(完整版)高等数值分析48课时教案

(完整版)高等数值分析48课时教案
(完整版)高等数值分析48课时教案

高等数值分析48课时教案

南华大学教案

2010 ~ 2011 学年第 1 学期

课程:高等数值分析授课教师(职称):王礼广(副教授)班级: 2010级理工科研究生

南华大学教案

2010 ~ 2011 学年第 1 学期

课程:高等数值分析授课教师(职称):王礼广(副教授)班级: 2010级理工科研究生

南华大学教案

2010 ~ 2011 学年第 1 学期

课程:高等数值分析授课教师(职称):王礼广(副教授)班级: 2010级理工科研究生

南华大学教案

2010 ~ 2011 学年第 1 学期

课程:高等数值分析授课教师(职称):王礼广(副教授)班级: 2010级理工科研究生

南华大学教案

2010 ~ 2011 学年第 1 学期

课程:高等数值分析授课教师(职称):王礼广(副教授)班级: 2010级理工科研究生

南华大学教案

2010 ~ 2011 学年第 1 学期

课程:高等数值分析授课教师(职称):王礼广(副教授)班级: 2010级理工科研究生

南华大学教案

2010 ~ 2011 学年第 1 学期

课程:高等数值分析授课教师(职称):王礼广(副教授)班级: 2010级理工科研究生

南华大学教案

2010 ~ 2011 学年第 1 学期

课程:高等数值分析授课教师(职称):王礼广(副教授)班级: 2010级理工科研究生

南华大学教案

2010 ~ 2011 学年第 1 学期

课程:高等数值分析授课教师(职称):王礼广(副教授)班级: 2010级理工科研究生

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

北京大学数值分析试题2015 经过订正

北京大学2014--2015学年第一学期 研究生期末考试试题A (闭卷考试) 课程名称:数值分析 注:计算题取小数点后四位 一、填空题(每空3分,共24分) (1) 设1 2A ?-=-?? ,则A 的奇异值为 。 (2) 设0.00013753x =为真值0.00013759T x =的近似值,则x 有 位有效数字。 (3) 设数据123,,x x x 的绝对误差为0.002,那么123x x x -+的绝对误差约为 ____ _。 (4) )x (l ,),x (l ),x (l n 10是以01,, ,,(2)n x x x n ≥为节点的拉格朗日插值基函数, 则 20 (2)()n k k k x l x =+=∑ 。 (5) 插值型求积公式 2 2 =≈∑? ()()n k k k x f x dx A f x 的求积系数之和0 n k k A ==∑ 。 其中2x 为权函数,1≥n 。 (6)已知(3,4),(0,1)T T x y ==,求Householder 阵H 使Hx ky =,其中k R ∈。 H= 。 (7) 数值求积公式 1 1 2()((0)3f x dx f f f -?? ≈ ++???? ? 的代数精度为___。 (8) 下面Matlab 程序所求解的数学问题是 。 (输入向量x , 输出S ) x =input('输入x :x ='); n=length(x ); S=x (1); for i=2:n if x (i)

数值分析试卷及答案

二 1 求A的LU分解,并利用分解结果求 解由紧凑格式 故 从而 故 2求证:非奇异矩阵不一定有LU分解 证明设非奇异,要说明A不一定能做LU分解,只需举出一个反例即可。现考虑矩阵,显然A为非奇异矩阵。若A有LU分解,则 故,而,显然不能同时成立。这矛盾说明A不能做LU分解,故只假定A非奇异并不能保证A能做LU分解,只有在A的前阶顺序主子式时才能保证A一定有LU分解。 3用追赶法求解如下的三对角方程组 解设有分解 由公式 其中分别是系数矩阵的主对角线元素及其下边和上边的次对角线元素,故有 从而有 故,,, 故,,, 4设A是任一阶对称正定矩阵,证明是一种向量范数 证明(1)因A正定对称,故当时,,而当时, (2)对任何实数,有 (3)因A正定,故有分解,则 故对任意向量和,总有 综上可知,是一种向量范数。 5 设,,已知方程组的精确解为 (1)计算条件数; (2)若近似解,计算剩余; (3)利用事后误差估计式计算不等式右端,并与不等式左边比较,此结果说明了什么?解(1) (2)

