器的比较 避雷器指建筑物避雷器,与避雷针、接地排等一起形成一个法拉第笼,防止建筑物被损坏,避雷器的基本原理是把雷击电磁脉冲(LEMP)导入地进行消解。但是为什么在安装避雷器后仍有大量的建筑物及其里面的设备被雷击损坏呢? 首先,避雷器的导线采用铜铁合金,因此其导线性能是有限的,反应速度仅为200微妙(uS)。而LEMP的半峰速度(能量达到最大值)为20微妙(uS),也就是说LEMP的速度快于避雷器,这样避雷器把第一次直击雷导入地后,对于二次雷、三次雷往往反应不过来,直接泄漏打在设备上。也就是说,避雷器对二次雷、三次雷几乎不起作用。 其次,LEMP导入地后,会从地返回形成感应雷。感应雷会从所有含有金属的导线上泄漏到设备(网线、电源线、信号线、传输线等)。由于避雷器是单向作用的,因此它对感应雷不起作用,感应雷可以直接打坏设备。更何况,导线部分往往不会安装避雷器。 再次,浪涌只有20%来自雷击等外部环境,80%来自系统内部运行,避雷器对这80%是不起任何作用的。 根据分析来回答电涌保护器(SPD,有的称浪涌保护器)和避雷器的区别: 应用范围不同(电压):避雷器范围广泛,有很多电压等级,一般从0.4kV低压到500kV 超高压都有(详见楼上分析),而SPD一般指1kV以下使用的过电压保护器; 避雷针保护对象不同:避雷器是保护电气设备的,而SPD浪涌保护器一般是保护二次信号回路或给电子仪器仪表等末端供电回路。 绝缘水平或耐压水平不同:电器设备和电子设备的耐压水平不在一个数量级上,过电压保护装置的残压应与保护对象的耐压水平匹配。 安装位置不同:避雷器一般安装在一次系统上,防止雷电波的直接侵入,保护架空线路及电器设备;而SPD浪涌保护器多安装于二次系统上,是在避雷器消除了雷电波的直接侵入后,或避雷器没有将雷电波消除干净时的补充措施;所以避雷器多安装在进线处;SPD多安装于末端出线或信号回路处。浪涌保护器1、变频控制柜必须加2、使用真空断路器的控制柜必须加3、供电系统的进线开关必须加4、其它控制柜可以不加,当然如果为了保险起见有预算空间的话可以都加上 通流容量不同:避雷器因为主要作用是防止雷电过电压,所以其相对通流容量较大;而对于电子设备,其绝缘水平远小于一般意义上的电器设备,故需要SPD对雷电过电压和操作过电压进行防护,但其通流容量一般不大。(SPD一般在末端,不会直接与架空线路连接,经过上一级的限流作用,雷电流已经被限制到较低值,这样通流容量不大的SPD完全可以起到保护作用,通流值不重要,重要的是残压。) 其它绝缘水平、对参数的着眼点等也有较大差异。避雷针浪涌保护器适用于低压供电系统的精细保护,依据不同的交直流电源电床可选择各种相应的规格。电源浪涌保护器一精细由于终端设备离前级浪涌保护器距离较大,从而使得该线路上容易产生振荡过电压或感应到其他过电压。适用于终端设备的精细电源浪涌保护,与前级浪涌保护器配合使用,则保护效果更好。避雷器主材质多为氧化锌(金属氧化物变阻器中的一种),而浪涌保护器主材质根据抗浪涌等级、分级防护(IEC61312)的不同是不一样的,而且在设计上比普通防雷器精密得多。 由于雷击的能量是非常巨大的,需要通过分级泄放的方法,将雷击能量逐步泄放到大地。第一级防雷器可以对于直接雷击电流进行泄放,或者当电源传输线路遭受直接雷击时传导的巨大能量进行泄放,对于有可能发生直接雷击的地方,必须进行CLASS—I的防雷。第二级防雷器是针对前级防雷器的残余电压以及区内感应雷击的防护设备,对于前级发生较大雷击能量吸收时,仍有一部分对设备或第三级防雷器而言是相当巨大的能量会传导过来,需要第

