变压器保护校验方法..

变压器保护校验方法..
变压器保护校验方法..

RCS-978系列变压器保护测试

一、RCS-978型超高压线路成套保护

RCS-978配置:

主保护:稳态比率差动,工频变化量比率差动,零序比率差动,

谐波制动,

后备保护:复合电压闭锁(启动)方向过流

零序方向过流保护

间隙零序过流过压保护

零序过压

稳态比率差动

一、保护原理

基尔霍夫电流定律,流入=流出

(1)差动元件的动作特性

在国内生产的微机型变压器差动保护中,差动元件的动作特性较多采用具有二段折线的动作特性曲线,如下图:

在上图中,I op.min 为差动元件起始动作电流幅值,也称为最小动作电流;

I res.min 为最小制动电流,又称为拐点电流;

K=tan α为制动特性斜率,也称为比率制动系数。

微机变压器差动保护的差动元件采用分相差动,其动作具有比率制动特性。 动作特性为:

拐点前(含拐点): .min .min ()op op res res I I I I ≥≤

拐点后: .min .min .min () ()op op res res res res I I K I I I I ≥+->

式中 I op ——差动电流的幅值

I res ——制动电流的幅值

也有某些变压器差动保护采用三折线的制动曲线。

(2)动作方程和制动方程:差动电流Iop 和制动电流Ires 的获取

差动电流(即动作电流):取各侧差动电流互感器(TA )二次电流相量和的绝对值。 以双绕组变压器为例,

op h l I I I =+

在微机保护中,变压器制动电流的取得方法比较灵活。国内微机保护有以下几种取得方式:

① /2res h l I I I =-

② ()/2res h l I I I =+ ③ max{,}res h l I I I = ④ ()/2res op h l I I I I =--

⑤ res l I I =

二、测试要点:标么值的概念

另:注意,978可以自动辅助计算当前的差流,

但其同时显示的“制流X 相”并不是当前X 相的制动电流,而是当前

X 相制动电流下的动作电流边界!!!

三、试验举例:

保护定值:动作门槛:0.3

差动速断电流:4

I 侧(Y 接线)二次侧额定电流:3.935;

II 侧(Y 接线)二次侧额定电流:3.765;

III 侧(D 接线)二次侧额定电流:3.955

由于该保护的补偿系数由标么值的方式计算,则每一侧的补偿系数是该侧二次侧额定电流的倒数。

1.选择“差动菜单”——“扩展差动”

2.在“Id,r 定义”页面,选择“测试项目”为“比例制动”;“动作电流Id ”为“K1×I1+

K2×I2”;“制动电流Ir ”为“(|K1×I1|+|K2×I2|)/K ”;“K1=”“K2=”分别为各二次侧额定电流的倒数;“K =”为2。

3.选择高压侧对低压侧Y/D ,补偿系数k1=1/3.935=0.2541,补偿系数k2=1/3.955=0.2528

4.在“I1,2接线”页面,选择“变压器方式”为“Y/D-11”。

5.在“固定Ir ”页面,设置“变化范围”为“0.0A ”至“4.0A ”;设置“步长”为“0.1A ”。

6.在“搜索Id ”页面,设置“搜索起点”为“10.0”;“终点”为“100.0”;“动作门槛”为“0.3”;有些保护需要复归,则设置“间断时间”大于复归时间。(注:以上电流值的单位没有意义,都是标么值)

7.开始试验

工频变化量比率差动

一、保护原理

12max{|||...|}r m I I I I φφφ?=?+?++?

12...d m I I I I ?=?+?++?

1......

m I ?分别为变压器各侧电流的工频变化量。d I ?为差动电流的工频变化量。r I ?为制动电流的工频变化量,取最大相制动。

二、试验举例

南京南瑞继保RCS -978系列变压器成套保护装置

工频变化量比率差动不需要用户整定。

保护定值清单:动作门槛:0.2标么值

I 侧(Y 接线)二次侧额定电流:3.935;

II 侧(Y 接线)二次侧额定电流:3.765;

III 侧(D 接线)二次侧额定电流:3.955 由于该保护使用变化量启动,则如果负荷电流为零时,和稳态比率差动相同。

1.选择“差动菜单”——“扩展差动”

2.在“Id,r 定义”页面,选择“测试项目”为“比例制动”;“动作电流Id ”为“K1×I1+K2×I2”;“制动电流Ir ”为“Max(|K1×I1|,|K2×I2|)”;“K1=”“K2=”分别为各二次

侧额定电流的倒数。

3.在“I1,2接线”页面,选择“变压器方式”为“Y/D-11”。

4.在“固定Ir ”页面,设置“变化范围”为“0.0A ”至“4.0A ”;设置“步长”为“0.1A ”。

5.在“搜索Id ”页面,设置“搜索起点”为“10.0”;“终点”为“100.0”;“动作门槛”为“0.2A ”;有些保护需要复归,则设置“间断时间”大于复归时间。

6.开始试验

零序比率差动

一、保护原理

零序比率差动保护主要应用于自耦变压器。动作、制动方程如下:

001020max{,,}r cw I I I I =

001020d cw I I I I =++

其中01020,,cw I I I 分别为I 侧、II 侧和公共绕组侧零序电流;0d I 为零序差动电流;0r I 为零序差动制动电流。

二、试验举例

南京南瑞继保RCS -978系列变压器成套保护装置

保护定值清单:零序比率差动启动定值:5.0A (1.0In,In=5.0A )

零差I 侧平衡系数:1

零差II 侧平衡系数:2

零差公共侧平衡系数:2

由于该保护的补偿系数。由于单相故障时的故障电流就是零序电流,则测试仪输出给保护的电流,在高压侧和低压侧都只接A (x )相电流。

1.选择“差动菜单”——“扩展差动”

2.在“Id,r 定义”页面,选择“测试项目”为“比例制动”;“动作电流Id ”为“K1×I1+K2×I2”;“制动电流Ir ”为“Max(|K1×I1|,|K2×I2|)”;“K1=”“K2=”分别为各侧零差补偿系数。

3.在“I1,2接线”页面,选择“变压器方式”为“Y/Y-12”,没有相位补偿。

4.在“固定Ir ”页面,设置“变化范围”为“0.0A ”至“6.0A ”;设置“步长”为“0.1A ”。

5.在“搜索Id ”页面,设置“搜索起点”为“10.0”;“终点”为“100.0”;“动作门槛”为“5.0A ”;有些保护需要复归,则设置“间断时间”大于复归时间。

6.开始试验

注:如果零序比率差动启动定值大于0.5In ,则其拐点电流自动设为In 。否则拐点电流为0.5In

分侧差动保护原理

一、保护原理

12max{,,}r cw I I I I =

12d cw I I I I =++

其中12,,cw I I I 分别为I 侧、II 侧和公共绕组侧零序电流;d I 为零序差动电流;r I 为零序差动制动电流。

二、试验举例

南京南瑞继保RCS -978系列变压器成套保护装置

保护定值清单:分侧差动启动定值:1.5A

分侧差动比率制动系数:

由于该保护的补偿系数由标么值的方式计算,则每一侧的补偿系数是该侧二次侧额定电流的倒数。

1.选择“差动菜单”——“扩展差动”

