食品中蛋白质的测定实验报告记录

食品中蛋白质的测定实验报告记录
食品中蛋白质的测定实验报告记录

食品中蛋白质的测定实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

1.目的

掌握凯氏定氮法测蛋白质的原理、操作、条件、注意事项。

2.原理

蛋白质是含氮有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解。分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后在以硫酸或盐酸标准溶液滴定,根据酸的消耗量计算含氮量再乘以换算系数,即为蛋白质含量。

3.试剂

3.1浓硫酸、硫酸铜、硫酸钾,所有试剂均用不含氮的蒸馏水配制

3.2混合指示液

1份(1g/L)甲基红乙醇溶液与5份1g/L溴甲酚氯乙醇溶液临用时混合。也可用2份甲基红乙醇溶液与1份1g/L次甲基蓝乙醇溶液临用时混合。

3.3氢氧化钠溶液(400g/L)

3.4标准滴定溶液

硫酸标准溶液[c(1/2H2SO4)=0.0500mol/L]或盐酸标准溶液[c (HCl)0.0500mol/L]

3.5硼酸溶液(20g/L)

4.仪器

定氮蒸馏装置

5.样品

全蛋(2.47g)

6.操作

6.1样品处理

准确称取2—5g半固体样品,小心移入干燥洁净的500mL凯氏烧瓶中,然后加入研细的硫酸铜0.5g,硫酸钾10g和浓硫酸20mL,轻轻摇匀后于瓶口放一小漏斗,将瓶以45°角斜放于加有石棉网的电炉上,小火加热,待内容物全部炭化后,泡沫完全消失后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色呈请透明后,再继续加热0.5h,取下放冷,慢慢加入20mL水。

放冷后,移入100mL容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白试验。

6.2连接装置

装好定氮装置,于水蒸气发生器内装水至2/3处,加甲基红指示剂

数滴及少量硫酸,以保持水呈酸性,加入数滴玻璃珠以防暴沸,用调压

器控制,加热至水沸腾。

6.3蒸馏、吸收及滴定

向接收瓶(锥形瓶)内加入10mL20g/L硼酸溶液及混合指示剂1-2滴,并使冷凝管的下端插入液面下。用移液管移取10.00mL样品消化稀

释液有小漏斗室流入反应室,在将10mL 400g/L氢氧化钠溶液倒入碱液

管中,提起玻璃塞使其缓缓流入反应室,并加水于小漏斗中以防止漏气。

开始蒸馏。蒸气通入反应室使氨通过冷凝管而进入接收瓶内,蒸馏5min,移动接收瓶,是冷凝管下端离开液面,再蒸馏1min,然后用少量的水冲

洗冷凝管下端外部。取下接收瓶,以0.05 mol/L盐酸标准溶液滴定至由

蓝色变为微红为终点,记录盐酸溶液用量。

同时吸取10.00mL空白消化液按以上操作为空白实验,记录空白试验消耗盐酸标准溶液的体积。

7.数据记录

7.1原始数据

7.2可疑值弃留

实验获得的数据均合理,无可疑值。

7.3整理数据

粗滴/mL

精滴/mL

平行试验1 平行试验2 平行试验3 空白试验

5.90 5.30 5.50 5.60 0.45

8.计算

(V标-V0)×Ca×0.014

X = ———————————— ×100×K

m样/V定×V测

式中:X—样品中蛋白质含量,%;

V标—主试验(测定用液)消耗硫酸或盐酸标准溶液的体积,mL;

V0—空白试验消耗硫酸或盐酸标准溶液的体积,mL;

Ca—硫酸或盐酸标准溶液的物质的量浓度,mol/L;

0.014—氮的物质的量质量×103,g/mol;

m样—样品的质量(体积),g(mL);

V定—消化液定容体积,mL;

V测—消化液参加测定(测定用液)的体积,mL;

K—氮换算为蛋白质的系数,蛋白质中的氮含量一般为15~17.6%,按16%计算乘以6.25即为蛋白质,乳制品为6038,面粉为5.70,玉米、高粱

为6.24,花生为5.46,米为5.95,大豆及其制品为5.71,肉或肉制品

为6025,大麦、小米、燕麦、裸麦为5.83,芝麻、向日葵为5.30。9.结果

V标=(V1+V2+V3)/ 3 =(5.30+5.50+5.60)/ 3 = 5.47

(V标-V0)×Ca×0.014 (5.47mL-0.45mL)×0.0500mol/L×0.014 X

=——————————×100×K=—————————————————

m样/V定×V测 2.47g/100mL×10mL ×100×6.25=8.89%

10.结果可靠性分析

10.1精密度

平均偏差=(0.17+0.03+0.13)/3=0.11

相对平均偏差=(0.11/5.47) ×100%=0.02%

10.2误差分析

10.2.1根据实际操作情况分析误差的产生原因

在做空白实验前可能由于定氮瓶未完全清洗干净,有之前的样液残留或者之前样液产生的氨气未排空而导致空白实验消耗的标准溶

液过多,使实验结果偏低。

10.2.2误差的方向性

本实验产生误差为负误差。

11.结论

三次平行试验均吸取10mL消化液,产生的氨气经吸收后以0.05 mol/L 盐酸标准溶液滴定,消耗盐酸浓度依次为5.30mL、5.50mL、5.60mL(相对

平均偏差为0.02%)。取三者平均值5.47mL计算得样品蛋白质含量为8.89%。

由于空白实验前定氮瓶未完全清洗干净,有之前的样液残留或之前样液产生的氨气未排空导致空白实验消耗的标准溶液过多,结果偏低,产生误差为负误差。

12.思考题

12.1为什么叫粗蛋白?

样品中常含有核酸、生物碱、含氮类脂、卟啉以及含氮色素等非蛋白质的含氮化合物,非纯蛋白质,故称粗蛋白。

12.2试剂及用途?

浓硫酸:消化、氧化剂

硫酸铜:催化剂、指示消化终点

硫酸钾:使消化温度升高到400℃

混合指示剂:指示滴定终点

氢氧化钠溶液:用于蒸馏,使氨气溢出。

硼酸溶液:吸收液,将氨气固定于吸收液中,形成硼酸铵。

硫酸标准溶液或盐酸标准溶液:用于滴定,与硼酸铵反应

12.3各步终点?

消化终点:溶液由黑色变为蓝绿色澄清透明。

蒸馏终点:凯氏瓶内溶液变为深蓝色或产生黑色沉淀,然后用表面皿接几滴馏出液,用奈氏试剂检查,如无红棕色物生成,表示蒸馏完毕。

滴定终点:用盐酸标准溶液直接滴定至溶液由蓝色变为微红色即为终点。

12.4注意事项?

移液管不可交叉使用,防止酸碱试剂污染;蒸馏装置不能漏气;消化时,火力由弱到强,烧瓶倾斜呈45°;瓶口放一长颈漏斗;蒸馏与吸

收,先进行吸收操作,冷凝管末端必须插入吸收液中,然后再进行蒸馏

的操作;蒸馏结束时,将管离开液面,蒸馏1min,再用少量蒸馏水洗

管外壁;滴定,先粗滴,后精滴。

12.5叙述整个实验中有关颜色的变化,为什么?