(3)由事后误差估计式,右端为 而左端 这表明当A为病态矩阵时,尽管剩余很小,误差估计仍然较大。因此,当A病态时,用大小作为检验解的准确度是不可靠的。 6矩阵第一行乘以一数成为,证明当时,有最小值 证明设,则 又 故 从而当时,即时,有最小值,且 7 讨论用雅可比法和高斯-赛德尔法解方程组时的收敛性。如果收敛,比较哪一种方法收敛较快,其中 解对雅可比方法,迭代矩阵 , 故雅可比法收敛。 对高斯-赛德尔法,迭代矩阵 ,故高斯-赛德尔法收敛。 因=故高斯-赛德尔法较雅可比法收敛快。 8设,求解方程组,求雅可比迭代法与高斯-赛德尔迭代法收敛的充要条件。 解雅可比法的迭代矩阵 , 故雅可比法收敛的充要条件是。 高斯-赛德尔法的迭代矩阵 , 故高斯-赛德尔法收敛的充要条件是。 9 设求解方程组的雅可比迭代格式为,其中,求证:若,则相应的高斯-赛德尔法收敛。证明由于是雅可比法的迭代矩阵,故 又,故, 即,故故系数矩阵A按行严格对角占优,从而高斯-赛德尔法收敛。 10设A为对称正定矩阵,考虑迭代格式 求证:(1)对任意初始向量,收敛; (2)收敛到的解。 证明(1)所给格式可化为 这里存在是因为,由A对称正定,,故也对称正定。 设迭代矩阵的特征值为,为相应的特征向量,则与做内积,有 因正定,故,从而,格式收敛。

东南大学 数值分析 考试要求

第一章绪论 误差的基本概念:了解误差的来源,理解绝对误差、相对误差和有效数的概念,熟练掌握数据误差对函数值影响的估计式。 机器数系:了解数的浮点表示法和机器数系的运算规则。 数值稳定性:理解算法数值稳定性的概念,掌握分析简单算例数值稳定性的方法,了解病态问题的定义,学习使用秦九韶算法。 第二章非线性方程解法 简单迭代法:熟练掌握迭代格式、几何表示以及收敛定理的内容,理解迭代格式收敛的定义、局部收敛的定义和局部收敛定理的内容。 牛顿迭代法:熟练掌握Newton迭代格式及其应用,掌握局部收敛性的证明和大范围收敛定理的内容,了解Newton法的变形和重根的处理方法。 第三章线性方程组数值解法 (1)Guass消去法:会应用高斯消去法和列主元Guass消去法求解线性方程组,掌握求解三对角方程组的追赶法。 (2)方程组的性态及条件数:理解向量范数和矩阵范数的定义、性质,会计算三种常用范数,掌握谱半径与2- 范数的关系,会计算条件数,掌握实用误差分析法。 (3)迭代法:熟练掌握Jacobi迭代法、Guass-Seidel迭代法及SOR方法,能够判断迭代格式的收敛性。 (4)幂法:掌握求矩阵按模最大和按模最小特征值的幂法。 第四章插值与逼近 (1)Lagrange插值:熟练掌握插值条件、Lagrange插值多项式的表达形式和插值余项。(2)Newton插值:理解差商的定义、性质,会应用差商表计算差商,熟练掌握Newton插值多项式的表达形式,了解Newton型插值余项的表达式。 (3)Hermite插值:掌握Newton型Hermite插值多项式的求法。 (4)高次插值的缺点和分段低次插值:了解高次插值的缺点和Runge现象,掌握分段线性插值的表达形式及误差分析过程。 (5)三次样条插值:理解三次样条插值的求解思路,会计算第一、二类边界条件下的三次样条插值函数,了解收敛定理的内容。 (6)最佳一致逼近:掌握赋范线性空间的定义和连续函数的范数,理解最佳一致逼近多项式的概念和特征定理,掌握最佳一致逼近多项式的求法。 (7)最佳平方逼近:理解内积空间的概念,掌握求离散数据的最佳平方逼近的方法,会求超定方程组的最小二乘解,掌握连续函数的最佳平方逼近的求法。