2.在“Id,r 定义”页面,选择“测试项目”为“比例制动”;“动作电流Id ”为“K1×I1+K2×I2”;“制动电流Ir ”为“Max(|K1×I1|,|K2×I2|)”;“K1=”“K2=”分别为各二次侧额定电流的倒数。

3.在“I1,2接线”页面,选择“变压器方式”为“Y/Y-12”。

4.在“固定Ir ”页面,设置“变化范围”为“0.0A ”至“12.0A ”;设置“步长”为“1.0A ”。

5.在“搜索Id ”页面,设置“搜索起点”为“10.0”;“终点”为“100.0”;“动作门槛”为“1.5A ”;有些保护需要复归,则设置“间断时间”大于复归时间。

6.开始试验

注:如果分侧差动启动定值大于0.5In ,则其拐点电流自动设为In 。否则拐点电流为0.5In

谐波制动

一、保护原理

RCS-978系列变压器成套保护装置采用三相差动电流中二次谐波、三次谐波的含量来识别励磁涌流。当谐波的大小超过一定的差流基波含量时,判别为励磁涌流。当三相中某一相被判别为励磁涌流,只闭锁该相比率差动元件。

二、试验举例

南京南瑞继保RCS-978系列变压器成套保护装置

保护定值清单:二次谐波制动系数:0.15

动作门槛:0.3标么值

1.选择“差动菜单”——“扩展差动”

2.在“Id,r定义”页面,选择“测试项目”为“谐波制动”;

3.在“I1,2接线”页面,选择“变压器方式”为“Y/D-11”。

4.在“搜索Id”页面,设置“搜索起点”为“10.0”;“终点”为“100.0”;“动作门槛”为“1.5A”;有些保护需要复归,则设置“间断时间”大于复归时间。

5.开始试验

(注:需要将A与x相,B与y相,C与z相电流并起来,加到测试仪的一侧输出)

复合电压闭锁(启动)方向过流

一、保护原理

过流保护主要作为变压器相间故障的后备保护。复合电压指相间电压低启动过流或负序电压高启动过流,即满足以上条件时保护闭锁。

二、试验举例

南京南瑞继保RCS-978系列变压器成套保护装置

保护定值清单:复压闭锁负序电压:8V

复压闭锁低相间电压:60V(相当于相电压35V)

过流I段定值:3A

1.“本侧退电压硬压板”退出,“本侧退电压软压板”退出

2.选择“整组试验”菜单

3.选择“故障类型”为“任意故障”。设置故障电压为57V,三相对称,设置A相故障电流为4A,B、C相电流为零,三相对称。

4.开始试验。

5.开始试验后,等待TV断线告警结束后,进入故障状态。由于复合电压闭锁,虽然电流大于过流I段定值,保护不动作。

6.试验结束后,重新选择“故障类型”为“任意故障”。设置故障电压为20V,三相对称,设置A相故障电流为4A,B、C相电流为零,三相对称。

7.开始试验后,等待TV断线告警结束后,进入故障状态。此时复合电压闭锁解除,过流I段动作。

零序方向过流保护

一、保护原理

零序过流保护,主要作为变压器中性点接地运行时接地故障后备保护。通过整定控制字可控制各段零序过流是否经方向闭锁,是否经零序电压闭锁,是否经谐波闭锁,是否投入,跳哪几侧开关。

二、试验举例

南京南瑞继保RCS-978系列变压器成套保护装置

保护定值清单:零序I段定值:2A

零序电压闭锁定值:10V

1.“本侧退电压硬压板”退出,“本侧退电压软压板”退出。“零序I段的方向指向”置1。2.选择“整组试验”菜单

3.选择“故障类型”为“A相接地”。设置“整定阻抗”为1Ω,78°,使得零序电压大于10V。选择“故障方向”为“正向故障”。

4.开始试验。等到TV断线告警结束后进入故障,零序过流I段动作。

5.选择“故障类型”为“A相接地”。设置“整定阻抗”为1Ω,78°,使得零序电压大于10V。选择“故障方向”为“反向故障”。

6.开始试验。等到TV断线告警结束后进入故障,零序过流I段经方向闭锁,不动作。7.试验结束后,开始第三次试验。选择“故障类型”为“A相接地”。设置“整定阻抗”为15Ω,78°,使得零序电压小于10V。选择“故障方向”为“正向故障”。

8.开始试验。等到TV断线告警结束后进入故障,零序过流I段经零序电压闭锁,不动作。谐波制动测试:

1.必须使用外接零序,“零序I段用自产零序电流”置0;谐波制动含量定值为7%

2.选择“状态序列”菜单,状态1为稳态,电压为57.735V,三相对称,三相电流均为0;

状态2为故障状态,通过短路计算设置故障。短路阻抗为0.95Ω,78°,短路电流为2.5A,正向故障;Ux为54.315V,-180°。将Ix与Ia两并输出。Ix电流为0.1A,频率100Hz 3.开始试验。零序过流动作。

4.试验结束后,将Ix电流改为0.5A。开始试验,由于谐波制动,零序过流不动作。

间隙零序过流过压保护

一、保护原理

装置设有一段两时限间隙零序过流保护和一段两时限零序过压保护,来作为变压器中性点经间隙接地运行时的接地故障后备保护。间隙零序过流保护、零序过压保护动作并展宽20ms后计时。考虑到在间隙击穿过程中,零序过流和零序过压可能交替出现,装置设有“间隙保护方式”控制字。当“间隙保护方式”控制字为“1”时,零序过压和零序过流元件动作后相互保持,此时间隙保护的动作时间整定值和跳闸控制字的整定值均以间隙零序过流保护的整定值为准。

二、试验举例

南京南瑞继保RCS-978系列变压器成套保护装置

保护定值清单:间隙零序起动电流:1.0A

间隙过流定值:2.0A

间隙零序第一时限:0.0S

1.接上“间隙零序电流”线,Ia接I侧间隙零序电流

2.选择“电流电压”菜单

3.设置电压57.735三相对称。设置电流A相为3.0A,B、C相为0.0A.。

4.开始试验。间隙零序过流动作。

零序过压

一、保护原理

由于220kV~500kV变压器低压侧常为不接地系统,装置设有一段零序过压保护作为变压器低压侧接地故障保护。

二、试验举例

南京南瑞继保RCS-978系列变压器成套保护装置

保护定值清单:III侧零序过压启动值:10V

III侧零序过压定值:40V

III侧零序过压报警定值:20V

III侧零序过压第一时限:0.0S

III侧零序过压报警时限:0.0S

1.III侧零序电压接Ua

2.选择“电流电压”菜单

3.设置Ua为25.0V,其他相电压为零;三相电流为零;