消化终点:由黑色变为蓝绿色澄清透明。因为浓硫酸具有脱水性和氧化性,使有机物炭化呈黑色,待有机物全部被消化完后,不再有硫酸

亚铜生成,溶液呈现清澈的蓝绿色。

蒸馏终点:凯氏瓶内溶液变为深蓝色或产生黑色沉淀。加入氢氧化钠后,与硫酸铜反应生成氢氧化铜沉淀,在高温下分解呈氧化铜,产生

黑色沉淀。

滴定终点:用盐酸标准溶液直接滴定至溶液由蓝色变为微红色即为终点。硼酸铵是强碱弱酸盐,呈碱性,混合指示剂会显蓝色。用盐酸滴定后,溶液呈酸性,因此指示剂显微红色。

大一氧化还原实验报告_3

大一氧化还原实验报告 (文章一):氧化还原反应实验报告实验十二氧化还原反应(一)、实验目的1.理解电极电势与氧化还原反应的关系和介质、浓度对氧化还原反应的影响。2.加深理解氧化态或还原态物质浓度变化对电极电势的影响。3.进一步理解原电池、电解及电化学腐蚀等基本知识。[教学重点] 电极电势和氧化还原反应的关系。[教学难点] 原电池、电解及电化学腐蚀等知识。[实验用品] 仪器:低压电源、盐桥、伏特计药品:0.5 mol·L-1Pb(NO3) (2)、(0. (5)、1 mol·L-1)CuSO (4)、0.5 mol·L-1 ZnSO (4)、0.1 mol·L-1KI、0.1 mol·L-1FeCl (3)、0.1 mol.L-1KBr、0.1 mol·L-1FeSO (4)、( (1)、3 mol·L-1) H2SO (4)、6 mol·L-1HAc、(2 mol·L- (1)、浓)HNO (3)、(0.0 (1)、0.1 mol·L-1)KMnO (4)、6 mol·L-1NaOH、0.1 mol·L-1K2Cr2O (7)、饱和KCl、浓NH3·H2O、饱和氯水、I2水、Br2水、CCl

(4)、酚酞溶液、Na2S2O (3)、红石蕊试纸材料:导线、砂纸、电极(铁钉、铜片、锌片、碳棒) (二)、实验内容(一)电极电势和氧化还原反应1.2Fe3++ 2I-= 2Fe2++ I2 I2易溶于CCl4,CCl4层显紫红色2.Fe3++ Br-不起反应,CCl4层无色3.Cl2+ 2Br-= 2Cl-+ Br2 Br2溶于CCl4,CCl4层显橙黄色(二)浓度和酸度对电极电势影响1.浓度影响在两只50m L 烧杯中,分别注入30mL 0.5mol·L-1 ZnSO4和0.5mol·L-1 CuSO4,在ZnSO4中Zn片,CuSO4中Cu片,中间以盐桥相通,用导线将Zn 片Cu片分别与伏特表的负极和正极相接。测量两电极之间的电压。现象:伏特表指针偏到E=0.80处解释:(-):Zn2++2e-=Zn (+):Cu2++2e-=Cu CuSO4溶液中加浓NH 3.H2O到沉淀溶解为止,形成深蓝色溶液;Cu2+ + 4NH3 = [Cu(NH3)4]2+ [Cu2+]下降, E变小,E=0.45V ZnSO4溶液中加浓NH 3.H2O至沉淀溶解为止; Zn2+ + 4NH3 = [Zn(NH3)4]2+ [Zn2+]下降, E 变大,E=0.76V 最后达到平衡, E=0.8V接近初起值. 2x.酸度影响在两只50mL烧杯中,分别注入FeSO (4)、K2Cr2O7溶液。FeSO4溶液中Fe片,在K2Cr2O7 溶液中C 棒,将Fe片、C棒通过导线分别与伏特表的负极和正极相接,中间用盐桥连接,测量两极电压。文档冲亿季,好礼乐相随mini ipad移动硬盘拍立得百度书包现象:测得E=0.61V 解释:(-) Cr2O72-+ 6e- + 14H+ = 2Cr3++ 7H2O (+) Fe2++ 2e- = Fe 在K2Cr2O7中,慢慢加入

生物化学实验报告示范-3,5-二硝基水杨酸法测定葡萄糖标准曲线

实验二3,5-二硝基水杨酸比色定糖法定制葡萄糖标准曲线 马铃薯总糖含量测定 实验目的 1. 熟悉并掌握7200型分光光度仪的结构及工作原理和操作使用方法; 2. 掌握分光光度法测定物质含量的基本操作步骤及微机绘制标准曲线的操作方法; 3.掌握3,5-二硝基水杨酸比色定糖法测定还原糖(葡萄糖)的原理及方法; 4.掌握3,5-二硝基水杨酸比色定糖法测定马铃薯总糖含量测定的原理与方法。 实验原理 1. 3,5-二硝基水杨酸比色定糖法测定还原糖(葡萄糖)的及标准曲线定制原理 3,5-二硝基水杨酸在强碱溶液中与还原糖在沸水浴中加热反应后被还原成棕红色的氨基化合物,该有色物质在540nm 处有最大吸光度,且在一定浓度范围内(一般OD值在0.2~0.8范围内线性较好),还原糖的量与反应液的颜色强度(吸光度OD值)呈线性关系,利用分光光度仪,以分析纯葡萄糖为还原糖测定的标准品,在540nm处按梯度依次测定各葡萄糖浓度对应的反应液的吸光度(OD值)大小,通过微机处理数据,定制葡萄糖标准曲线,确定出3,5-二硝基水杨酸比色定糖法测定还原糖的线性回归方程; 2. 3,5-二硝基水杨酸比色定糖法测定马铃薯总糖含量测定的原理 先将马铃薯去皮,经机械粉碎,过滤和清水漂洗,烘干制成马铃薯淀粉;再精确称取干燥恒重后的马铃薯淀粉加酸水解为还原糖,经中和定容,配制成马铃薯总糖含量测定的待测液(即样品液);再以标准曲线测定的加样操作方法,测定出样品待测液的吸光度大小,将测定的吸光度大小代入其回归方程,即可计算出样品待测液的显色浓度,根据稀释倍数关系,计算出以还原糖的量表示的马铃薯总糖的量,并测定出马铃薯总糖百分含量。该方法是半微量定糖法,操作简便,快速,杂质干扰较少。 实验操作 1. 3,5-二硝基水杨酸比色定糖法定制葡萄糖标准曲线 (1)葡萄糖标准溶液的配制:(2mg/mL)准确称取2000mg分析纯的葡萄糖(预先在105℃干燥至恒重),用少量蒸馏水溶解后定容至1000mL,冰箱保存备用 (2)葡萄糖标准曲线定制加样操作及测定结果纪录(详见表1) 按表1进行实验操作,在沸水浴中准确反应20min,取出后立即用冷水冷却,加蒸馏水定容至25mL,摇匀,用lcm的比色杯于540nm处测光密度值。并记录A540nm处测得的各浓度及样品对应的OD值。 (3)葡萄糖标准曲线定制微机数据处理和回归方程(详见表2)及标准曲线的绘制见图1 2. 马铃薯总糖含量测定操作 (1)马铃薯淀粉的制备(此处略,学生实验报告需补充完整) (2)马铃薯淀粉水解待测液配制(2mg/mL)准确称取干燥恒重后的自制淀粉250mg,加入100mL 蒸馏水和2mL20%硫酸,在沸水浴中加热水解,直到水解彻底后,用20%氢氧化钠溶液中和,至pH = 6.8~7.0后,将反应液转入250mL 容量瓶中,补加蒸馏水定容至250mL,配制成浓度为2mg/mL的淀粉水解后,即总糖测定的样品液,冰箱保存备用。 (3)马铃薯淀粉水解待测液还原糖测定(操作方法详见表1)