数值分析作业答案

数值分析作业答案 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange插值基底。 (3)用Newton基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为: , 所以: 所以f(x)的二次插值多项式为: (2)用Lagrange插值基底 Lagrange插值多项式为: 所以f(x)的二次插值多项式为: (3) 用Newton基底: 均差表如下: xk f(xk) 一阶均差二阶均差 1 0 -1 -3 3/2 2 4 7/ 3 5/6 Newton插值多项式为: 所以f(x)的二次插值多项式为: 由以上计算可知,三种方法得到的多项式是相同的。 6、在上给出的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10-6,问使用函数表的步长h应取多少? 解:以xi-1,xi,xi+1为插值节点多项式的截断误差,则有 式中 令得 插值点个数

是奇数,故实际可采用的函数值表步长 8、,求及。 解:由均差的性质可知,均差与导数有如下关系: 所以有: 15、证明两点三次Hermite插值余项是 并由此求出分段三次Hermite插值的误差限。 证明:利用[xk,xk+1]上两点三次Hermite插值条件 知有二重零点xk和k+1。设 确定函数k(x): 当或xk+1时k(x)取任何有限值均可; 当时,,构造关于变量t的函数 显然有 在[xk,x][x,xk+1]上对g(x)使用Rolle定理,存在及使得 在,,上对使用Rolle定理,存在,和使得 再依次对和使用Rolle定理,知至少存在使得 而,将代入,得到 推导过程表明依赖于及x 综合以上过程有: 确定误差限: 记为f(x)在[a,b]上基于等距节点的分段三次Hermite插值函数。在区间[xk,xk+1]上有 而最值 进而得误差估计: 16、求一个次数不高于4次的多项式,使它满足,,。

数值分析教案 ShandongUniversity

数值分析教案土建学院 工程力学系 2014年2月

一、课程基本信息 1、课程英文名称:Numerical Analysis 1 2、课程类别:专业基础课程 3、课程学时:总学时32 4、学分:2 5、先修课程:《高等数学》、《线性代数》、《C 语言》 6、适用专业:工程力学 二、课程的目的与任务: 数值分析是工程力学专业的重要理论基础课程,是现代数学的一个重要分支。其主要任务是介绍进行科学计算的理论方法,即在计算机上对来自科学研究和工程实际中的数学问题进行数值计算和分析的理论和方法。通过本课程的学习,不仅使学生初步掌握数值分析的基本理论知识,而且使学生具备一定的科学计算的能力、分析问题和解决问题的能力,为学习后继课程以及将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 三、课程的基本要求: 1.掌握数值分析的常用的基本的数值计算方法 2.掌握数值分析的基本理论、分析方法和原理 3.能利用计算机解决科学和工程中的某些数值计算应用问题,增强学生综合运用知识的能力 4.了解科学计算的发展方向和应用前景 四、教学内容、要求及学时分配: (一) 理论教学: 引论(2学时) 第一讲(1-2节) 1.教学内容: 数值分析(计算方法)这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点: 算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。3.教学目标: 了解数值分析的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。 2 A 算法 B误差 典型例题

数值分析试卷及答案

二 1求A的LU分解,并利用分解结果求 解由紧凑格式 故 从而 故 2求证:非奇异矩阵不一定有LU分解 证明设非奇异,要说明A不一定能做LU分解,只需举出一个反例即可。现考虑矩阵,显然A为非奇异矩阵。若A有LU分解,则 故,而,显然不能同时成立。这矛盾说明A不能做LU分解,故只假定A非奇异并不能保证A能做LU分解,只有在A的前阶顺序主子式 时才能保证A一定有LU分解。