4.开始试验。零序过压告警。

5.试验结束后,开始第二次试验。设置Ua为50.0V,其他相电压为零;三相电流为零;6.开始试验。零序过压动作。

1 母线差动保护的带负荷校验

1 母线差动保护的带负荷校验 发电厂和变电所的母线是电力系统的重要设备。如果母线故障不能迅速地被切除,将会引起事故扩大,破坏电力系统的稳定运行,造成电力系统的瓦解事故。因此,母线差动保护正常时均需投入运行。但在新投断路器时,则应在断路器充电前将母差保护停用,带负荷后,测量保护回路的电流极性正确后再加用。因此,母线差动保护回路的电流极性正确后再加用。因此,母线差动保护带负荷校验,具体的步骤如下:①将母线差动保护停用。②进行充电操作。③使断路器带上负荷后,由继电保护人员进行检验工作。④检验保护回路的电流极性正确后,将母线差动保护加用。 母线差动保护带负荷校验时的注意事项:①母线差动保护停用的方法要正确。应先停用母差保护断路出口联接片,再停用保护直流电源。取直流电源熔断器时,应先取正极,后取负极,也可根据现场需要不停用保护直流电源。②带负荷校验时险除测定三相电路及差回路电流外,必须测中性线的不平衡电流,以确保回路的完整正确。③校验完毕,母线差动保护加用的操作要正确。先加直流电源,在检查整个保护装置正常后,使用高内阻电压表测量出口联接片两端无电压后,使用高内阻电压表测量出口联接片两端无电压后,逐一加用各断路器出口联接片。④根据母线的运行方式、母差保护的类型正确将母线差动保护投入。要特别注意断路器电压回路切换和母差失灵保护出口联接片的切换。采用隔离开关重动继电器自动切换的,要注意检查重动继电器状态,防止重动继电器不励磁或不返回。 2 主变差动保护的带负荷校验 纵联差动保护是将变压器各侧的电流互感器按差接法接线。在变压器正常和外部短路时,其各侧流入和流出的一次电流之和为零,差动继电器不动作;内部故障时,各侧所供短路电流之和,流入差动继电器,差动继电器动作切除故障。 因此,对主变差动保护带负荷校验步骤如下:①主变差动保护在主变充电时应加用,因此即使某电流回路极性不正确,在主变充电时,仍能起到保护作用。但带上负荷后,若极性不正确,就会因有差流而误动作,所以,必须在带负荷前停用;停用后,再使主变带上负荷,检测各侧电流、二次接线及极性是否正确和检测差动继电器关压是否满足要求。②检验电流极性是否正确的方法一般采用测量电流相应(通称测六角图)的方法,高压侧对中压侧(低压侧断开)和高压侧对低压侧(中压侧断开)同相电流的相互差180°为正确。③六角图正确,还不能保证差动保护 继电器内部接线正确,因此,还应测差回路的不平衡电流或电压,证实二次接线及极性正确无误后,方可将差动保护投入运行。 主变差动保护校验时的注意事项:①变压器空载投入时,励磁涌流的值可达6 ~倍额定电流。励磁涌流的大小、波形与合闸前铁心内剩磁、合闸初相角、铁心饱 和磁通、系统电压和联系阻抗、变压器三相接线方式和铁心结构形式、电流互感器饱和特性和二次三相接线方式等因素有关。变压器空载合闸时的励磁涌流有可能使主变差动保护动作,但这不能用来判断就是电流回路或继电器内部接线错误,相反可以用来检查差动继电器的选型、整定、接线是否符合要求。②新投变压器充电,应将变压器的所有保护全部加用,差动保护、零序保护即使不能保证其极性正确也应加用。轻瓦斯保护采用短接线接跳闸回路,充电完毕后拆除短接线,恢复到原信号位置。③差动保护带负荷测试内容有两项:一是差动回路“六角相位”,以判别 差另回路接线的正确性,如TA极性接错与否,联接线别或相位正确与否,其二是继

变压器保护校验方法

RCS-978系列变压器保护测试 一、RCS-978型超高压线路成套保护 RCS-978配置: 主保护:稳态比率差动,工频变化量比率差动,零序比率差动, 谐波制动, 后备保护:复合电压闭锁(启动)方向过流 零序方向过流保护 间隙零序过流过压保护 零序过压 稳态比率差动 一、保护原理 基尔霍夫电流定律,流入=流出 (1)差动元件的动作特性 在国内生产的微机型变压器差动保护中,差动元件的动作特性较多采用具有二段折线的动作特性曲线,如下图: 在上图中,I op.min 为差动元件起始动作电流幅值,也称为最小动作电流; I res.min 为最小制动电流,又称为拐点电流; K=tan α为制动特性斜率,也称为比率制动系数。 微机变压器差动保护的差动元件采用分相差动,其动作具有比率制动特性。 动作特性为: 拐点前(含拐点): .min .min ()op op res res I I I I ≥≤

拐点后: .min .min .min () ()op op res res res res I I K I I I I ≥+-> 式中 I op ——差动电流的幅值 I res ——制动电流的幅值 也有某些变压器差动保护采用三折线的制动曲线。 (2)动作方程和制动方程:差动电流Iop 和制动电流Ires 的获取 差动电流(即动作电流):取各侧差动电流互感器(TA )二次电流相量和的绝对值。 以双绕组变压器为例, op h l I I I =+ 在微机保护中,变压器制动电流的取得方法比较灵活。国内微机保护有以下几种取得方式: ① /2res h l I I I =- ② ()/2res h l I I I =+ ③ max{,}res h l I I I = ④ ()/2res op h l I I I I =-- ⑤ res l I I = 二、测试要点:标么值的概念 另:注意,978可以自动辅助计算当前的差流, 但其同时显示的“制流X 相”并不是当前X 相的制动电流,而是当前 X 相制动电流下的动作电流边界!!! 三、试验举例: 保护定值:动作门槛:0.3 差动速断电流:4 I 侧(Y 接线)二次侧额定电流:3.935; II 侧(Y 接线)二次侧额定电流:3.765; III 侧(D 接线)二次侧额定电流:3.955 由于该保护的补偿系数由标么值的方式计算,则每一侧的补偿系数是该侧二次侧额定电流的倒数。 1.选择“差动菜单”——“扩展差动” 2.在“Id,r 定义”页面,选择“测试项目”为“比例制动”;“动作电流Id ”为“K1×I1+