食品中蛋白质的测定实验报告

1.目的 掌握凯氏定氮法测蛋白质的原理、操作、条件、注意事项。 2.原理 蛋白质是含氮有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解。分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后在以硫酸或盐酸标准溶液滴定,根据酸的消耗量计算含氮量再乘以换算系数,即为蛋白质含量。 3.试剂 3.1浓硫酸、硫酸铜、硫酸钾,所有试剂均用不含氮的蒸馏水配制 3.2混合指示液 1份(1g/L)甲基红乙醇溶液与5份1g/L溴甲酚氯乙醇溶液临用时混合。 也可用2份甲基红乙醇溶液与1份1g/L次甲基蓝乙醇溶液临用时混合。 3.3氢氧化钠溶液(400g/L) 3.4标准滴定溶液 硫酸标准溶液[c(1/2H2SO4)=0.0500mol/L]或盐酸标准溶液[c(HCl) 0.0500mol/L] 3.5硼酸溶液(20g/L) 4.仪器 定氮蒸馏装置 5.样品 全蛋(2.47g) 6.操作 6.1样品处理 准确称取2—5g半固体样品,小心移入干燥洁净的500mL凯氏烧瓶中,然后加入研细的硫酸铜0.5g,硫酸钾10g和浓硫酸20mL,轻轻摇匀后于瓶口放一小漏斗,将瓶以45°角斜放于加有石棉网的电炉上,小火加热,待内容物全部炭化后,泡沫完全消失后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色呈请透明后,再继续加热0.5h,取下放冷,慢慢加入20mL水。 放冷后,移入100mL容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白试验。 6.2连接装置 装好定氮装置,于水蒸气发生器内装水至2/3处,加甲基红指示剂数滴及少量硫酸,以保持水呈酸性,加入数滴玻璃珠以防暴沸,用调压器控制,

氧化还原反应实验报告

氧化还原反应 实验目的: 通过实验掌握氧化还原反应的基本原理,熟悉几种常见的氧化还原反应。 实验原理: ? 物质的氧化还原能力的强弱与物质的本性有关, 氧化还原能力通常根据电对的电极电势的高低来判定。 ? 氧化还原反应进行的方向、次序、程度, 可以根据氧化剂和还原剂所对应的电对电极电势的相对大小来判定。 ?E = E 氧化剂电对电势 - E 还原剂电对电势 > 0 反应能自发进行 ?E = E 氧化剂电对电势 - E 还原剂电对电势 = 0 反应处于平衡状态 ?E = E 氧化剂电对电势 - E 还原剂电对电势 < 0 反应不能自发进行 ? 氧化还原反应总是优先在电极电势差值最大的两个电对所对应的氧化剂和还原剂之间进行。 ? 电极电势差值较小的两个电对所对应的氧化剂和还原剂之间能否进行氧化还原反应,应考虑浓度的影响。 实验过程:在Na 3AsO 4与 I - 的氧化还原反应方程式中, 有 H +, 与OH - 参加,因此介质的 pH 值将对反应有显著的影响。 AsO 43- 2 I -AsO 2-2OH - I 22H + 由于AsO 43- / AsO 2- 与 I 2 / I - 的氧化还原电对的值相近, 因此, 可以通过改变溶液的酸碱性改变氧化还原反应进行的方向。反应可在同一试管中进行, 先在酸性中观察Na 3AsO 4与 KI 的反应(为了便于观察碘单质的生成与, 常加入CCl 4萃取碘),观察碘单质的生成,然后再加入碱溶液使反应液呈碱性,观察碘单质的消失。试验中,酸的加入量应控制在使反应进行即可, 应避免加入过量的酸。 由于含砷的化合物有较高的毒性, 反应的废液应回收到指定的回收瓶中,统一处理。如果不慎试液滴在皮肤上,应立即冲洗。 实验结论:氧化态或还原态物质与其它的试剂发生化学反应,生成沉淀或形成络合物,从而大大改变了氧化态或还原态物质的浓度,此时,电对的电极电势有较大的变化,应通过奈斯特方程式计算或查表确定其电极电势,再判定氧化还原的反应进行的方向。 ? 对于有H +, 或OH -参加电极反应的电对,介质的pH 值将对反应有显著的影响。 ? 氧化还原反应进行的程度的大小和反应进行的快慢并不一定一致。氧化还原反应进行的程度是对该化学反应一个热力学上的量度, 而氧化还原反应进行的快慢是对该化学反应一个动力学上的量度。氧化还原反应进行的快慢要受到很多其他因素的影响。例如:固液反应时的接触面积。因此, 常加入催化剂加快反应速度。

还原糖和总糖的测定

生物化学综合实验报告 题目:3,5-二硝基水杨酸比色法测定还原糖和总糖 姓名: 学号: 同组成员: 分院(系): 专业班级: 指导教师: 完成日期:年 月日

1.实验目的 用比色法测定山芋中还原糖和总糖含量 2.实验原理 先用已知浓度的葡萄糖标准溶液与DNS反应测其分光度,制得标准曲线,在测山芋中糖与DNS反应后的分光度A从而得其总糖和还原糖含量。 3.实验仪器和试剂 试剂:1g/L葡萄糖标准液、3,5-二硝基水杨酸、6mol/L HCl,6mol/L NaOH 仪器:25,100ml容量瓶、1,5ml吸量管、50ml移液管、100ml 量筒、试管、滴管、离心管、玻璃棒、洗耳球、100ml容量瓶、比色皿离心机、分光光度计、恒温水箱 4.实验步骤 一、取六只比色管向其中加入葡萄糖标液0、0.2、0.4、0.6、 0.8、1.0毫升在加入蒸馏水2.0、1.8、1.6、1.4、1.2、1.0毫升,最后向其中各加入DNS试剂1.5毫升混合均匀后100摄恒温水浴5min,冷却后加入蒸馏水至25ml刻度线,用1号样调零,测其分光度,制得标准曲线。 二、还原糖提取:取3g山芋粉,加入30ml水,搅匀后在50摄水中保温20min,离心,取滤液,用100ml容量瓶定容得还原糖待测液。