3用追赶法求解如下的三对角方程组 解设有分解 由公式 其中分别是系数矩阵的主对角线元素及其下边和上边的次对角线元素,故有 从而有 故,,, 故,,,

4设A是任一阶对称正定矩阵,证明是一种向量范数 证明(1)因A正定对称,故当时,,而当时, (2)对任何实数,有 (3)因A正定,故有分解,则 故对任意向量和,总有 综上可知,是一种向量范数。 5 设,,已知方程组的精确解为 (1)计算条件数; (2)若近似解,计算剩余; (3)利用事后误差估计式计算不等式右端,并与不等式左边比较,此结果说明了什么?解(1) (2) (3)由事后误差估计式,右端为 而左端

这表明当A为病态矩阵时,尽管剩余很小,误差估计仍然较大。因此,当A病态时,用大小作为检验解的准确度是不可靠的。 6矩阵第一行乘以一数成为,证明当时,有最小值 证明设,则 又 故 从而当时,即时,有最小值,且 7讨论用雅可比法和高斯-赛德尔法解方程组时的收敛性。如果收敛,比较哪一种方 法收敛较快,其中 解对雅可比方法,迭代矩阵 , 故雅可比法收敛。 对高斯-赛德尔法,迭代矩阵

,故高斯-赛德尔法收敛。 因=故高斯-赛德尔法较雅可比法收敛快。 8设,求解方程组,求雅可比迭代法与高斯-赛德尔迭代法收敛的充要条件。 解雅可比法的迭代矩阵 , 故雅可比法收敛的充要条件是。 高斯-赛德尔法的迭代矩阵 ,

数值分析第一次作业及参考答案

数值计算方法第一次作业及参考答案 1. 已测得函数()y f x =的三对数据:(0,1),(-1,5),(2,-1), (1)用Lagrange 插值求二次插值多项式。(2)构造差商表。(3)用Newton 插值求二次插值多项式。 解:(1)Lagrange 插值基函数为 0(1)(2)1 ()(1)(2)(01)(02)2 x x l x x x +-= =-+-+- 同理 1211 ()(2),()(1)36 l x x x l x x x = -=+ 故 2 20 2151 ()()(1)(2)(2)(1) 23631 i i i p x y l x x x x x x x x x =-==-+-+-++=-+∑ (2)令0120,1,2x x x ==-=,则一阶差商、二阶差商为 011215 5(1) [,]4, [,]20(1) 12 f x x f x x ---= =-= =----- 0124(2) [,,]102 f x x x ---= =- 实际演算中可列一张差商表: (3)用对角线上的数据写出插值多项式 2 2()1(4)(0)1*(0)(1)31P x x x x x x =+--+-+=-+ 2. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求x e 的近似值,要使 截断误差不超过6 10-,问使用函数表的步长h 应取多少 解: ()40000(), (),[4,4],,,, 1.x k x f x e f x e e x x h x x h x x th t ==≤∈--+=+≤考察点及

(3) 2000 4 43 4 3 () ()[(()]()[()] 3! (1)(1) (1)(1) 3!3! .(4,4). 6 f R x x x h x x x x h t t t e t h th t h e h e ξ ξ =----+ -+ ≤+??-= ≤∈- 则 4 36 ((1)(1) 100.006. t t t h - -+± << Q在点 得 3.求2 () f x x =在[a,b]上的分段线性插值函数() h I x,并估计误差。 解: 22 22 11 1 111 22 11 11 1 () () k k k k h k k k k k k k k k k k k k k k k k k x x x x x x I x x x x x x x x x x x x x x x x x x x x x ++ + +++ ++ ++ + --- =+= --- ?-? -=+- - [] 2 11 22 11 ()()()[()] 11 ()() 44 h h k k k k k k k k R x f x I x x x x x x x x x x x x x h ++ ++ =-=-+- =--≤-= 4.已知单调连续函数() y f x =的如下数据 用插值法计算x约为多少时() 1. f x=(小数点后至少保留4位) 解:作辅助函数()()1, g x f x =-则问题转化为x为多少时,()0. g x=此时可作新 的关于() i g x的函数表。由() f x单调连续知() g x也单调连续,因此可对() g x的数值进行反插。的牛顿型插值多项式为 1()0.110.097345( 2.23)0.451565( 2.23)( 1.10) 0.255894( 2.23)( 1.10)(0.17) x g y y y y y y y - ==-+++++ -++-