浅论变压器电量保护(微机保护继电器)调试及计算方法

浅论变压器电量保护(微机保护继电器)调试及计算方法 【摘要】随着变压器保护装置种类的不断增多,保护功能的不断强大,微机继电保护装置正日趋完善,变压器的电量保护作为大容量变压器的主要保护类型,其调试和计算则成为整个继电保护调试中的重要环节。电量保护主要分为差动保护、复合电压闭锁过电流保护、速断保护、过负荷保护等,这些保护对变压器的稳定运行起着至关重要的作用,是电力系统正常运行的重要保障。因此,如何对变压器电量保护进行正确调试和计算,使继电保护装置正常运行,则成为我们所探讨的重要技术论题。本文将重点论述变压器差动、复合电压闭锁过电流、过负荷等变压器电量保护的调试和计算方法,以在交接和预防性试验中保证继电保护装置的正确调试。 【关键词】差动保护比率制动复合电压闭锁过流调试计算差动继电器后备保护 随着电网系统运行方式的不断更新,电气设备及各种用电负荷的继电保护类型也逐渐增多,其中变压器保护在各种继电保护中显得格外重要,变压器保护的项目、类型及计算方法决定了被保护的设备或电网系统是否能正常运行。下面将就各种变压器保护项目、调试和计算方法进行详细说明。 1 变压器差动保护的原理及特点 双绕组变压器的纵联差动保护单相原理接线如图1所示,它是按比较被保护变压器两侧电流的大小和相位的原理来实现的。变压器两侧各装设一组电流互感器1TA、2TA,其二次侧按环流法接线,即若变压器两端的电流互感器一次侧的正极性的线圈并联接入,构成纵联差动保护。其保护范围为两侧电流互感器1TA、2TA的全部区域,包括变压器的高、低压绕组、引出线及套管等。 从图1中可见,正常运行和外部短路时,因变压器两侧绕组接线不同而产生电流流过电流继电器(差动保护继电器)。流过差动继电器的电流,在理想情况下,其值等于零。但实际上由于两侧电流互感器特性不可能完全一致等原因,仍有差动电流流过差动回路,即为不平衡电流,此时流过差动继电器的电流为=(此公式表示相量之差),要求不平衡电流应尽可能小,保证保护装置不会误动作。当变压器内部发生相间短路时,在差动回路中由于改变了方向或等于零(无电源侧),这时流过差动继电器的电流为与之和,即=+(此公式表示相量之和) 由于Yd11接线变压器两侧线电流之间有30°的相位差,如果两侧的电流互感器采用相同的接线方式,将会在差动回路中产生很大的不平衡电流。 该电流为短路点的短路电流,使差动继电器KD可靠动作,并作用于变压器两侧断路器跳闸。 补偿方法为:将变压器星形侧的电流互感器接成三角形,而将变压器三角形

kv线路保护整定计算公式汇总

继电保护整定计算公式汇编 为进一步规范供电系统继电保护整定计算工作,提高保护的可靠性快速性、灵敏性,为此,将常用的继电保护整定计算公式汇编如下,仅供参考。有不当之处希指正: 一、 电力变压器的保护: 1、 瓦斯保护: 作为变压器内部故障(相间、匝间短路)的主保护,根据规定,800KVA 以上的油浸变压器,均应装设瓦斯保护。 (1) 重瓦斯动作流速:0.7~1.0m/s 。 (2)轻瓦斯动作容积:S b <1000KVA :200±10%cm 3;S b 在1000~15000KVA :250± 10%cm 3;S b 在15000~100000KVA :300±10%cm 3;S b >100000KVA :350±10%cm 3。 2、差动保护:作为变压器内部绕组、绝缘套管及引出线相间短路的主保护。包括平衡线圈 I 、II 及差动线圈。 3、 电流速断保护整定计算公式: (1)动作电流:Idz=Kk ×I (3) dmax2 继电器动作电流:u i d jx K dzj K K I K K I ???=2max )3( 其中:K k —可靠系数,DL 型取1.2,GL 型取1.4 K jx —接线系数,接相上为1,相差上为√3 I (3) dmax2—变压器二次最大三相短路电流 K i —电流互感器变比 K u —变压器的变比 一般计算公式:按躲过变压器空载投运时的励磁涌流计算速断保护值,其公式为: 其中:K k —可靠系数,取3~6。

K —接线系数,接相上为1,相差上为√3 jx —变压器一次侧额定电流 I 1e —电流互感器变比 K i (2)速断保护灵敏系数校验: 其中:I(2) —变压器一次最小两相短路电流 dmin1 —速断保护动作电流值 I dzj K —电流互感器变比 i 4、过电流保护整定计算公式: (1)继电器动作电流: —可靠系数,取2~3(井下变压器取2)。其中:K k K —接线系数,接相上为1,相差上为√3 jx —变压器一次侧额定电流 I 1e K —返回系数,取0.85 f —电流互感器变比 K i (2)过流保护灵敏系数校验: 其中:I(2) —变压器二次最小两相短路电流 dmin2 —过流保护动作电流值 I dzj —电流互感器变比 K i K —变压器的变比 u 过流保护动作时限整定:一般取1~2S。 5、零序过电流保护整定计算公式: (1)动作电流: 其中:K —可靠系数,取2。 k —变压器二次侧额定电流 I 2e

220kV线路保护检验方法

注意:在试验接线中,将试验仪的UZ接于保护的开口三角电压回路L。 1、纵联方向保护检验:仅投入主保护压板1LP18 (1)短接11D8—11D36,11D9—11D37;1D48—1D55(如有收发信机则将收发信机电源给上,然后将短接片置于“负载”下。 (2)模拟A相接地故障 故障前正常负荷状态为12秒; 直接用阻抗界面时,使Z=0.95*Zzdp2=0.95*2.18=2.07Ω,Φ=Φlm,故障时间=0.1s; 用电流电压界面时,使I=3A,U=0.95*(1+0.83)*3* Zzdp2=11.37V,故障相电压超前故障相电流为零序灵敏角Ps0=80°。(非故障相电压为正常电压,非故障相电流为0A); ( (4)模拟AB相间故障 故障前正常负荷状态为12秒; 直接用阻抗界面时,使Z=0.95*Zzdpp2=0.95*4.6=4.37Ω,Φ=Φlm,故障时间=0.1s; 用电流电压界面时,使IA=3A,Uab=0.95*2*3* Zzdpp2=26.22V,故障相间电流的超前相IA滞后故障相电压超前相UA为正序灵敏角Ps1=80°,滞后相电流IB与IA 相差180°。(非故障相电压为正常电压,非故障相电流为0A); (5)模拟BC、CA相间故障,方法同上。 (6)保护信息为D++。 2、纵联零序方向保护。投入主保护压板1LP18和零序保护压板1LP17 (1)短接1D48—1D55、11D8—11D36,11D9—11D37;(如有收发信机则将收发信机电源给上,然后将短接片置于“负载”下。 (2)模拟A相接地故障 故障前正常负荷状态为12秒; 用电流电压界面时,使I=(I0zdF*1.05)A,U=53V,故障相电压超前故障相电流为零序灵敏角Ps0=80°。(非故障相电压为正常电压,非故障相电流为0A); 故障时间为0.1s 保护发单跳令。

220kV线路保护全部校验标准化作业指导书(修改版)

XXX变220kVXXX线保护全部校验标准化作业指导书 编写:年月日审核:年月日批准:年月日

一、WXH-802保护装臵检验 6 开入量检查(加重合闸把手) 开入量名称 装置显示开入量状态 开入量名称 装置显示开入量状态短接前短接后短接前短接后 投高频保护TWJA 投检修TWJB 投距离保护TWJC 投零序保护压力低闭锁重合闸 打印信号复归 对时输入单跳起动重合闸 7 模数变换系统检查 (1)零漂检验:(试验时电流回路开路、电压回路短接) 交流量I A I B I C3I0U A U B U C U x CPU 要求-0.1--0.1A,-0.2--0.2V (2)电流线性度测试: 通道Ia Ib Ic 3Io 0.1In 0.5In 1In 5In 10In 要求小于±5 % (3)电压线性度测试:(加相位角) 通道Ua Ub Uc Ux 1V 5V 30V 60V 70V 要求小于±5 % 8 整定值检验 (1)高频保护 1)高频距离保护 故障相别K=0.95 K=1.05 K=0.7 K=0.95 且反向AN 相可靠动作可靠不动作可靠不动作