防浪涌电路总结

防浪涌电路调研总结 常用的防浪涌电路有三种方案: 一、利用传统的防雷元器件组合成防浪涌电路,例如TVS管(瞬态抑制二极管),气体放电管,PTC(热敏电阻)等。这些防雷元器件的价格都很低。 二、光耦合电路。(光隔离器件,价格较低,TPL521-4价格为2元左右。) 三、磁耦合电路。磁隔离是ADI公司iCoupler专利技术,是基于芯片级变压器的隔离技术。利用该公司生产的相关芯片可以大大简化电路,减少PCB的面积。(adm2483的价格在10元左右,adm3251e的价格在10元~20元之间。) 浪涌的来源:浪涌通常由自然界的雷电、电源系统(特别是带很重的感性负载)开关切换时引起的,浪涌的产生将带来能量巨大的瞬变过压或过流,例如感应雷在RS-485传输线上引起的瞬变干扰,其能量可在瞬间烧毁连结传输线上的全部器件。 通常所说的防浪涌,有两个耐压指标,一个是共模,一个是差模。自然界雷电或大电流切换时产生的浪涌一般认为是共模的,而差模形式的浪涌往往是由于数据电缆附近有高压线经过,数据电缆与高压线之间因绝缘不良而产生的,虽然后者比前者产生的电压和电流要小得多,但它不像前者那样只维持很短的几毫秒,而会在数据通信网络中较长时间内稳定地存在。光耦或磁耦器件标称的耐压是共模,也就是前端到后端之间的耐压。如果超过这个耐压,前端后端都一起烧坏;器件不会标称差模的耐压,这个由电路的设计来决定,如果超过这个耐压,前端烧坏,后端不会烧坏。 防浪涌电路通常分为隔离法和规避法: 一、隔离法 光耦合(需要隔离电源) 光耦合器(optical coupler,OC)亦称光电隔离器,简称光耦。光耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。 只要浪涌产生的电压幅值不超过光耦器件标称的值(通常为2500V),光耦就不会损坏,即使浪涌电压长时间地存在也不会对被隔离的设备产生损害。值得注意的是,光耦一般只能抑制共模形式的浪涌,不能抑制差模形式的浪涌。光耦

建筑物智能化系统防雷击电涌保护讨论参考文本

建筑物智能化系统防雷击电涌保护讨论参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

建筑物智能化系统防雷击电涌保护讨论 参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1.引言 信息技术的日益发展和普及促使建筑物不断地向智能 化兴建和发展。建筑物智能化在我国自90年代以来,得到 了蓬勃的发展。尤其是近5年,智能建筑技术在国内几乎 所有的高层建筑上得到了极为广泛的应用。但由于我国建 筑物智能化系统的研究和发展的时间较短,起点较低,所 以我国的智能建筑普遍存在着绝缘强度低,过电压和过电 流耐受能力差,对雷电引起的外部侵入造成的电磁干扰敏 感等弱点,尤其是抗雷击电涌能力差。如不加以有效防 范,无法保证智能化系统及设备的正常运行。国内许多资 料均反映了由于未重视建筑物内部防雷击电涌保护,引发

了许多重要建筑物内中央计算主机、微机、程控交换机及各终端接口故障,造成了许多重大损失。所以,目前关于智能建筑的雷击电涌保护可靠性及安全运行问题,已成为人们关注的热点。 据统计,到20xx年底现有智能建筑中,有约80%以上是按国家标准1994年版《建筑防雷设计规范》来作为设计规范的,该规范已不能较好的满足信息时代对建筑安全防雷设计技术的要求。所以,20xx年国家对原1994年版标准作了较大的修订。但由于现有许多智能建筑仍是按1994年规范设计已建成的。所以,对这些建筑增强其防雷击电涌保护就成了很重要的课题。本文仅针对此点作一些研讨。 2.雷击电涌保护基本概念 2.1防雷区(LPZ)概念 防雷区(LPZ)概念首先在1992年国际防雷会议上提