总糖提取:取0.2克山芋粉,加入试管中吸取5ml HCL溶液,8ml蒸馏水搅匀,100摄下恒温水浴30min,冷却,NaOH调节PH至中性,离心,滤液用100ml容量瓶定容,得总糖待测液。 测定时取5支比色管分别加入还原糖0、1.0、1.0、0、0毫升,总糖0、0、0、0.5、0.5毫升,蒸馏水2.0、1.0、1.0、1.5、1.5毫升,DNS试剂1.5毫升100摄恒温水浴5min后冷却,稀释至25毫升用一号管调节分光度为0,测总糖和还原糖的分光度。 5数据处理

血红蛋白电泳

血红蛋白电泳检查(电泳法) 1. 原理 血红蛋白是由两对多肽链组成的复杂分子。每一条链含有血红素和络合铁原子的卜啉。所有血红蛋白的血红素部分都是相同的。所测定的血红蛋白的蛋白部分称之为珠蛋白。正常人血红蛋白多肽链包括α、β、δ和γ。血红蛋白的结构、分子特性取决于形成其肽链的氨基酸顺序和性状。氨基酸不同可形成不同的血红蛋白,其表面电荷不同,在电场中的泳动率不同。本实验在碱性(PH=8.60)条件下,以琼脂糖凝胶电泳的方法进行,对红细胞洗涤后造成溶血,电泳分离血红蛋白后以氨基黑染色。多余的染色液用酸性液体洗去。待琼脂糖凝胶板干燥后,肉眼可直接判别有无电泳条带异常。运用光密度扫描仪检测准确定量分析电泳条带异常情况。血红蛋白异常有二种类型:血红蛋白性质或结构的异常称之为血红蛋白病。血红蛋白中的一条链合成减少引起血红蛋白性质异常,称之为地中海贫血。 2. 标本采集 2.1 标本采集前病人准备:受检者应空腹。 2.2 标本种类:抗凝血 2.3 标本要求:抗凝剂选用EDTA,柠檬酸或肝素均可,避免碘乙酸。常规静脉采血1.8ml,加入含有109mmol/L枸橼酸钠溶液0.2ml的干燥。清洁试管中,充分混匀。 4. 标本储存:储存于2-8℃冰箱中,5天。 5. 标本运输:储存于2-8℃状态下的冰壶或泡沫箱密封运输。 6. 标本拒收标准:细菌污染、溶血或脂血标本不能作测定。 7. 试剂 7.1 试剂名称:血红蛋白电泳检查试剂 7.2 试剂生产厂家:法国Sebia公司 7.3 包装规格:150tests 7.4 试剂盒组成 琼脂糖凝胶10块溶血素1瓶 缓冲液条带10包×2条薄滤纸1×10张 氨基黑(浓缩液)1瓶×100ml 点样模具滤纸10条×1盒

蛋白质测定实验报告

蛋白质测定实验报告标准化管理部编码-[99968T-6889628-J68568-1689N]

蛋白质测定方法——化学报告

蛋白质的检测 酚试剂法灵敏度较高 20~250mg 费时蛋白质在碱性溶 液中其肽键与 Cu2+螯合,形成 蛋白质一铜复合 物,此复合物使 酚试剂的磷钼酸 还原,产生蓝色 化合物 酚类、柠檬 酸、硫酸铵、 tris缓冲液、 甘氨酸、糖 类、甘油等均 有干扰作用 由上表可大致了解五种检测蛋白质的方法,下面以实验的形式进行详细阐述: 1 材料与方法 仪器材料 (1)仪器:凯氏定氮仪、紫外分光光度计、可见光分光光度计、工作离心机、布氏漏斗、抽滤泵。 (2)试剂及原材料:牛奶、酸奶、豆浆、LpH=4. 7醋酸- 醋酸钠缓冲液、乙醇-乙醚等体积混合液、浓H2SO4 、40%氢氧化钠、30%过氧化氢、2%硼酸溶液、0. 050molPL标准盐酸溶液、硫酸钾- 硫酸铜接触剂、混合指示剂、标准蛋白溶液、双缩脲试剂、考马斯亮蓝G- 250试剂。 实验方法 (1)凯氏定氮法测定蛋白质含量 将待测样品与浓硫酸共热,含氮有机物即分解产生氨(消化) ,氨又与硫酸作用,变成硫酸铵。为了加速消化,可以加入CuSO4 作催化剂和加入K2SO4 以提高溶液的沸点,而加入30%过氧化氢有利于消化溶液的澄清。消化好的样品在凯氏定氮仪内经强碱碱化使之分解放出氨,借蒸汽将氨蒸至定量硼酸溶液中,然后用标准盐酸溶液进行滴定,记录,计算出样品含氮量。每个样品做三次重复测定,取平均值。 (2)紫外吸收法测定蛋白质含量 蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质,吸收峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。 紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如,

实验五氧化还原反应与电极电势(精)

实验五氧化还原反应与电极电势 一、实验目的 1、掌握电极电势对氧化还原反应的影响。 2、定性观察浓度、酸度对电极电势的影响。 3、定性观察浓度、酸度、温度、催化剂对氧化还原反应的方向、产物、速度的影响。 4、通过实验了解原电池的装置。 二、实验原理 氧化剂和还原剂的氧化、还原能力强弱,可根据她们的电极电势的相对大小来衡量。电极电势的值越大,则氧化态的氧化能力越强,其氧化态物质是较强氧化剂。电极电势的值越小,则还原态的还原能力越强,其还原态物质是较强还原剂。只有较强的氧化剂才能和较强还原剂反应。即φ氧化剂-φ还原剂﹥0时,氧化还原反应可以正方向进行。故根据电极电势可以判断氧化还原反应的方向。 利用氧化还原反应而产生电流的装置,称原电池。原电池的电动势等于正、负两极的电极电势之差:E = φ正-φ负。根据能斯特方程: 其中[氧化型]/[还原型]表示氧化态一边各物质浓度幂次方的乘积与还原态一边各物质浓度幂次方乘积之比。所以氧化型或还原型的浓度、酸度改变时,则电极电势φ值必定发生改变,从而引起电动势E将发生改变。准确测定电动势是用对消法在电位计上进行的。本实验只是为了定性进行比较,所以采用伏特计。浓度及酸度对电极电势的影响,可能导致氧化还原反应方向的改变,也可以影响氧化还原反应的产物。 三、仪器和药品 仪器:试管,烧杯,伏特计,表面皿,U形管 药品:2 mol·L-1 HCl,浓HNO3, 1mol·L-1 HNO3,3mol·L-1HAc,1mol·L-1 H2SO4,3mol·L-1 H2SO4,0.1mol·L-1 H2C2O4,浓NH3·H2O(2mol·L-1),6mol·L- 1NaOH,40%NaOH。 1mol·L-1 ZnSO4,1mol·L-1 CuSO4,0.1mol·L-1KI,0.1mol·L-