BN 相可靠动作可靠不动作可靠不动作CN 相可靠动作可靠不动作可靠不动作AB 相可靠动作可靠不动作可靠不动作BC 相可靠动作可靠不动作可靠不动作CA 相可靠动作可靠不动作可靠不动作2)高频零序保护 故障相别K=1.05 K=0.95 K=1.2 K=1.05 且反向AN相可靠动作可靠不动作可靠不动作BN相可靠动作可靠不动作可靠不动作CN相可靠动作可靠不动作可靠不动作 (2)距离Ⅰ段 故障相别K=0.95 K=1.05 K=0.7 K=0.95且反向AN相可靠动作可靠不动作可靠不动作BN相可靠动作可靠不动作可靠不动作CN相可靠动作可靠不动作可靠不动作AB相可靠动作可靠不动作可靠不动作BC相可靠动作可靠不动作可靠不动作CA相可靠动作可靠不动作可靠不动作 (3)距离Ⅱ段 故障相别K=0.95 K=1.05 K=0.7 K=0.95且反向AN相可靠动作可靠不动作可靠不动作BN相可靠动作可靠不动作可靠不动作CN相可靠动作可靠不动作可靠不动作AB相可靠动作可靠不动作可靠不动作BC相可靠动作可靠不动作可靠不动作CA相可靠动作可靠不动作可靠不动作 (4)距离Ⅲ段 故障相别K=0.95 K=1.05 K=0.7 K=0.95且反向AN相可靠动作可靠不动作可靠不动作BN相可靠动作可靠不动作可靠不动作CN相可靠动作可靠不动作可靠不动作AB相可靠动作可靠不动作可靠不动作BC相可靠动作可靠不动作可靠不动作CA相可靠动作可靠不动作可靠不动作 (5)距离保护反方向出口故障 故障相别AN相BC相ABC相 故障量:U=0,I=6IN,Ф=180°+Фsen

线路保护校验方法

RCS-900系列线路保护测试 一、RCS-901A 型超高压线路成套保护 RCS-901A 配置: 主保护:纵联变化量方向,纵联零序,工频变化量阻抗; 后备保护:两段(四段)式零序,三段式接地/相间距离; 1) 工频变化量阻抗继电器: 保护原理: 故障后 F 点的电压 Uf = 0,等价于两个方向相反的电压源串联, 如果不考虑故障瞬间的暂态分量,则根据叠加定律,有 根据保护安装处的电压变化量U ?和电流变化量I ?,保护构造出一个工作电压op U ?来反映U ?和I ?,其定义为 set op Z I U U ??-?=? ,物理意义如下图所示 当故障点位于不同的位置时,工作电压op U ?具有不同的特征

正向故障: 区内 f op U U ?>? 区外 f op U U ?

)Z Z (I Z I Z I Z I U U set s set s set op +??-=??-??-=??-?=? 短路点处的电压变化量(注意:f U ?的方向!) )Z Z (I U f s f +??=? 所以:动作判据 f op U U ?≥? 等价于 s set s f Z Z Z Z +≤+, 结论:正向保护区是以(-Zs )为圆心,以 |Zset + Zs| 为半径的圆。 当测量到的短路阻抗 Zf 位于圆内(正向区内)则动作, 位于圆外(正向区外)不动; 反向故障时: 工作电压 )Z Z (I Z I Z I Z I U U set R set R set op -??=??-??-=??-?=? 短路点处的电压变化量(注意:f U ?的方向!) )Z Z (I U f R f +??-=? 所以:动作判据 f op U U ?≥? 等价于 R set R f Z Z Z )Z (-≤--, 结论:反向保护区是以 ZR 为圆心,以 |ZR –Zset|为半径的圆。 测量到的短路阻抗(-Zf )永远不可能进入位于第1象限内的动作区, 所以反向不会动作。 测试要点:由于工频变化量阻抗继电器的阻抗特性边界受电源侧等值阻抗Zs 的控制,所以不

差动保护调试方法

微机变压器差动保护 一、微机变压器差动保护中电流互感器二次电流的相位校正问题电力系统中变压器 常采用Y/D-11接线方式,因此,变压器两侧电流的相位差为30°。如果不采取措施,差回路中将会由于变压器两侧电流相位不同而产生不平衡电流。必需消除这种不平衡电流。 (中华人民共和国行业标准DL —400—91《继电保护和安全自 动装置技术规程》2.3.32条:对6.3MVA及以上厂用工作变压器和并联运行变压器。10MVA 及上厂用变压器和备用变压器和单独运行的变压器。以及2MVA及以上用电速断保护灵敏度不符合要求的变压器,应装设纵联差动保护。) (一)用电流互感器二次接线进行相位补偿 其方法是将变压器星形侧的电流互感器接成三角形,将变压器三角形侧的电流互感器 接成星形,如图1所示 图1变压器为Y o/ △ -11连接和TA/Y连接的差动保护原理接线

采用相位补偿后,变压器星形侧电流互感器二次回路差动臂中的电流 I A2、丨B2、I C2 , 刚好与三角形侧的电流互感器二次回路中的电流 I a 2、I b2、I c2同相位,如图2所示。 (二) 用保护内部算法进行相位补偿 当变压器各侧电流互感器二次均采用星型接线时,其二次电流直接接入保护装置,从 而简化了 TA 二次接线,增加了电流回路的可靠性。但是如图 3当变压器为Y 。/ △ -11连接 时,高、低两侧TA 二次电流之间将存在30°的角度差,图4(a )为TA 原边的电流相量 图2向量图 b

图3变压器为Y △ -11连接和TA 为Y/Y 连接的差动保护原理接线 为消除各侧TA 二次电流之间的角度差,由保护软件通过算法进行调整 1、常规差动保护中电流互感器二次电流的相位校正 大部分保护装置采用 Y -△变化调整差流平衡,如四方的 CST31南自厂的PST-12O0 WBZ-500H 南瑞的LFP-972、RCS-985等,其校正方法如下: Y 0侧: I A2 = ( I A2 — I B2 ) / 3 I B2= ( I B2 — I C2 ) / 3 I C 2 = ( I C2 — I A2 ) / 3 △侧: I a2=I a2 I b2 = I b2 I c2=I c2 式中: I A2、I B 2、I C2为Y 0侧TA 二次电流,*、?、I C 2为侧校正后的各相电流;、 I b2、I c2为△侧TA 二次电流,I a2、I b2、丨c2为△侧校正后的各相电流 经过软件校正后,差动回路两侧电流之间的相位一致,见图 4 (b )所示。同理,对于 三绕组变压器,若采用Y o / Y 。/ △ -11接线方式,Y o 侧的相位校正方法都是相同的。 2、RCS- 978中电流互感器二次电流的相位校正 RCS-978中电流互感器二次电流的相位校正方法与其它微机变压器保护有所不同,此