数值分析试卷及其答案

1、(本题5分)试确定7 22 作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22 =3.142857…=1103142857 .0-? π=3.141592… 所以 312102 11021005.0001264.0722--?=?=<=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22 作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3102 1 0005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:??? ?? ??=????? ??????? ??--654131*********x x x ; 解 设???? ? ??????? ? ?????? ??===????? ??--11111 1 131321112323121 32 132 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,215 27 ,25,2323121321- ==-== -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23 ,97,910(,)563, 7,4(== (3分) 3、(本题6分)给定线性方程组???????=++-=+-+=-+-=-+17 7222382311387 510432143213 21431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

华南理工大学数值分析试题-14年下-C

华南理工大学研究生课程考试 《数值分析》试卷C (2015年1月9日) 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 本试卷共八大题,满分100分,考试时间为150分钟。 一、(12分)解答下列问题: 1)设近似值0x >,x 的相对误差为δ,试证明ln x 的绝对误差近似为δ。 2)利用秦九韶算法求多项式 542()681p x x x x x =-+-+ 在3x =时的值(须写出计算形式),并统计乘法次数。 (12分)解答下列问题: 1)设()235f x x =+,求[]0,1,2f 和[]0,1,2,3f 。 2)利用插值方法推导出恒等式: 33220,0[]j j i i x j i x i j =≠=-=-∑∏ 。

(1)设{}∞ =0)(k k x q 是区间[]1,0上带权1=ρ而最高次项系数为1的正交多项式族,其中1)(0=x q ,求1()q x 和2()q x 。 (2)求形如2y a bx =+的经验公式,使它与下列数据拟合: 四、(14分)对积分()10I f x dx = ?,试 (1)构造一个以012113,,424 x x x ===为节点的插值型求积公式; (2)指出所构造公式的代数精度; (3)用所得数值求积公式计算积分1 203x dx ?的精确值; (4)指出所得公式与一般的Newton-Cotes 型公式在形式上的重要区别。

(1)设?? ????=4321A ,计算1A 、()Cond A ∞和()A ρ。 (2)用列主元Gauss 消去法解方程组: 12312315410030.112x x x ????????????=????????????-?????? 六、(13分)对2阶线性方程组 11112212112222 a x a x b a x a x b +=??+=? (11220a a ≠ ) (1)证明求解此方程组的Jacobi 迭代与Gauss-Seidel 迭代同时收敛或同时发散; (2)当同时收敛时,试比较它们的收敛速度。

数值分析作业答案part

6.4.设??? ? ? ??=5010010a b b a A ,0det ≠A ,用a ,b 表示解线性方程组f Ax =的雅可比迭代与 高斯—塞德尔迭代收敛的充分必要条件。 解 雅可比迭代法的迭代矩阵 ? ??? ??? ? ??----=???? ? ??----????? ??=-050100100100000001010101 a b b a a b b a B J , ?? ? ?? -=-1003||2ab B I J λλλ,10||3)(ab B J = ρ。 雅可比迭代法收敛的充分必要条件是3 100 ||