浪涌保护器和避雷器的区别

浪涌保护器和避雷器的区别 1、避雷器有多个电压等级,从0.38KV低压到500KV特高压均有,而浪涌保护器一般只有低压产品; 2、避雷器多安装在一次系统上,防止雷电波的直接侵入,而浪涌保护器大多安装在二次系统上,是在避雷器消除了雷电波的直接侵入后,或避雷器没有将雷电波消除干净时的补充措施; 3、避雷器避雷器是保护电气设备的,而浪涌保护器大多是为保护电子仪器或仪表的; 4、避雷器由于接于电气一次系统上,要有足够的外绝缘性能,外观尺寸比较大,而浪涌保护器由于接于低压,尺寸制作的可以很小。 浪涌保护器1、变频控制柜必须加2、使用真空断路器的控制柜必须加3、供电系统的进线开关必须加4、其它控制柜可以不加,当然如果为了保险起见有预算空间的话可以都加上 浪涌保护器总体分为两类:电机保护型、电站保护型在选择时必须注意! 1.主要结构及工作原理 电涌保护器的工作原避雷器理见示意图,两个电极分别与L(或者N)和PE线相联,两个电极之间形成一个电气间隙。电网在不超过最大持续运行电压的情况下运行时,两个电极之间呈高阻状态。如果电网因雷击或者操作过电压使两个电极之间的电压超过点火电压时,间隙被击穿,通过弧光放电将过电压能量释放。冲击波过后,电弧将被由分弧片和灭弧室组成的灭弧系统熄灭,恢复到高阻状态。 图1 原理示意图 2.作用 BY系列电涌保护器采用了一种非线性特性极好的压敏电阻,在正常情况下,电涌保护器外于极高的电阻状态,漏流几乎为零,保证电源系统避雷器正常供电。当电源系统出现上述情况的过电压时,不锈钢装饰,电涌保护器立即在纳秒级的时间内迅速导通,将该过电压的幅值限止在设备的安全工作范围内。同时把该过电压的能量释放掉。随后,保护器又迅速的变为高阻状态,因而不影响电源系统的正常供电。 电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD。电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。 一、SPD的分类: 1.按工作原理分: (1)开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。 (2)限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。 (3)分流型或扼流型 分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。 扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。 用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。 2.按用途分:

SPD浪涌保护器

SPD浪涌保护器 编辑词条 编辑摘要 摘要 浪涌保护器 浪涌保护器,也叫防雷器,是一种为各种电子设备、仪器仪表、通讯线路提供安全防护的电子装置。当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。基本与特点 保护通流量大,残压极低,响应时间快;· 采用最新灭弧技术,彻底避免火灾;;· 采用温控保护电路,内置热保护;· 带有电源状态指示,指示浪涌保护器工作状态;· 结构严谨,工作稳定可靠。 目录 1电涌保护器SPD… 2浪涌保护器也称… 3浪涌保护器的分类 目录 1电涌保护器SPD… 2浪涌保护器也称… 3浪涌保护器的分类 收起 编辑本段电涌保护器SPD工作原理

电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD.电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。 浪涌保护器的基本元器件 1.放电间隙(又称保护间隙):它一般由暴露在空气中的两根相隔一定间隙的金属棒组成,其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点时灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F作用以及热气流的上升作用而使电弧熄灭的。 2.气体放电管:它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的,气体放电管的技术参数主要有:直流放电电压Udc;冲击放电电压Up(一般情况下Up≈(2~3)Udc;工频耐受电流In;冲击耐受电流Ip;绝缘电阻R(>109Ω);极间电容(1-5PF)气体放电管可在直流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件下使用:Udc≥1.8U0(U0为线路正常工作的直流电压)在交流条件下使用:U dc≥1.44Un(Un为线路正常工作的交流电压有效值) 3.压敏电阻:它是以ZnO为主要成分的金属氧化物半导体非线性电阻,当作用在其两端的电压达到一定数值后,电阻对电压十分敏感。它的工作原理相当于多个半导体P-N的串并联。压敏电阻的特点是非线性特性好(I=CUα中的非线性系数α),通流容量大(~2KA/cm2),常态泄漏电流小(10-7~10-6A),残压低(取决于压敏电阻的工作电压和通流容量),对瞬时过电压响应时间快(~10-8s),无续流。压敏电阻的技术参数主要有:压敏电压(即开关电压)UN,参考电压Ulma;残压Ures;残压比K(K=Ures/UN);最大通流容量Imax;泄漏电流;响应时间。压敏电阻的使用条件有:压敏电压:UN≥[(√2×1.2)/0.7]U0(U0为工频电源额定电压)最小参考电压:Ulma≥(1.8~2)Uac (直流条件下使用)Ulma≥(2.2~2.5)Uac(在交流条件下使用,Uac为交流工作电压)压敏电阻的最大参考电压应由被保护电子设备的耐受电压来确定,应使压敏电阻的残压低于被保护电子设备的而损电压水平,即(Ulma)max≤Ub/K,上式中K为残压比,Ub为被保护设备的而损电压。 4.抑制二极管:抑制二极管具有箝位限压功能,它是工作在反向击穿区,由于它具有箝位电压低和动作响应快的优