线路保护检验作业指导书

(工程名称) 110kv~500kV线路保护检验作业指导书 编码:BDECSY-01 二○一○年十月

作业指导书签名页

目录 1.适用范围 (1) 2. 编写依据 (1) 3. 作业流程............................................................................................. 错误!未定义书签。 作业(工序)流程图 ..................................................................................... 错误!未定义书签。 4. 安全风险辨析与预控 (3) 5. 作业准备 (4) 5.1 人员配备 (4) 5.2 工器具及仪器仪表配置 (4) 6. 作业方法 (4) 6.1作业条件检查 (4) 6.2通电前检查: (5) 6.3绝缘检查 (5) 6.4通电检查 (5) 6.5保护装置校验 (5) 6.6 保护通道联调: (7) 6.6整组传动试验: (7) 6.7电流电压回路检查: (8) 6.9受电前检查: (8) 7. 质量控制措施及检验标准 (8) 7.1质量控制措施 (8) 7.2质量控制表单 (9) 7.3检验标准 (9)

1.适用范围 本作业指导书适用变电工程110kV~500kV线路保护调试,编写时按110kV~500kV线路保护功能编制,现场可根据实际情况进行删减和补充。 2. 编写依据

3. 作业流程 作业(工序)流程图 图3-1 线路保护作业流程图

变压器保护校验方法

变压器保护校验方法

RCS-978系列变压器保护测试 一、RCS-978型超高压线路成套保护 RCS-978配置: 主保护:稳态比率差动,工频变化量比率差动,零序比率差动, 谐波制动, 后备保护:复合电压闭锁(启动)方向过流 零序方向过流保护 间隙零序过流过压保护 零序过压 稳态比率差动 一、保护原理 基尔霍夫电流定律,流入=流出 (1)差动元件的动作特性 在国内生产的微机型变压器差动保护中,差动元件的动作特性较多采用具有二段折线的动作特性曲线,如下图: K=ta αI 动I op.mi I o 速制

在上图中,I op.min 为差动元件起始动作电流幅值,也称为最小动作电流; I res.min 为最小制动电流,又称为 拐点电流; K=tan α为制动特性斜率,也称 为比率制动系数。 微机变压器差动保护的差动元件采用分相差动,其动作具有比率制动特性。 动作特性为: 拐点前(含拐点): .min .min ()op op res res I I I I ≥≤ 拐点 后 : .min .min .min () ()op op res res res res I I K I I I I ≥+-> 式中 I op ——差动电流的幅值 I res ——制动电流的幅值 也有某些变压器差动保护采用三折线的制

动曲线。 (2)动作方程和制动方程:差动电流Iop 和制动电流Ires 的获取 差动电流(即动作电流):取各侧差动电流互感器(TA )二次电流相量和的绝对值。 以双绕组变压器为例, op h l I I I =+&& 在微机保护中,变压器制动电流的取得方法比较灵活。国内微机保护有以下几种取得方式: ① /2res h l I I I =-&& ② ()/2res h l I I I =+&& ③ max{,}res h l I I I =&& ④ ()/2res op h l I I I I =--&& ⑤ res l I I =& 二、测试要点:标么值的概念 另:注意,978可以自动辅助计算当前的差流, 但其同时显示的“制流X 相”并不是当前X 相的制 动电流,而是当前X 相制

线路保护校验方法

RCS-900系列线路保护测试 一、RCS-901A 型超高压线路成套保护 RCS-901A 配置: 主保护:纵联变化量方向,纵联零序,工频变化量阻抗; 后备保护:两段(四段)式零序,三段式接地/相间距离; 1) 工频变化量阻抗继电器: 保护原理: 故障后 F 点的电压 Uf = 0,等价于两个方向相反的电压源串联, 如果不考虑故障瞬间的暂态分量,则根据叠加定律,有 根据保护安装处的电压变化量U 和电流变化量I ,保护构造出一个工作电压op U 来反映U 和I ,其定义为 set op Z I U U ,物理意义如下图所示 当故障点位于不同的位置时,工作电压op U 具有不同的特征

正向故障: 区内 f op U U 区外 f op U U 反向故障: f op U U 所以:根据工作电压op U 的和△Uf 的幅值比较就可以正确地区分出区内和区外故障,而且具有方向性。其中,根据前面的定义,△Uf = 故障前的F 点的运行电压,一般可 近似取系统额定电压(或增加5%的电压浮动裕度)。 ? 工频变化量阻抗继电器本质上就是一个过电压继电器; ? 工频变化量阻抗继电器并不是常规意义上的电压继电器,由于其工作电压op U 构造的特殊性(能同时反映保护安装处短路电压和电流的变化),它具有和阻抗继电器 完全一致的动作特性,固而称其为阻抗继电器; ● 动作特性分析: 正向故障时: 工作电压

)Z Z (I Z I Z I Z I U U set s set s set op 短路点处的电压变化量(注意:f U 的方向!) )Z Z (I U f s f 所以:动作判据 f op U U 等价于 s set s f Z Z Z Z , 结论:正向保护区是以(-Zs )为圆心,以 |Zset + Zs| 为半径的圆。 当测量到的短路阻抗 Zf 位于圆内(正向区内)则动作, 位于圆外(正向区外)不动; 反向故障时: 工作电压 )Z Z (I Z I Z I Z I U U set R set R set op 短路点处的电压变化量(注意:f U 的方向!) )Z Z (I U f R f 所以:动作判据 f op U U 等价于 R set R f Z Z Z )Z ( , 结论:反向保护区是以 ZR 为圆心,以 |ZR –Zset|为半径的圆。 测量到的短路阻抗(-Zf )永远不可能进入位于第1象限内的动作区, 所以反向不会动作。 测试要点:由于工频变化量阻抗继电器的阻抗特性边界受电源侧等值阻抗Zs 的控制,所以不

变压器保护定值整定

变压器保护定值整定

变压器定值整定说明 注:根据具体保护装置不同,可能产品与说明书有不符之处,以实际产品为主。 差动保护 (1)、平衡系数的计算

对上述表格的说明: 1、Sn为计算平衡系数的基准容量。对于两圈变 压器Sn为变压器的容量;对于三圈变压器Sn 一般取变压器高压侧的容量。 2、U h、U m、Ul分别为变压器高压侧、中压侧、低 压侧的实际运行的电压。 3、n ha、n ma、n la分别为高压侧、中压侧、低压侧的

TA变比。 4、TA的二次侧均接成“Y”型 5、I b为计算平衡系数的基准电流,对于两圈变 压器,I b取高压侧的二次电流;对于三圈变压器I b一般取低压侧的二次电流。如果按上述的基准电流计算的平衡系数大于4,那么要更换基准电流I b,直到平衡系数满足0.1

Δm为TA和TAA变比未完全匹配产生的误差,Δm一般取0.05。 一般情况下可取: I op.0=(0.2—0.5)I n 。 (3)最小制动电流的整定 I res.0 = Na 1.0)In - (0.8。 (4)、比率制动系数K的整定最大不平衡电流的计算 a、三圈变压器 I unb.max =K st K aper f i I s.max +ΔU H I s.H.max +ΔU M I s.M.max + Δm1I s.1.max+Δm2I s.2.max 式中: K st 为TA的同型系数,K st =1.0 K aper 为TA的非周期系数,Kaper=1.5—2.0(5P或10P型TA)或Kaper=1.0(TP型TA) f i 为TA的比值误差, f i =0.1; I s.max 为流过靠近故障侧的TA的最大外部短路周期分量电流; I s.H.max 、I s.M.max 分别为在所计算的外部短路 时,流过调压侧(H、M)TA的最大周期分量电流;