(完整版)数值分析教案

§1 插值型数值求积公式 教学目的 1. 会求插值型数值求积公式及Gauss 型数值求积公式并会讨论它们的代数精度; 2. 理解复化梯形数值求积公式及复化Simpson 数值求积公式和余项的推导的基础上掌握它们; 3. 理解数值微分公式推导的基础上掌握一阶、二阶数值微分公式及余项; 4. 了解外推原理。 教学重点及难点 重点是插值型数值求积公式及Gauss 型数值求积公式的求解及它们代数精度的讨论;难点是Gauss 型数值求积公式节点的求解方法的推导及求解方法。 教学时数 12学时 教学过程 1.1一般求积公式及其代数精度 设)(x ρ是),(b a 上的权函数,)(x f 是],[b a 上具有一定光滑度的函数。用数值方逑下积分 ?b a dx x f x )()(ρ 的最一般方法是用)(x f 在节点b x x x a n ≤<<≤≤Λ10上函数值的某种线性组合来近似 ?∑=≈b a n i i i x f A dx x f x 0 )()()(ρ 其中n i A i ,,0,Λ=是独立于函数)(x f 的常数,称为积分系数,而节点n i x i ,,1,0,Λ=称为求积节点。 我们也可将(1.2)写成带余项的形式 ][)()()(0 f R x f A dx x f x b a n i i i +=?∑=ρ (1.2)和(1.3)都称之为数值求积公式或机械求积公式。更一般些的求积公式还可以包含函数)(x f 在某些点的低阶导数值。 在(1.3)中余项][x R 也称为求积公式的截断误差。 一个很自然的想法是数值求积公式要对低次多项式精确成立这就导出了求积公式数精度的概念。 定义1 若求积公式(1.2)对任意不高于m 次的代数多项式都精确成立,而对1 +m x 不能精 确成立,则称该求积公式具有m 次代数精度。 一个求积公式的代数精度越高,就会对越多的代数多项式精确成立。 例1 确定求积公式 )]1()0(4)1([3 1 )(1 1 f f f dx x f ++-≈?-

数值分析试卷及其答案2

1、(本题5分)试确定7 22作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22=3.142857…=1103142857.0-? π=3.141592… 所以 3 12 10 2 110 21005.0001264.07 22--?= ?= <=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3 10 2 10005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:???? ? ??=????? ??????? ??--654131321 112321x x x ; 解 设???? ? ? ?????? ? ?????? ??===????? ? ?--11 1 11113 1321 11232312132 1 32 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,21527,25,2323121321- == - == -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23,97,910( ,)5 63, 7,4(== (3分) 3、(本题6分)给定线性方程组??? ? ? ??=++-=+-+=-+-=-+17722238231138751043214321 321431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

数值分析试题及答案

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110l x = B . ()00l x =0, ()111l x = C .() 00l x =1,()111 l x = D . () 00l x =1,()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 1231231 220223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A . 232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得 分 评卷人 二、填空题(每小题3分,共15分)

1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数()()() 33301213,88C C C ===,那么 () 33C = 4. 因为方程()420 x f x x =-+=在区间 []1,2上满足 ,所以()0f x =在区间 内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公式 . 填空题答案 1. 9和29 2. ()() 0101 f x f x x x -- 3. 1 8 4. ()()120 f f < 5. ()12 00.1 1.1,0,1,210.11k k y y k k y +???? ?=+? ?=+???? =??L 得 分 评卷人 三、计算题(每题15分,共60分) 1. 已知函数 21 1y x = +的一组数据: 求分 段线性插值函数,并计算 () 1.5f 的近似值. 计算题1.答案 1. 解 []0,1x ∈, ()1010.510.50110x x L x x --=?+?=---% []1,2x ∈,()210.50.20.30.81221x x L x x --=?+?=-+--%