SPD浪涌保护器一级防雷与二级防雷的区别

SPD浪涌保护器一级防雷与二级防雷的区别分级防护 由于雷击的能量是非常巨大的,需要通过分级泄放的方法,将雷击能量逐步泄放到大地。第一级防雷器可以对于直接雷击电流进行泄放,或者当电源传输线路遭受直接雷击时传导的巨大能量进行泄放,对于有可能发生直接雷击的地方,必须进行CLASS—I的防雷。 第二级防雷器是针对前级防雷器的残余电压以及区内感应雷击的防护设备,对于前级发生较大雷击能量吸收时,仍有一部分对设备或第三级防雷器而言是相当巨大的能量会传导过来,需要第二级防雷器进一步吸收。同时,经过第一级防雷器的传输线路也会感应雷击电磁脉冲辐射LEMP,当线路足够长感应雷的能量就变得足够大,需要第二级防雷器进一步对雷击能量实施泄放。 第三级防雷器是对LEMP和通过第二级防雷器的残余雷击能量进行保护。 1、第一级保护 目的是防止浪涌电压直接从LPZ0区传导进入LPZ1区,将数万至数十万伏的浪涌电压限制到2500—3000V。入户电力变压器低压侧安装的电源防雷器作为第一级保护时应为三相电压开关型电源防雷器,其雷电通流量不应低于60KA。 该级电源防雷器应是连接在用户供电系统入口进线各相和大地之间的大容量电源防雷器。一般要求该级电源防雷器具备每相100KA以上的最大冲击容量,要求的限制电压小于1500V,称之为CLASS I级电源防雷器。这些电磁防雷器是专为承受雷电和感应雷击的大电流以及吸引高能量浪涌而设计的,可将大量的浪涌电流分流到大地。它们仅提供限制电压(冲击电流流过电源防雷器时,线路上出现的最大电压称为限制电压)为中等级别的保护,因为CLASS I级保护器主要是对大浪涌电流进行吸收,仅靠它们是不能完全保护供电系统内部的敏感用电设备的。 第一级电源防雷器可防范10/350μs、100KA的雷电波,达到IEC规定的最高防护标准。其技术参考为: 雷电通流量大于或等于100KA(10/350μs);残压值不大于

常用的防浪涌电路有三种方案

常用的防浪涌电路有三种方案 常用的防浪涌电路有三种方案: 一、利用传统的防雷元器件组合成防浪涌电路,例如TVS管(瞬态抑制二极管),气体放电管,PTC(热敏电阻)等。这些防雷元器件的价格都很低。 二、光耦合电路。(光隔离器件,价格较低,TPL521-4价格为2元左右。) 三、磁耦合电路。磁隔离是ADI公司iCoupler专利技术,是基于芯片级变压器的隔离技术。利用该公司生产的相关芯片可以大大简化电路,减少PCB的面积。(adm2483的价格在10元左右,adm3251e的价格在10元~20元之间。) 浪涌的来源:浪涌通常由自然界的雷电、电源系统(特别是带很重的感性负载)开关切换时引起的,浪涌的产生将带来能量巨大的瞬变过压或过流,例如感应雷在RS-485传输线上引起的瞬变干扰,其能量可在瞬间烧毁连结传输线上的全部器件。 通常所说的防浪涌,有两个耐压指标,一个是共模,一个是差模。自然界雷电或大电流切换时产生的浪涌一般认为是共模的,而差模形式的浪涌往往是由于数据电缆附近有高压线经过,数据电缆与高压线之间因绝缘不良而产生的,虽然后者比前者产生的电压和电流要小得多,但它不像前者那样只维持很短的几毫秒,而会在数据通信网络中较长时间内稳定地存在。光耦或磁耦器件标称的耐压是共模,也就是前端到后端之间的耐压。如果超过这个耐压,前端后端都一起烧坏;器件不会标称差模的耐压,这个由电路的设计来决定,如果超过这个耐压,前端烧坏,后端不会烧坏。 防浪涌电路通常分为隔离法和规避法: 一、隔离法 光耦合(需要隔离电源) 光耦合器(optical coupler,OC)亦称光电隔离器,简称光耦。光耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波