实验一 还原糖和总糖含量的测定

实验一还原糖和总糖含量的测定 (3,5-二硝基水杨酸比色法) 一.目的 1.掌握还原糖定量测定的基本原理; 2.学习比色定糖法的基本操作; 3.熟悉分光光度计的使用方法。 二.原理 在碱性的条件下,还原糖与3,5-二硝基水杨酸共热,3,5-二硝基水杨酸被还原为3-氨基-5-硝基水杨酸(棕红色物质),还原糖的量与棕红色物质颜色深浅的程度成一定的比例关系,在540nm波长下测定棕红色物质的消光值,查对标准曲线并计算,便可分别样品中还原糖和总糖的含量。 三.仪器.试剂和材料 1.仪器: (1)25ml刻度试管(2)玻璃漏斗(3)三角瓶(4)100ml容量瓶3个(5)刻度吸管(1ml,2ml,3ml)(6)恒温水浴(7)沸水浴(8)电子天平(9)分光光度计2.试剂; (1)1mg/ml葡萄糖标准液(2)3,5-二硝基水杨酸试剂(3)碘碘化钾溶液(4)酚酞指示剂(5)6ml/L HCI (6)6ml/L NaOH 3.材料:食用面粉 四.操作步骤 将各管摇匀,在沸水中加热5min,取出后立即放入盛有冷水的烧杯中冷却至室温,再以蒸馏水定容至25min,用试管塞塞住试管口,颠倒混匀。在540nm波长下,用0号试管调零,分别读取1~6号管的吸光度。以吸光度为纵坐标,葡萄样毫克数为横坐标,绘制标准曲线。

2.样品中还原糖和总糖含量的测定 (1)样品中还原糖的提取:准确称取3g使用面粉,放在100ml三角瓶中,先以少量蒸馏水调成糊状,然后加50ml蒸馏水,搅匀,置于50℃恒温水中保温20min,使还原糖浸出。过滤,用20ml蒸馏水定容至刻度,混匀,作为还原糖待测液。 (2)样品中总糖的水解和提取:准确称取1g使用面粉。放在100ml的三角瓶中,加入10ml 6mol/L HCI及15ml蒸馏水,置于水浴中加热水解30min。待三角瓶中水解液冷却后,加入1滴酚酞指示剂。以6mol/LNaOH中和至微红色,过滤,再用少量蒸馏水冲洗三角瓶及滤纸,将滤纸全部收集砸100ml的容量瓶中,用蒸馏水定容至刻度,混匀。精确吸取10ml 定容过的水解液,移入另一100ml的容量瓶中,以水稀释定容,混匀,作为总糖待测液。 六、结果处理 (1)由管○1、○2吸光度平均值在葡萄糖标准曲线查出相应的还原糖毫克数为:0.167mg

海南大学学生实验报告(氧化还原反应)

海南大学学生实验报告 实验课程:无机化学实验B 学院:材料与化工学院 班级:材料科学与工程理科实验班姓名:袁丹 学号:20160419310026 日期:2016.12.05 实验名称:氧化还原平衡与电化学 一、实验目的 1、理解电极电势与氧化还原反应的关系。 2、掌握介质酸碱性、浓度对电极电势及氧化还原反应的影响。 3、了解还原性和氧化性的相对性。 4、了解原电池的组成及工作原理,学习原电池电动势的测量方法。 二、实验原理 氧化还原反应的实质是反应物之间发生了电子转移或偏移。氧化剂在反应中得到电子被还原,元素的氧化值减小;还原剂在反应中失去电子被氧化,元素的与氧化值增大。物质氧化还原能力的大小可以根据对应的电极电势的大小来判断。电极电势越大,电对中氧化型的氧化能力越强;电极电势越小,电对中还原型的还原能力越强。 根据电极电势的大小可以判断氧化还原反应的方向。当氧化剂电对的电极电势大于还原剂电对的电极电势时,即 时,反应自发向正向进行。

由电极的能斯特方程式可以看出浓度对氧化还原反应的电极电势的影响,298.15K时 溶液的pH也会影响某些电对的电极电势或氧化还原反应的方向。介质的酸碱性也会影响某些氧化还原反应的产物,如MnO4—在酸性、中性、碱性介质中的还原产物分别为Mn2+、MnO2和MnO4—。 一种元素(如O)由多种氧化态时,氧化态居中的物质(如H2O2)一般既可作为还原剂,又可作为氧化剂。 三、仪器与试剂 仪器:试管、烧杯。 试剂:CuSO4(0.1mol·L-1),KI(0.1mol·L-1),CCl4,KMnO4(0.01mol·L-1),H2SO4(2mol·L-1),NaOH(6mol/L),Na2SO3(0.2mol/L),KIO3(0.1mol/L),NaOH(2mol/L),FeCl3(0.1mol/L),KBr(o.1mol/L),SnCl2(0.2mol/L),KSCN(0.1mol/L),H2O2(3%),ZnSO4(1mol/L),CuSO4(1mol/L)。 四、实验步骤 1、浓度对氧化还原反应的影响 取1支试管,加入10滴0.1mol/L CuSO4溶液,10滴0.1mol/L KI 溶液,观察现象。再加入10滴CCl4,充分振摇,观察CCl4层颜色,记录现象并写出反应方程式。 ①反应试剂图片

实验一,3,5-二硝基水杨酸比色法-还原糖和总糖的测定

实验一还原糖和总糖的测定——3,5-二硝基水杨酸比色法 一、实验目的 掌握还原糖和总糖测定的基本原理,学习比色法测定还原糖的操作方法和分光光度计的使用。 二、实验原理 还原糖的测定是糖定量测定的基本方法。还原糖是指含有自由醛基或酮基的糖类,单糖都是还原糖,双糖和多糖不一定是还原糖,其中乳糖和麦芽糖是还原糖,蔗糖和淀粉是非还原糖。利用糖的溶解度不同,可将植物样品中的单糖、双糖和多糖分别提取出来,对没有还原性的双糖和多糖,可用酸水解法使其降解成有还原性的单糖进行测定,再分别求出样品中还原糖和总糖的含量(还原糖以葡萄糖含量计)。 还原糖在碱性条件下加热被氧化成糖酸及其它产物,3,5-二硝基水杨酸则被还原为棕红色的3-氨基-5-硝基水杨酸。在一定范围内,还原糖的量与棕红色物质颜色的深浅成正比关系,利用分光光度计,在540nm波长下测定光密度值,查对标准曲线并计算,便可求出样品中还原糖和总糖的含量。由于多糖水解为单糖时,每断裂一个糖苷键需加入一分子水,所以在计算多糖含量时应乘以0.9。 三、实验材料、主要仪器和试剂 1.实验材料 小麦面粉;广范pH试纸。 2.主要仪器 (1)大试管:2×20cm×14 (2)烧杯:100mL×3 (3)三角瓶:100mL×1 (4)容量瓶:100mL×3 (5)移液管:1mL×3;2mL×2;10mL×4 (6)吸耳球、玻璃棒 (7)恒温水浴锅 (8)漏斗、滤纸 (9)白瓷缸、电炉 (10)精度天平