《数值分析》教案

1.7.2 三次样条插值的基本原理 三次样条插值也是一种分段插值方法,用分段的三次多项式构造成一个整体上具有函数、一阶和二阶导函数连续的函数,近似地替代已知函数)(x f ,“样条”一词源于过去绘图员使用的一种绘图工具样条,它是用于富于弹性、能弯曲的木条(或塑料)制成的软尺,把它弯折靠近所有的基点用画笔沿着样条就可以画出连续基点的光滑曲线。 假设已知函数)(x f 在区间],[b a 上的)1(+n 个节点b x x x x x a n n =<<<<<=-1210 及其对应的函数值 i i y x f =)(,),,2,1,0(n i =,即给出)1(+n 组样本点数据),(,),,(),,(1100n n y x y x y x ,可以构造一个定义在],[b a 上的函数)(x S , 满足下述条件。 ① i i y x S =)(,),,2,1,0(n i = ② )(x S 在每个小区间],[1+i i x x )1,,2,1,0(-=n i 上,都是一个三次多项式: 3 32210)(x a x a x a a x S i i i i i +++= (1-42) ③ )(),(),(x S x S x S '''在],[b a 上连续。 可见,)(x S 是一个光滑的分段函数,这样的函数称为三次样条(Spline )插值函数。 构造的函数)(x S 是由n 个小区间上的分段函数组成,根据条件②,每个小区间上构造出一个三次多项式,第 i 个小区间上的三次多项式为 332210)(x a x a x a a x S i i i i i +++=,共有n 个多项式,每个多项式有4个待定系数。要确定这n 个多项式,就需要确定 4 n 个系数

数值计算方法试题集及答案要点

《数值计算方法》复习试题 一、填空题: 1、 ?? ??? ?????----=410141014A ,则A 的LU 分解为 A ? ???????? ???=????????? ?? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(, 0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求 得?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 3、1)3(,2)2(, 1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数 为 ,拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对 1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公

数值分析试卷及其答案1

1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知6 5.0102 1 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620*2102 1 ,6,0,10325413.0-?= -=-=?=ε绝对误差限n k k X 2分 2. 已知?? ???=0 01 A 220- ?????440求21,,A A A ∞ (6分) 解: {}, 88,4,1max 1==A 1分 {}, 66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=0 1 A A T 4 2 ???? ? -420?????0 01 2 20 - ???? ?440= ?????0 01 80 ???? ?3200 2分 {}32 32,8,1max )(max ==A A T λ

1分 24322==A 3. 设32)()(a x x f -= (6分) ① 写出f(x)=0解的迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (0,1……)产生的序列{}k x 收敛于 2 解: ①迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3 分 ②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-= a a x a x ?? 3分 4. 给定线性方程组,其中:?? ?=13A ?? ?2 2,?? ? ???-=13b 用迭代公式 )()()()1(k k k Ax b x x -+=+α(0,1……)求解,问取什么实数α ,可使 迭代收敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --???--=-=ααααα21231A I B 2分

西北工业大学数值分析(附答案)

西北工业大学数值分析习题集 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设 028,Y =按递推公式 1n n Y Y -= ( n=1,2,…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求 211N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =-

数值分析作业答案(第5章)

5.1.设A 是对称矩阵且011≠a ,经过一步高斯消去法后,A 约化为 ?? ????21 110 A a a T 证明2A 是对称矩阵。 证明 由消元公式及A 的对称性,有 ,,,3,2,,)2(111 11111 )2(n j i a a a a a a a a a a ji i j ji j i ij ij ==-=- = 故2A 对称。 5.2.设n ij a A )(=是对称正定矩阵,经过高斯消去法一步后,A 约化为 ?? ????21 110 A a a T 其中1)2(2)(-=n ij a A 。证明: (1).A 的对角元素;,,2,1,0n i a ii => (2).2A 是对称正定矩阵。 证明 (1).因为A 对称正定,所以 n i e Ae a i i ii ,,2,1,0),( =>=, 其中T i e )0,,0,1,0,,0( =为第i 个单位向量。 (2).由A 的对称性及消元公式,有 ,,,3,2,,)2(111 11111 )2(n j i a a a a a a a a a a ji i j ji j i ij ij ==-=- = 故2A 也对称。 又由A L A a a T 121110=????? ?,其中