弱电系统的防雷防浪涌保护设计

弱电系统的防雷防浪涌 保护设计 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

弱电系统的防雷防浪涌保护设计 引言 雷电放电可能发生在云层之间或云层内部,或云层对地之间;另外许多大容量电气设备的使用带来的内部浪涌,对供电系统(中国低压供电系统标准:AC50Hz220/380V)和用电设备的影响以及防雷和防浪涌的保护,已成为人们关注的焦点。 云层与地之间的雷击放电,由一次或若干次单独的闪电组成,每次闪电都携带若干幅值很高、持续时间很短的电流。一个典型的雷电放电将包括二次或三次的闪电,每次闪电之间大约相隔二十分之一秒的时间。大多数闪电电流在10,000至100,000安培的范围之间降落,其持续时间一般小于100微秒。 供电系统内部由于大容量设备和变频设备等的使用,带来日益严重的内部浪涌问题。我们将其归结为瞬态过电压(TVS)的影响。任何用电设备都存在供电电源电压的允许范围。有时即便是很窄的过电压冲击也会造成设备的电源或全部损坏。瞬态过电压(TVS)破坏作用就是这样。特别是对一些敏感的微电子设备,有时很小的浪涌冲击就可能造成致命的损坏。 供电系统浪涌的影响 供电系统浪涌的来源分为外部(雷电原因)和内部(电气设备启停和故障等): #雷击对地闪电可能以两种途径作用在低压供电系统上: l直接雷击:雷电放电直接击中电力系统的部件,注入很大的脉冲电流。发生的概率相对较低。 2间接雷击:雷电放电击中设备附近的大地,在电力线上感应中等程度的电流和电压。 内部浪涌发生的原因同供电系统内部的设备启停和供电网络运行的故障有关:

供电系统内部由于大功率设备的启停、线路故障、投切动作和变频设备的运行等原因,都会带来内部浪涌,给用电设备带来不利影响。特别是计算机、通讯等微电子设备带来致命的冲击。即便是没有造成永久的设备损坏,但系统运行的异常和停顿都会带来很严重的后果。比如核电站、医疗系统、大型工厂自动化系统、证券交易系统、电信局用交换机、网络枢纽等。 直接雷击是最严重的事件,尤其是如果雷击击中靠近用户进线口架空输电线。在发生这些事件时,架空输电线电压将上升到几十万伏特,通常引起绝缘闪络。雷电电流在电力线上传输的距离为一公里或更远,在雷击点附近的峰值电流可达100kA或以上。在用户进线口处低压线路的电流每相可达到5kA到10kA。在雷电活动频繁的区域,电力设施每年可能有好几次遭受雷电直击事件引起严重雷电电流。而对于采用地下电力电缆供电或在雷电活动不频繁的地区,上述事件是很少发生的。 间接雷击和内部浪涌发生的概率较高,绝大部分的用电设备损坏与其有关。所以电源防浪涌的重点是对这部分浪涌能量的吸收和抑制。 供电系统的浪涌保护 对于低压供电系统,浪涌引起的瞬态过电压(TVS)保护,最好采用分级保护的方式来完成。从供电系统的入口(比如大厦的总配电房)开始逐步进行浪涌能量的吸收,对瞬态过电压进行分阶段抑制。 [第一道防线]应是连接在用户供电系统入口进线各相和大地之间的大容量电源防浪涌保护器。一般要求该级电源保护器具备100KA/相以上的最大冲击容量,要求的限制电压应小于1500V。我们称为A级电源防浪涌保护器(10/350us波形)。这些电源防浪涌保护器是专为承受雷电和感应雷击的大电流和高能量浪涌能量吸收而设计的,可将大量的浪涌电流分流到大地。它们仅提供限制电压(冲击电流流过SPD时,线路上出现的最大电压成为