(11)分光光度计 3.试剂(已制备) (1)1mg/mL葡萄糖标准液 准确称取90℃烘至恒重的分析纯葡萄糖100mg,置于小烧杯中,加少量蒸馏水溶解后,转移到100mL容量瓶中,用蒸馏水定容至100mL,混匀,4℃冰箱中保存备用。 (2)3,5-二硝基水杨酸(DNS)试剂 将6.3g 3,5-二硝基水杨酸(DNS)和2mol\L NaOH溶液262mL,加到500mL含有185g酒石酸钾钠的热水溶液中,再加5g重蒸酚和5g亚硫酸钠,搅拌溶解,冷却后加蒸馏水定容至1000mL,贮于棕色瓶中,7-10天后才能使用。 (3)6mol/L HCl和6mol/L NaOH 。 四、操作步骤 1.制作葡萄糖标准曲线 取7支2×20cm大试管编号,按表1分别加入浓度为1mg/mL的葡萄糖标准液、蒸馏水和3,5-二硝基水杨酸(DNS)试剂,配成不同葡萄糖含量的反应液。 将各管摇匀,在沸水浴中准确加热5min,取出,用流动水冷却至室温,用蒸馏水补充至20mL (即各加入16.5mL蒸馏水),震荡混匀,在分光光度计上进行比色。调波长540nm,用0号管调零点,测出1~6号管的吸光度值。以吸光度值为纵坐标,葡萄糖含量(mg)为横坐标,在坐标纸上绘出标准曲线。 2.样品中还原糖和总糖的测定 (1)还原糖的提取 准确称取3.00g食用面粉,放入100mL烧杯中,先用少量蒸馏水调成糊状,然后加入50mL蒸馏水,搅匀,置于50℃恒温水浴中保温20min,使还原糖浸出。将浸出液用100mL容量瓶定容,混匀,过滤,滤液作为还原糖提取液,待测。 (2)总糖的水解和提取 准确称取1.00g食用面粉,放入100mL三角瓶中,加15mL蒸馏水及10mL 6mol/L HCl,置沸水浴中加热水解30min。待三角瓶中的水解液冷却后,用6mol/L NaOH中和(大约10mL左右),用广范pH试纸测试中和到pH=7,用蒸馏水定容在100mL容量瓶中,混匀。将定容后的水解液过滤,取滤液1 mL,移入另一9mL水的试管中,混匀,稀释10倍作为总糖待测液。 (3)显色和比色 取7支2×20cm大试管,编号,按表2所示分别加入待测液和显色剂,用7号管进行空白调零。加热、定容和比色等其余操作与制作标准曲线相同。

无机化学实验报告

无机化学实验报告集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

实训一化学实验基本操作 [实验目的] 1、掌握常用量器的洗涤、使用及加热、溶解等操作。 2、掌握台秤、煤气灯、酒精喷灯的使用。 3、学会液体剂、固体试剂的取用。 [实验用品] 仪器:仪器、烧杯、量筒、酒精灯、玻璃棒、胶头滴管、表面皿、蒸发皿、 试管刷、 试管夹、药匙、石棉网、托盘天平、酒精喷灯、煤气灯。 药品:硫酸铜晶体。 其他:火柴、去污粉、洗衣粉 [实验步骤] (一)玻璃仪器的洗涤和干燥 1、洗涤方法一般先用自来水冲洗,再用试管刷刷洗。若洗不干净,可用毛刷蘸少量去污粉或洗衣粉刷洗,若仍洗不干净可用重络酸加洗液浸泡处理(浸泡后将洗液小心倒回原瓶中供重复使用),然后依次用自来水和蒸馏水淋洗。 2、干燥方法洗净后不急用的玻璃仪器倒置在实验柜内或仪器架上晾干。急用仪器,可放在电烘箱内烘干,放进去之前应尽量把水倒尽。烧杯和蒸发皿可放在石棉网上用小火烘干。操作时,试管口向下,来回移动,烤到不见水珠时,使管口向上,以便赶尽水气。也可用电吹风把仪器吹干。带有刻度的计量仪器不能用加热的方法进行干燥,以免影响仪器的精密度。 (二)试剂的取用 1、液体试剂的取用 (1)取少量液体时,可用滴管吸取。 (2)粗略量取一定体积的液体时可用量筒(或量杯)。读取量筒液体体积数据时,量筒必须放在平稳,且使视线与量筒内液体的凹液面最低保持水平。 (3)准确量取一定体积的液体时,应使用移液管。使用前,依次用洗液、自来水、蒸馏水洗涤至内壁不挂水珠为止,再用少量被量取的液体洗涤2-3次。 2、固体试剂的取用 (1)取粉末状或小颗粒的药品,要用洁净的药匙。往试管里粉末状药品时,为了避免药粉沾到试管口和试管壁上,可将装有试剂的药匙或纸槽平放入试管底部,然后竖直,取出药匙或纸槽。

直接滴定法测食品中还原糖实验报告

1.目的 掌握直接滴定法测还原糖的原理、操作、条件及注意事项。 2.原理 样品经前处理提取还原糖,在加热条件下,直接滴定一定量的碱性酒石酸铜标准溶液,以次甲基蓝作指示剂,根据样液消耗体积,计算样品中还原糖量。3.试剂 3.1碱性酒石酸铜标准溶液(还原糖因数f/mg·10mL-1) 3.1.1甲液:称取23.10g硫酸铜(CuSO4·5H2O)及0.05g次甲基蓝,溶于水中 并稀释至100mL 3.1.2乙液: 称取115.33g酒石酸钾钠及33.30氢氧化钠,溶于水中,用水稀 释至1000mL,贮存于橡胶塞玻璃瓶中瓶中 3.2乙酸锌溶液:称取21.9g乙酸锌,加3mL冰乙酸,加水溶解并稀释至 100mL. 加水溶解并稀释至100mL 3.3亚铁氰化钾溶液(106g/L):称取10.6g亚铁氰化钾,加水溶解并稀释 至100mL 3.4盐酸 3.5葡糖糖标准溶液:精密称取7.0000g经过98~100℃干燥至恒量的纯葡 萄糖加水溶解,并以水稀释至1000mL.此溶液每毫升相当于7mg葡糖 糖 4.仪器 碱式滴定管、电炉 5.样品 硬糖(m样=5.8002g) 6.操作 6.1样品处理 称取样品5.8002g置于小烧杯中,加40mL水,40℃微热溶解,冷却后加40mL水,调节PH至中性,加水定容至100mL,过滤后收集滤液即为样品溶液。 6.2标定碱性酒石酸铜溶液 吸取5.0mL碱性酒石酸铜甲液及5.0mL乙液,置150mL三角锥形瓶中,加水10mL,加入玻璃珠2粒,置于电炉上加热至沸(要求控制在2min内沸腾),然而趁热以每秒1滴的速度继续滴加葡萄糖标准溶液,直至溶液蓝色刚好褪去为终点,记录消耗葡萄糖的总体积。同时平行操作三份,取其平均值,计算每10mL(甲液乙液各5mL)碱性酒石酸铜溶液相当于葡萄糖的质