??? ?????- =? ????? ? ?????????--=-111 1 11111 21101 1011n n I a a a a a a L , 可见1L 非奇异,因而对任意0≠x ,由A 的正定性,有 ,0),(),(,011111>=≠x AL x L x AL L x x L T T T T 故T AL L 11正定。 由,000110211 111121111 1?? ? ?? ?=????????-??????=-A a I a a A a a AL L n T T T 而011>a ,故知2A 正定

数值分析关冶版第一章教案

授课题目: 第一章引论 §1数值分析的研究对象(1学时) 教学目标: 使学生了解数值分析的研究对象、作用与特点、数值算法 教学重点:数值分析的研究对象、作用与特点 教学难点: 数值分析的研究对象 教学过程: 一、数值分析的研究对象、作用 数值分析——也称计算数学,是数学科学的一个分支,主要研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现. 主要研究:算法设计,有数学模型给出数值计算方法;上机实现,根据计算方法编制算法程序并计算结果 二、数值分析的作用: 重点研究数学问题的数值方法及其理论。 作用领域广,形成许多交叉学科。 科学计算与理论研究和科学实验是三种科学手段 最重要作用——计算模型数值解

三、数值分析的特点 面向计算机,根据计算机特点提供有效算法。 有可靠的理论分析,能任意逼近并达到精度要求。 要有好的计算复杂性——时间和空间复杂性。 要有数值实验。证明其有效性。 练习: 思考: 作业: 教学反思:

授课题目: §2 数值计算的误差(1学时) 教学目标: 使学生掌握误差、有效数字及其关系、误差估计 教学重点:误差、有效数字及其关系、误差估计 教学难点: 误差估计 教学过程: 误差来源与分类 截断误差 例如,可微函数f(x)的泰勒(Taylor)多项式 则数值方法的截断误差是 舍入误差 例如,用3.14159代替,产生的误差 ●由原始数据或机器中的十进制数转化为二进制数产生的初始误差。 ●在用计算机做数值计算时,受计算机字长的限制产生的误差。 误差与有效数字 定义1 设x为准确值,x*为x的一个近似值,称

为近似值的绝对误差,简称误差。 通常准确值x 是未知的,因此误差e *也是未知的。若能根据测量工具或计算情况估计出误差绝对值的一个上界,即 则ε*叫做近似值的误差限 也可表示成 把近似值的误差e *与准确值x 的比值 称为近似值x *的相对误差,记作 它的绝对值上界叫做相对误差限, 记作 , 定义2 若近似值x *的误差限是某一位的半个单位,该位到x *的第一位非零数字共有n 位,就说x * 有n 位有效数字. 其中 是0到9中的一个数字,m 为整数,且 定理1设近似数x *表示为 x x e -=*****ε≤-=x x e *,***εε+≤≤-x x x . **ε±=x x x x x x e -=******* x x x x e e r -= =. ** * x r εε =

数值分析作业答案.doc

第2章 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange 插值基底。 (3)用Newton 基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为:2 210)(x a x a a x P ++=, 所以:64 211111 1111122 2 211 200 -=-==x x x x x x A 3 76144 211111114241 13110111)() ()(22 221120 022 2 22 11 120 00-=-= ---==x x x x x x x x x f x x x f x x x f a 2 3694211111114411 31101111)(1)(1 )(122 221120 02 2 22112 001=--= --==x x x x x x x x f x x f x x f a 6 5654 2 1 1111114 2 1 3 11011111) (1)(1)(122 2 21120 022 11 00 2=--= ---==x x x x x x x f x x f x x f x a 所以f(x)的二次插值多项式为:26 52337)(x x x P ++-= (2)用Lagrange 插值基底 )21)(11() 2)(1())(())(()(2010210-+-+=----=x x x x x x x x x x x l )21)(11() 2)(1())(())(()(2101201------=----=x x x x x x x x x x x l ) 12)(12() 1)(1())(())(()(1202102+-+-=----= x x x x x x x x x x x l

相关文档
最新文档