浪涌保护器在防雷工程中的应用

浪涌保护器在防雷工程中的应用 随着信息网络的高速发展,智能化设备、通信设备的数量和规模不断扩大,……使 得这些电子信息设备抗雷击电磁脉冲保护的重要性凸显。合理的屏接和接地是减少浪 涌过电压对人身及设备破坏的有效途径。……在电气系统上加装浪涌保护器(以下简称SPD),……可将浪涌电压限制在一定的耐压等级范围内,有效防止雷电电磁脉冲的侵入,避免浪涌脉冲信号破坏设备。现就SPD在防雷系统中的应用进行探讨。 1SPD的分类及主要参数 1.1分类 SPD是一种限制带电系统中瞬态过电压和引导泄放电涌电流的非线性防护器件,可使电气或电子信息系统免受雷击、操作过电压、涌流损害。 按使用的非线性元件特性,SPD分为以下类型: 1)SPD电压开关型SPD O当无电涌时,SPD呈高阻态;而当电涌电压达到一定值时,SPD突然变为低阻抗。因此,这类SPD被称为“短路开关型”,常用的非线性元件有放电间隙、气体放电管、双向可控硅开关管等。它具有通流容量大的特点,特别适用于LP-ZO A区域、LPZO B区与LPZ1区界面处的雷电浪涌保护,一般用于“3+1”保护模式中低压N线与PE线间的电涌保护。2)限压型SPD。当无电涌时,SPD呈高阻抗;但随

着电泳电压和电流的升高,其阻抗持续下降而呈低阻抗导通状态。这类非线性元件有压敏电阻、瞬态抑制二极管(如齐纳二极管或雪崩二极管)等。这类SPD常用于LPZO B 区、LPZ1区及以上雷电防护区的雷电、操作过电压保护。3)混合型SPD。其将电压开关型元件和限压型元件组合在一起。随所承受的冲击电压特性的不同,呈现电压开关型SPD特性、限压型SPD或特性同时呈现开关型及限压型特性。4)用于通信和信号网络中的SPD除有上述特性要求外,还按其内部是否串接限流元件的要求,分为有限流无件SPD和无限流元件SPD O 按在系统中的用途,SPD分为电源系统SPD、信号系统SPD和天馈系统SPD;按端口型式和连接方式,SPD分为与保护电路并联接连的单端口SPD、与保护电路串联的双端口(输入、输出端口)SPD,以及适用于电子系统的多端口SPD等;按使用环境,SPD 又分为户内型SPD和户外型SPD O 2.2主要参数及定义 SPD的主要技术参数为持续工作电压Uc和额定泄放电流,常标于产品铭牌上。 持续工作电压Uc是指可持续施加在SPD端子上、SPD不动作的最大电压。如果SPD因电涌作用而动作,在泄放规定波形涌流(如8/20u S,5kA)后,SPD在此U c电压下切断来自电网的工频对地短路电流Uc应大于低压线路可能出现的最大持续工频电压。在国外的220/380V网络内,U c通常取280V左右,但此Uc值在我国不适用,因国外

SPD浪涌保护器一级防雷与二级防雷的区别

SPD浪涌保护器一级防雷与二级防雷的区别 分级防护 由于雷击的能量是非常巨大的,需要通过分级泄放的方法,将雷击能量逐步泄放到大地。第一级防雷器可以对于直接雷击电流进行泄放,或者当电源传输线路遭受直接雷击时传导的巨大能量进行泄放,对于有可能发生直接雷击的地方,必须进行CLASS—I的防雷。 第二级防雷器是针对前级防雷器的残余电压以及区内感应雷击的防护设备,对于前级发生较大雷击能量吸收时,仍有一部分对设备或第三级防雷器而言是相当巨大的能量会传导过来,需要第二级防雷器进一步吸收。同时,经过第一级防雷器的传输线路也会感应雷击电磁脉冲辐射LEMP,当线路足够长感应雷的能量就变得足够大,需要第二级防雷器进一步对雷击能量实施泄放。 第三级防雷器是对LEMP和通过第二级防雷器的残余雷击能量进行保护。 1、第一级保护 目的是防止浪涌电压直接从LPZ0区传导进入LPZ1区,将数万至数十万伏的浪涌电压限制到2500—3000V。入户电力变压器低压侧安装的电源防雷器作为第一级保护时应为三相电压开关型电源防雷器,其雷电通流量不应低于60KA。该级电源防雷器应是连接在用户供电系统入口进线各相和大地之间的大容量电 源防雷器。一般要求该级电源防雷器具备每相100KA以上的最大冲击容量,要求的限制电压小于1500V,称之为CLASS I级电源防雷器。这些电磁防雷器是专为承受雷电和感应雷击的大电流以及吸引高能量浪涌而设计的,可将大量的浪涌电流分流到大地。它们仅提供限制电压(冲击电流流过电源防雷器时,线路上出现的最大电压称为限制电压)为中等级别的保护,因为CLASS I级保护器主要是对大浪涌电流进行吸收,仅靠它们是不能完全保护供电系统内部的敏感用电设备的。 第一级电源防雷器可防范10/350μs、100KA的雷电波,达到IEC规定的最高防护标准。其技术参考为:雷电通流量大于或等于100KA(10/350μs);残压值不大于2.5KV;响应时间小于或等于100ns。 2、第二级防护