蛋白质含量测定——双缩脲试剂法-实验报告

生物化学实验报告 姓名: 学号: 专业年级: 组别: 生物化学与分子生物学实验教学中心

实验名称蛋白质含量测定——双缩脲试剂法 实验日期实验地点 合作者指导老师 评分教师签名批改日期 一、实验目的 1.1.掌握双缩脲测定血清总蛋白的基本原理、操作; 1.2.掌握双缩脲试剂的配制; 1.3.熟悉血清总蛋白的临床意义; 1.4.了解双缩脲法测定血清总蛋白的特点和注意事项。 二、实验原理 2.1.两分子尿素加热脱氨缩合成的双缩脲(H2N-OC-NH-CO-NH2),因分子内含有两个邻接的肽键,在碱性溶液中可与Cu2+发生双缩脲反应,生成紫红色络合物。 2.2.蛋白质分子含有大量彼此相连的肽键(-CO-NH-),同样能在碱性条件下与Cu2+发生双缩脲反应,生成的紫红色络合物,且在540nm处的吸光度与蛋白质的含量在10~120g/L范围内有良好的线性关系。 三、材料与方法: 3.1.实验材料: 3.1.1.实验试剂:①小牛血清;②6.0mol/LNaOH溶液;③双缩脲试剂:硫酸酮、酒石酸钾钠、碘化钾;④蛋白质标准液(70g/L);⑤0.9%NaCl;⑥蒸馏水。 3.1.2.实验器材:①试管;②烧杯;③容量瓶;④加样枪;⑤刻度吸管;⑥玻璃棒;⑥1100分光光度计;⑦电子天平;⑧水浴锅。

3.2.实验步骤 四、结果与讨论: 4.1.实验现象: ①选取三支洁净无损的试管,从左往右依次加入0.9%氯化钠溶液、蛋白质标准液、相应的小牛血清各0.5ml,分别命名为B试管、S试管和U试管,再分别向三支试管内加入4ml的双缩脲试剂,溶液均成蓝色透明状。

测定次数 1 2 3 平均吸光度 ②将三支试管放入37℃水浴锅中加热20min,取出后,B试管呈淡蓝色,S试管和U 试管均成浅紫色,且S试管的颜色比U试管的颜色深。(如图一) 图一水浴后三支试管颜色图二分光计读数 S 0.185 0.184 0.185 0.1847 U 0.152 0.151 0.152 0.1517 结果计算:代入公式:血清总蛋白(g/L)=(Au/As)X蛋白质标准液浓度(g/L),得出结果:血清总蛋白=57.493g/L。 4.3.结果讨论 经查阅资料得:正常成人血清总蛋白含量为60~80g/L,而小牛血清总蛋白含量比正常成人血清总蛋白含量略低一点,本次结果得出小牛血清总蛋白含量为57.493g/L,符合情况。 4.3.1.成功原因: ①本次试验的试剂混合水浴后出现了预期效果:B试管呈淡蓝色,S试管和U试管均成浅紫色,且S试管的颜色比U试管的颜色深。B试管呈淡蓝色是因为B试管中没有发生任何反应,所以呈现双缩脲试剂本来的淡蓝色,而S试管和U试管呈浅紫色是因为试剂中的蛋白质和双缩脲发生了双缩脲反应而呈浅紫色。 管号

氧化还原实验报告

成绩 实验报告 第页(共页)课程:_____无机化学实验_________________________ 实验日期:年 月日专业班号___________组别____________ 交报告日期:年月日姓名________学号___________ 报告退发:(订正、重做)同组者_____________________ 教师审批签字: 实验名称氧化还原反应 一、实验目的 1.加深理解电极电动势与氧化还原反应的关系 2.加深理解温度,反应物浓度,介质的酸碱性,物质浓度对电极电势和氧化还原反应的影响 3.学会用酸度计的“mV”部分,大概测量原电池电动势的方法 二、实验原理 对于电极反应Ox+ne=Red 其电对的电极电势为E=E""+RT/NF·lnox/red 电对的E越大,氧化剂氧化能力增强。E越小,还原剂的还原能力就越强。电对的电极电势与参与氧化还原或还原半反应的物质浓度,反应温度以及反应介质有关。任何引起物质浓度的变化都将影响电对的电极电势。根据氧化剂和还原剂所对应的电对电极电势的相对大小可以来判断氧化还原反应的进行方向,顺序和反应程度。

三、仪器与试剂 1. 仪器酸度计,烧杯,量筒,导线,灵敏电流计,铜片。锌片。胶头滴管 2. 试剂 四、实验步骤 《一》 1.在0.5ml0.1mol.LKI溶液中加入0.1mol.LFeCL3溶液2~3滴,观察现象。再加入 1mlCCL4·震荡,观察CCL4层的颜色。 答——开始溶液由绿色变成紫黑色,加入CCL4后CCL4层为紫红色 2.用0.1mol.LKBr溶液代替0.1mol.LKI溶液,进行同样的实验,观察现象,对比实验结果比较Br2/Br-,I2/I-,Fe3+/Fe2+三个电对电极电势的大小,并指出最强的氧化剂和最强的还原剂。 答——用KBr时,无明显现象。电对的大小关系为Br2/Br->Fe3+/Fe2+>I2/I- 最强氧化剂为Br2/////最强还原剂为I- 3.在两只试管中分别加入I2水和Br2水各0.5ml,再加入FeSO4少许,及0.5mlCCL4摇匀,观察现象。 答——发现CCL4层为紫红色,电极电势大的,氧化还原反应反应方向就是朝大的方向《二》 1.在试管中加入0.1mol.LKI溶液十滴和0.1mol.LKIO3溶液2~3滴,观察有无变化。再加入几滴 2.0mol.LH2SO4溶液,观察现象。再逐滴加入2.0mol.LNaOH溶液,观察反应的现象,并做出解释。 答——IO3-+5I-+6H+==3I2+3H2O,刚开始时无明显现象,加入2.0mol.LH2SO4数滴后,产生紫黑色,加入数滴NaOH后颜色快速褪去。因为加H+后反应朝右移动且加快反应速率,加入OH-后相反,姑颜色褪去。