发电机、主变压器保护调试要求措施

方案报审表 工程名称:生物热电综合利用项目编号:SDYN-SEPC-DPT-003 填报说明:本表一式五份,由调试单位填报,建设单位、生产单位、项目监理机构、调试单位、施工单位各一份。特殊施工技术方案由承包单位总工程师批准,并附验算结果。

生物热电综合利用项目发电机、主变保护调试措施 编制: 审核: 批准:

电力建设第一工程公司 2017年10月 目录 1.工程概况 (1) 2编制依据 (2) 3.调试围及目的 (2) 4.受电前应具备的条件 (2) 5.受电工作容及程序 (5) 6.调试质量验评标准 (8) 7.组织分工 (9) 8.安全控制措施及要求 (10) 9.环境、职业健康、安全控制措施 (12) 10.调试所用仪器设备 (12) 11.附录 (14)

1.工程概况 生物热电综合利用项目一期工程建设规模为两台75t/h 高温中高压循环流化床生物质锅炉加一台25MW汽轮发电机,配置30MW的发电机,发电机出口电压为10.5kV,升压至110kV 后并网。 110KV采用GIS配电装置,设单母线,由110KV天永线架空引接作为并网线,同时预留一路110KV出线间隔,设备采用特锐德生产的预装箱式GIS配电站。正常启动及事故情况下,并网线路受电作为全厂的启动/备用电源,不设专用启/备线路。 发电机出口设断路器,作为机组并网开关。发电机出口为单母线接线,分别经电抗器向两段10KV厂用母线供电。厂用10KV系统采用单母线分段制,按炉分为厂用10KVⅠ段和Ⅱ段,母线间设分段开关,两段母线分别接带#1厂用工作变、化水循环变和#2厂用工作变、#0厂用备用变、脱硫变为全厂低压辅机供电,400V系统设厂用工作Ⅰ段、厂用工作Ⅱ段、化水循环段和脱硫段共四段工作母线为全厂低压辅机供电,同时设400V备用段为四段工作母线提供备用电源。 主设备参数如下: 主变: 发电机:

变压器功率方向保护校验方法

变压器功率方向保护校验方法 摘要:提出变压器相间、接地功率方向保护的一种校验方法。该方法通过对电力系统变压器相间、接地故障的分析,结合PT 、CT 的接线极性,模拟系统故障进行整组试验,能够简单可靠地对变压器功率方向保护进行校验。 关键词:β史较虮;?极性分析相间故障接地故障 1 引言 变压器功率方向保护(包括相间功率方向保护和零序功率方向保护)是变压器的重要后备保护之一。它作为相邻元件及变压器内部故障的后备保护,在防止故障范围的扩大,保障系统安全运行方面起着重要的作用。其方向性的正确与否,和电流互感器的一次、二次接线、电压互感器的二次接线及保护装置的二次接线都有关系,在实际运行当中,很容易由于接线极性的错误而造成保护误动或拒动。本文试图通过对功率方向保护的探讨,总结出一种简单可靠的校验方法。结果表明,通过模拟电力系统的实际故障,结合CT 、PT 接线极性的分析,能够简单可靠地对功率方向保护方向的正确性进行检验, 在设备验收和日常定检工作中,大大简化了工作量。 2 问题的提出 功率方向保护方向的正确性,可以通过检查保护的电压、电流接线极性来检查,但是对于现场的实际装置,二次线繁多,接法复杂,难以理清各线的走向,容易出错。而且,对于应用日益广泛的微机变压器保护,功率方向保护的方向指向一般通过软件控制字整定,方向性的确定是在保护软件模块默认系统的电压电流接线极性的条件下,由保护计算软件来控制确定的。比如,对于WBZ2500 微机变压器保护,其配置中带方向的功能,方向的确定必须在以下极性接线方式下:CT 极性是当一次电流流入变压器时,装置的感应电流为正极性电流流入装置; PT 极性为正极性接入装置。这样,就无法和分立元件保护一样地通过检查继电器电压电流接法的极性来检查功率方向保护的方向性。比较简单可靠的方法是结合保护的整组试验,依据保护的整定和CT 、PT 的接线极性,模拟出系统的正、反方向故障,给保护加入模拟的故障电压和电流,校验其动作的角度和灵敏性。 3 相间功率方向的校验 要模拟系统故障,进行整组试验,首先要分析系统一次故障的情况。 我局的220kV 变压器相间功率方向保护正方向的整定都是指向母线的。首先考虑正方向故障的情况。如图1 所示,母线外线路发生相间

线路保护校验方法

RCS-900系列线路保护测试 、RCS-901A 型超高压线路成套保护 RCS-901A 配置: 主保护:纵联变化量方向,纵联零序,工频变化量阻抗; 后备保护:两段(四段)式零序,三段式接地 /相间距离; 1)工频变化量阻抗继电器: 保护原理: 故障后F 点的电压Uf = 0 ,等价于两个方向相反的电压源串联, 当故障点位于不同的位置时,工作电压 U o p 具有不同的特征 工魏 变化量 Fault 如果不考虑故障瞬间的暂态分量,则根据叠加定律,有 根据保护安装处的电压变化量 ■ U 和电流变化量 崩,保护构造出一个工作电压 U op 来反

正向:区内 AUf 区外 区外AU op £心U f 反向故障:A U op£》U f 所以:根据工作电压U op的和△ Uf的幅值比较就可以正确地区分出区内和区外故障,而且具有方向性。其中,根据前面的定义,△ Uf =故障前的F点的运行电压,一般可近似取系统额 定电压(或增加5%的电压浮动裕度)。 工频变化量阻抗继电器本质上就是一个过电压继电器; 工频变化量阻抗继电器并不是常规意义上的电压继电器,由于其工作电压U op构 造的特殊性(能同时反映保护安装处短路电压和电流的变化),它具有和阻抗继电器 完全一致的动作特性,固而称其为阻抗继电器; 动作特性分析: 正向故障时: Zset ----------1 ___ 1------------------- 1__ 1 -------- ------ 1 [ ? *、 工作电压

?'Uop =「:U - . J Z set =-.」Z s - 1 Z set =一 I ( Z s Z set ) 短路点处的电压变化量(注意: CUf 的方向!) U f 「I (Z s Z f ) 所以:动作判据 心U op FA U f 等价于 Z f +ZsW Z set + Z s 结论:正向保护区是以(-Zs )为圆心,以|Zset + Zs| 为半径的圆。 当测量到的短路阻抗 Zf 位于圆内(正向区内)则动作, 位于圆外(正向区外)不动; 反向故障时: U °p = U - I Z set 7 Z R WZset - I (Z R 也氏) 短路点处的电压变化量(注意: U f 的方向!) U f 二-I (Z R Z f ) 所以:动作判据 也u op | Kp U f 等价于 (-Z f )-Z R 兰 Z set-Z R 结论:反向保护区是以 ZR 为圆心,以|ZR - Zset|为半径的圆。 测量到的短路阻抗(-Zf )永远不可能进入位于第 1象限内的动作区, 所以反向不会动作。 测试要点:由于工频变化量阻抗继电器的阻抗特性边界受电源侧等值阻抗 Zs 的控制,所以不 工作电压