全厂防雷击浪涌方案(仪表部分)

大唐多伦年产46万吨煤基烯烃项目

一、情况介绍 大唐多伦年产46万吨煤基烯烃项目是采用SHELL粉煤气化技术将多伦的褐煤气化,采用LURGI技术制甲醇,然后转化为丙烯(简称三合一), 经聚合后制成聚丙烯(DOW技术)的项目。 装置分为: 预干燥装置: 将原煤干燥并处理成煤气化和动力站需要的粉煤,由粉煤输送系统将粉煤分配至煤气化 和动力站,二套控制系统均采用随机械设备带来的PLC系统,进行顺序控制,因这二处的PLC控 制与其他控制方式不同,为方便操作,分别设置独立的预干燥装置控制室和粉煤输送系统控制 室对原煤干燥和粉煤输送进行控制,其监控数据通过光纤输送至上位机管理系统,为生产调度 提供第一手一线生产资料。 预干燥装置分为三套生产系列(每套生产系列五套煤干燥系统,四开一备), 分别对应 三台煤气炉。 粉煤输送装置分为三套输送系统(每套输送系统二条粉煤输送线,一开一备), 分别对 应三台煤气炉。 煤气化装置<三套>: 三套SHELL大型煤气化装置并联运行,为全厂源源不断提供大量合格煤气。 煤气化装置独立设置一套DCS和ESD, 对三套煤气化炉采用分区控制, 各套煤气化炉均 可单独投运或停车, 负荷运行灵活。 空分装置(杭氧总承包): 空分装置配置三套大型空分,包括三台空气压缩机,按惯例,均由空分厂总承包。 空分装置的控制系统主要是冷箱内的自动控制,由杭氧负责设计施工。 空分装置采用三套DCS, 分别对三套空分装置实施控制, 各套空分均可单独投运或停车, 负荷运行灵活, 空分DCS与煤气化装置的DCS光纤通讯。

三台空气压缩机的控制由ITCC(机组综合控制系统)完成,由ITCC集成商负责安装指导,软件组态,调试投运等工作。 甲醇装置 甲醇装置流程较长, 包括一氧化碳变换<三套>,酸性气体脱除,合成气压缩,甲醇合成,甲醇精馏,中间罐区,硫回收,冷冻等工序。 由煤气化装置生产的煤气进一氧化碳变换工序(也是三套并联运行),将CO在触媒的作用下加H2O转换为CO2和H2,进入酸性气体脱除工序,脱除掉大部分的CO2和全部的硫化物(H2S, 脱除的气体叫酸气),净化后的气体经合成气压缩后送至甲醇合成,在触媒的作用下生成粗甲醇,再经过甲醇精馏工序制成精甲醇(成品甲醇)。 中间罐区主要用于贮存粗甲醇和精甲醇,在生产过程中起缓冲调节作用。 酸性气体脱除工序脱掉的酸气在硫回收装置里燃烧成SO2(产生蒸汽热能回收),再转化成单体硫(化工产品)。 冷冻工序负责装置的冷却吸收。 脱除的CO2返回煤气化装置。 合成气压缩机组和冷冻工序的大型蒸汽透平压缩机组的控制各自采用ITCC进行监控。 MTP装置: MTP装置是LURGI公司的新技术,包括反应, 再生,气体分离, 烯烃压缩及干燥, 净化, 乙烯制取,冷冻站等工序。 甲醇装置生产的甲醇在反应工序中经DME反应器转化成二甲醚,再经MTP反应器转变成烯烃,进气体分离脱除水份,由烯烃压缩机加压后在净化工序里分离成丙烯、汽油、LPG等分别进入各自贮罐,出净化的气体在乙烯制取工序分离出乙烯后返回前述之反应器,乙烯进入贮罐备用。

相关文档
最新文档