葡萄酒中还原糖和总糖的测定

葡萄酒中还原糖和总糖的测定 一、实验目的 掌握还原糖和总糖的测定的基本原理,学习费林试剂法测定还原糖和总糖的操作方法。 二、实验原理 还原糖和总糖的测定是糖定量测定的基本方法。还原糖是指含有自由醛基或酮基的糖类,单糖都是还原糖,双糖和多糖不一定是还原糖,其中乳糖和麦芽糖是还原糖,蔗糖和淀粉是非还原糖。利用糖的溶解度不同,可将植物样品中的单糖、双糖和多糖分别提取出来,对没有还原性的双糖和多糖,可用酸水解法使其降解成有还原性的单糖进行测定,再分别求出样品中还原糖和总糖的含量(还原糖以葡萄糖含量计)。 利用费林溶液与还原糖共沸,生成氧化亚铜沉淀的反应,以次甲基蓝为指示液,以样品或经水解后的样品滴定煮沸的费林溶液,达到终点时,稍微过量的还原糖将蓝色的次甲基蓝还原为无色,以示终点。根据样品消耗量求得总糖或还原糖的含量。 三、试剂和材料 3.1 盐酸溶液(1+1)。 3.2 氢氧化钠溶液:200 g/L。 3.3 标准葡萄糖溶液2.5 g/L:精确称取2.5g(称准至0.0001g)在105~110℃烘箱内烘干3h并在干燥器中冷却的葡萄糖,用水溶解并定容至1000 mL。 3.4 次甲基蓝指示液10g/L:称取1.0g次甲基蓝,溶解于水中,稀释至100mL。 3.5 费林溶液 费林溶液Ⅰ:称取34.7g 硫酸铜(CuSO4*5H2O),溶于水,稀释至500mL。 费林溶液Ⅱ:称取173g酒石酸钾钠和50g NaOH,溶于水,稀释至500mL。 使用时将溶液Ⅰ、Ⅱ按等体积混合。 四、实验步骤 4.1费林溶液标定预备试验: 吸取费林溶液Ⅰ、Ⅱ各 5.00 mL 于250 mL 三角瓶中,加50 mL 水,摇匀,在电炉上加热至沸,在沸腾状态下用制备好的葡萄糖标准溶液滴定,当溶液

血清蛋白质醋酸纤维薄膜电泳实验报告

血清蛋白质醋酸纤维薄膜电泳实验报告 一、实验目的 1.1.学习醋酸纤维薄膜电泳的基本原理和操作方法; 1.2.了解电泳技术的一般原理; 1.3.掌握电泳分离血清蛋白质及其定性定量的方法。 二、实验原理 2.1.血清中各种蛋白质的等电点不同,一般都低于pH7.4。它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。由于血清中各种蛋白质分子大小、形状及所带的电荷量不同,在醋酸纤维素薄膜上电泳的速度也不同。因此可以将它们分离为清蛋白(Albumin)、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白5条区带。 2.2.①膜条经过氨基黑10B染色后显出清晰色带;②各色带蛋白质含量与染料结合量基本成正比;③可将各色带剪开,分别溶于碱性溶液中;④用分光光度法计算各种蛋白质的百分数。 三、材料与方法: 3.1.实验材料: 3.1.1.实验试剂:①样品:健康人血清(新鲜、无溶血); ②巴比妥-巴比妥钠缓冲液(pH8.6,离子强度0.06mol/L); ③氨基黑10B染色液;④漂洗液;⑤洗脱液:0.4mol/NaOH

溶液。 3.1.2.实验器材:①V-1100分光光度计(×1);②恒温水浴箱(×1);③试管(×6)、试管架(×1);④1000μL 加样枪(×1)、加样枪架(×1);⑤醋酸纤维薄膜(2cm*8cm,厚度120μm);⑥培养皿(×5);⑦点样器或载玻片(×1); ⑧平头镊子(×2);⑨剪刀(×1);⑩电泳槽(×1);?直流稳压电泳仪(×1)四、结果与讨论条 4.1.结果分析本次实验得到的图谱只能够清晰的看出清蛋白和γ-球蛋白的区带,其余无法区别。原因可能如下:①醋酸纤维薄膜质量不足。②薄膜过湿,样品扩散迅速,导致样品分离不成区带。③点样太少,区带显色不明显。④电泳时间不足。 ⑤薄膜在缓冲液中浸泡的时间不足。⑤取出电泳后的薄膜过程中曾不慎将薄膜掉到地上。⑥染色时,因为现场混乱,可能导致醋酸纤维薄膜不是一张一张放入染色液的,在染色固定前,薄膜与薄膜之间重叠,造成薄膜上还未固定的血清蛋白彼此粘连。 四、结果与讨论 4.2.课后思考题 1.电泳时,点样端置于电场的正极还是负极?为什么? 答:点样端置于电场的负极。因为人体血清的蛋白质会因电槽中溶质呈碱性而带负电,要成功分离出各类各类蛋白质,理应将点样端置于电场的负极。

蛋白质测定实验报告

蛋白质测定方法——化学报告

蛋白质的检测 酚试剂法灵敏度较高 20~250mg 费时蛋白质在碱性溶 液中其肽键与 Cu2+螯合,形成 蛋白质一铜复合 物,此复合物使 酚试剂的磷钼酸 还原,产生蓝色 化合物 酚类、柠檬 酸、硫酸铵、 tris缓冲液、 甘氨酸、糖 类、甘油等均 有干扰作用 由上表可大致了解五种检测蛋白质的方法,下面以实验的形式进行详细阐述:

1 材料与方法 1.1 仪器材料 (1)仪器:凯氏定氮仪、紫外分光光度计、可见光分光光度计、工作离心机、布氏漏斗、抽滤泵。 (2)试剂及原材料:牛奶、酸奶、豆浆、0.12mol/LpH=4. 7醋酸- 醋酸钠缓冲液、乙醇-乙醚等体积混合液、浓H2SO4 、40%氢氧化钠、30%过氧化氢、2%硼酸溶液、0. 050molPL标准盐酸溶液、硫酸钾- 硫酸铜接触剂、混合指示剂、标准蛋白溶液、双缩脲试剂、考马斯亮蓝G- 250试剂。 1.2 实验方法 (1)凯氏定氮法测定蛋白质含量 将待测样品与浓硫酸共热,含氮有机物即分解产生氨(消化) ,氨又与硫酸作用,变成硫酸铵。为了加速消化,可以加入CuSO4 作催化剂和加入K2SO4 以提高溶液的沸点,而加入30%过氧化氢有利于消化溶液的澄清。消化好的样品在凯氏定氮仪内经强碱碱化使之分解放出氨,借蒸汽将氨蒸至定量硼酸溶液中,然后用标准盐酸溶液进行滴定,记录,计算出样品含氮量。每个样品做三次重复测定,取平均值。 (2)紫外吸收法测定蛋白质含量 蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质,吸收峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。 紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如, 生化制备中常用的(NH4)2SO4 等和大多数缓冲液不干扰测定,特别适用于柱层析洗脱液的快速连续检测,因为此时只需测定蛋白质浓度的变化,而不需知道其绝对值。 此法的特点是测定蛋白质含量的准确度较差,干扰物质较多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质有一定的误差,故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。 此外,进行紫外吸收法测定时,由于蛋白质吸收高峰常因pH的改变而有变化,因此要注意溶液的pH值,测定样品时的pH要与测定标准曲线的pH相一致。取待测样品制成蛋白浓度大约在0. 1~1. 0mgPmL的蛋白质溶液,用紫外分光光度计进行比色,对照标准曲线得出样品含氮量。每个样品做3次重复测定,取平均值。 (3)双缩脲法测定蛋白质含量

相关文档
最新文档