变压器安装及系统调试流程

变压器安装及系统调试 流程 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

变压器安装及系统调试 施工工序:外观检查→基础安装→本体就位→器身检查→附件安装→变压器试验→系统模拟试验→空载试验 k、模拟实验: 依据设计图检查控制设备及二次回路。 检查安装及效验记录。 做短路、过流、重瓦斯、信号、合分闸二次回路传动试验并做记录,动作结果要正确。 l、对绝缘有怀疑时,进行局部放电实验。 m、冲击合闸试验: 要在盘柜试验和模拟试验完全合格的基础上才能进行。 做冲击合闸实验前要对变压器的所有资料进行检查并保证变压器清洁。 加额定电压,合闸5次,每次间隔5分钟无异常后方可送电运行。 101变压器系统调试该如何套用定额? 电力变压器系统调试,包括三相和单相电力变压器系统调试两个分项工程,都是按变压器容量区分规格,分别以“系统”为单位计算。 三相及单相电力变压器系统调试工作内容包括变压器、断路器、互感器、隔离开关、风冷及油循环装置等一、二次回路的调试及空载投入试验。 10kV以下送配电调试: 1. 送配电调试子目适用于10千伏以下送配电回路的系统调试,如从配电装置至分配电箱的供电回路。但从配电箱至电动机的供电回路已包括在电动机的系统调试子目之内。

2. 供电系统调试包括系统内的电缆试验、绝缘子耐压、线路绝缘测试及其一回或二回线路中所有断路器、继电保护、测量仪表的试验等全套调试工作。 3. 一般仪表(如电压表、电流表)、保护互感器的试验均包括在相应的送配电设备系统调试内;计量用仪表、互感器的校验由供电部门统一进行,费用计取按相应规定。 2变压器送电调试运行实验内容 (1)测量线圈连同套管一起的直流电阻。 (2)检查所有分接头的变压比。 (3)检查三相变压器的联结组标号和单相变压器引出线极性。 (4)测 量线圈同套管一起的绝缘电阻。 (5)线圈连同套管一起做交流耐压试验。 (6)油箱中绝 缘油的试验。变压器送电调试运行前的检查 (1)检查各种交接试验单据是否齐全、真实合格,变压器一、二次引线相位、相色正确,接地线等压接触良好。 (2)变压器应清理擦拭干净,顶盖上无遗留杂物,本体及附体无缺损,且不渗油。 (3)通风设施安装完毕,工作正常,事故排油设施完好,消防设施齐全。 (4)油浸变压器的油系统油门应拉开,油门指示正确,油位正常。 (5)油浸变压器的电压切换位置处于正常电压档位。 (6)保护装置整定值符 合规定要求,操作及联动试验正常。变压器送电调试运行 (1)变压器空载投入冲击试验。即变压器不带负荷投入,所有负荷侧开关应全部拉开。必须进行全电压三次冲击实验,以考核变压器的绝缘和保护装置,第一次投入时由高压侧投入,受电后持续时间不少于10 min,经检查无异常情况后,再每隔5 min进行冲击一次,励磁涌流不应引起保护装置动作。最后一次进行空载运行24 h。 (2)变压器空载运行检查方法主要是听声音。正常时发出嗡嗡声,而异常时有以下几种情况发生:声音比较大而均匀时,可能是外加电压比较高;声音比较大而嘈杂时,可能是芯部有松动;有吱吱放电声音,可能是芯部和套管表面有闪络;有爆裂声响,可能是芯部击穿现象。 (3)在冲击试验中操作人员应注意观察冲击电流、空载电流、—、二次测电压、变压器油温度等,做好记录。变压器半负荷调试运行 (1)经过空载冲击试验后,可在空载运行24 h~28 h,如确认无异常便可带半负荷进行运行。 (2)将变

CSG变压器成套保护装置调试大纲

目录 PCS-978GE-C-D变压器成套保护装置调试大纲

一、变压器保护概述 变压器的纵差动保护用于防御变压器绕组和引出线多相短路故障、大接地电流系统侧绕组和引出线的单相接地短路故障及绕组匝间短路故障。目前国内的微机型差动保护,主要由分相差动元件和涌流判别元件两部分构成。对于用于大型变压器的差动保护,还有5次谐波制动元件,以防止变压器过激磁时差动保护误动。 为防止在较高的短路电流水平时,由于电流互感器饱和时高次谐波量增加,产生极大的制动力矩而使差动元件据动,故在谐波制动的变压器差动保护中还设置了差动速断元件,当短路电流达到4~10倍额定电流时,速断元件快速动作出口。 二、试验接线与参数配置 1、试验接线 继电保护测试仪模拟高、中、低压侧合并单元发送采样数据,及模拟高、中、低压侧智能终端监视保护装置出口动作信息。测试仪A1、A2、A3和A4光纤接口分别与保护装置高压侧、中压侧、低压侧和本体侧SV光纤接口相连接,B1和B2光纤接口与保护装置GOOSE直跳接口和GOOSE组网接口连接。注意测试仪侧光纤端口TX接保护装置侧光纤端口RX,测试仪侧光纤端口RX接保护装置侧光纤端口TX。测试仪光口指示灯常亮,表示光纤线收发接线正确;指示灯闪烁,表示通道数据交换。 2、IEC61850参数设置 第一步:打开测试软件主界面,点击“光数字测试”模块,打开“IEC-61850配置(SMV-GOOSE)” 菜单: 第二步:点击“SCL文件导入”,打开“ONLLY SCL文件导入”菜单,导入智能变电站SCD文件“dxb.scd” 第三步:左框区域显示整站设备,找到“1号主变保护A”装置。 选中“1号主变保护A”装置目录下的“SMV输入”文件夹,右上框显示“1号主变保护A”装置所有的SMV控制块,分别为“220KV侧采样”、“110KV侧采样”、“35KV侧采样”、“本体采样”。 选中“220KV侧采样”、“110KV侧采样”、“35KV侧采样”、“本体采样”四个控制块,点击“添加至SMV”,注意报文规范选择“61850-9-2”。 第四步:选中“1号主变保护A”装置目录下的“GOOSE输出”文件夹,右上框显示“1号主变保护A”装置所有的GOOSE输出控制块,右下框为控制块虚端子详细内容。 选中右上框中GOOSE输出控制块,点击“添加至GOOSE IN”。 第五步:选中“1号主变保护A”装置目录下的“GOOSE输入”文件夹,右上框显示“1号主变保护A”装置所有的GOOSE输入控制块,右下框为控制块引用的虚端子详细内容。 选中右上框中GOOSE输入控制块,点击“添加至GOOSE OUT”。 导入SCD文件完成,关闭“ONLLY SCL文件导入”菜单。 第六步:返回“IEC-61850配置”菜单,设置“SMV配置”页面。选中“1号主变220KV 合并单元A”控制块,根据试验接线选择测试仪“光口”,并且将测试仪电压电流a、b、c相与保护装置220KV侧电压电流a、b、c相对应映射。 注意:虚端子映射时,确认控制块为“1号主变220KV合并单元A”。

相关文档
最新文档